

TEST REPORT FROM RADIO FREQUENCY INVESTIGATION LTD.

Test of: Sendo Ltd.
SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

Measurements were performed on the DASY4 System

Test Report Serial No:
RFI/SARB2/RP45077JD20A

Supersedes Test Report Serial No:
RFI/SARB1/RP45077JD20A

This Test Report Is Issued Under The Authority Of Richard Jacklin, Operations Director: 	Checked By: Joe Lomako
Tested By: Scott D'Adamo 	Release Version No: PDF01
Issue Date: 15 March 2002	Test Dates: 18 September 2003

It should be noted that the standard, OET Bulletin 65 Supplement C: (2001-01) is not listed on RFI's current UKAS schedule and is therefore "not UKAS accredited".

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields. Furthermore, the date of creation must match the issue date stated above.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

Radio Frequency Investigation Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ, ENGLAND. Tel: +44 (0) 1256 851193 Fax: +44 (0) 1256 851192	Registered in England, No. 211 7901. Registered Office: Ewhurst Park, Ramsdell, Basingstoke, Hampshire RG26 5RQ
---	---

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 2 of 32

Issue Date: 15 March 2002

This page has been left intentionally blank.

Table of Contents

1. Client Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods And Procedures	8
4. Deviations From The Test Specification	9
5. Operation Of The EUT During Testing	10
6. Summary Of Test Results	11
7. SAR Measurement System	14
8. SAR Safety Limits	15
9. Details of SAR Evaluation	16
10. Evaluation Procedures	17
11. System Validation	18
12. Simulated Tissues	19
13. Tissue Parameters	20
14. DASY4 Systems Specifications	21
15. Validation results – 1900 MHz (17 September 2003)	22
16. Measurement Uncertainty	23
Appendix 1. Test Equipment Used	25
Appendix 2. SAR Distribution Scans	26
Appendix 3. Test Configuration Photographs	27
Appendix 4. Calibration Data	29
Appendix 5. Photographs of EUT	31

1. Client Information

1.1. Client Details

Company Name:	Sendo Ltd.
Address:	Hatchford Brook Hatchford Way Sheldon Birmingham B26 3QA United Kingdom
Contact Name:	Mr C Thornton

1.2. Test Laboratory

Company Name:	Radio Frequency Investigation Ltd.
Address:	Ewhurst Park Ramsdell Basingstoke Hampshire RG26 5RQ.
Contact Name:	Mr J Lomako

2. Equipment Under Test (EUT)

The following information (with the exception of the Date of Receipt) has been supplied by the client:

2.1. Identification Of Equipment Under Test (EUT)

Brand Name	Sendo
Model Name or Number	SendoX
Unique Type Identification	SNDX00
FCC Identification	P6PSNDX00
IMEI Number	004400003969506
Battery Serial Number	20030522 PAF9442
Country Of Manufacture	Czech Republic
Date Of Receipt	17 September 2003

2.2. Modifications Incorporated In EUT

The client has stated that the EUT has not been modified from what is described by the Model Number and Unique Type Identification stated above.

2.3. Additional Information Related to the EUT

Equipment Class:	Handheld Mobile Telephone
FCC Rule Part(s):	OET Bulletin 65 Supplement C
Device Category:	Portable
Application Type:	Certification
Transmitter Frequency Range 1900 MHz Band (MHz):	1850 – 1910 MHz
Transmit Frequency Allocation Of EUT When Under Test (Channels):	512 – Bottom Channel – 1850.2 MHz 660 Middle Channel – 1879.8 MHz 810 – Top Channel – 1909.8 MHz
Modulation(s):	GSM
Modulation Scheme (Crest Factor)	GSM (Crest Factor 8.3)
Battery Type(s):	3.7 V Li-Ion
Antenna Length and Type:	Internal
Number Of Antenna Positions	1 (Fixed Antenna)
Intended Operating Environment:	Commercial
Weight:	Approx. 130g
Dimensions (without Antenna) mm:	Approx. 110 x 50 x 25 mm
Power Supply Requirement:	
DC Supply (Volts/Amps)	Not applicable
AC Supply (Volts/Amps)	Not applicable
Internal Battery (Volts/Amps)	3.7 V Li - Ion
Port(s):	Not applicable

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 7 of 32

Issue Date: 15 March 2002

2.4. Support Equipment

Brand Name:	Wavetek
Model Name or Number:	4202S
Unique Type Identification	Sendo 00525
Serial Number:	0213298
FCC ID Number:	Not Applicable
Cable Length And Type:	Not Applicable
Connected to Port:	Antenna (Air Link)

3. Test Specification, Methods And Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment complied with the requirements of the specification.

3.2. Methods And Procedures

The methods and procedures used were as detailed in:

EN 50361: 2001

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 1997.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

3.3. Definition Of Measurement Equipment

The measurement equipment used complied with the requirements as detailed in OET Bulletin 65 Supplement C, Appendix D.

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: **Sendo Ltd.**

SendoX

To: **OET Bulletin 65 Supplement C: (2001-01)**

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 9 of 32

Issue Date: 15 March 2002

4. Deviations From The Test Specification

At the clients request the EUT was only tested in 1900MHz band, in a head configuration.

5. Operation Of The EUT During Testing

The equipment under test is a standard production model.

5.1. Operating Modes

The EUT was tested in the following operating configurations:

GSM1900 Call Allocated mode. The mobile station was exercised in a Bluetooth transmit mode, whilst actively in GSM.

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 11 of 32

Issue Date: 15 March 2002

6. Summary Of Test Results

6.1. Summary Of Tests

Test Name	Specification Reference	Compliance Status
Specific Absorption Rate (SAR)	OET Bulletin 65 Supplement C	Complied

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

6.2. Test Results For Specific Absorption Rate - 1900MHz**6.2.1. Specific Absorption Rate - 1900 MHz Band****Environmental Conditions**

Temperature Variation in Lab (°C):	25.0 to 25.0
Temperature Variation in Liquid (°C):	24.2 to 24.4

E.I.R.P after Test:	Refer to section 6.3
---------------------	----------------------

Position	Side of Head	Frequency Channel No	Distance from antenna to phantom (mm)	SAR Level (W/kg) 1g	SAR Limit (W/kg) 1g	Margin (W/kg) 1g	Result
Touch	Left	660	10	0.423	1.6	1.177	Complied
Tilt	Left	660	8	0.589	1.6	1.011	Complied
Touch	Right	660	10	0.455	1.6	1.145	Complied
Tilt	Right	660	8	0.660	1.6	0.940	Complied
Tilt	Right	512	8	0.794	1.6	0.806	Complied
Tilt	Right	810	8	0.587	1.6	1.013	Complied

6.3. E.I.R.P Measurement

E.I.R.P – 1900 MHz

The E.I.R.P output of the EUT is as follow: -

Frequency Channel	Tx Power After test / dBm
512	29.7
660	30.5
810	31.2

Note: E.I.R.P measurements were only performed after testing.

7. SAR Measurement System

7.1. Radio Frequency Investigation SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 15 of 32

Issue Date: 15 March 2002

8. SAR Safety Limits

Exposure Limits (General populations/Uncontrolled Exposure Environment)	SAR (W/Kg)
Spatial Peak (averaged over any 1 g of tissue)	1.60

Notes:

1. The FCC SAR safety limits specified in the table above apply to devices operated in the General Population / Uncontrolled Exposure Environment.
2. Uncontrolled environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

9. Details of SAR Evaluation

9.1. The equipment under test was found to be compliant for localised specific absorption rate (SAR) based on the following provisions and conditions:

- a) The handset was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the handset was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the handset was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the handset and its antenna.
- h) The EUT was tested with a fully charged battery.

10. Evaluation Procedures

10.1. The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by FCC OET bulletin 65 Supplement C.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 7x7x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

11. System Validation

11.1. Prior to the assessment, the system was verified in the flat region of the phantom. A 1900 MHz dipole was used. A forward power of 250 mW was applied to the dipole and system was verified to a tolerance of ± 5 for the 1900 MHz dipole. The applicable verification (normalised to 1 Watt) is as follows:

Dipole Validation Kit	Target SAR 1g (w/kg)	Measured SAR 1g (w/kg)
D1900V2/540	41.2	41.6

12. Simulated Tissues

12.1. The brain mixtures consist of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency
	1900MHz Brain
Water	54.90%
DGMBE	44.92%
Salt	0.18%

13. Tissue Parameters

13.1. The dielectric parameters of the fluids were verified prior to the SAR evaluation using an 58070C Dielectric Probe Kit and an 8753E Network Analyser. The dielectric parameters of the fluid are as follows:

Frequency (MHz)	Equivalent Tissue	Dielectric Constant ϵ_r	Conductivity σ (mho/m)
1900	Brain	38.03	1.459

14. DASY4 Systems Specifications

Robot System

Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability:	0.025 mm
No. of axis:	6
Serial Number:	F00/SD89A1/A/01
Reach:	1185 mm
Payload:	3.5 kg
Control Unit:	CS7
Programming Language:	V+

Data Acquisition Electronic (DAE) System

Cell Controller

PC:	Dell Precision 340
Operating System:	Windows NT
Data Card:	DASY4 Measurement Server
Serial Number:	1080

Data Converter

Features:	Signal Amplifier, multiplexer, A/D converter and control logic.
Software:	DASY4 Software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.

