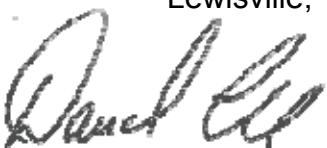


Nemko Test Report: 10244721_TRF_FCC15-RSS210

Applicant: Electronic Solutions, Inc.
1355 Horizon Ave.
Lafayette, CO 80026
USA


Equipment Under Test: ESI RF BRIDGE
(E.U.T.)

FCC Identifier: P7RRFBIDGE

Industry Canada Identifier: 7206A-RFBRIDGE

In Accordance With: FCC Part 15, Subpart C, 15.247 and
Industry Canada RSS-210, Issue 8
Digital Transmission Systems

Tested By: Nemko USA, Inc.
802 N. Kealy
Lewisville, Texas 75057-3136

TESTED BY:

David Light Wireless Engineer

DATE: 16 August 2013

APPROVED BY:

Tom Tidwell, Reviewer

DATE: 27 August 2013

Number of Pages: 30

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

Table of Contents

SECTION 1. SUMMARY OF TEST RESULTS	3
SECTION 2. EQUIPMENT UNDER TEST (E.U.T.)	5
SECTION 3. OCCUPIED BANDWIDTH	6
SECTION 4. MAXIMUM PEAK OUTPUT POWER	10
SECTION 5 CONDUCTED SPURIOUS EMISSIONS	11
SECTION 6. RADIATED EMISSIONS	13
SECTION 7. PEAK POWER SPECTRAL DENSITY	15
SECTION 8. POWERLINE CONDUCTED EMISSIONS	16
SECTION 9. TEST EQUIPMENT LIST	18
ANNEX A - TEST DETAILS	19
ANNEX B - TEST DIAGRAMS	28

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge **Test Report No.:** 10244721_TRF_FCC15-RSS210

Section 1. Summary of Test Results

Manufacturer: Electronic Solutions, Inc.

Model No.: ESI RF BRIDGE

Serial No.: Nemko Sample# 452

General: **All measurements are traceable to national standards.**

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 and Industry Canada RSS-210, Issue 8 for Digital Transmission Systems. Radiated tests were conducted in accordance with ANSI C63.4-2003 and OET Guidance document 558074 v03r01. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC and Industry Canada.

<input checked="" type="checkbox"/>	New Submission	<input type="checkbox"/>	Production Unit
<input type="checkbox"/>	Class II Permissive Change	<input checked="" type="checkbox"/>	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a) / RSS-Gen 7.2.4	Complies
Minimum 6 dB Bandwidth	15.247(a)(2) / A8.2(a)	Complies
Maximum Peak Power Output	15.247(b)(3) / A8.4(4)	Complies
Spurious Emissions (Antenna Conducted)	15.247(d) / A8.5	Complies
Spurious Emissions (Restricted Bands)	15.209(a) / RSS-Gen7.2.2	Complies
Peak Power Spectral Density	15.247(e) / A8.2(b)	Complies

Footnotes:

All tests were performed radiated.

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band (MHz):	902-928	2400-2483.5	5725-5850
	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

Operating Frequency of Test Sample: 2405 to 2480 MHz

User Frequency Adjustment: Software controlled

Description of EUT

The ESI RF Serial Bridge is a translation and control unit between the ESI RF protocol and the ESI RQ protocol. The ESI RF Serial Bridge connects to home automation systems using RS-232. It is powered with a mini-USB power supply and controlled by an AT91SAM3S microcontroller. No data is transmitted over the USB cable. It is for power only.

The microcontroller interprets the RS-232 inputs from a home automation system as RQ commands and translates them to RF commands communicated over an IEEE 802.15.4 2.44 GHz network with the appropriate motors. The 802.15.4 transmission and reception is performed by an Atmel AT86RF231 RF chip which uses a PIFA antenna. The RQ protocol is communicated over a wired network using a protocol similar to I2C. Commands can also be received from RF inputs and translated to RQ commands which are then sent via RS-232 to the home automation system.

Commands from the home automation system are relatively infrequent. A series of commands may be sent a few times each day.

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems
10244721 TRF FCC15-RSS210

