APPLICATION FOR FCC TYPE ACCEPTANCE TCAS II COMPUTER UNIT

5140-0750 REV. A

HONEYWELL INC. SPERRY COMMERCIAL FLIGHT SYSTEMS GROUP PHOENIX, ARIZONA

PROPRIETARY NOTICE
THIS DOCUMENT AND THE INFORMATION DISCLOSED HEREIN ARE PROPRIETARY DATA OF HONEYWELL INC. NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE REPRODUCED, USED, OR DISCLOSED TO OTHERS WITHOUT THE WRITTEN AUTHORIZATION OF HONEYHELL INC.

NOTICE
FREEDOM OF INFORMATION ACT (5 USC 552) AND
DISCLOSURE OF CONFIDENTIAL INFORMATION GENERALLY
(18 USC 1905)

THIS DOCUMENT IS BEING FURNISHED IN CONFIDENCE BY HOMEYWELL INC. THE INFORMATION DISCLOSED HEREIN FALLS WITHIN EXEMPTION (b)(4) OF 5 USC 552 AND THE PROHIBITIONS OF 18 USC 1905.

RELEASE DATE: 29MAY 90

COPY NO.____

APPROVALS

<u>Issue</u>

<u>Date</u>

Approved By

Original

Α

29 May 90

D. A. Zinder

R. Wendel, Engineering Section Head D. G. Evans, Department Manager

D.

Wendel, Engineering Section Head

G. Evans, Department Manager

TCAS II COMPUTER UNIT 5140-0750 REV A

RECORD OF REVISIONS

Rev Level Paragraph Page No.	Description	
	Initial issue.	
Α	Add pages 24a-24e	

TABLE OF CONTENTS

1.0 INTRODUCTION	.2
2.0 REFERENCED DOCUMENTS	3
3.0 GENERAL REQUIREMENTS	4
4.0 DRAWINGS AND PHOTOGRAPHS	8
5.0 TEST DATA	10
FIGURES	
Figure 1 INTERROGATION TRANSMISSION LEVELS	11
Figure 2 TOP DIRECTIONAL/BOTTOM OMNI-DIRECTIONAL INTERROGATION SEQUENCE	12
Figure 3 TOP DIRECTIONAL/BOTTOM DIRECTIONAL INTERROGATION SEQUENCE	13
APPENDIX	
MODULATION CHARACTERISTICS	15
OCCUPIED BANDWIDTH	17
SPURIOUS EMISSIONS	20
FREQUENCY STABILITY	28
POWER OUTPUT	28
1030 MHz OSCILLATOR DETAIL DIAGRAM	29

1.0 INTRODUCTION

1.1 SCOPE

This report consists of data establishing the conformance of the Honeywell, Inc. TCAS II Computer Unit, Model 4066010-901, to the requirements established by the Federal Communications Commission in its rules and regulations (as referenced in Section 2 of this document).

1.2 CERTIFICATION

The TCAS II Computer Unit as described herein has been shown to have completely met the cited requirements.

David A/Z/inder, PE

Test Engineer Certification

David A. Zinder BSEE University of Arizona, 1958

12 years experience in military and commercial avionics

Holder of First Class Radiotelephone Operator License (now General Class) since 1953.

2.0 REFERENCED DOCUMENTS

2.1 Federal Communications Commission

Latest

Rules and Regulations

Issue

Volume II, Part 2, Subpart J

Volume V, Part 87, Subpart A

2.2 Radio Technical Commission on Aeronautics (RTCA)

D0-160

Environmental Conditions and Test Procedures for

Rev. B

Airborne Equipment

July 1984

D0-185

Minimum Operational Performance Standards for

Change 6

Traffic Alert and Collision Avoidance System (TCAS)

Sept 1989 Ai

Airborne Equipment

2.3 Honeywell, Inc. (These documents are attached to this report and are identified in the List of Exhibits.)

3.0 GENERAL REQUIREMENTS

- 3.1 Type Designation. The equipment has been designated by Honeywell, Inc., Sperry Commercial Flight Systems Group as TCAS II Computer Unit, 4066010-901.
- 3.2 Service and Rule for Intended Operation. Air Traffic Control, Part 87, Subpart A.
- 3.3 Description of Equipment.