PC Interface Card

Function:	24 bit (64 MHz) DSP for real time processing Link to DAE3 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.
------------------	--

E-Field Probe

Model:	ET3DV6
Serial No:	1528
Construction:	Triangular core fibre optic detection system
Frequency:	10 MHz to 3 GHz
Linearity:	± 0.2 dB (30 MHz to 3 GHz)
Probe Length (mm):	337
Probe Diameter (mm):	12
Tip Length (mm):	10
Tip Diameter (mm):	6.8
Sensor X Offset (mm):	2.7
Sensor Y Offset (mm):	2.7
Sensor Z Offset (mm):	2.7

Phantom

Phantom:	SAM Phantom
Shell Material:	Fibreglass
Thickness:	2.0 ± 0.1 mm

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

15. Validation results – 1900 MHz (17 September 2003)**15.1. System Validation**

15.1.1. Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 1900 MHz	Measured Value of SAR in 1g volume (W/kg) at 1900 MHz	Percentage Difference ($\leq 5\%$)
D1900V2 / 540	41.2	41.6	Yes

15.2. Liquid Properties - Brain

15.2.1. Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (1900 MHz)	Measured/Calculated Value (1900 MHz)	Percentage Difference ($\leq 5\%$)
Relative Permittivity	40.0	38.03	Yes
Conductivity	1.40	1.459	Yes

15.3. Temperature Variation

15.3.1. The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15°C to +30°C.

15.3.2. The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature	Minimum Temperature
Laboratory	25.0	25.0
Tissue Simulating Liquid	24.4	24.2

16. Measurement Uncertainty

16.1. No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

16.2. The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

16.3. The uncertainty of the result may need to be taken into account when interpreting the measurement results.

16.4. The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level	Calculated Uncertainty
Specific Absorption Rate	1900 MHz	95%	17.12%

16.5. The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

16.6. Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environment. However, the estimated measurement uncertainties in SAR are less than 30%.

16.7. According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

16.8. According to CENELEC, typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Measurement Uncertainty (Continued)

Specific Absorption Rate Uncertainty at 1900 MHz, GSM Modulation Scheme calculated in accordance with IEEE 1528-200X

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i	Standard Uncertainty		v _i or v _{eff}	Note
							+ u (dB μ V)	- u (dB μ V)		
B	Probe calibration	8.900	8.900	normal (k=2)	2.0000	1.0000	4.450	4.450	∞	
B	Axail Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Hemispherical Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞	
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞	
B	Linearity	2.330	2.330	Rectangular	1.7321	1.0000	1.345	1.345	∞	
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞	
B	Readout Electronics	0.650	0.650	normal (k=2)	2.0000	1.0000	0.325	0.325	∞	
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞	
B	Integration Time	0.005	0.005	Rectangular	1.7321	1.0000	0.003	0.003	∞	
B	RF Ambinet conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞	
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞	
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞	
A	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10	
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10	
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Drit of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Permittivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
Combined standard uncertainty				t-distribution			8.74	8.74	>500	
Expanded uncertainty				k = 1.96			17.12	17.12	>500	

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.
A034	Narda 20W Termination	Narda	374BNM	8706
A1094	Sony MVC FD-81	Sony	MVC - FD81	125805
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None
A1185	Probe	Schmid & Partners	ET3 DV6	1528
A1225	Low noise Amplifier	Mini Circuits	ZHL-42	E022601
A1237	1900MHz Validation Dipole	Schmid & Partners	D1900V2	540
A1234	Data Acquisition Electronics	Schmid & Partners	DAE3	450
A1328	Handset Positioner	Schmid & Partners	Modification	SD 000 H01 DA
C1052	Cable	Utiflex	FA210A0030M3 030	001
C1053	Cable	Utiflex	FA210A0003M3 030	001
C1054	Cable	Utiflex	FA210A0001M3 050A	001
C1059	Cable	Rosenberger	1	1
G046	Signal Generator	Gigatronics	7100/.01-20	749474
G0528	Robot Power Supply	Schmid & Partners	Dasy4	None
G088	PSU	Thurlby Thandar	CPX200	100700
M011	NRV-Z1 Power Sensor	Rohde & Schwarz	NRV-Z1	882 321/004
M094	URY Power Meter	Rohde & Schwarz	URY	891 647/080
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/A/01
M1095	10V Insertion Unit 50 Ohm	Rohde & Schwarz	URY-Z2	891 493/23
M136	Temperature/Humidity/Pressure Meter	RS Components	None	None
M509	Thermometer	Testo	110	40378800433

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: **Sendo Ltd.**

SendoX

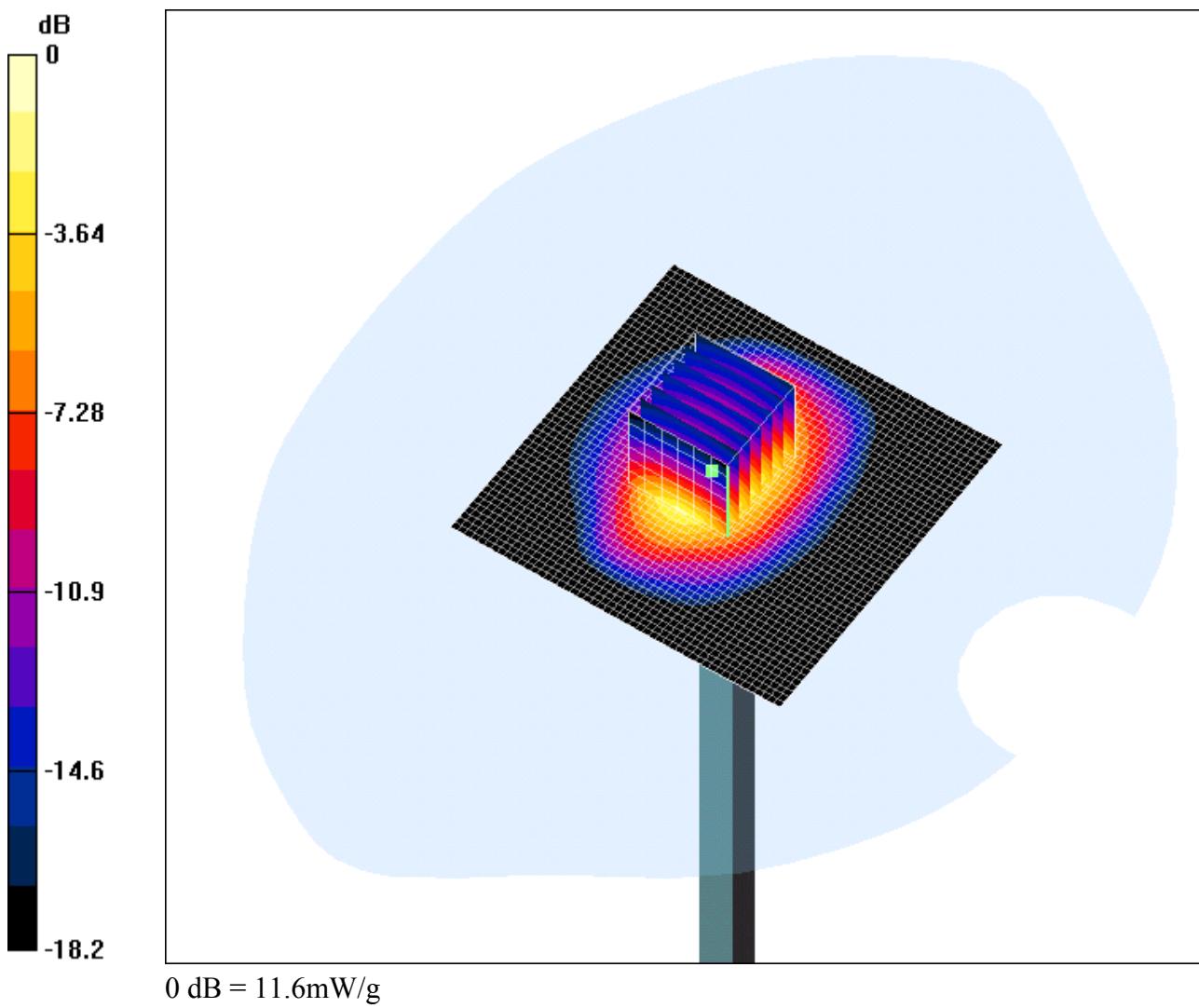
To: **OET Bulletin 65 Supplement C: (2001-01)**

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 26 of 32

Issue Date: 15 March 2002



Appendix 2. SAR Distribution Scans

This appendix contains SAR Distribution Scans.

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900MHz HSL ($\sigma = 1.45904 \text{ mho/m}$, $\epsilon_r = 38.0259$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.8, 4.8, 4.8); Calibrated: 29/07/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 19/05/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Reference Value = 87.3 V/m

