Emissions Testing
Performed
on the
Saar Associates
Narrow Band Transceiver
Model: MGW220

To

FCC Part 15 Subpart C, 15.249

Date of Test: March 4, 2002

Report Date: March 29, 2002

Page 1 of 18

Report Number: 3019814

Contact: David Saar

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. No quotations from reports or use of Intertek Testing Services NA Inc. name is permitted except as expressly authorized by Intertek Testing Services NA Inc. in writing. This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Table of Contents

TABLE	OF CONTENTS	2
I – INTR	RODUCTION AND SUMMARY	3
II – TEC	CHNICAL REQUIREMENTS	4
15.1	SCOPE	
15.27	SPECIAL ACCESSORIES	4
15.31	MEASUREMENT STANDARDS	4
15.33	FREQUENCY RANGE OF MEASUREMENT	6
15.35	MEASUREMENT DETECTOR FUNCTIONS AND BANDWIDTH	6
15.201	CERTIFICATION	6
15.203	ANTENNA REQUIREMENTS	6
15.205	RESTRICTED BANDS OF OPERATION	6
15.207	CONDUCTED LIMITS	7
15.209	RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS	7
15.249 (DPERATION IN THE BANDS 902-928 MHZ, 2400-2483.5 MHZ, 5725-5785 MHZ, AND 24.0-24.25 GHZ	Z
III - ATT	FESTATION	9
IV - SIT	E DESCRIPTION AND MEASUREMENT EQUIPMENT	. 10
V – SUN	MMARY OF EQUIPMENT UNDER TEST	. 12
VI - COI	NFIGURATION INFORMATION	. 13
	NFIGURATION PHOTOGRAPHS	
VIII - SA	AMPLE CALCULATION	16
IX - DA	TA TABLES	. 17
X - DUT	Y CYCLE (AVERAGE FACTOR)	. 18

I - Introduction and Summary

TO: Mr. David Saar

FROM: Nicholas Abbondante, Compliance Engineer

DATE: March 4, 2002 PROJECT #: 3019814

RE: Emissions testing of the Narrow Band Transceiver, Model: MGW220

On March 4, 2002 we tested the Narrow Band Transceiver, Model: MGW220 to determine if it was in compliance with the FCC Part 15, Subpart C, 15.249, "Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz" requirements.

A prototype version of the sample was received on 2/26/2002 in good condition. We found that the unit met the Part 15 requirements when tested as received.

The following table summarizes the results of testing.

Test	Pass/Fail	Section of FCC Rules	Section of Test Report
Fundamental Field Strength	Pass	15.249	Table 1
Harmonic Emissions	Pass	15.249	Table 1
Restricted Band & Spurious Emissions	Pass	15.249, 15.205 15.209	Table 1

In summary, this report confirms that the Narrow Band Transceiver, Model: MGW220 is compliant with the FCC Part 15, Subpart C, 15.249 requirements when production units conform to the initial sample. Please address all questions and comments concerning this report to Nicholas Abbondante, Compliance Engineer.

II – Technical Requirements

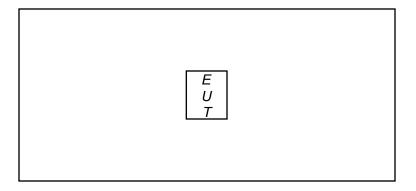
15.1 Scope

The EUT is a hand-held transceiver intended for portable data entry. A prototype version of the sample was received on 2/26/2002 in good condition.

15.27 Special Accessories

No special accessories are necessary for the Narrow Band Transceiver, Model: MGW220 to meet the compliance requirements.

15.31 Measurement Standards


The measurement procedures as specified by ANSI C63.4:1992 were used to test this device. See Section IV of the test report for a detailed description of the test site and the measurement equipment.

Description of how the EUT was exercised during test

The EUT was activated using fresh batteries. The transmitter was set to transmit a modulated signal continuously for measurement purposes.

System Block Diagram

The diagram below details the interconnection of the EUT with the support equipment.

Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (1992).

For maximizing emissions, the system was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported.

The transmitter was configured for testing in a typical fashion (as a customer would normally use it). The device was mounted to a cardboard box, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

To demonstrate compliance across the entire passband, a low and high channel were chosen.

