TEST REPORT FOR FCC TYPE ACCEPTANCE MODEL R280P-DE BIDIRECTIONAL PCS REPEATER FCC ID: P6T1902

TEST REPORT

P. G. Electronics, Ltd. is pleased to submit this technical report on tests performed on the Model R280P-DE bidirectional repeater (FCC ID: P6T1902) to demonstrate compliance with the requirements for Type Acceptance by the FCC.

The undersigned personnel verify that the tests were performed as described herein and the results given were measured on the production unit.

Model Number R280P-DE	Serial Number 100110
Paul Liber – Test Engineer	Date
Gerry Graham – P. Eng. President	Date

1.0 NAMES AND ADDRESSES

1.1 Manufacturer

The Model R280P-DE bidirectional repeater (FCC ID: P6T1902) is manufactured by:

P. G. Electronics, Ltd. 800 Arrow Rd., Unit 8, Weston, Ontario M9M 2Z8

1.2 Applicant

The applicant for the acceptance of the repeater is:

P. G. Electronics, Ltd. 800 Arrow Rd., Unit 8, Weston, Ontario M9M 2Z8

2.0 COMPLIANCE

The equipment has been tested in accordance with the following performance tests and the results provided below demonstrate compliance with FCC regulations. Please refer to section 3.0 for the list of test equipment used.

2.1 Gain

The gain was measured using the test arrangement as shown in Figure 2.1-1 below.

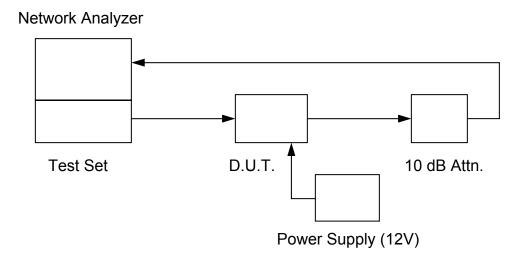
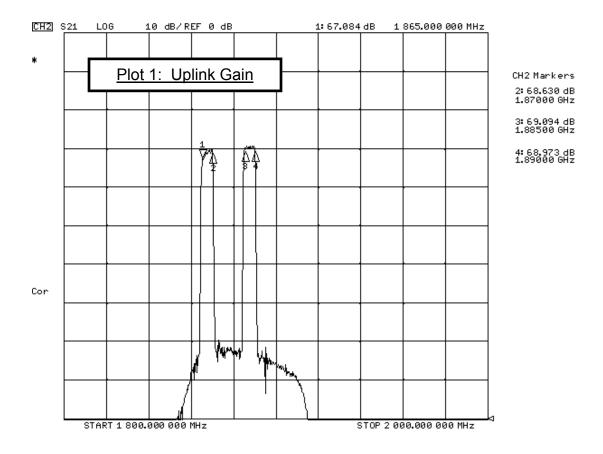
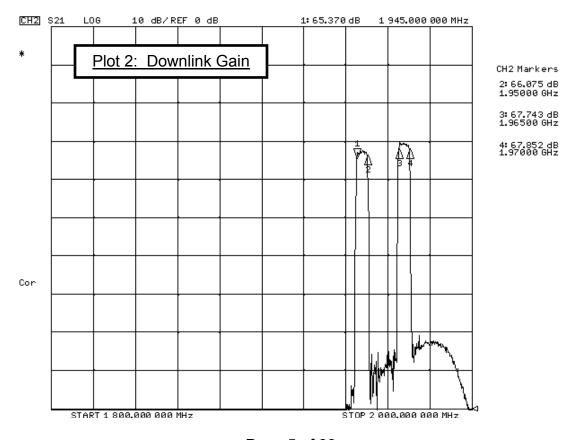
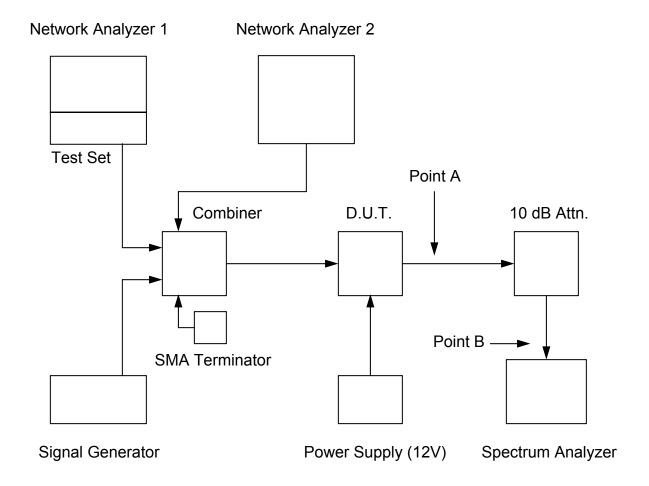