3.3.1 Type of Emission:

18M0P1D

3.3.2 Frequency Range:

 $1030 \pm 0.01 \text{ MHz}$

3.3.3 Power Rating:

0.4 to 500 watts peak pulse effective

radiated power

3.3.4 Final Power Amplifier:

Solid State Balanced Amplifier (Class C) using four MSC 1011-400

silicon bipolar transistors.

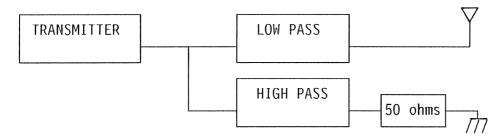
3.3.5 Active Device Functions:

<u>Function</u>	<u>Device Type</u>	<u>Manufacturer</u>		
Oscillator Crystal controlled	5044-1052	TRAK Microwave		
Transmitter				
Microwave Pulse Power				
TransistorAmplifier,	MSC1000 (2 ea)	Microwave Semiconductor		
1 watt				
Microwave Pulse Power TransistorAmplifier,	MSC1004MP	Microusus Comiconductor		
4 watt	M3C1004MF	Microwave Semiconductor		
Microwave Pulse Power				
TransistorAmplifier,	81020	Microwave Semiconductor		
20 watt				
Microwave Pulse Power	1011 70	M'		
TransistorAmplifier, 70 watt	1011-70	Microwave Semiconductor		
Microwave Pulse Power				
TransistorAmplifier,	1011-400 (4 ea)	Microwave Semiconductor		
400 watt				
Pulse Modulator				
N Channel FET	IRF110	Generic		
Modulator				
DPSK Modulators NPN Transistor (3)	BSV52	Generic		
Modulator	D3 V 3 Z	deller ic		
PNP Transistor (2)	BSR16	Generic		
Modulator				

- 3.3.6 Circuit Diagram. See attached drawings.
- 3.3.7 Instruction Book. The total instruction package is contained in two documents attached to this report. The document names are self explanatory:

Honeywell Document Number

Title


C-28-3841-01

TCAS II Pilot's Manual for Northwest Airlines

34-43-00

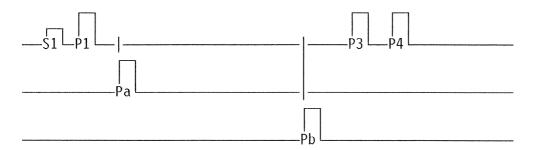
TCAS System Description and Installation Manual

- 3.3.8 Tune-up Procedure. No field tuning is required.
- 3.3.9 Oscillator Circuit. The oscillator consists of a purchased assembly utilizing an aged quartz crystal resonator in a heated, temperature controlled environment. Isolation and bias stabilization is provided internally in the oscillator container. Final frequency adjustment is performed during the acceptance test of the I/O module using a calibrated frequency counter. The frequency is adjusted at room temperature to 1030 MHz \pm 250 Hz. Figure A-14 from the test document IT7514216 is included here as item 5 of the Appendix.
- 3.3.10 Frequency Stabilization. Crystal controlled.
- 3.3.11 Modulation Limiting. Not Applicable.
- 3.3.12 Radiated Interference Suppression. Low pass/ high pass filter consisting of microstrip printed circuit elements (see drawing below).

Harmonic Filter

The filter provides essentially zero attenuation at the transmitted frequency (1030 MHz) and maximum attenuation of the second and third harmonics. The lowpass section is a five pole combline filter with a cutoff at approximately 1800 MHz. The high pass element is also a five pole combline filter with the same cutoff frequency.

The high pass section provides a termination for the higher order harmonics which will be reflected back and forth from the transmitter output to the low pass filter. To prevent the high pass filter from loading the transmitter output, the filter impedance at 1030 MHz is matched by a microstrip transformer to appear as an open circuit at that frequency.