15.33 Frequency range of measurement

The device was scanned for spurious and harmonic emissions from 30 MHz to the 10th harmonic of the fundamental emission. The 10th harmonic for this device is 9143 MHz.

15.35 Measurement detector functions and bandwidth

The following table illustrates the detector functions and bandwidth used to test the device.

Frequency Range	Measurement Detector	Measurement Bandwidth		
450 kHz to 30 MHz	Quasi-Peak	9 kHz		
30 MHz to 1000 MHz	Quasi-Peak	120 kHz		
	Average	120 kHz		
1000 MHz to 10 th harmonic	Average	1 MHz		

The quasi-peak detector meets the requirements of CISPR 16.

15.201 Certification

The device is required to be certified in accordance with Part 2 of the FCC rules, Subpart J.

15.203 Antenna Requirements

The antenna is part of the device circuit board, and may not be removed without destroying the integrity of the device.

15.205 Restricted bands of operation

Section 15.249 requires that all spurious emissions excepting harmonics be compared to the general limits set forth in 15.209, or be attenuated by 50 dB below the fundamental, whichever is the lesser attenuation. The requirement of 15.205 is that any emissions falling within a restricted band be attenuated below the general emissions limits of 15.209. Therefore, the stricter limits of 15.209 were used when examining the spurious emissions levels, as it meets both requirements simultaneously. See section 15.35 for explanation of how detector bandwidth functions were used during testing.

15.207 Conducted limits

- (a) For an intentional radiator designed to be connected to the AC mains network, the radio frequency voltage that is conducted back onto the AC power line between the frequencies 450 kHz and 30 MHz shall not exceed 250 uV, or 48 dBuV.
- (b) If the proper measuring techniques are used, and the quasi-peak value of an emission exceeds its average value by 6 dB or more, that emission is broadband and the quasi-peak value may be reduced by 13 dB and compared to the limits.
- (d) Devices powered from a battery are not subject to these limits unless there are provisions for connecting to a charger while the device is operating. Devices that obtain power through an AC adapter or through another device which is connected to the AC mains network are subject to these limits.

15.209 Radiated emission limits; general requirements

(a) Field Strength Requirements

Frequency Range (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any spurious emissions must be lower than that of the fundamental emission of the intentional radiator. The limits in the above table are based on the frequency of the spurious emission, not the frequency of the fundamental frequency.
- (d) See 15.35 for a description of measurement detector functions and bandwidth.
- (e) See 15.33 for a description of the frequency range of measurement.
- (f) If the frequency range of measurement must extend beyond the 10th harmonic because of a digital device in the intentional radiator, the emissions found above the 10th harmonic are to be compared with the general limits for radiated emissions from unintentional radiators set forth in 15.109.

15.249 Operation in the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz

(a) Field Strength Requirements

Note: The requirements of Section 15.205 are in addition to the following requirements.

Fundamental Frequency (MHz)	Fundamental Field Strength at 3 meters (µV/m)	Harmonic Emissions at 3 meters (μV/m)		
902-928	50000	500		
2400-2483.5	50000	500		
5725-5875	50000	500		
24000-24250	250000	2500		

(b) Field strength limits are specified at a distance of 3 meters

⁽c) All emissions other than the fundamental frequency and its harmonics shall be attenuated by 50 dB below the level of the fundamental emission or to the general radiated emission requirements of 15.209, whichever is the lesser attenuation.

III - Attestation

LABORATORY MEASUREMENTS

Pursuant To Part 15, Subpart C For Intentional Radiators

Company Name: Address:	Saar Associates, Inc. 37 Todd Ridge Road Titusville, NJ, 08560
Model:	MGW220
Date of Test(s):	March 4, 2002
Test Site Location:	INTERTEK TESTING SERVICES NA INC. 70 Codman Hill Road Boxborough, MA 01719
Site:	3
I attest to the accuracy of this report:	
Signature	Signature
Nicholas Abbondante	Michael F. Murphy
Testing Performed By	Reviewer
Engineer	Staff Engineer/EMC
Title	Title

IV - Site Description and Measurement Equipment

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C, General Requirements.