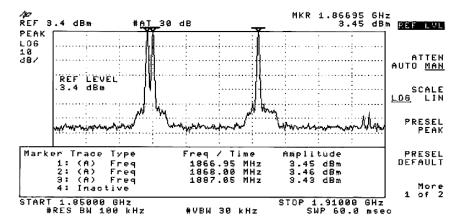
Figure 2.1-1

The unit gain was measured for both directions (uplink and downlink). These results are shown in Plot 1 and Plot 2 that follow.



Page 5 of 33

2.2 Intermodulation and Spurious


Intermodulation and spurious products were measured with the repeater operating at the maximum total rated power level specified in the Operator's Manual (Refer to TM0054 exhibit provided.). A three tone test was conducted using the equipment test arrangement in Figure 2.2-1 below with the input power levels adjusted to give the rated output power of +14.2 dBm for each tone (+19 dBm total inband power). The Network Analyzers were used as signal sources. The 10.8 dB loss to the spectrum analyzer results in tone levels of +3.4 dBm into the instrument.

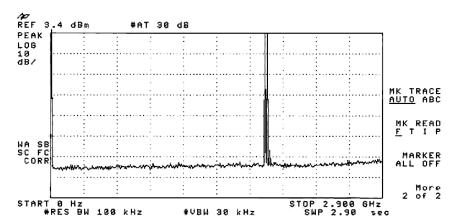
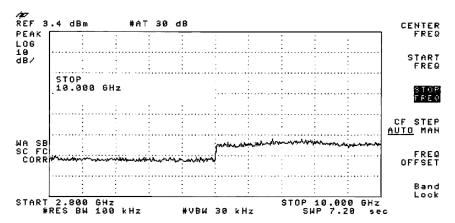
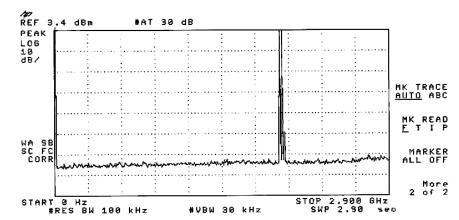
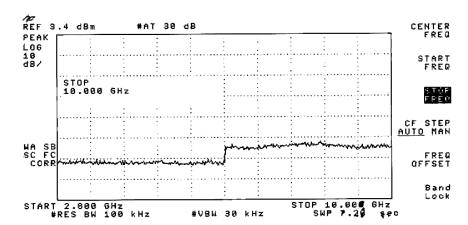

*Note: Loss from Point A (D.U.T. output) to Point B (Spectrum Analyzer input) was 10.8 dB. This includes the loss of the 10 dB attenuator and cables.

Figure 2.2-1


The results of these tests are shown in Plots 3, 4A and 4B that follow with the reference level set at +3.4 dBm. For the uplink direction, in Plot 3 the narrower band setting shows in-band intermodulation products while in Plots 4A and 4B the spectrum outside the PCS band is displayed to show spurious and harmonics. Plots 5, 6A and 6B show the equivalent results for the downlink direction.

Plot 3: Uplink 3-tone Intermodulation (Narrow Sweep)


Plot 4A: Uplink 3-tone Intermodulation (Sweep 0 - 2.9 GHz)


Plot 4B: Uplink 3-tone Intermodulation (Sweep 2.8 - 10 GHz)

Plot 5: Downlink 3-tone Intermodulation (Narrow Sweep)

Plot 6A: Downlink 3-tone Intermodulation (Sweep 0 - 2.9 GHz)

Plot 6B: Downlink 3-tone Intermodulation (Sweep 2.8 - 10 GHz)

Examination of the above results shows that all products are at least 42 dB down.

2.3 Modulated Channel Tests

These tests show a comparison of the input and output signals for operation with a single modulated signal at the maximum rated RF input drive level of the repeater.

Figure 2.3-1 below shows the test arrangement used for the tests. All the test results display the input level and the output level with sufficient attenuation to display it as an overlay on the same screen.

The input signal is displayed on the spectrum analyzer using the reference bypass. The output signal is displayed on the spectrum analyzer with the equipment connected as shown. Tests are performed for both the uplink and downlink directions for each of NADC, GSM and CDMA type modulations.