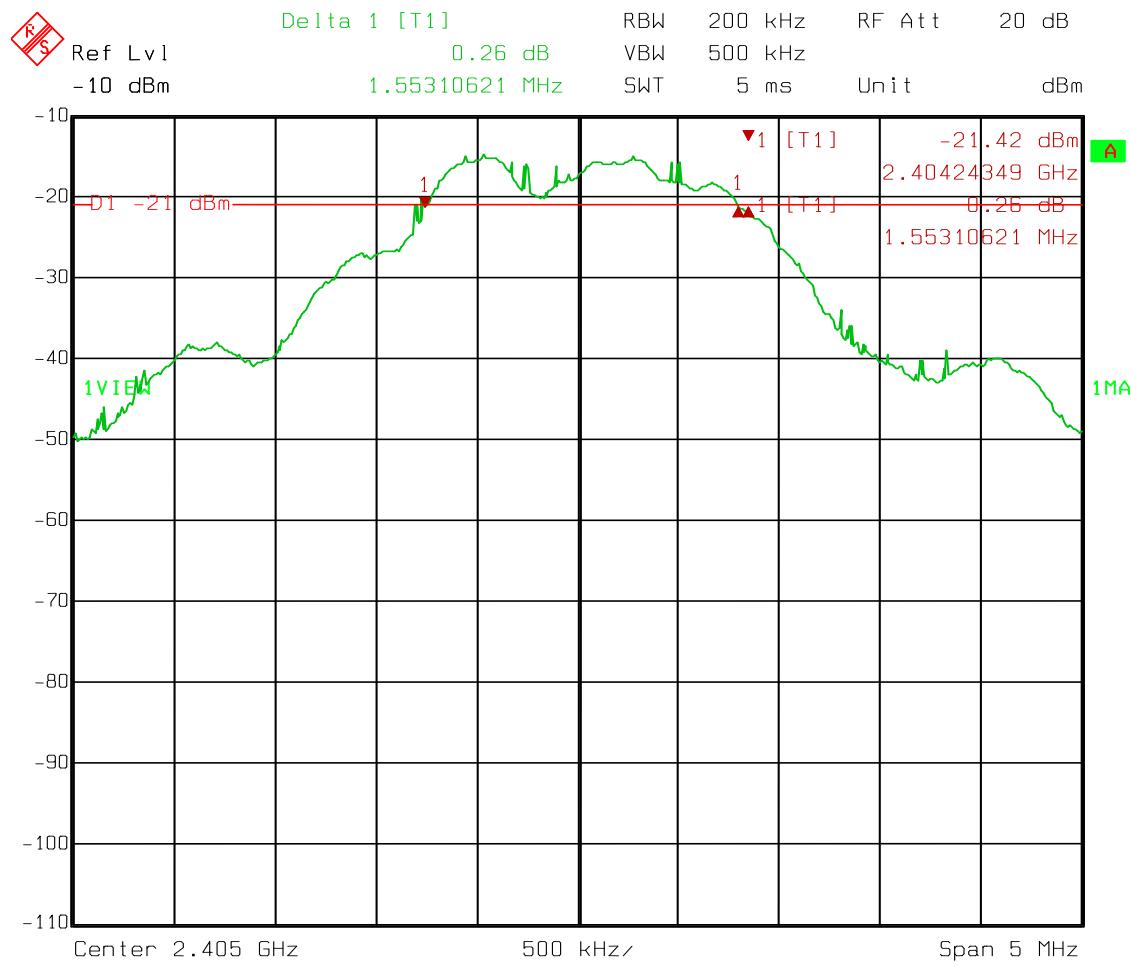
EQUIPMENT: ESI RF Bridge Test Report No.:

Section 3. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth	PARA. NO.: FCC 15.247(a)(2) RSS-210 A8.2(a)
TESTED BY: David Light	DATE: 13 August 2013

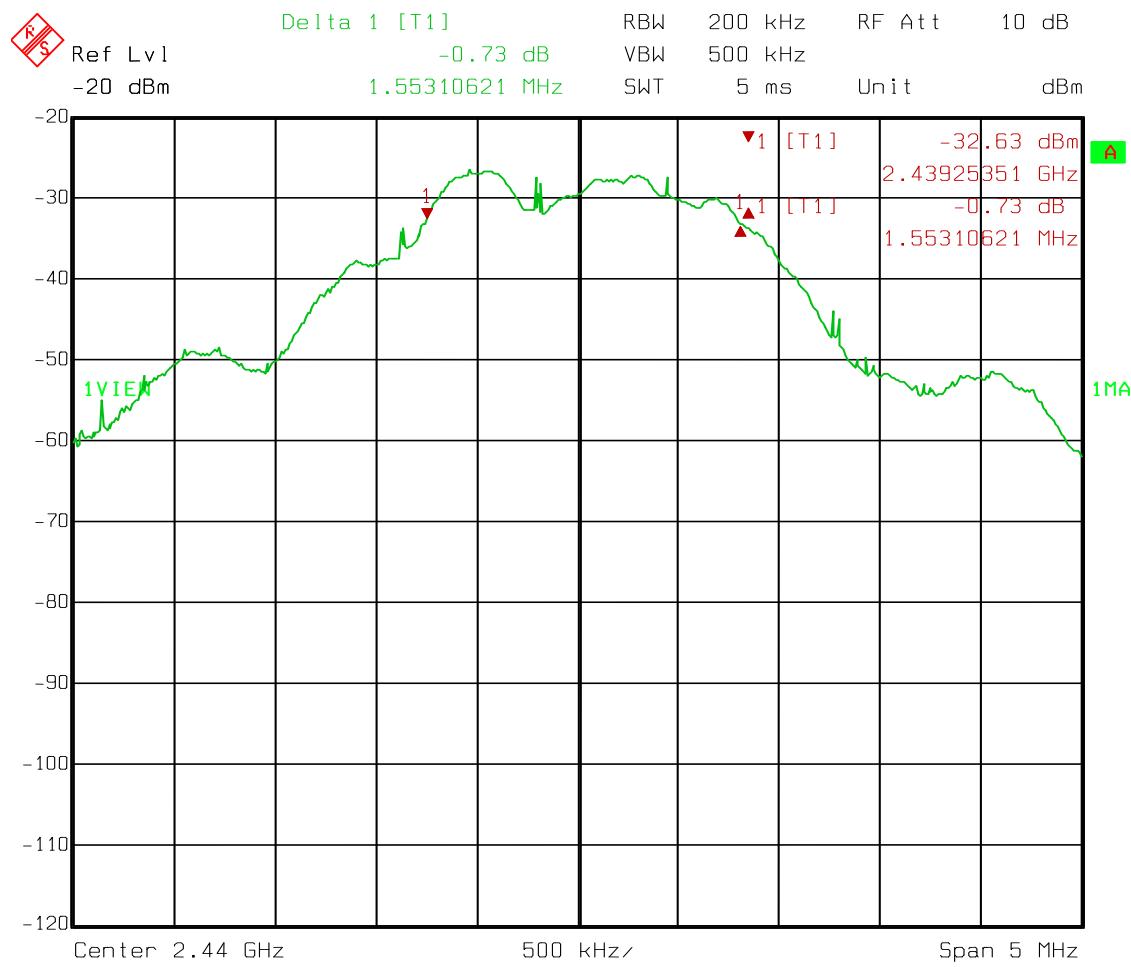
Test Results: Complies.