The spectral output of the 1030 MHz transmitter will be limited to the following schedule:

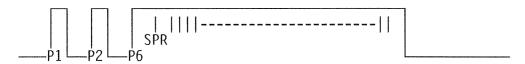
Frequency difference	Relative power
(MHz from carrier)	<u>(dB below maximum)</u>
≥4, <6	6
≥6, <8	11
>8, <10	15
≥ 10 , <20	19
>20, <30	31
$\geq 30, < 40$	38
>40, <50	43
$\geq 50, < 60$	47
_ ≥60 ·	50

3.3.13 Modulation Details.

3.3.13.1 ATCRBS Interrogations. Interrogations are sent out on an intentionally jittered 1 ± 0.2 second interval in increasing power levels according to the schedules shown in Figures 1 through 3 which are at the end of this document. By transmitting the weakest signals first only the closest aircraft will reply. The interrogations progress in a roughly circular pattern weighted toward the front of the aircraft since that is the area from which the greatest closing speeds originate. In areas of high density the sequence is halted when the computer has reached a limit defined by a complex set of three inequalities. In this manner interference to other TCAS equipped aircraft in the area is minimized since the strongest interrogations are the first to be dropped. The priority of elimination of steps for interference limiting is also shown in Figures 1 through 3. This priority is inversely related to the order of the step sequence.

Pulse Widths: 0.8 ± 0.05 usec. Rise Times (10% to 90%): ≥ 0.05 usec., ≤ 0.1 usec. Fall Times (90% to 10%): ≥ 0.05 usec., ≤ 0.2 usec.

Pulses P1, P3, and P4 will appear in all interrogation steps of the whisper/shout sequence and will be at the same power level. Pulse S1 will appear in all steps except the initial step on each antenna direction and at a level two or three dB below the level of P1, etc. according to the schedules shown in Figures 1 through 3. The steps occur at intervals of two milliseconds until the entire program is complete. The program length depends upon the

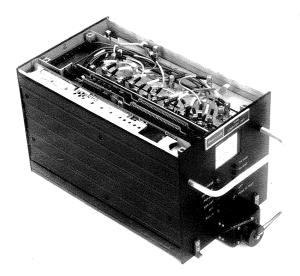

individual aircraft installation. Options are available for using either an omni-directional bottom antenna or a directional bottom antenna. The top antenna is always directional. Pulses Pa and Pb are transmitted on the antenna lobes -90° and $+90^{\circ}$ respectively to the primary beam, that of P1, P3, and P4. They are used for suppression of sensitivity of the receiving aircraft to the side lobes of the transmitted beam.

Timing of the pulses is as follows, always referenced to the leading edge of the indicated pulses:

S1 = -2 microseconds P1 = 0 microseconds Pa = 2 microseconds Pb = 19 microseconds P3 = 21 microseconds P4 = 23 microseconds

3.3.13.2 Mode S Interrogations. Details of the Mode S interrogations are shown in the figure below. The preamble and the synchronizing phase reversal (SPR) will appear the same in all interrogations. The data block will be either 56 or 112 chips of 0.25 microseconds, depending upon the type of reply desired. The data chips will be of reversed phase from their previous chips if their data bits are 1, they will remain the same phase as the previous chips if their data bits are 0. The allowable transition time of the phase reversals is a maximum of 80 nanoseconds. The Mode S interrogations are transmitted after the whisper/shout sequence of ATCRBS interrogations. When no Mode S equipped aircraft are replying, the TCAS CU sends out Mode S broadcast interrogations based upon a 10 second pattern with 2 or 3 seconds between transmissions on the four lobes of the antenna. The time remaining after the Mode S transmeissions are completed is used as a listening period for other unacquired aircraft.