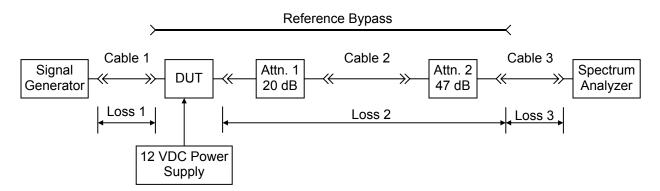
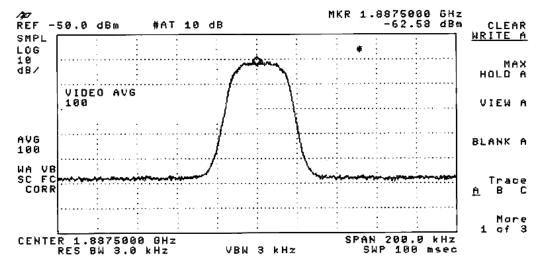
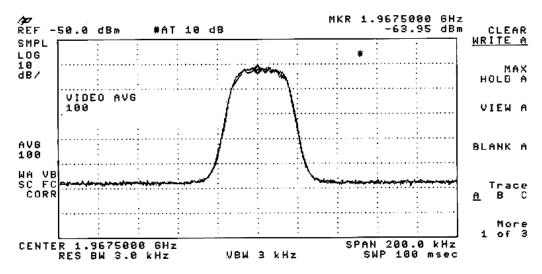


Figure 2.3-1

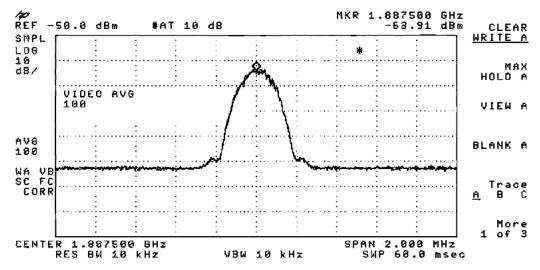

The following notes apply:

a. Loss 1, loss 2 and loss 3 are measured at the test frequency.

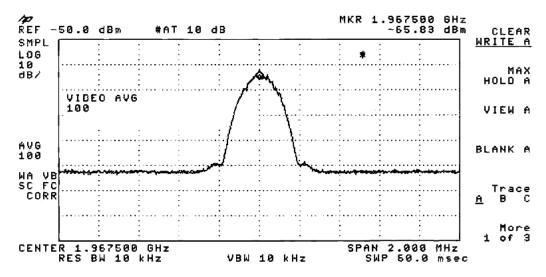
```
Loss 1 = 1.0 dB (Cable 1)
Loss 2 = 70 dB (Attn. 1 + Cable 2 + Attn. 2)
Loss 3 = 1.0 dB (Cable 3)
```


- b. Signal generator set to test frequency and desired modulation. Amplitude set to DUT maximum rated output level minus 70 dB (DUT gain) plus Loss 1. Therefore, to obtain +19 dBm at the output of the DUT requires a Generator level of: +19 dBm (test level) 70 dB (DUT gain) + 1.0 dB (Loss 1) = -50 dBm.
- c. The DUT output level is equal to the spectrum analyzer level + Loss 2 + Loss 3; which is the spectrum analyzer level + 71 dB.

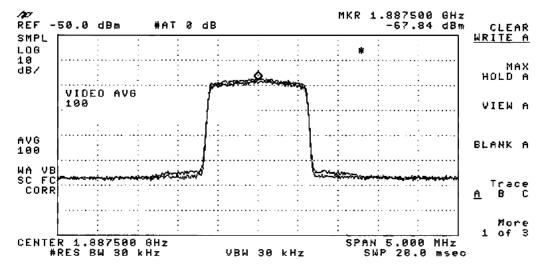
The results of these tests are shown in Plots 7 through 12 that follow. Plots 7 and 8 show results for NADC modulation, Plots 9 and 10 show results for GSM modulation and Plots 11 and 12 show results for CDMA modulation.