Measurement Data: See 6 dB BW plot
Measured 6 dB bandwidth: 1.6 MHz Max.


Test Conditions: 48 %RH
24 °C

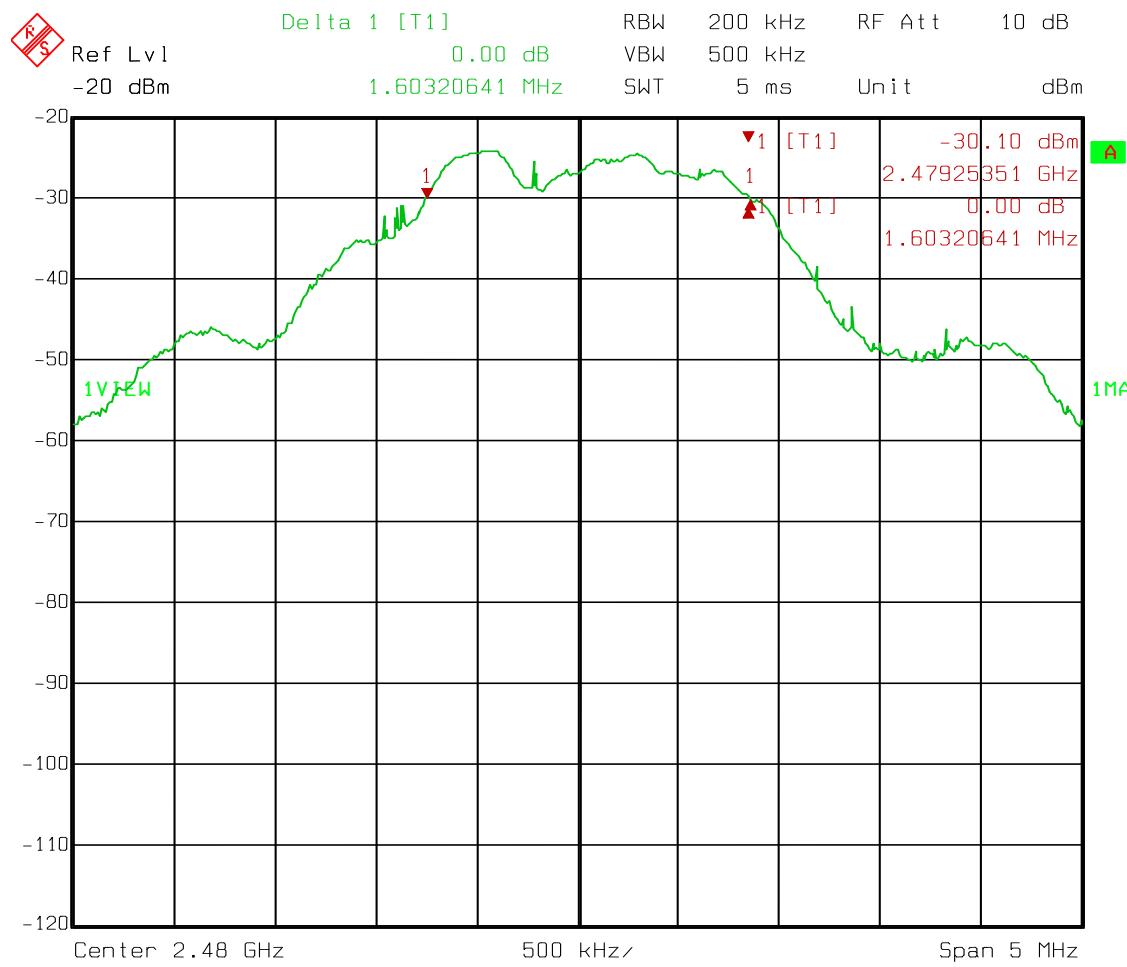
Measurement Uncertainty: $\pm 1 \times 10^{-7}$ ppm

Test Equipment Used: 1036-1082-802


Test Data – Occupied Bandwidth

Lowest Channel

Test Data – Occupied Bandwidth


Mid Channel

Date: 15.AUG.2013 11:28:18

Test Data – Occupied Bandwidth

High Channel

Date: 15.AUG.2013 11:29:22

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge **Test Report No.:** 10244721 TRF FCC15-RSS210

Section 4. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output power	PARA. NO.: FCC 15.247(b)(3) RSS-210 A8.4(4)
TESTED BY: David Light	DATE: 12 August 2013

Test Results: Complies.

Measurement Data: Refer to attached data

Test Conditions: 48 %RH
24 °C

Measurement Uncertainty: +/-1.7 dB

Test Equipment Used: 1036-1783-993

Detachable antenna? Yes No
If yes, state the type of non-standard connector used:

Frequency (MHz)	Peak Power (dBm)	Peak Power (W)	Antenna Type	Gain (dBi)	E.I.R.P. (dBm)	E.I.R.P. (W)
2405	3.1	0.0020	Chip	-1	2.1	0.002
2440	2.1	0.0016	Chip	-1	1.1	0.001
2480	2.2	0.0017	Chip	-1	1.2	0.001
Maximum EIRP (W): 0.002						

- This device was tested at +/- 15% input power per 15.31(e), with no variation in output power.
- The device was tested with a fresh battery per 15.31(e).
- The device was tested on three channels per 15.31(l).
- This test was performed radiated.