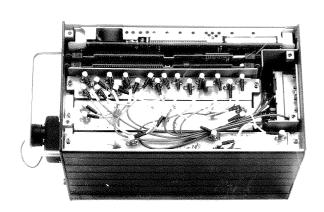
Preamble pulse Widths: 0.8 ± 0.05 usec. Rise Times (10% to 90%): ≤ 0.1 usec. Fall Times (90% to 10%): < 0.2 usec.

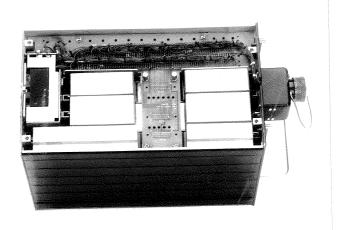


Timing of the events is as follows, referenced to the leading edge of the P1 pulse:

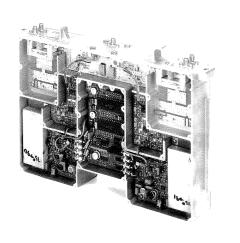
P1	0.0 microseconds
P2	2.0 microseconds
P6	3.5 microseconds
SPR	4.75 microseconds
Bit 1	5.25 microseconds
End P6	19.75 microseconds (56 bits)
	33.75 microseconds (112 bits)

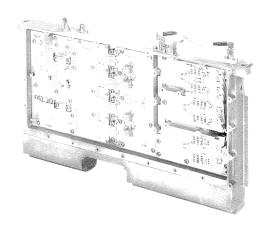
4.0 DRAWINGS AND PHOTOGRAPHS


- 4.1 The drawings listed in section 2.3 of this document are furnished as separate items with this application.
- 4.2 Photographs of the TCAS Computer Unit illustrating the assembly drawings are presented here and on the next page. Photographs showing the overall appearance including placement of the nameplates and views showing the details of the nameplates are shown in 8 x 10 prints in the attachments.

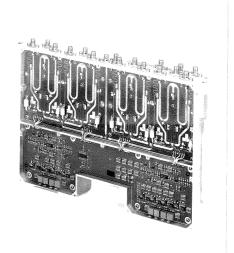

Oblique front view Top cover removed

Oblique rear view Shows ARINC 600 connector


Inside top view


Inside bottom view

4.2 Photographs of the TCAS Computer Unit (cont'd)


RF Modules with the covers removed.

Receiver Assembly

Transmitter Assembly

I/O Assembly

Note: All original photographs are available for inspection.

5.0 TEST DATA

Data from the required tests is appended to this report per the following list. Paragraphs referenced are from FCC Rules and Regulations, Part 2, Subpart J.

5.1 Modulation Characteristics, para 2.987

MOPS test data sheets showing ATCRBS and Mode S interrogation transmission characteristic measurements. Oscilloscope photographs of TCAS CU interrogations showing typical patterns and rise and fall times.

5.2 Occupied Bandwidth, para 2.989

Data sheet from spectrum analyzer showing spectral data at 5 MHz per division. All spectra were taken while the TCAS CU was in its normal mode of operation, transmitting one whisper/shout sequence of mode C interrogations each second, jittered at a random rate between 0.8 and 1.2 seconds. The unit also transmits four mode S interrogations every ten seconds at two and three second intervals, once on each directional lobe of the antenna.

The measured occupied bandwidth as shown on the spectrum is from 1024 to 1035 MHz.

5.3 Spurious Emissions, para. 2.991, 2.993

Data sheets from EMI testing, radiated emissions from 150 kHz to 10 GHz. Additionally, spectra were taken directly from the antenna terminals through 10.9 GHz, the 10th harmonic of the fundamental frequency.

5.4 Frequency Stability with Temperature, para 2.995b RF Power Output, para. 2.985

Data sheet taken during temperature performance testing of the computer unit. Both frequency and maximum power output were recorded.

5.6 Frequency Stability under Voltage Fluctuations, para 2.995d RF Power Output, para. 2.985

Data taken during power variations testing on the transponder. Both frequency and maximum power output were recorded.