- A. **Test Set-Up**: The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 (1992).
 - 1. The test site is a Plastic/Fiberglass structure with a groundplane. The site has attenuation characteristics which meet the requirements of ANSI C63.4 (1992). Information on the site has been filed with the FCC as required by Rule 2.948. The address of the site is 70 Codman Hill Road, Boxborough, MA 01719.
 - 2. Power to the site is nominal line voltage of 117 V_{AC} and 230 V_{AC} , 60 Hz.
 - 3. The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated 360 degrees and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The antenna height and polarization are also varied during the search for maximum signal levels. The height of the antenna is varied from one meter to four meters. Body-worn, hand-held and small portable devices are mounted on a non-conductive box and emissions are investigated on three orthogonal axis.
 - 4. Detector function for radiated emissions is in peak or quasi-peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings according to the following formula:

Averaging Factor in dB = 20 LOG (duty cycle)

The time period over which the duty cycle is measured is 100 msec. The worst-case (highest percentage on) duty cycle is used and described specifically in the data section. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix 465 Oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities. Alternately an average detector can be employed when required.

5. Antennas used below 1000 MHz were EMCO Model 3142 Biconolog Antennas and Compliance Design Inc. Model A100 tuned Dipole Antennas. For measurements between 1000 MHz and 18000 MHz above 1 GHz, an EMCO Model: 3115 Horn Antenna is used. The Antennas used are listed in the Test Equipment Summary in Section 6.

6. The field strength measuring equipment used included:

Description	Manufacturer	Model	Serial #	Cal Due
Spectrum Analyzer Agilent		E7405A	US40240205	11/02/2002
Super High Frequency Cab	le Sucoflex	104PE	0555/4PEA	03/29/2003
RF Filter	Hewlett Packard	85420E	3427A00177	01/24/2003
Receiver Set w/RF Filter	Hewlett Packard	85422E	3520A00188	01/24/2003
Horn Antenna	EMCO	3115	9602-4675	5/29/2002
Preamplifier	MITEQ	NSP4000-NF	507145	9/22/2002
Antenna	EMCO	3142	9711-1224	11/14/2002

- 7. The frequency range to be scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency, or 40 GHz, whichever is lower. For line-conducted emissions, the range scanned is 450 kHz to 30 MHz.
- 8. The EUT is warmed up for 15 minutes prior to the test. If battery powered, a new battery is used.
- 9. Conducted measurements were made as described in ANSI C63.4 (1992). An IF bandwidth of 9 kHz is used, and peak or quasi-peak detection is employed.
- 10. The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application No. 150-2. Above 1000 MHz, a bandwidth of 1 MHz is generally used.
- 11. Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the forbidden bands and above 1 GHz (where no preamplifier is used), signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.
- 12. For measurements made in the 9 kHz to 30 MHz range, a distance of 30 meters was used unless a good signal-to-noise ratio could not be obtained. In that case, a closer distance was used and that distance is so marked in the data table.

1 Manufacturer: Pro Circuits, Inc.

2059 Springdale Road Suite B

Cherry Hill, NJ, 08003

Grantee: Saar Associates, Inc.

> 37 Todd Ridge Road Titusville, NJ, 08560 (609) 818-0860

Contact: David Saar

Narrow Band Transceiver **Trade Name:**

MGW220 Model No.:

Serial No.: Proto1

Intended FCC ID (with preceding 3-character grantee code): P8LMGW220

Date of Test: March 4, 2002

Frequencies to which device can be tuned: 906.3 - 914.3 MHz

Can customer tune device? Yes

10 Applicable emissions limits: 15.205, 15.207, 15.209, 15.249

VI - Configuration Information

Equipment Under Test: Narrow Band Transmitter

Model: MGW220

Serial No.: Proto1

FCC Identifier: None assigned as of this report; intended FCC ID is

P8LMGW220

Support Equipment:

None, the EUT was operated in a standalone configuration.

Cables:

QTY	Description	Shield Description	Hood Description	Length (m)

None

VII - Configuration Photographs

Radiated Emissions Test Setup, Front and Back

Line Conducted Emissions Test Setup, Front and Back

Line-conducted emissions testing was not performed as the EUT derives power from a battery.