Spectrum analyzer settings:

RBW: 3 MHz

VBW: 10 MHz

Detector: Peak

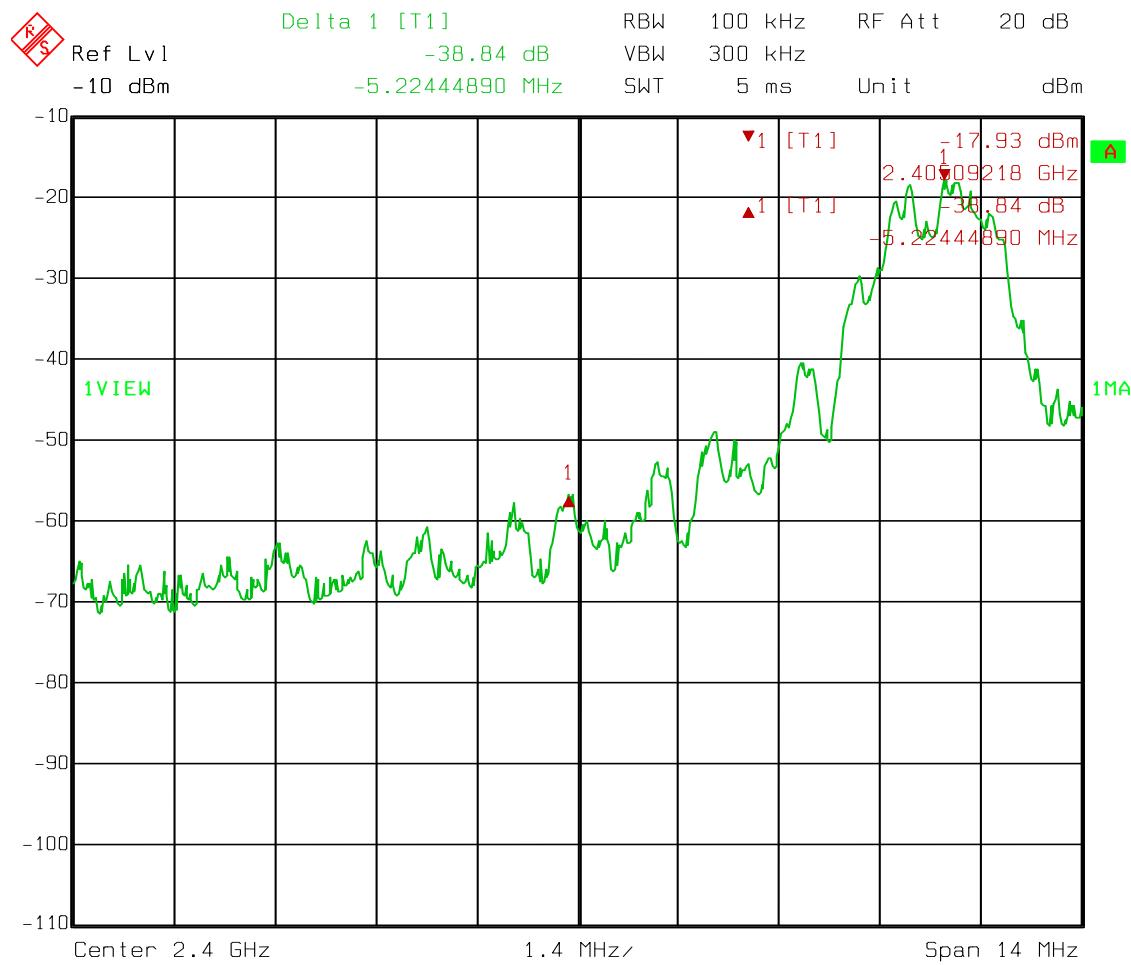
Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge *Test Report No.:* 10244721_TRF_FCC15-RSS210

Section 5 Conducted Spurious Emissions

NAME OF TEST: Conducted Spurious Emissions	PARA. NO.: FCC 15.247 (d) RSS-210 A8.5
TESTED BY: David Light	DATE: 14 August 2013


Test Results: Complies.

Measurement Data: See attached plots.

Test Conditions: 48 %RH
 24 °C

Measurement Uncertainty: +/-1.7 dB

Test Equipment Used: 1036-1783-993

Test Data – Spurious Emissions at Antenna Terminals**Lower Band Edge**

Date: 13.AUG.2013 12:20:10

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge *Test Report No.:* 10244721_TRF_FCC15-RSS210

Section 6. Radiated Emissions

NAME OF TEST: Radiated Emissions	PARA. NO.: FCC 15.247 (d) RSS-Gen 7.2.2
TESTED BY: David Light	DATE: 14 August 2013

Test Results: Complies.

Measurement Data: See attached table.

Test Conditions: %RH
 °C

Measurement Uncertainty: +/-1.7 dB

Test Equipment Used: 1036-1783-1480-1785-993

Notes:

- For handheld devices, the EUT was tested on three orthogonal axis'
- The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33
- The device was tested on three channels per 15.31(l).
- No emissions were detected within 20 dB of the specification limit therefore none are reported per 15.31(o). Band edge data is presented below.