Plot 7: Uplink NADC Modulated Channel Test

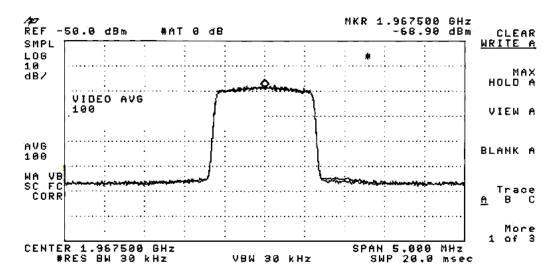
Input Level = -51 dBm Span =200 KHz Modulation = NADC Video Averaging = ON


Plot 8 Downlink NADC Modulated Channel Test

Input Level = -51 dBm Span = 200 KHz Modulation = NADC Video Averaging = ON


Plot 9 Uplink GSM Modulated Channel Test

Input Level = -51 dBm Span = 2 MHz Modulation = GSM Video Averaging = ON


Plot 10: Downlink GSM Modulated Channel Test

Input Level = -51 dBm Span = 2 MHz Modulation = GSM Video Averaging = ON

Plot 11 Uplink CDMA Modulated Channel Test

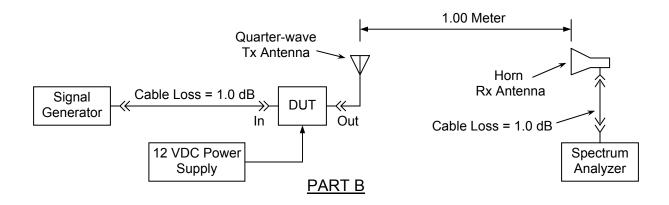
Input Level = -51 dBm Span = 5 MHz Modulation = CDMA Video Averaging = ON

Plot 12: Downlink CDMA Modulated Channel Test

Input Level = -51 dBm Span = 5 MHz Modulation = CDMA Video Averaging = ON The results for NADC at the rated output level show no measurable distortion visible on the spectrum analyzer.

Similarly, the results for GSM show no measurable distortion visible on the spectrum analyzer.


The uplink result for CDMA modulation at the rated output level (Plot 11) shows that the maximum uplink adjacent channel distortion is at a level of -33 dBm (spectrum analyzer level plus Loss 2 plus Loss 3, which is -104 dBm + 70 dB + 1 dB = -33 dBm.) Since the carrier output level is +19 dBm, the adjacent channel distortion is +19 dBm – (-33 dBm) = 52 dB below the carrier. The requirement is that the attenuation be 43 dB + 10 log (P); where P is the signal power in watts. Since the output power is -11 dBW (+ 19 dBm), then the required attenuation is 43 dB – 11 = 32 dB. Thus the DUT is compliant.


The downlink result for CDMA modulation at the rated output level (Plot 12) shows that the maximum uplink adjacent channel distortion is at a level of -33 dBm (spectrum analyzer level plus Loss 2 plus Loss 3, which is -104 dBm + 70 dB + 1 dB = -33 dBm.) Since the carrier output level is +19 dBm, the adjacent channel distortion is +19 dBm – (-33 dBm) = 52 dB below the carrier. The requirement is that the attenuation be 43 dB + 10 log (P); where P is the signal power in watts. Since the output power is -11 dBW (+ 19 dBm), then the required attenuation is 43 dB - 11 = 32 dB. Thus the DUT is compliant.

2.4 Radiated Spurious Emissions

These tests address the requirements for spurious emissions as specified in Sections 2.991 and 2.997 of the FCC R&Rs.

The testing was performed in three parts using the equipment arrangements shown in Figure 2.4-1 parts A, B, and C as shown below.

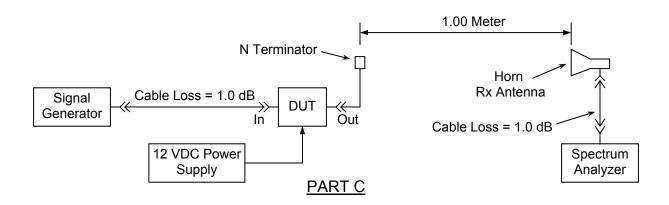
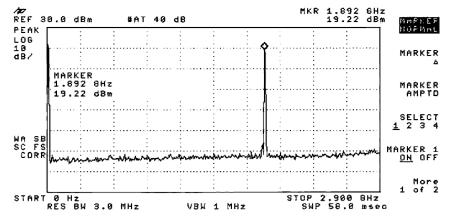
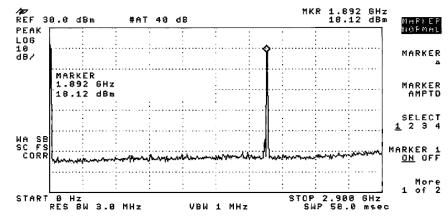


Figure 2.4-1

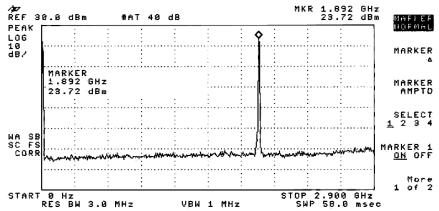

Part A: Antenna Terminal Emissions

In these tests, the generator fed the maximum rated input signal into the DUT and the spectrum analyzer was directly connected to the output of the DUT as per Figure 2.4.-1 Part A.