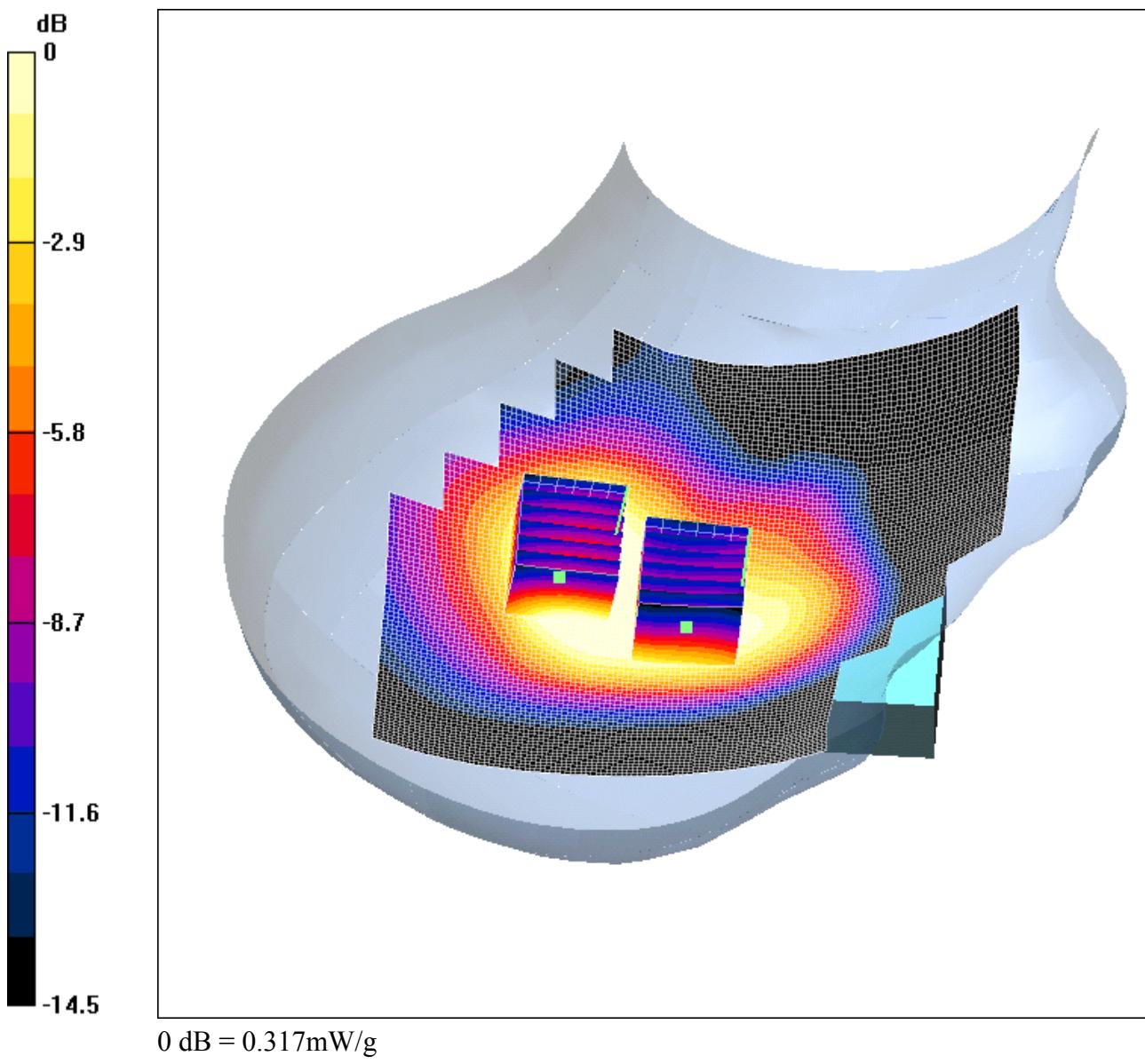
Power Drift = 0.07 dB

Maximum value of SAR = 12.2 mW/g

d=10mm, Pin=250mW/Zoom Scan 7x7x7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.37 mW/g


Reference Value = 87.3 V/m

Power Drift = 0.07 dB

Maximum value of SAR = 11.6 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

DUT: SENDOX; Type: SNDX00; Serial: 004400003969506

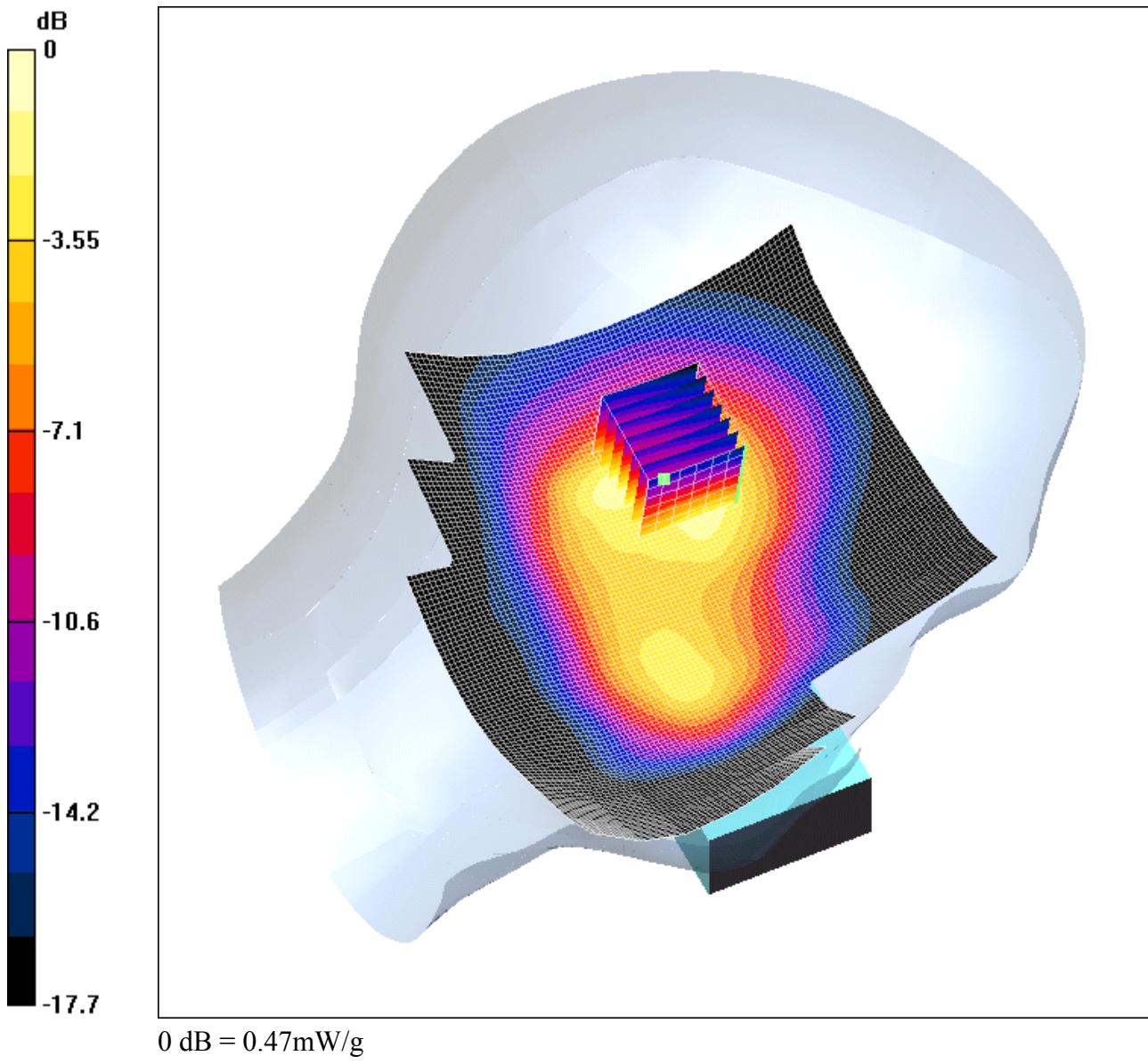
Communication System: DCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900MHz HSL ($\sigma = 1.43769$ mho/m, $\epsilon_r = 38.1093$, $\rho = 1000$ kg/m³)

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.8, 4.8, 4.8); Calibrated: 29/07/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 19/05/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116


Touch position - Middle/Area Scan 2 (101x121x1): Measurement grid: dx=15mm, dy=15mm
Reference Value = 16.1 V/m
Power Drift = 0.4 dB
Maximum value of SAR = 0.455 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Peak SAR (extrapolated) = 0.737 W/kg
SAR(1 g) = 0.455 mW/g; SAR(10 g) = 0.256 mW/g
Reference Value = 16.1 V/m
Power Drift = 0.4 dB
Maximum value of SAR = 0.507 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Peak SAR (extrapolated) = 0.445 W/kg
SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.186 mW/g
Reference Value = 16.1 V/m
Power Drift = 0.4 dB
Maximum value of SAR = 0.317 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

DUT: SENDOX; Type: SNDX00; Serial: 004400003969506

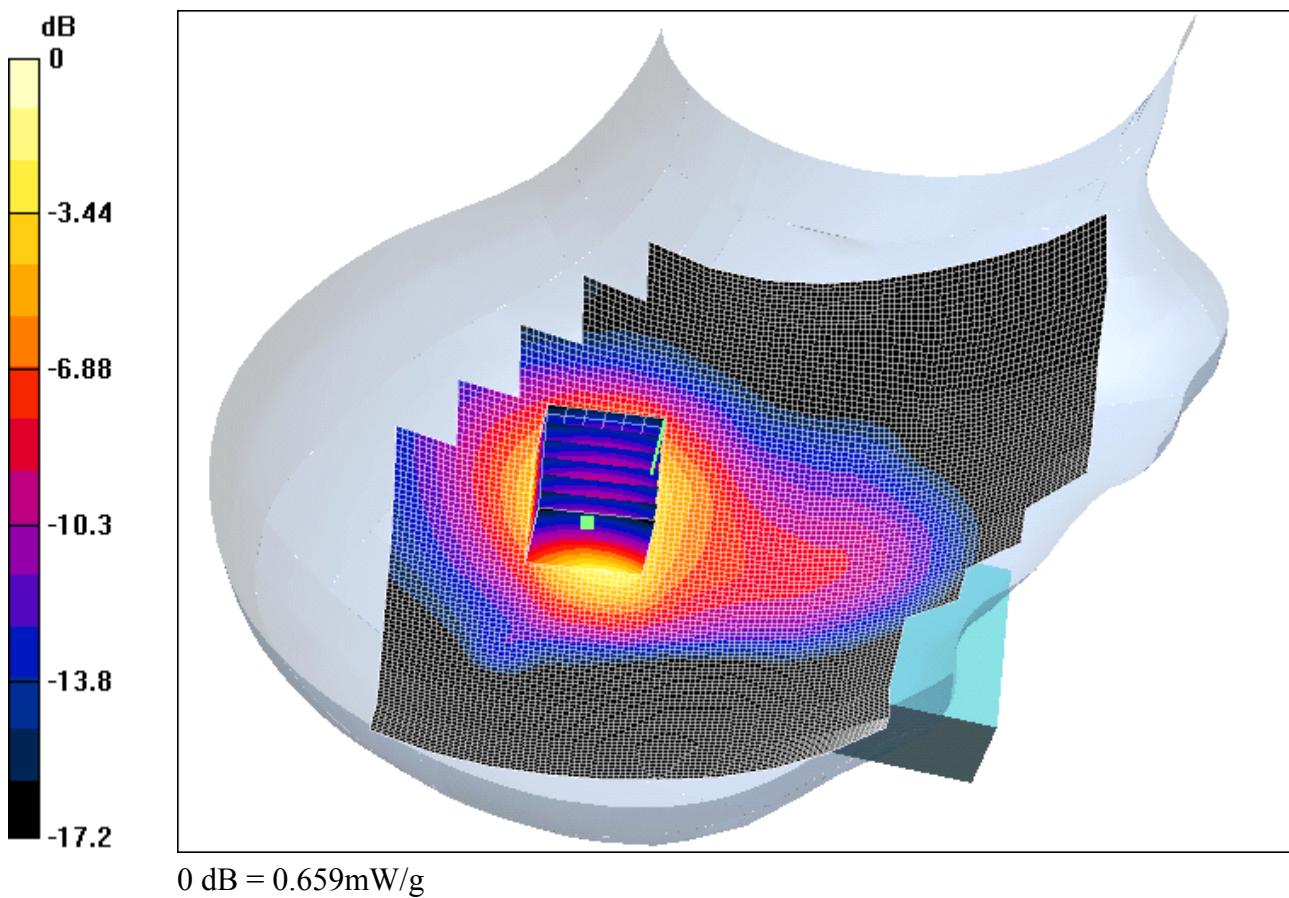
0 dB = 0.47mW/g

Communication System: DCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900MHz HSL ($\sigma = 1.43769$ mho/m, $\epsilon_r = 38.1093$, $\rho = 1000$ kg/m³)