Nemko USA, Inc.FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

Radiated Emissions

Meas. Freq. (MHz)	Ant. Pol. (H/V)	Atten. (dB)	Meter Reading (dBuV)	Antenna Factor (dB)	Path Loss (dB)	RF Gain (dB)	Corrected Reading (dBuV/m)	Spec. limit (dBuV/m)	CR/SL Diff. (dB)	Pass Fail Unc.	
											Upper Band Edge
											Tx 2480 MHz
2483.5	H	0	34.7	29	3.1	0.0	66.8	74.0	-7.2	Pass	
2483.5	H	0	21.7	29	3.1	0.0	53.8	54.0	-0.2	Pass	
2483.5	V	0	32.5	29	3.1	0.0	64.6	74.0	-9.4	Pass	
2484.5	V	0	21.3	29	3.1	0.0	53.4	54.0	-0.6	Pass	

Analyzer Settings

Freq	Detector	RBW	VBW	Comments
< 1 GHz	Peak	100 kHz	100 kHz	
> 1 GHz	RMS	1 MHz	3 MHz	
Band Edge	RMS	10 kHz	30 kHz	Integrated across 1 MHz

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge **Test Report No.:** 10244721_TRF_FCC15-RSS210

Section 7. Peak Power Spectral Density

NAME OF TEST: Peak Power Spectral Density	PARA. NO.: FCC 15.247(e) RSS-210 A8.2(b)
TESTED BY: David Light	DATE: 14 August 2013

Test Results: Complies.

Measurement Data: See attached data..

Test Conditions: 48 %RH
24 °C

Measurement Uncertainty: +/-1.7 dB

Test Equipment Used: 1036-1783-993-1785

RBW = 100 kHz

VBW = 300 kHz

Detector = Peak

Note: Meter reading adjusted by -15.2 dB for bandwidth correction.

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

Section 8. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: FCC 15.207(a) RSS-Gen 7.2.4
TESTED BY: David Light	DATE: 15 August 2013

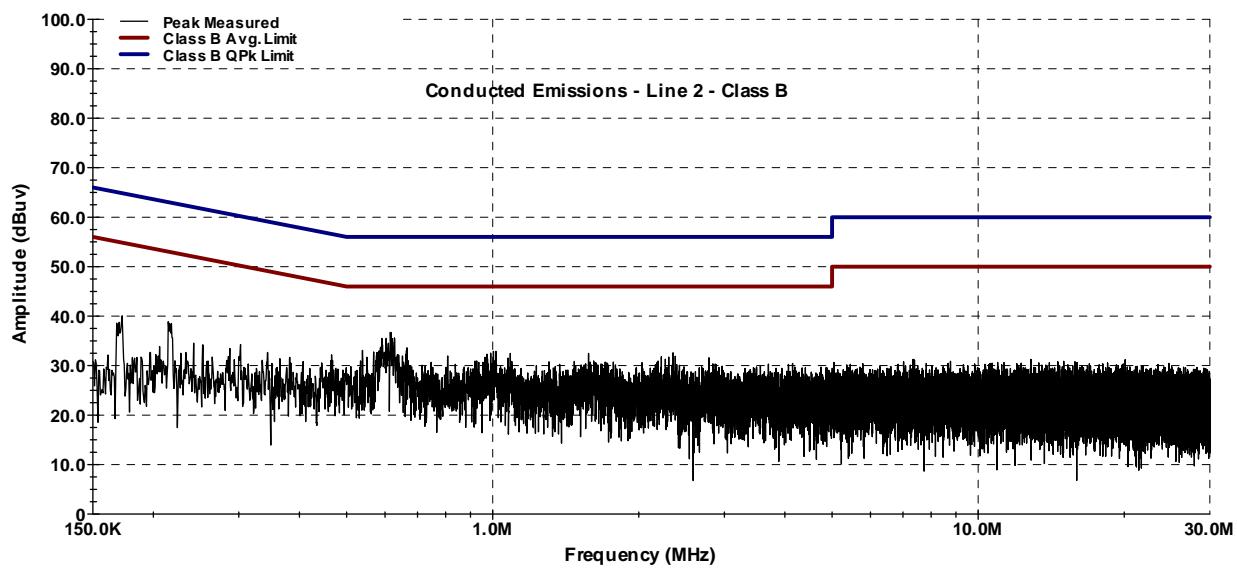
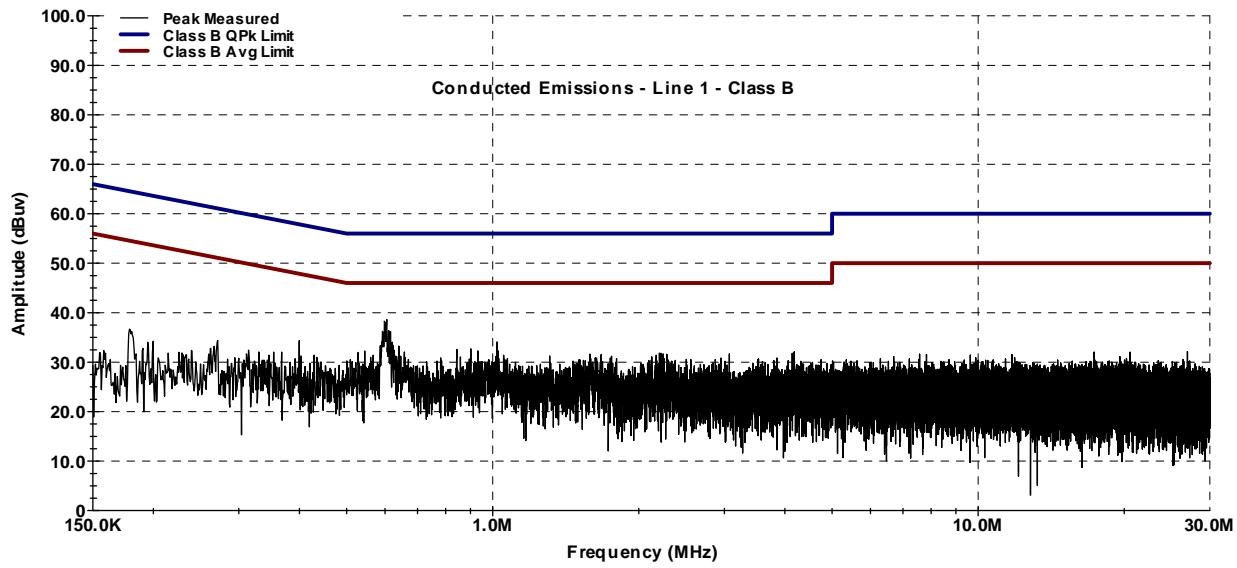
Test Results: Complies.