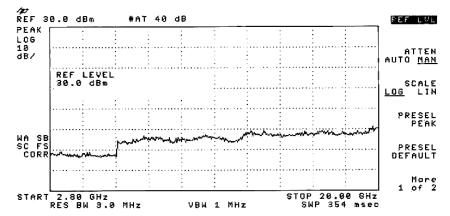
The output spectrum was recorded in the uplink direction for each of NADC, GSM and CDMA type modulations.


The results are plotted in two overlapping bands 0 - 2.9 GHz and 2.8 - 20 GHz and are shown in Plots 13 through 18 on the following pages.

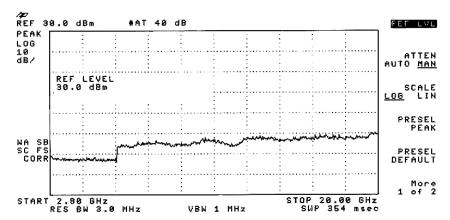
The test was repeated for the downlink direction for each of NADC, GSM and CDMA type modulations. The results are shown in Plots 19 through 24 on the following pages.


Plot 13: Uplink Antenna Terminal Emissions (NADC Modulation)

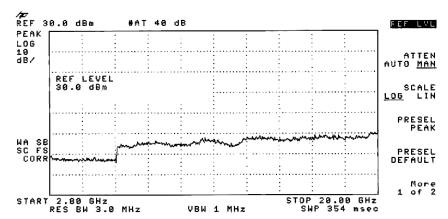
Input Level = -51 dBmSpan = 0 - 2.9 GHz Modulation = NADC


Plot 14: Upink Antenna Terminal Emissions (GSM Modulation)

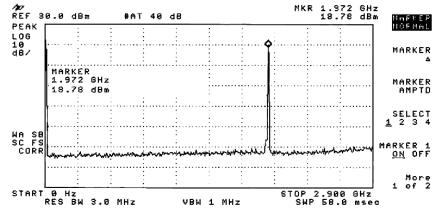
Input Level = -51 dBmSpan = 0 - 2.9 GHz Modulation = GSM


Plot 15 Uplink Antenna Terminal Emissions (CDMA Modulation)

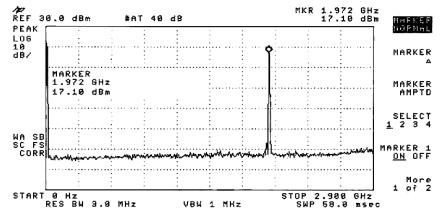
Input Level = -51 dBm Span = 0 – 2.9 GHz


Plot 16: Uplink Antenna Terminal Emissions (NADC Modulation)

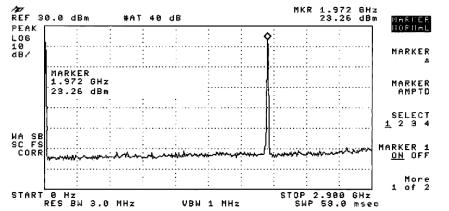
Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = NADC


Plot 17: Upink Antenna Terminal Emissions (GSM Modulation)

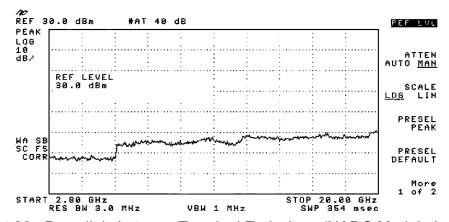
Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = GSM


Plot 18 Uplink Antenna Terminal Emissions (CDMA Modulation)

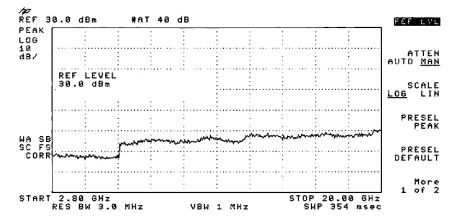
Input Level = -51 dBm Span = 2.8 – 20 GHz


Plot 19: Downlink Antenna Terminal Emissions (NADC Modulation)