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1528; ConvF(4.8, 4.8, 4.8); Calibrated: 29/07/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 19/05/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Touch position - Middle/Area Scan 2 (101x121x1): Measurement grid: dx=15mm, dy=15mm
Reference Value = 13.3 V/m
Power Drift = -0.3 dB
Maximum value of SAR = 0.432 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Peak SAR (extrapolated) = 0.772 W/kg
SAR(1 g) = 0.423 mW/g; SAR(10 g) = 0.226 mW/g
Reference Value = 13.3 V/m
Power Drift = -0.3 dB
Maximum value of SAR = 0.47 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

DUT: SENDOX; Type: SNDX00; Serial: 004400003969506

Communication System: DCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: 1900MHz HSL ($\sigma = 1.45904 \text{ mho/m}$, $\epsilon_r = 38.0259$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.8, 4.8, 4.8); Calibrated: 29/07/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 19/05/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Tilt position - High/Area Scan 2 (111x121x1): Measurement grid: dx=15mm, dy=15mm

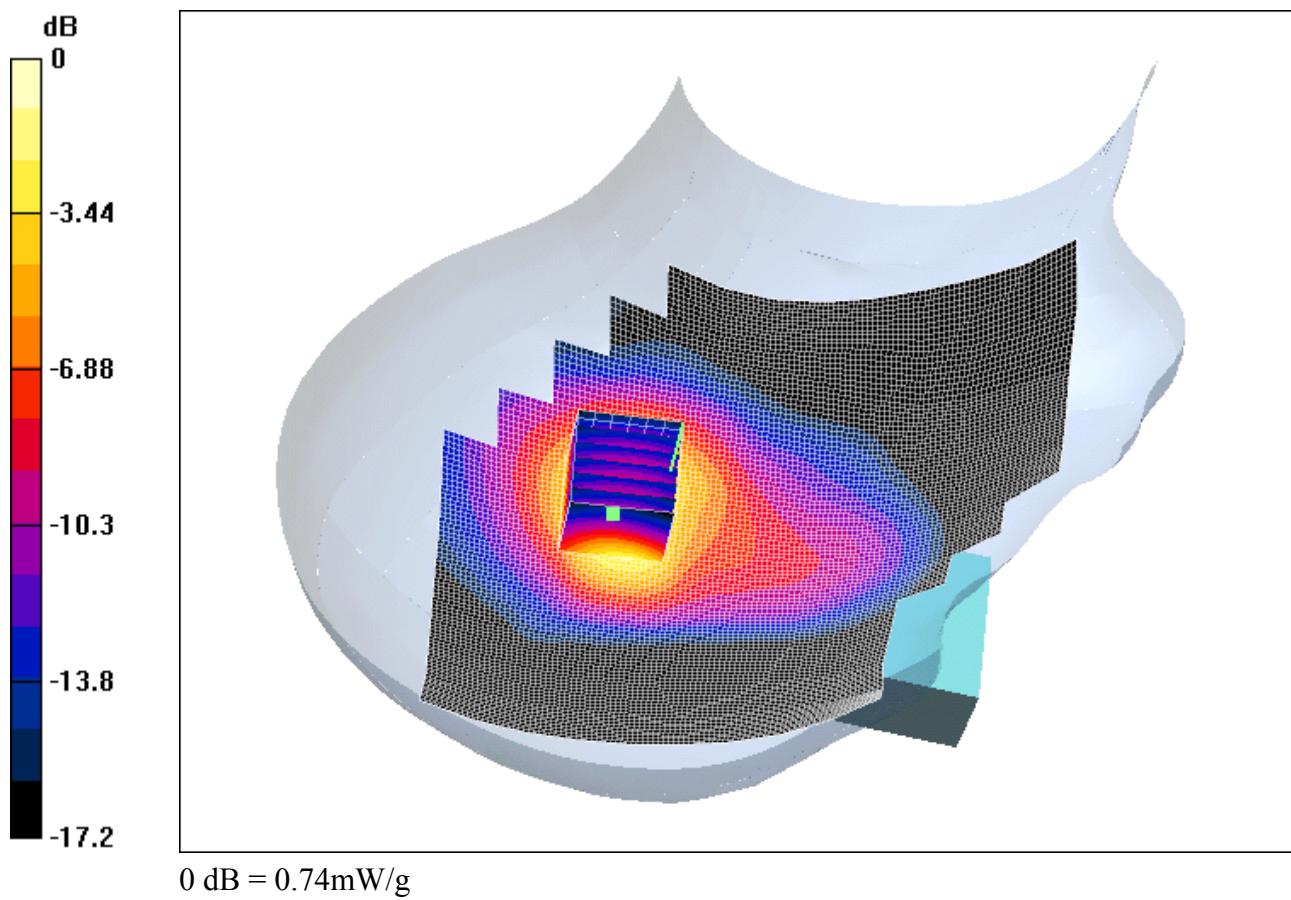
Reference Value = 17.5 V/m

Power Drift = 0.01 dB

Maximum value of SAR = 0.578 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Peak SAR (extrapolated) = 0.992 W/kg

SAR(1 g) = 0.587 mW/g; SAR(10 g) = 0.314 mW/g


Reference Value = 17.5 V/m

Power Drift = 0.01 dB

Maximum value of SAR = 0.659 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

DUT: SENDOX; Type: SNDX00; Serial: 004400003969506

Communication System: DCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900MHz HSL ($\sigma = 1.43769 \text{ mho/m}$, $\epsilon_r = 38.1093$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.8, 4.8, 4.8); Calibrated: 29/07/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 19/05/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Tilt position - Middle/Area Scan 2 (111x121x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 18.1 V/m

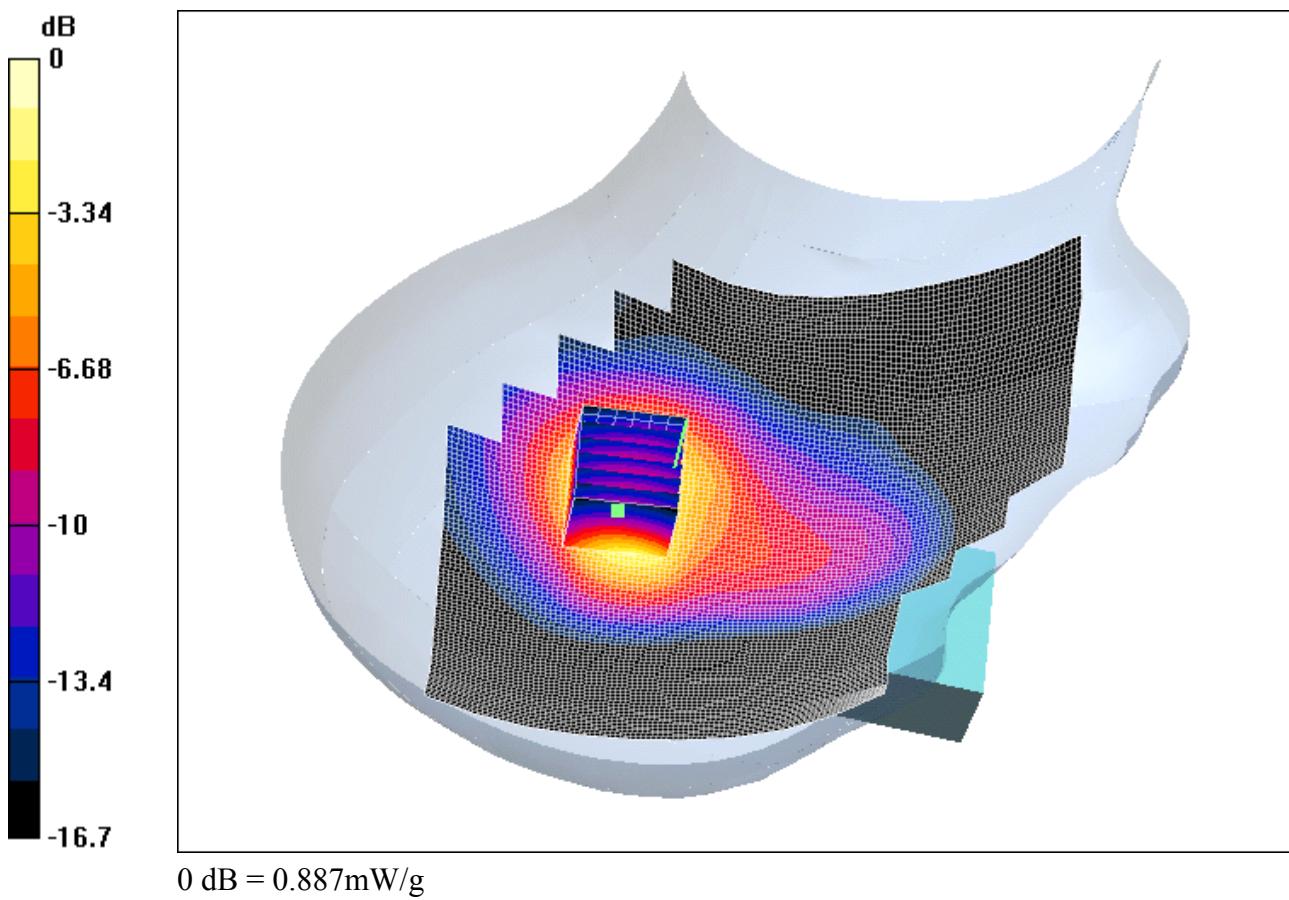
Power Drift = 0.09 dB

Maximum value of SAR = 0.673 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.66 mW/g; SAR(10 g) = 0.353 mW/g


Reference Value = 18.1 V/m

Power Drift = 0.09 dB

Maximum value of SAR = 0.74 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