Measurement Data: See attached plots.

Measurement Uncertainty: +/- 1.7 dB

Test Equipment Used: 1258-1922-704-1924-1663-1948

Relative Humidity 57%



Temperature 23°C

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems
10244721_TRF_FCC15-RSS210

EQUIPMENT: ESI RF Bridge Test Report No.:

Test Data – Powerline Conducted Emissions

Nemko USA, Inc.

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

Section 9. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
704	Filter, High Pass, 5KHz	Solar Electronics	7930-5.0	933126	18-Jan-2013	18-Jan-2014
802	Near Field Probe Set	EMCO	7405	103	N/R	
993	Antenna, Horn	A.H. Systems	SAS-200/571	162	22-Sep-2011	22-Sep-2013
1036	Spectrum Analyzer	Rohde & Schwartz	FSEK30	830844/006	15-Jul-2013	15-Jul-2015
1258	LISN .	EMCO	3825/2	1305	04-Mar-2013	04-Mar-2014
1480	Antenna, Bilog	Schaffner-Chase	CBL6111C	2572	25-Feb-2013	25-Feb-2014
1663	Spectrum Analyzer	Rohde & Schwartz	FSP3	100073	02-Sep-2011	02-Sep-2013
1783	Cable Assy, 3m Chamber	Nemko	Chamber		26-Sep-2012	26-Sep-2013
1785	Preamplifier	A.H. Systems	PAM-0126	143	09-Jan-2013	09-Jan-2014
1922	.5m Cable	Nemko USA	1922 RG 214	1	18-Jan-2013	18-Jan-2014
1924	3m Cable	Nemko USA	1924 RG 214	1	21-Jan-2013	21-Jan-2014
1948	Transient Limiter	Com-Power	LIT-153	531146	07-Jan-2013	07-Jan-2014

Nemko USA, Inc.

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

ANNEX A - TEST DETAILS

NAME OF TEST: Powerline Conducted Emissions**Minimum Standard:** Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted Emission (MHz)	Limit (dBmV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

(1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §§15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

NAME OF TEST: Maximum Peak Output Power	PARA. NO.: 15.247(b)(3)
---	-------------------------

Minimum Standard: The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Measurement Method

5.2.1 Maximum Peak Conducted Output Power Level

§15.247(b)(3) specifies that the maximum peak conducted output power for DTS transmitters in any of the three authorized frequency bands is 1 watt (30 dBm). The following procedures can be used to determine the maximum peak conducted output power from a DTS EUT using a spectrum analyzer.

5.2.1.1 Measurement Procedure PK1:

1. This procedure requires availability of a spectrum analyzer resolution bandwidth that is \geq EBW.
2. Set the RBW \geq EBW.
3. Set VBW $\geq 3 \times$ RBW.
4. Set span = zero.
5. Sweep time = auto couple.
6. Detector = peak.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use peak marker function to determine the peak amplitude level within the fundamental emission.

5.2.1.2 Measurement Procedure PK2:

1. This procedure provides an integrated measurement alternative when the maximum available RBW < EBW.
2. Set the RBW = 1 MHz.
3. Set the VBW = 3 MHz.
4. Set the span to a value that is 5-30 % greater than the EBW.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges (for some analyzers, this may require a manual override to ensure use of peak detector). If the spectrum analyzer does not have a band power function, sum the spectrum levels (in linear power units) at 1 MHz intervals extending across the EBW of the spectrum.

5.2.2 Maximum Conducted (Average) Output Power Level

§15.247(b)(3) permits the maximum conducted output power to be measured as an alternative to a peak power measurement to demonstrate compliance to the one watt (30 dBm) output power limit. The maximum conducted output power is the highest total transmit power occurring in any mode when averaged over the EUT EBW. This measurement requires that the EUT be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. Time intervals during which the transmitter is off or transmitting at reduced power levels shall not be included.

The spectrum analyzer must be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW in order to ensure bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins (the use of a greater number of measurement points than the minimum requirement is recommended).

The following procedures are acceptable for determining the maximum conducted output power with a spectrum analyzer.