Omni-Directional Antenna

Nominal Power Levels (dB relative to full power)

<u>Level</u>	<u>P₁,P₃,P₄ Pulses</u>	<u>S₁ Pulse</u>
00	-13	-16
01	-15	-18
02	-17	-20
03	-1 9	- 22
04	-21	-24
05	- 23	-26
06	-25	none

<u>Directional Antenna</u>

Nominal Power Levels (dB relative to full power)

<u>Level</u>	P ₁ ,P ₃ ,P ₄ Pulses	<u>S₁ Pulse</u>	P _A ,P _B Pulses
DO	0	-3	-2
D1	-1	-3	-3
D2	-2	-5	-4
D3	-3	- 5	-5
D4	-4	-7	-6
D5	-5	-7	- 7
D6	-6	-9	-8
D7	- 7	- 9	- 9
D8	-8	-11	-10
D9	-9	-11	-11
D10	-10	-13	-12
D11	-11	-13	-13
D12	-12	-15	-14
D13	-13	-15	-15
D14	-14	-17	-16
D15	-15	-17	-17
D16	-16	-19	-18
D17	-17	-19	-19
D18	-18	-21	-20
D19	-19	-21	-21
D20	-20	-23	-22
D21 D22	-21 22	-23	-23
D23	- 22 -23	-25	-24
D23 D24	-24	-25	- 25
D24 D25	-24 -25	-27 -27	-26
D26	-26	~ ∠/	-27
DLU	20	toor date	-16 (P _A only)

Figure 1
INTERROGATION TRANSMISSION LEVELS

Bottom Omni-Directional Antenna

Interference Limiting Priority/Interrogation Level

Top Directional Antenna

Interference Limiting Priority/Interrogation Level

0.	180°	90°	270°	
91 / D26	_	_	_	
90 / D25	ear .	-	-	
89 / D24	_	-	-	
88 / D23	-	87 / D26	86 / D26	
85 / D22	-	84 / D25	83 / D25	
82 / D21	_	81 / D24	80 / D24	
79 / D20		78 / D23	77 / D23	
76 / D19	-	75 / D22	74 / D22	
73 / D18	72 / D26	71 / D21	70 / D21	
69 / D17	68 / D25	67 / D20	66 / D20	
65 / D16	64 / D24	63 / D19	62 / D19	
61 / D15	60 / D23	59 / D18	58 / D18	
57 / D14	56 / D22	55 / D17	54 / D17	
53 / D13	52 / D21	51 / D16	50 / D16	
49 / D12	48 / D20	47 / D15	46 / D15	
45 / D11	44 / D19	43 / 014	42 / D14	
41 / D10	40 / D18	39 / D13 35 / D12	38 / D13 34 / D12	
37 / D9 33 / D8	36 / D17 32 / D16	31 / D11	34 / D12 30 / D11	
29 / D7	28 / D15	27 / D10	26 / D10	
25 / D6	24 / D14	23 / D9	22 / D9	
23 / D5	20 / D13	19 / D8	18 / D8	
17 / D4	16 / D12	15 / D7	14 / D7	
13 / D3	10 / D12 12 / D11	11 / D6	10 / D6	
9 / D2	8 / D10	7 / D5	6 / D5	
5 / D1	4 / D9	3 / D4	2 / D4	
1 / DO	. ,	_	_	

Figure 2

TOP DIRECTIONAL/BOTTOM OMNI-DIRECTIONAL INTERROGATION SEQUENCE Interrogation sequence is right to left, top to bottom.