DUT: SENDOX; Type: SNDX00; Serial: 004400003969506

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: 1900MHz HSL ($\sigma = 1.41877 \text{ mho/m}$, $\epsilon_r = 38.1961$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.8, 4.8, 4.8); Calibrated: 29/07/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 19/05/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Tilt position - Low/Area Scan 2 (111x121x1): Measurement grid: dx=15mm, dy=15mm

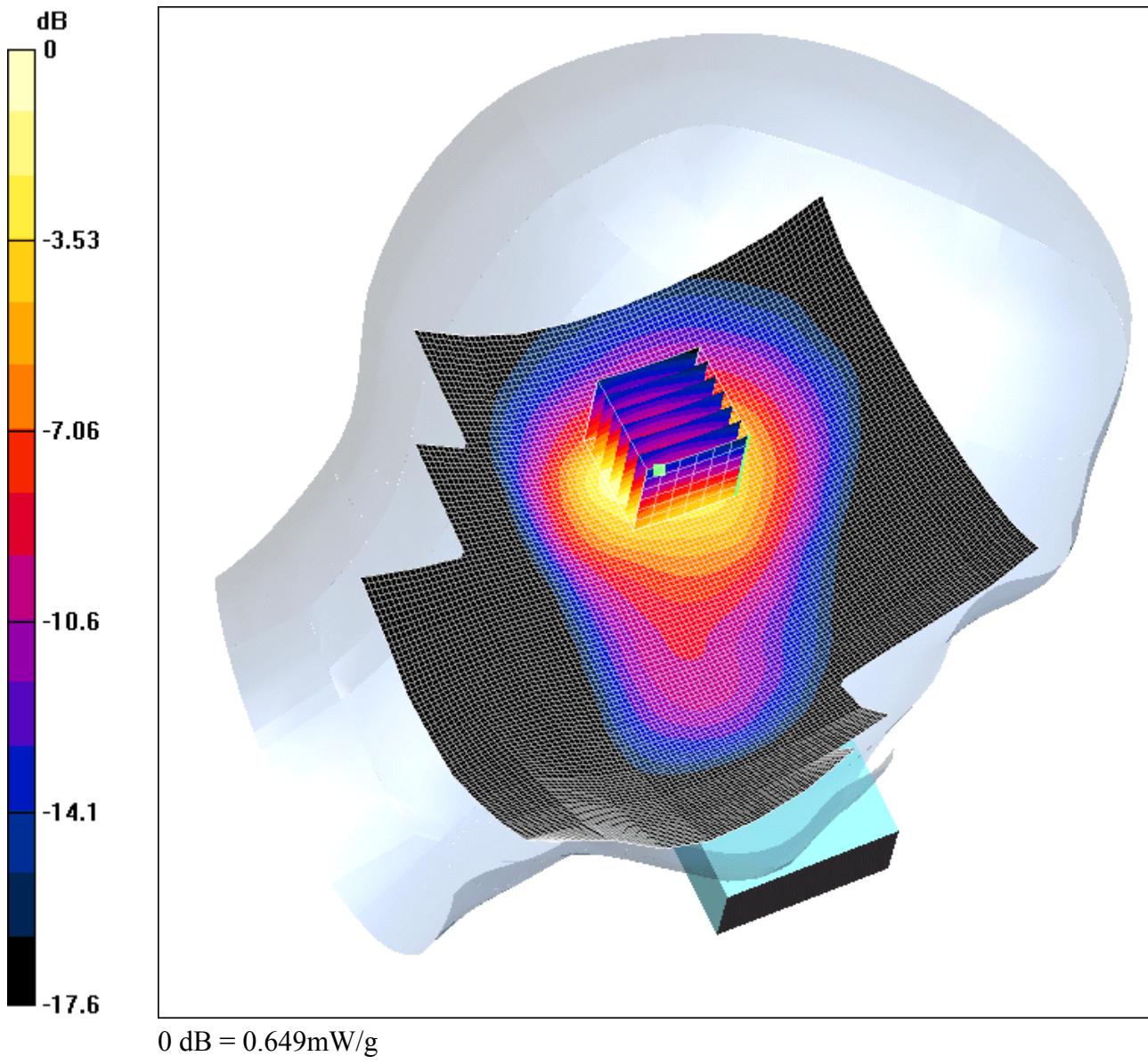
Reference Value = 21.2 V/m

Power Drift = -0.004 dB

Maximum value of SAR = 0.793 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.794 mW/g; SAR(10 g) = 0.434 mW/g


Reference Value = 21.2 V/m

Power Drift = -0.004 dB

Maximum value of SAR = 0.887 mW/g

Test Laboratory: RADIO FREQUENCY INVESTIGATION LTD.

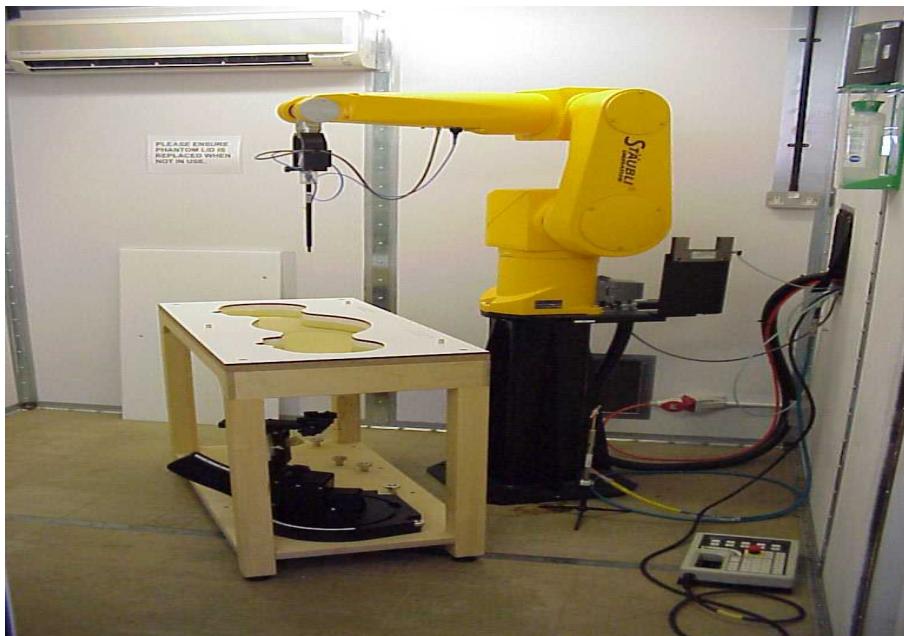
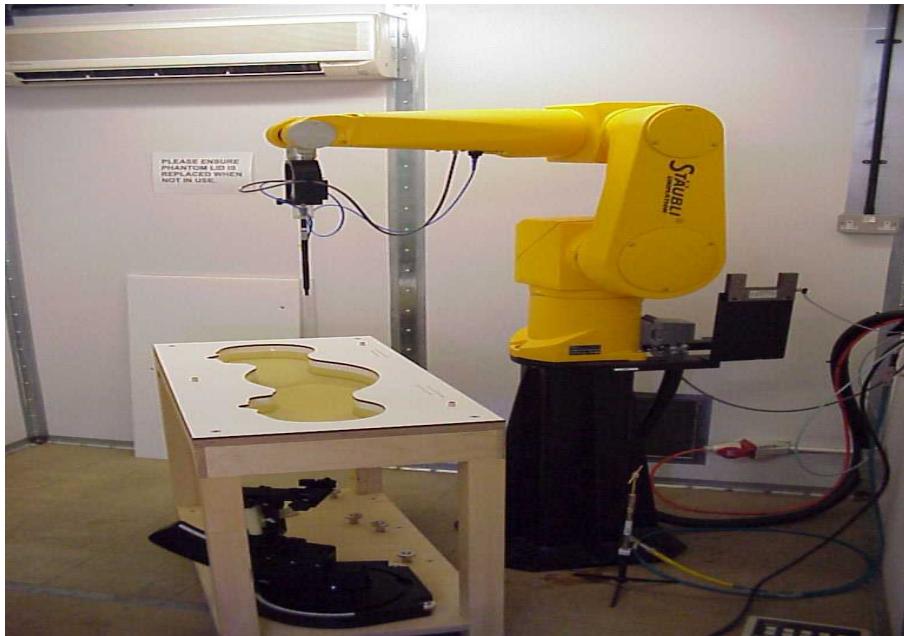
DUT: SENDOX; Type: SNDX00; Serial: 004400003969506

Communication System: DCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900MHz HSL ($\sigma = 1.43769 \text{ mho/m}$, $\epsilon_r = 38.1093$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Left Section

DASY4 Configuration:



- Probe: ET3DV6 - SN1528; ConvF(4.8, 4.8, 4.8); Calibrated: 29/07/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 19/05/2003
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Tilt position - Middle/Area Scan 2 (111x121x1): Measurement grid: dx=15mm, dy=15mm
Reference Value = 15.5 V/m
Power Drift = 0.1 dB
Maximum value of SAR = 0.623 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Peak SAR (extrapolated) = 1.05 W/kg
SAR(1 g) = 0.589 mW/g; SAR(10 g) = 0.317 mW/g
Reference Value = 15.5 V/m
Power Drift = 0.1 dB
Maximum value of SAR = 0.649 mW/g

Appendix 3. Test Configuration Photographs

This appendix contains photographs showing the test configuration for the measurement of Specific Absorption Rate (SAR)

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 28 of 32

Issue Date: 15 March 2002

Test Configuration Photographs (Continued)

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: **Sendo Ltd.**

SendoX

To: **OET Bulletin 65 Supplement C: (2001-01)**

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 29 of 32

Issue Date: 15 March 2002

Appendix 4. Calibration Data

This appendix contains the calibration data and certificates.