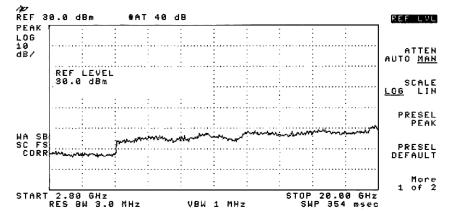
Input Level = -51 dBm Span = 0 - 2.9 GHz Modulation = NADC


Plot 20: Downlink Antenna Terminal Emissions (GSM Modulation)

Input Level = -51 dBm Span = 0 – 2.9 GHz Modulation = GSM


Plot 21 Downlink Antenna Terminal Emissions (CDMA Modulation)

Input Level = -51 dBmSpan = 0 - 2.9 GHz


Plot 22: Downlink Antenna Terminal Emissions (NADC Modulation)

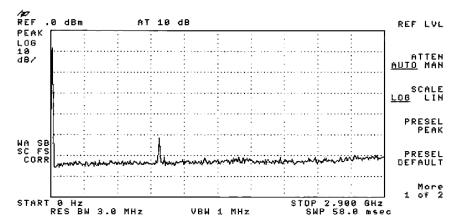
Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = NADC

Plot 23: Downlink Antenna Terminal Emissions (GSM Modulation)

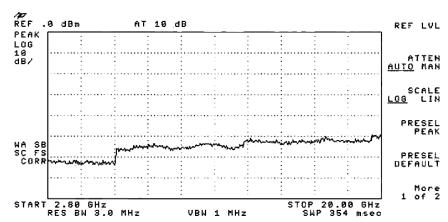
Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = GSM

Plot 24 Downlink Antenna Terminal Emissions (CDMA Modulation)

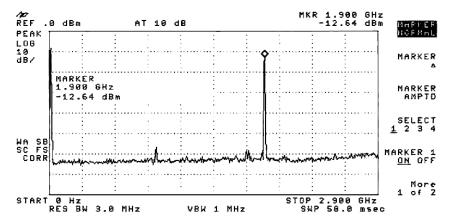
Input Level = -51 dBm Span = 2.8 – 20 GHz


The specification limit for spurious signals is $43 \text{ dB} + 10 \log (P)$; where P is in watts. For an output signal of +19 dBm, the required spurious to carrier ratio is 32 dB. The results in Plots 13 through 24 show no measurable spurious above the analyzer noise floor of -20 dBm or lower. Thus the unit is compliant with the requirement.

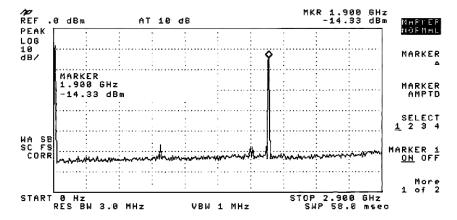
Part B: Radiated Spurious Emissions – DUT Connected to Radiating Antenna


To check radiated spurious emissions, the (DUT) was located in an open test area and emissions were measured with a radiating antenna connected to the output connector. The receiving horn antenna was placed at a distance of 1 meter from the radiating antenna. Tests were performed for NADC, GSM and CDMA modulations. Figure 2.4-1 part B shows the test arrangement.

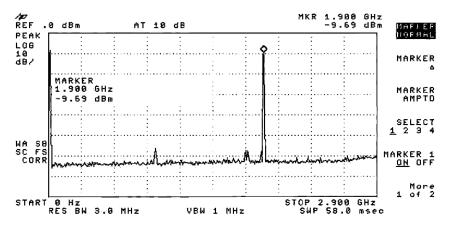
Plots 25 through 38 that follow show the results of the above tests. Plots 25 and 26 show the site background noise. Plots 27 through 29 show the measured uplink radiated signals for each of NADC, GSM and CDMA modulations with the DUT connected to a quarter wave antenna over a 0-2.9 GHz sweep. Plots 30 through 32 show the measured radiated signals with the DUT connected to a quarter wave antenna over a 2.8-20 GHz sweep.


Similarly, for the uplink direction plots 33 through 35 show the measured downlink radiated signals for each of NADC, GSM and CDMA modulations with the DUT connected to a quarter wave antenna over a 0-2.9 GHz sweep. Plots 36 through 38 show the measured radiated signals with the DUT connected to a quarter wave antenna over a 2.8-20 GHz sweep.