5.2.2.1 Measurement Procedure AVG1 (power averaging over the EBW with slow sweep speed):

1. Set the analyzer span to 5-30% greater than the EBW.
2. Set the RBW = 1 MHz.
3. Set the VBW \geq 3 MHz.
4. Detector = power average (RMS).
5. Ensure that the number of measurement points in the sweep $\geq 2 \times$ (span/RBW).
6. Manually set the sweep time to: $\geq 10 \times$ (number of measurement points in sweep) \times (transmission symbol period).
7. Perform the measurement over a single sweep.
8. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges to determine the maximum conducted output power of the EUT over the EBW.

Note: If the analyzer does not have a band power function, sum the spectral levels (in linear power units) at 1 MHz intervals extending across the entire EBW.

EQUIPMENT: ESI RF Bridge *Test Report No.:* 10244721_TRF_FCC15-RSS210

5.2.2.2 Measurement Procedure AVG2 (trace averaging over the EBW):

1. Set the analyzer span to 5-30% greater than the EBW.
2. Set the RBW = 1 MHz.
3. Set the VBW \geq 3 MHz.
4. Ensure that the number of measurement points in the sweep $\geq 2 \times (\text{span}/\text{RBW})$.
5. Sweep time = auto couple.
6. Detector = power averaging (RMS) or sample.
7. Employ trace averaging in power averaging (RMS) mode over a minimum of 100 traces.
8. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges to determine the maximum conducted output power of the EUT over the EBW. If the analyzer does not have a band power function, sum the spectral levels (in linear power units) at 1 MHz intervals extending across the entire EBW.

NAME OF TEST: Occupied Bandwidth

PARA. NO.: 15.247(a)(2)

Minimum Standard: Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Method Of Measurement:**5.1.1 EBW Measurement Procedure:**

1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW).
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

5.1.2 Alternate EBW Measurement Procedure:

The automatic bandwidth measurement capability of a spectrum analyzer may be employed if it implements the functionality described above (e.g., RBW = 1-5% of EBW, VBW $\geq 3 \times$ RBW, peak detector with maximum hold). When using this capability, care should be taken to ensure that the bandwidth measurement is not influenced by any nulls in the fundamental emission.

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Spurious Emissions(conducted) PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

5.4.1.1 Measurement Procedure – Reference Level

1. Set the RBW = 100 kHz.
2. Set the VBW \geq 300 kHz.
3. Set the span to 5-30 % greater than the EBW.
4. Detector = peak.
5. Sweep time = auto couple.
6. Trace mode = max hold.
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

5.4.1.2 Measurement Procedure - Unwanted Emissions

1. Set RBW = 100 kHz.
2. Set VBW \geq 300 kHz.
3. Set span to encompass the spectrum to be examined.
4. Detector = peak.
5. Trace Mode = max hold.
6. Sweep = auto couple.
7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Nemko USA, Inc.FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:**Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:**

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC**15.205 Restricted Bands**

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

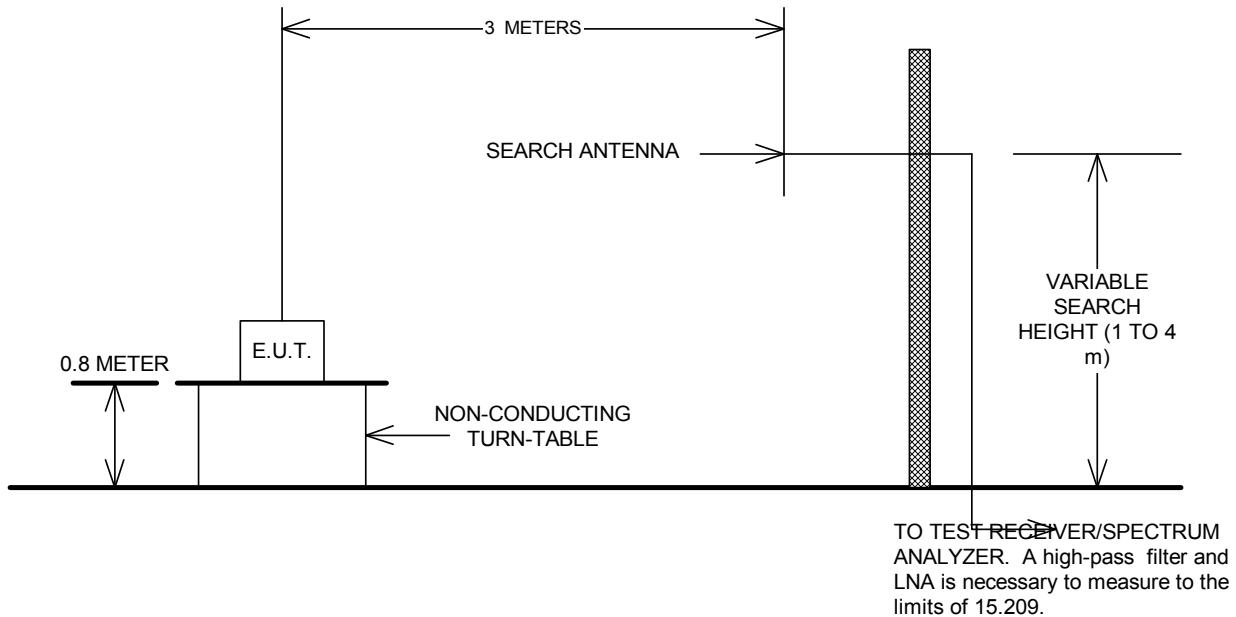
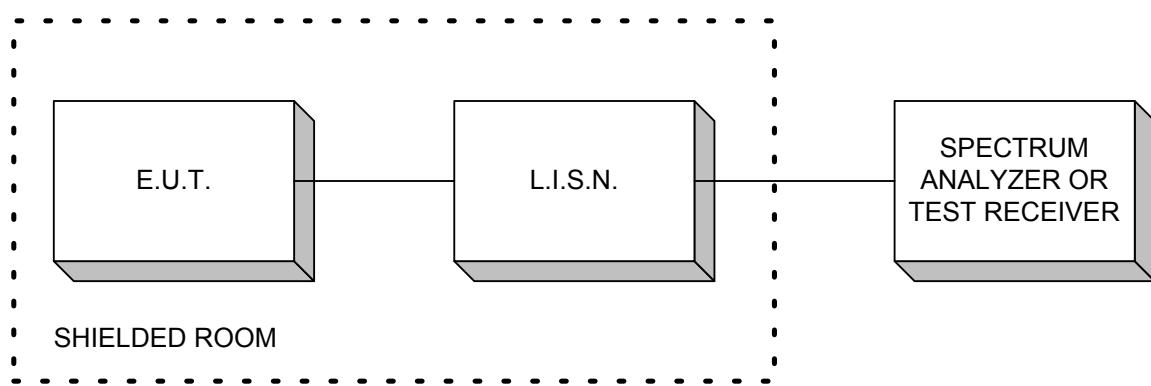
Minimum Standard: The transmitted power density averaged over any 1 second interval shall not be greater than +8 dBm in any 3 kHz bandwidth.