Interference Limiting Priority/Interrogation Level

Top Directional Antenna			Botto	m Directiona	<u>l Antenna</u>		
0 °	l 180°	90°	270°	0 °	l 180°	90°	270°
113 / D26 111 / D25 109 / D24 107 / D23		- 105 / D26 - 99 / D25 - 92 / D24 - 85 / D23 - 78 / D22 - 71 / D21 - 67 / D20 - 63 / D19 - 59 / D18 - 55 / D17 - 51 / D16 - 47 / D15 - 43 / D14 - 39 / D13 - 35 / D12 - 31 / D11 - 27 / D10 - 23 / D9 - 19 / D8 - 15 / D7 - 11 / D6 - 7 / D5 - 3 / D4	- 104 / D26 - 98 / D25 - 91 / D24 - 84 / D23 - 77 / D22 - 70 / D21 - 66 / D20 - 62 / D19 - 58 / D18 - 54 / D17 - 50 / D16 - 46 / D15 - 42 / D14 - 38 / D13 - 34 / D12 - 30 / D11 - 26 / D10 - 22 / D9 - 18 / D8 - 14 / D7 - 10 / D6 - 6 / D5 - 2 / D4	112 / D26 110 / D25 108 / D24 106 / D23 100 / D22 94 / D21 87 / D20 80 / D19 73 / D18		103 / D26 97 / D25 90 / D24 83 / D23 76 / D22 - ations sector a TA	102 / D26 96 / D25 89 / D24 82 / D23 75 / D22
1 / DO	-	-	Figure	1 / D17 1 / D16 1 / D15 1 / D14 1 / D13	1 / D23 1 / D22 1 / D21 1 / D20 1 / D19 1 / D18 1 / D17 1 / D16 1 / D15 1 / D14 1 / D13	1 / D21 1 / D20 1 / D19 1 / D18 1 / D17 1 / D16 1 / D15 1 / D14 1 / D13	1 / D21 1 / D20 1 / D19 1 / D18 1 / D17 1 / D16 1 / D15 1 / D14 1 / D13

TOP DIRECTIONAL/BOTTOM DIRECTIONAL INTERROGATION SEQUENCE Interrogation sequence is right to left, top to bottom.

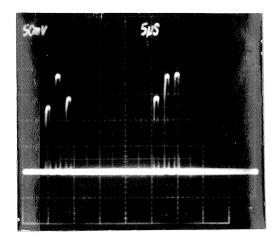
APPENDIX

DATA SHEETS AND OTHER MATERIAL

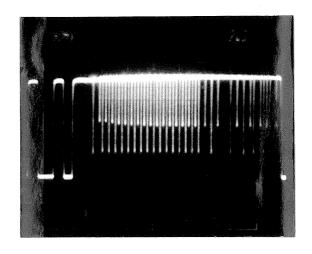
All items are separated by identifying cover sheets.

- 1. Modulation Characteristics, para 2.987
- 2. Occupied Bandwidth, para 2.989
- 3. Spurious Emissions, para. 2.991, 2.993
- 4. RF Power Output, para. 2.985
 Frequency Stability with Temperature, para 2.995b
 Frequency Stability under Voltage Fluctuations, para 2.995d
- 5. 1030 MHz Oscillator Detail Diagram, from Integrated Test Procedure IT7514216

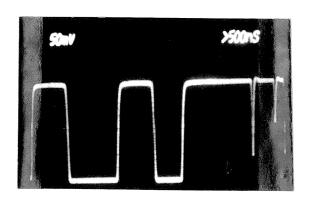
APPENDIX

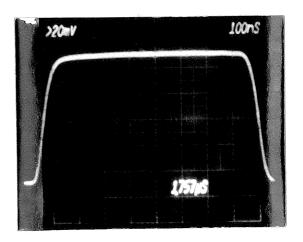

DATA SHEETS AND OTHER MATERIAL

All items are separated by identifying cover sheets.


- 1. Modulation Characteristics, para 2.987
- 2. Occupied Bandwidth, para 2.989
- Spurious Emissions, para. 2.991, 2.993
- RF Power Output, para. 2.985 4. Frequency Stability with Temperature, para 2.995b Frequency Stability under Voltage Fluctuations, para 2.995d

MODULATION CHARACTERISTICS


Oscilloscope photographs of typical modulation patterns.


ATCRBS Mode C Interrogation

Mode S Interrogation

Close up of Mode S Interrogation Preamble and Sync Phase Reversal

Typical ATCRBS or Mode S Interrogation Pulse Showing Rise and Fall Times