VIII - Sample Calculation

The following is how net field strength readings were determined:

$$NF = RF + AF + CF + PF + DF$$

Where,

 $NF = Net Reading in dB\mu V/m$

RF = Reading from receiver in dBuV

AF = Antenna Correction Factor in dB(1/m)

CF = Cable Correction Factor in dB

AVF = Duty Cycle Correction Factor in dB

DF = Distance Factor in dB (using 20 dB/decade), from 3 to 1 meters 10.5 dB was added for measurements performed at 1 meter

To convert from $dB\mu V/m$ to $\mu V/m$ or mV/m the following was used:

$$UF = 10^{(NF/20)}$$

Where.

UF = Net Reading in $\mu V/m$

Example:

For the fundamental field strength measurement at 8.4 (distance = 3 meters) see table [1].

$$NF = NF = RF + AF + CF + AVF + DF = 62.9 + 13.7 + 2.1 + (-10.0) + 0.0 = 68.7 dB\mu V/m$$

$$UF = 10^{(68.7~dB\mu V\,/\,20)} = 2722.7~\mu V/m$$

IX - Data Tables

Radiated Emissions/Interference

Table: 1

Company: Saar Associates, Inc. Tested by: Nicholas Abbondante

Model #. Narrow Band Transceiver Serial #. Proto1 Location: EMI Site 3
Project #. 3019814 Pressure: N/A Detector: HP 8542E
Date: 03/04/02 Temp: 15.4C Antenna: HORN2
Standard: FOC Part 15.249 Humidity: 25% PreAmp: PRE8

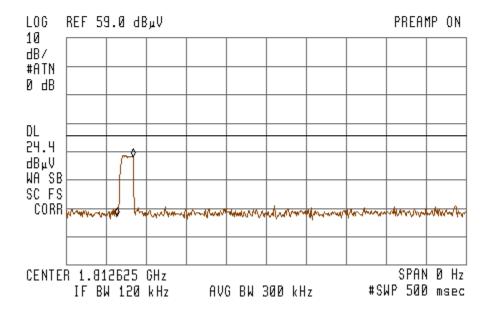
Class: None Group: None Cable(s): 3C, 3M Prime None

Notes: Duty Cycle Adjustment = -14 dB Distance: 3 meters

Abbreviations: nb - narrow band, bb - broadband, pk - peak measurement

Ant.			Antenna	Cable	Pre-amp	Duty cycle			
Pd.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
Η	288.000	2.8	133	2.4	0.0	0.0	18.5	46.0	-27.5
Η	327.600	3.8	14.6	2.6	0.0	0.0	21.0	46.0	-25.0
V	906.300	64.6	24.6	4.7	0.0	-14.0	79.9	94.0	-14.1
V	914.300	60.8	24.6	4.7	0.0	-14.0	76.1	94.0	-17.9
V	950.300	1.3	24.5	4.8	0.0	0.0	30.6	46.0	-15.4
V	1812.600	30.2	28.8	6.9	0.0	-14.0	51.9	54.0	-2.1
V	1828.600	26.5	28.8	6.9	0.0	-14.0	48.2	54.0	-5.8
V	1857.000	329	29.0	7.2	223	0.0	46.8	54.0	-7.2
V	1871.500	31.0	29.0	7.2	223	0.0	45.0	54.0	-9.0
V	2742.900	34.6	31.3	9.4	223	0.0	53.0	54.0	-1.0
V	2743.000	32.2	31.3	9.4	223	0.0	50.5	54.0	-3.5

Peak Peak


Peak Peak

X - Duty Cycle (Average Factor)

The average factor is subtracted from peak readings to compare emissions readings to average limits. The average factor is calculated from duty cycle measurements from the following plots. The average factor is 20 Log (ON-TIME/PERIOD) of the emission. If the period is longer than 100 milliseconds then 100 milliseconds is used for the period. Average factor is determined using the worst-case duty cycle. See below for a plot of the transmission duty cycle.

🏘 14:17:33 MAR 04, 2002

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR∆ 20.000 msec 20.73 dB

Note that the duration of the transmission is 20 ms. The period is larger than 100 ms so 100 ms is used instead. This leads to a duty cycle average factor of 14 dB.