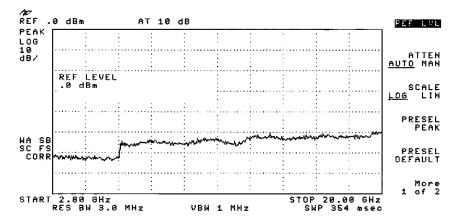
<u>Plot 25 Radiated Spurious – Site Noise (DUT Unpowered)</u> Span = 0 – 2.9 GHz



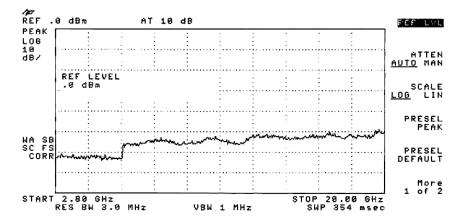
<u>Plot 26 Radiated Spurious – Site Noise (DUT Unpowered)</u> Span = 2.8 – 20 GHz


Plot 27 Uplink Radiated Spurious – NADC Modulation

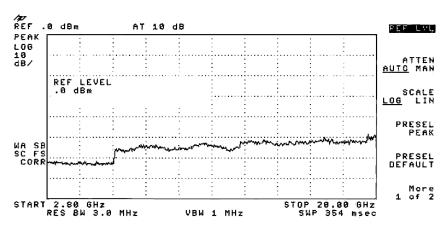
Input Level = -51 dBm Span = 0 - 2.9 GHz Modulation = NADC


Plot 28 Uplink Radiated Spurious – GSM Modulation

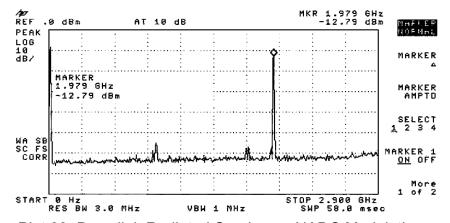
Input Level = -51 dBm Span = 0 - 2.9 GHz Modulation = GSM


Plot 29 Uplink Radiated Spurious - CDMA Modulation

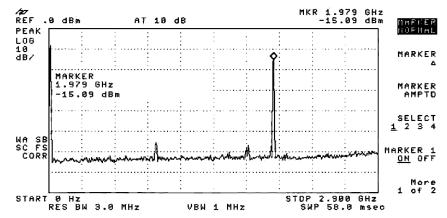
Input Level = -51 dBm Span = 0 - 2.9 GHz


Plot 30 Uplink Radiated Spurious – NADC Modulation

Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = NADC


Plot 31 Uplink Radiated Spurious – GSM Modulation

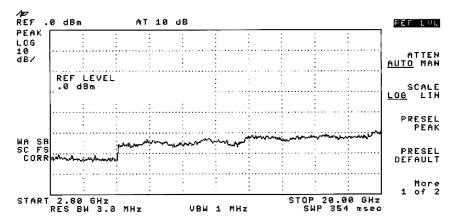
Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = GSM


Plot 32 Uplink Radiated Spurious – CDMA Modulation

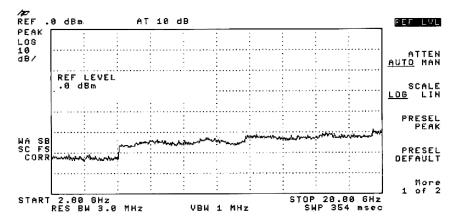
Input Level = -51 dBm Span = 2.8 – 20 GHz

Plot 33 Downlink Radiated Spurious – NADC Modulation

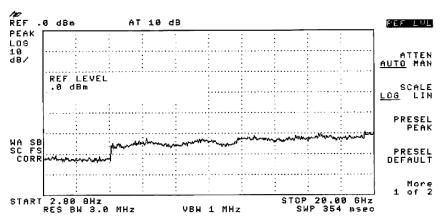
Input Level = -51 dBm Span = 0 - 2.9 GHz Modulation = NADC


Plot 34 Downlink Radiated Spurious – GSM Modulation

Input Level = -51 dBm Span = 0 - 2.9 GHz Modulation = GSM


Plot 35 Downlink Radiated Spurious - CDMA Modulation

Input Level = -51 dBm Span = 0 - 2.9 GHz


Plot 36 Downlink Radiated Spurious – NADC Modulation

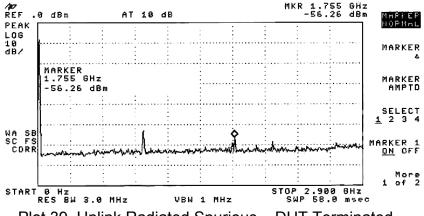
Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = NADC

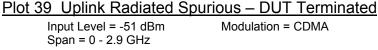
Plot 37 Downlink Radiated Spurious – GSM Modulation