Method Of Measurement:**5.3.1 Measurement Procedure PKPSD:**

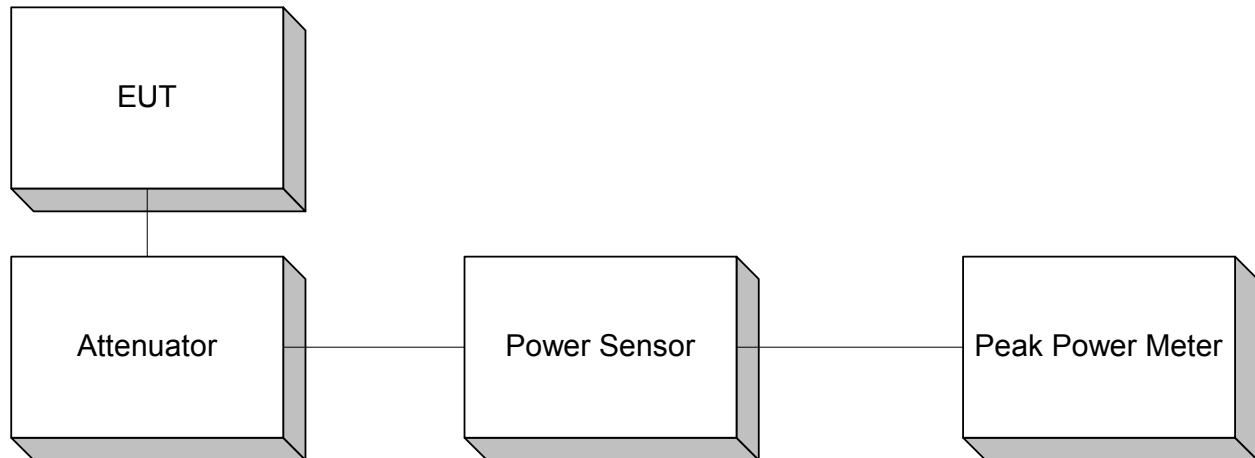
1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
2. Set the RBW = 100 kHz.
3. Set the VBW \geq 300 kHz.
4. Set the span to 5-30 % greater than the EBW.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
10. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log(3\text{ kHz}/100\text{ kHz}) = -15.2\text{ dB}$.
11. The resulting peak PSD level must be $\leq 8\text{ dBm}$.

5.3.2 Measurement Procedure AVGPSD:

1. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
2. Set the analyzer span to 5-30% greater than the EBW.
3. Set the RBW = 100 kHz.
4. Set the VBW \geq 300 kHz.
5. Detector = power average (RMS).
6. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span}/\text{RBW}$ (use of a greater number of measurement points than this minimum requirement is recommended).
7. Manually set the sweep time to: $\geq 10 \times (\text{number of measurement points in sweep}) \times (\text{transmission symbol period})$.
8. Perform the measurement over a single sweep.
9. Use the peak marker function to determine the maximum level in any 100 kHz band segment within the fundamental EBW.
10. Scale the observed power level to an equivalent level in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log(3\text{ kHz}/100\text{ kHz}) = -15.2\text{ dB}$.
11. The resulting PSD level must be $\leq 8\text{ dBm}$



Nemko USA, Inc.

EQUIPMENT: ESI RF Bridge Test Report No.: 10244721_TRF_FCC15-RSS210


FCC PART 15, SUBPART C and
Industry Canada RSS-210 Issue 8
Digital Transmission Systems

ANNEX B - TEST DIAGRAMS

EQUIPMENT: ESI RF Bridge Test Report No.:

Test Site For Radiated Emissions**Conducted Emissions**

EQUIPMENT: ESI RF Bridge Test Report No.:

Peak Power At Antenna Terminals

Note: A spectrum analyzer may be substituted for Peak Power Meter given that the measurement bandwidth is sufficient to capture the 60 dB bandwidth of the transmitter.

**Minimum 6 dB Bandwidth
Peak Power Spectral Density
Spurious Emissions (conducted)**