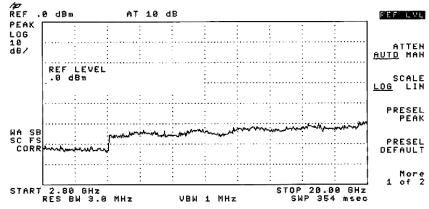
Input Level = -51 dBm Span = 2.8 – 20 GHz Modulation = GSM

Plot 38 Downlink Radiated Spurious - CDMA Modulation

Input Level = -51 dBm Span = 2.8 – 20 GHz

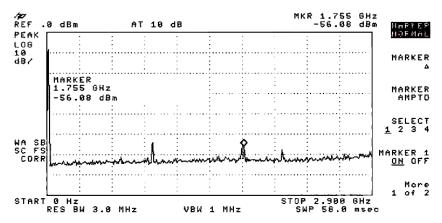

The highest spurious signal was found to be in Plot 34 at approximately 1750 MHz with a level of -56 dBm. Any other spurious is below this level. The test demonstrates that radiated emissions are below the required level.

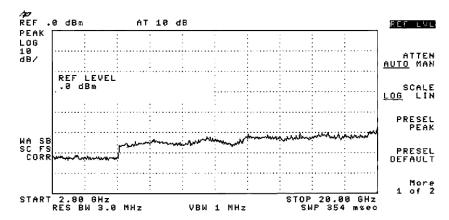

Part C: Radiated Spurious Emissions – DUT Terminated


The tests of Part B were repeated with the DUT connected to a 50 ohm termination instead of a radiating antenna. Figure 2.4-1 part C shows the test arrangement.

The orientation of the terminated enclosure was varied in order to find the highest radiated signals.

Uplink results are shown in plots 39 and 40 that follow. Downlink results are shown in plots 41 and 42 that follow.




Plot 40 Uplink Radiated Spurious – DUT Terminated

Input Level = -51 dBm Modulation = CDMA
Span = 2.8 - 20 GHz

Plot 41 Downlink Radiated Spurious - DUT Terminated

Input Level = -51 dBm Span = 0 - 2.9 GHz Modulation = CDMA

Plot 42 Downlink Radiated Spurious – DUT Terminated

Input Level = -51 dBm Span = 2.8 - 20 GHz

The highest spurious signal was found to be in Plot 41 at 1755 MHz with a level of -56 dBm. Any other spurious is below this level.

3.0 TEST EQUIPMENT LIST

The test equipment used in performing the tests is listed below:

REFERENCE	PART NUMBER	<u>MANUFACTURER</u>	SERIAL NUMBER	DESCRIPTION
DUT	001-0280-001	P. G. Electronics	100110	R280P-DE Device Under Test
Network Analyzer 1	HP8753C	Hewlett-Packard	3029A01161	3 GHz Network Analyzer
Test Set	HP85044A	Hewlett-Packard	2542A02097	Test set used with HP8753C
Network Analyzer 2	HP8753ES	Hewlett-Packard	MY40002281	3 GHz Network Analyzer
Spectrum Analyzer	HP8592L	Hewlett-Packard	3801A01119	22 GHz Spectrum Analyzer
Signal Generator	HP ESG-D3000A	Hewlett-Packard	US36260112	3 GHz Signal Generator
Power Supply	FWP10012	Elpac		Power Supply (12VDC, 8.3A)
Combiner	2089-6406-00	M/A-COM		Power Divider/Combiner
SMA Terminator	ANNE-50	Mini-Circuits		50 Ohm SMA Terminator
N Terminator	405-1	MECA		50 Ohm N Terminator
10 dB Attn.	771-10	Narda		10dB Attenuator
20 dB Attn.	605-20-1	MECA		20dB Attenuator
47 dB Attn.	5080	Wavetek	17101	Step Attenuator (Set to 47 dB)
Horn Antenna	SAS-299/571	AH Systems	289	Horn Antenna
Tx Antenna	DB794SM5N-M	Decibel Products		1/4 Wave PCS Tx Ant

4.0 TEST FACILITY DESCRIPTION

The testing in this exhibit was performed at the factory of the manufacturer:

P. G. Electronics, Ltd. 800 Arrow Rd., Unit 8, Weston, Ontario M9M 2Z8

P. G. Electronics has previously been granted equipment authorization by the FCC for various units. The most recent unit was the Model R307B Repeater (FCC ID: P6T803).

All tests described herein were performed in the same company laboratory using the similar test arrangements as shown. The test equipment used is listed in section 3.0.

4.0 CONCLUSIONS

Testing has demonstrated that the unit meets the requirements for FCC Type Acceptance.