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 30 of 32

Issue Date: 15 March 2002

This page has been left intentionally blank.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

YHD
CAL2CK 20
06/08/03

Client

RFI

CALIBRATION CERTIFICATE

Object(s)	ET3DV6 - SN 1528		
Calibration procedure(s)	QA CAL-01 v2 Calibration procedure for dosimetric E-field probes		
Calibration date:	July 29, 2003		
Condition of the calibrated item	In Tolerance (according to the specific calibration document)		
<p>This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Model	Type	ID #	Cal Date (Calibrated by, Certificate No.)
RF generator HP 8684C		US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)
Power sensor E4412A		MY41495277	2-Apr-03 (METAS, No 252-0250)
Power sensor HP 8481A		MY41092180	18-Sep-02 (Agilent, No. 20020918)
Power meter EPM E4419B		GB41293874	2-Apr-03 (METAS, No 252-0250)
Network Analyzer HP 8753E		US37390585	18-Oct-01 (Agilent, No. 24BR1033101)
Fluke Process Calibrator Type 702		SN: 6295803	3-Sep-01 (ELCAL, No.2360)
Calibrated by:	Name	Function	Signature
	Nicu Vetterli	Technician	<i>N. Vetterli</i>
Approved by:	Name	Function	Signature
	Katja Pokornic	Laboratory Director	<i>K. Pokornic</i>
Date issued: July 29, 2003			
<p>This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.</p>			

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 1 245 9700, Fax +41 1 245 9779
info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1528

Manufactured:	March 21, 2000
Last calibration:	February 6, 2003
Recalibrated:	July 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1528

Sensitivity in Free Space

NormX	1.51 $\mu\text{V}/(\text{V}/\text{m})^2$
NormY	1.28 $\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	1.34 $\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression

DCP X	99	mV
DCP Y	99	mV
DCP Z	99	mV

Sensitivity in Tissue Simulating Liquid

Head **900 MHz** $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for f=855-945 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	6.3 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	6.3 $\pm 9.5\%$ (k=2)	Alpha 0.41
ConvF Z	6.3 $\pm 9.5\%$ (k=2)	Depth 2.46

Head **1800 MHz** $\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho/m}$

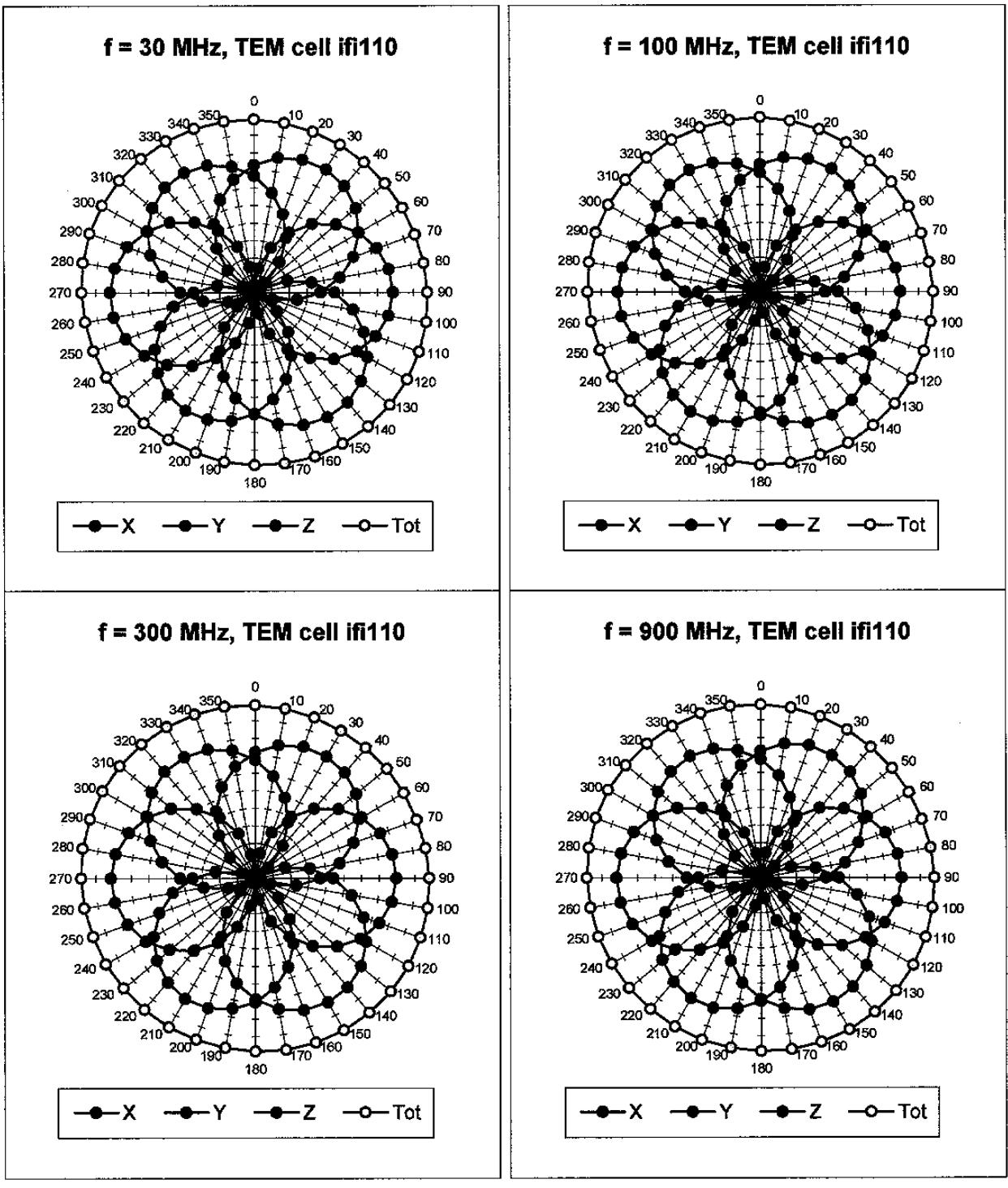
Valid for f=1710-1890 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

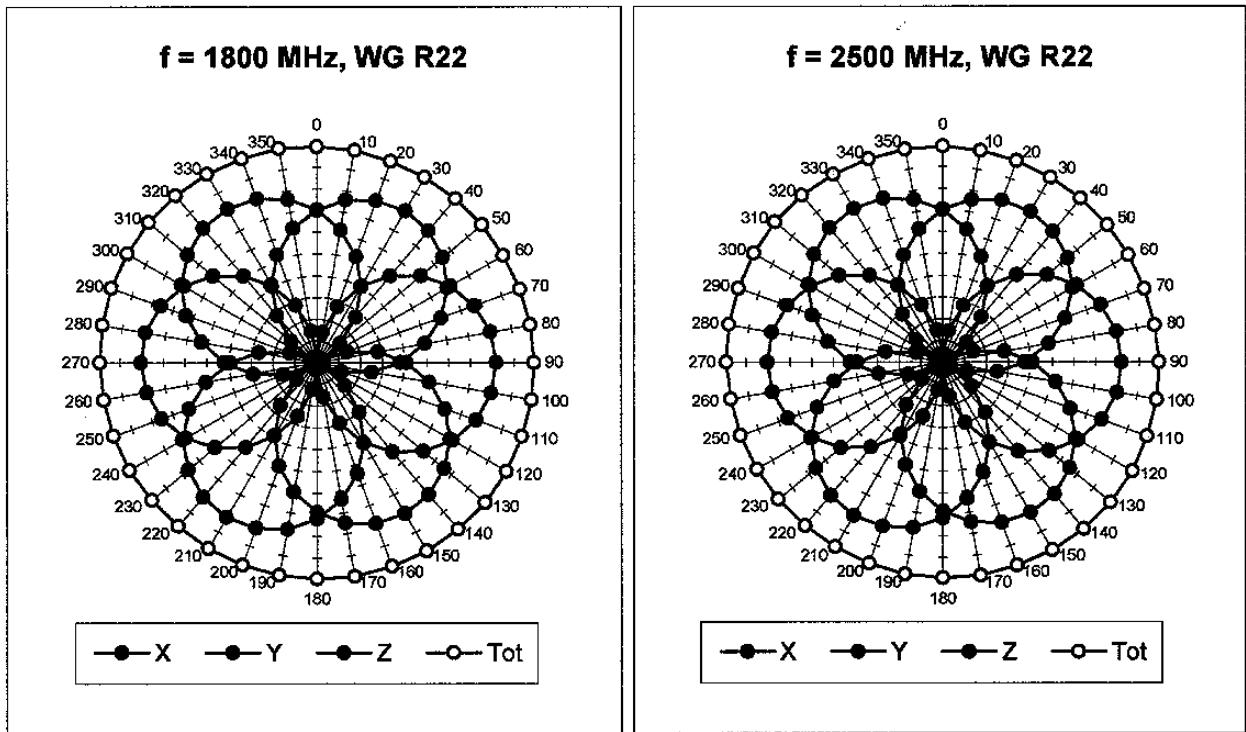
ConvF X	5.0 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	5.0 $\pm 9.5\%$ (k=2)	Alpha 0.51
ConvF Z	5.0 $\pm 9.5\%$ (k=2)	Depth 2.62

Boundary Effect

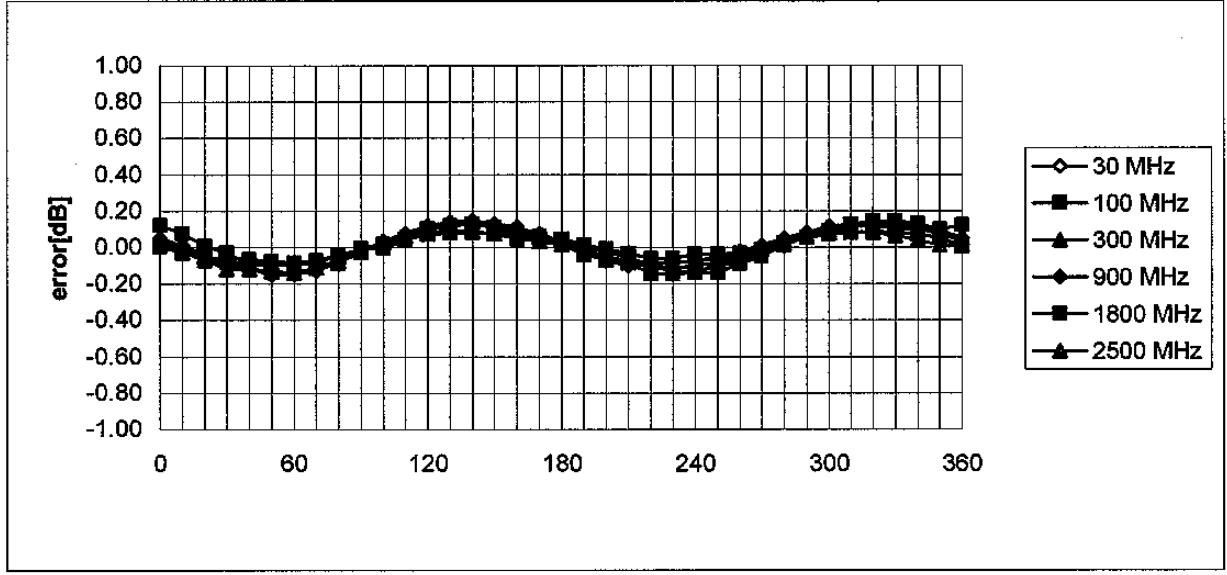
Head **900 MHz** Typical SAR gradient: 5 % per mm

Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	10.2	6.0
SAR _{be} [%] With Correction Algorithm	0.3	0.3

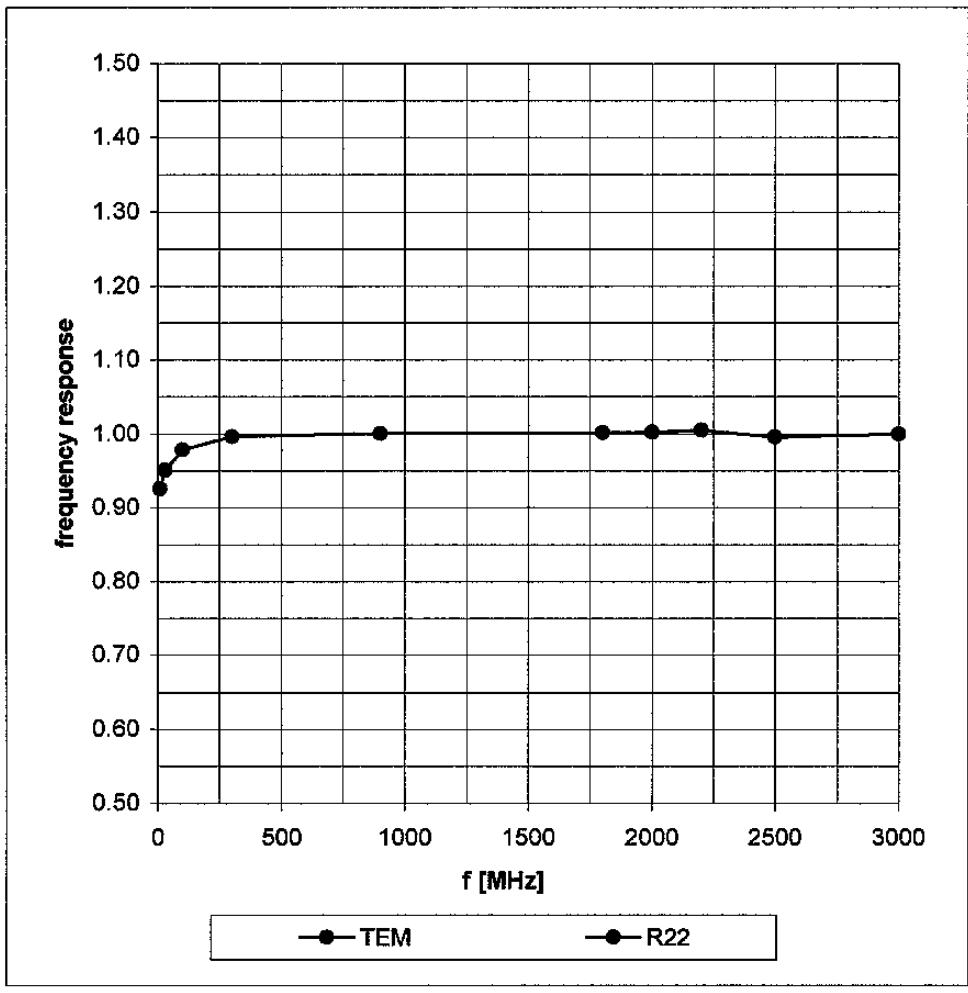

Head **1800 MHz** Typical SAR gradient: 10 % per mm


Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	13.9	9.2
SAR _{be} [%] With Correction Algorithm	0.2	0.0

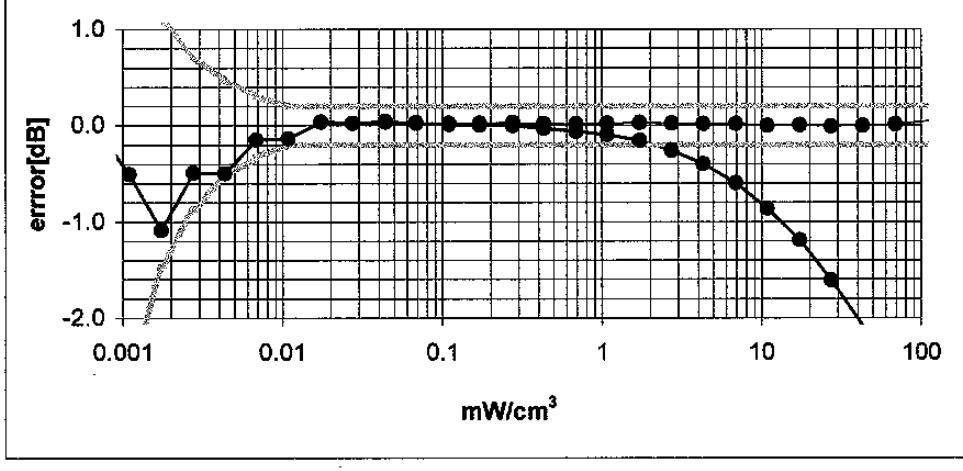
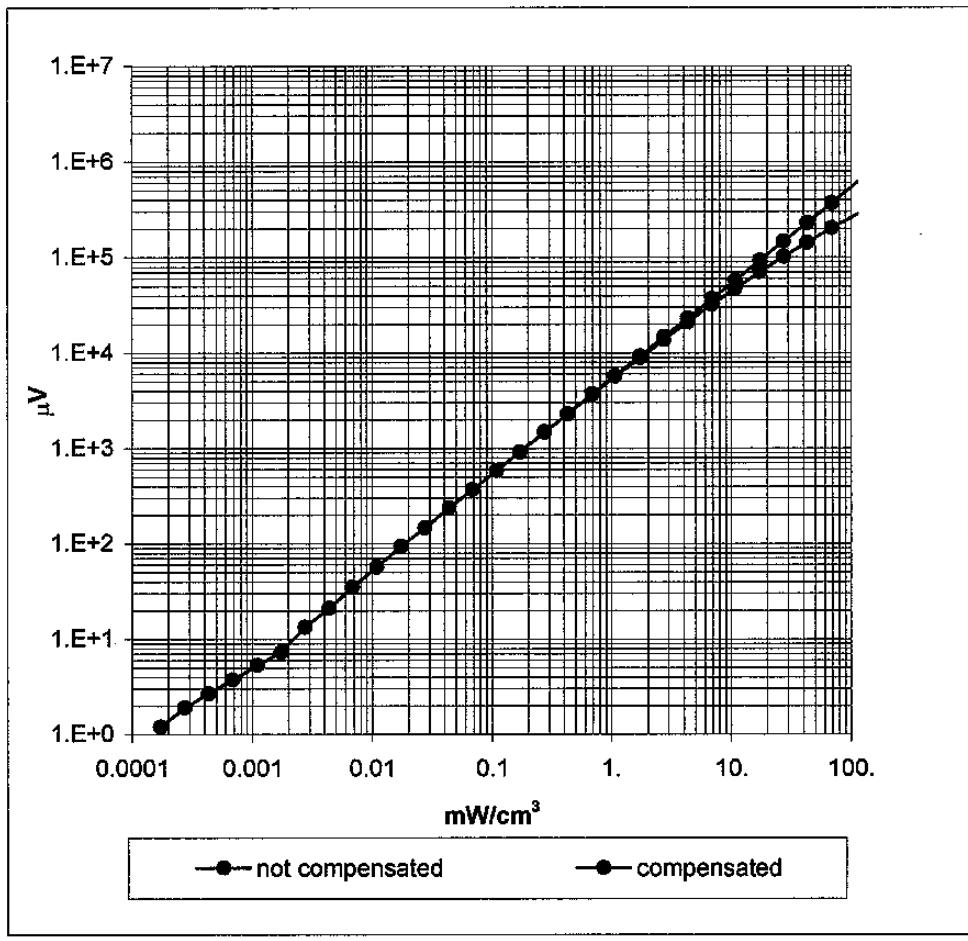
Sensor Offset


Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.6 \pm 0.2	mm

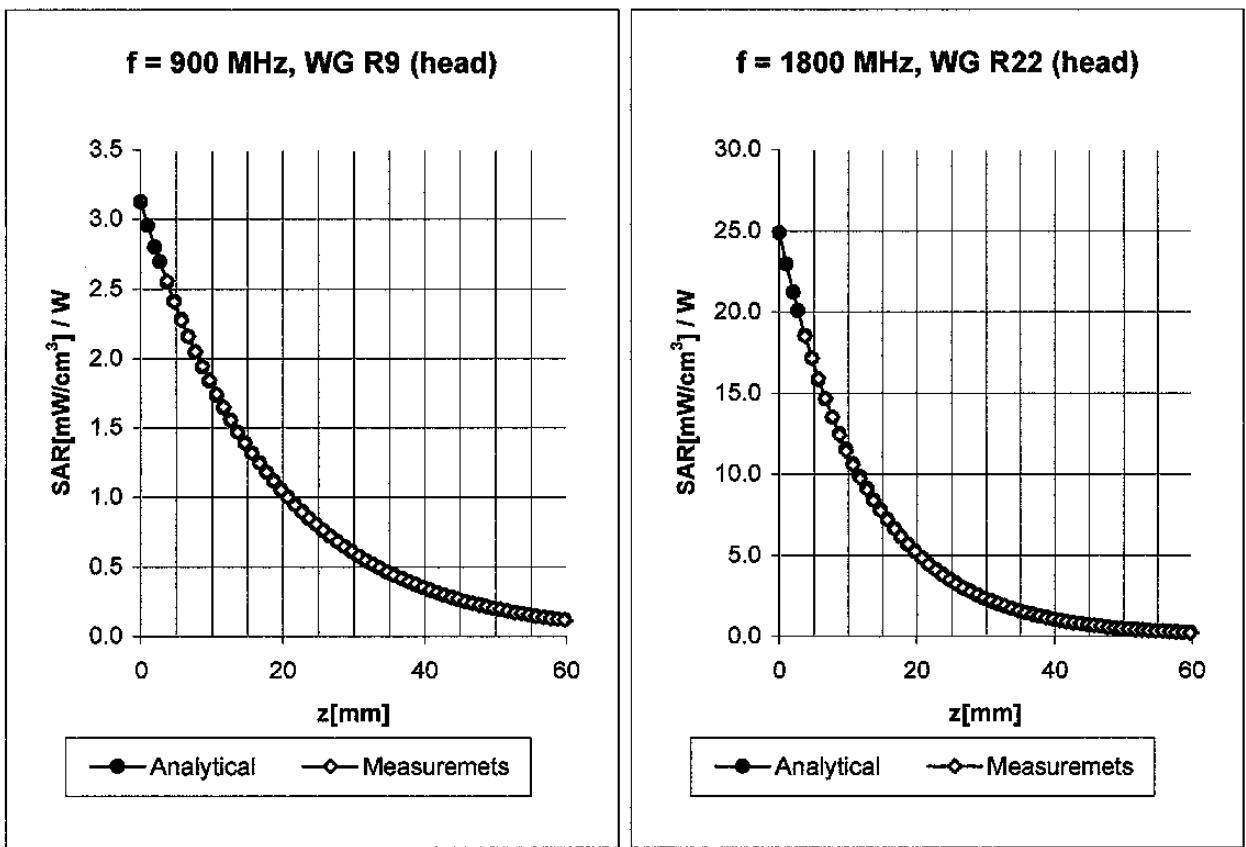
Receiving Pattern (ϕ , $\theta = 0^\circ$)



Isotropy Error (ϕ), $\theta = 0^\circ$

Frequency Response of E-Field

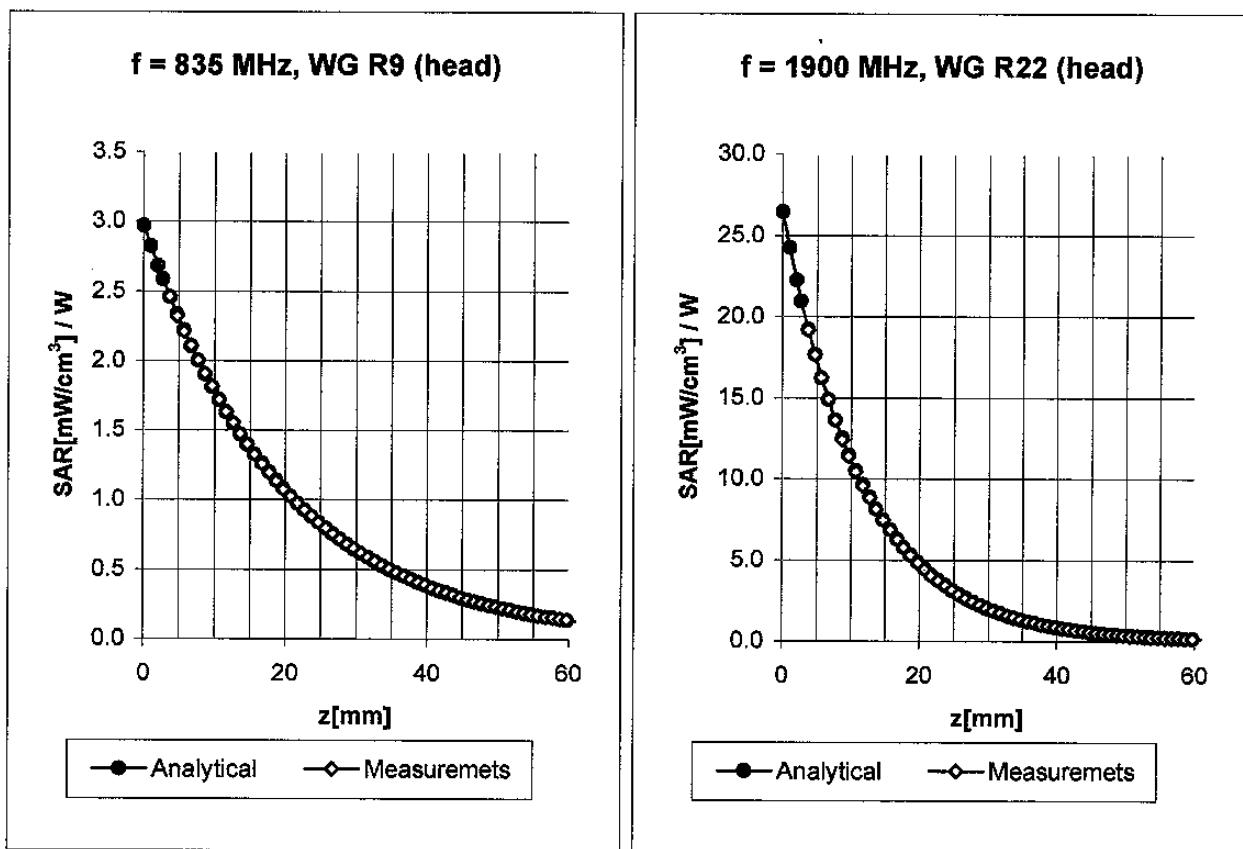

(TEM-Cell:ifi110, Waveguide R22)

Dynamic Range f(SAR_{brain}) (Waveguide R22)

Conversion Factor Assessment

Head **900 MHz** $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for $f=855-945 \text{ MHz}$ with Head Tissue Simulating Liquid according to EN 50361, P1528-200X


ConvF X	6.3 $\pm 9.5\% \text{ (k=2)}$	Boundary effect:
ConvF Y	6.3 $\pm 9.5\% \text{ (k=2)}$	Alpha 0.41
ConvF Z	6.3 $\pm 9.5\% \text{ (k=2)}$	Depth 2.46

Head **1800 MHz** $\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho/m}$

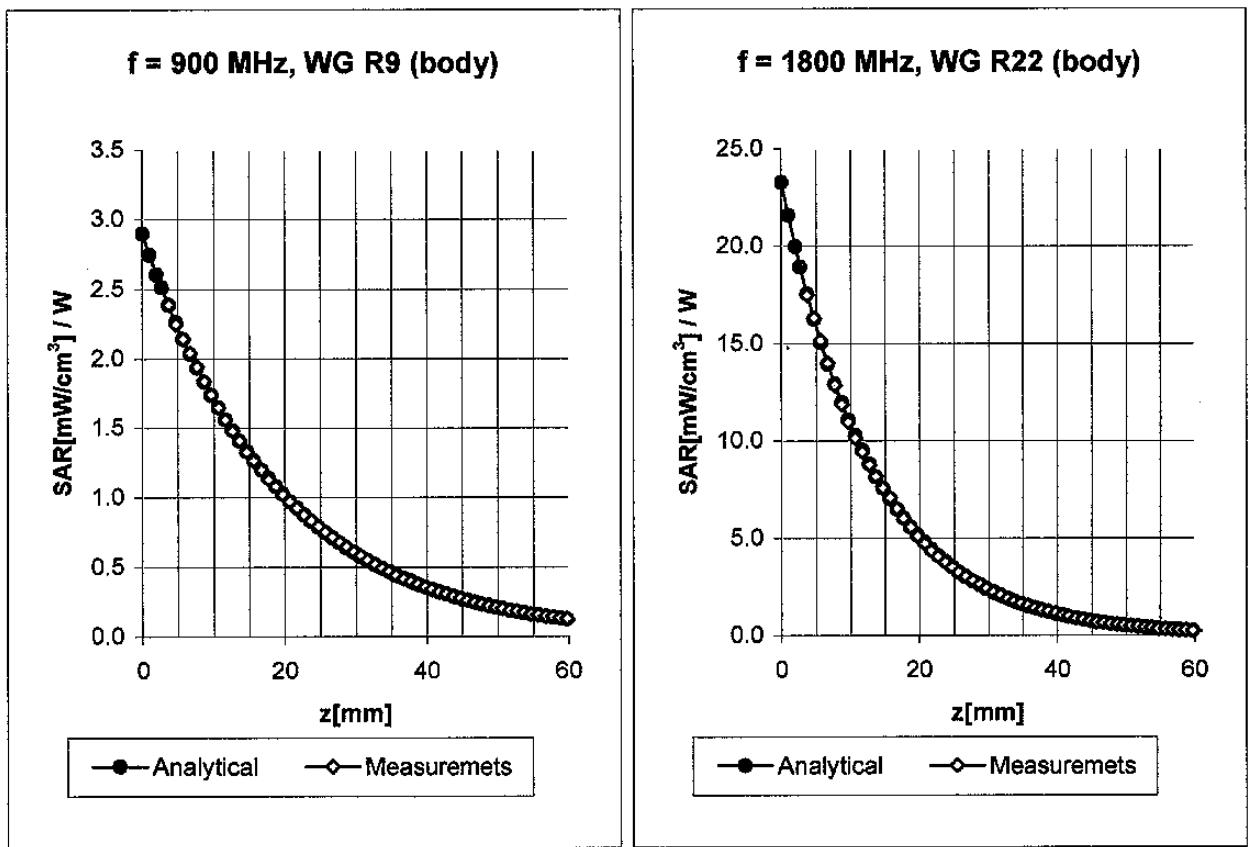
Valid for $f=1710-1890 \text{ MHz}$ with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	5.0 $\pm 9.5\% \text{ (k=2)}$	Boundary effect:
ConvF Y	5.0 $\pm 9.5\% \text{ (k=2)}$	Alpha 0.51
ConvF Z	5.0 $\pm 9.5\% \text{ (k=2)}$	Depth 2.62

Conversion Factor Assessment

Head 835 MHz $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.90 \pm 5\% \text{ mho/m}$

Valid for f=793-877 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X


ConvF X	6.4 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	6.4 $\pm 9.5\%$ (k=2)	Alpha 0.46
ConvF Z	6.4 $\pm 9.5\%$ (k=2)	Depth 2.20

Head 1900 MHz $\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho/m}$

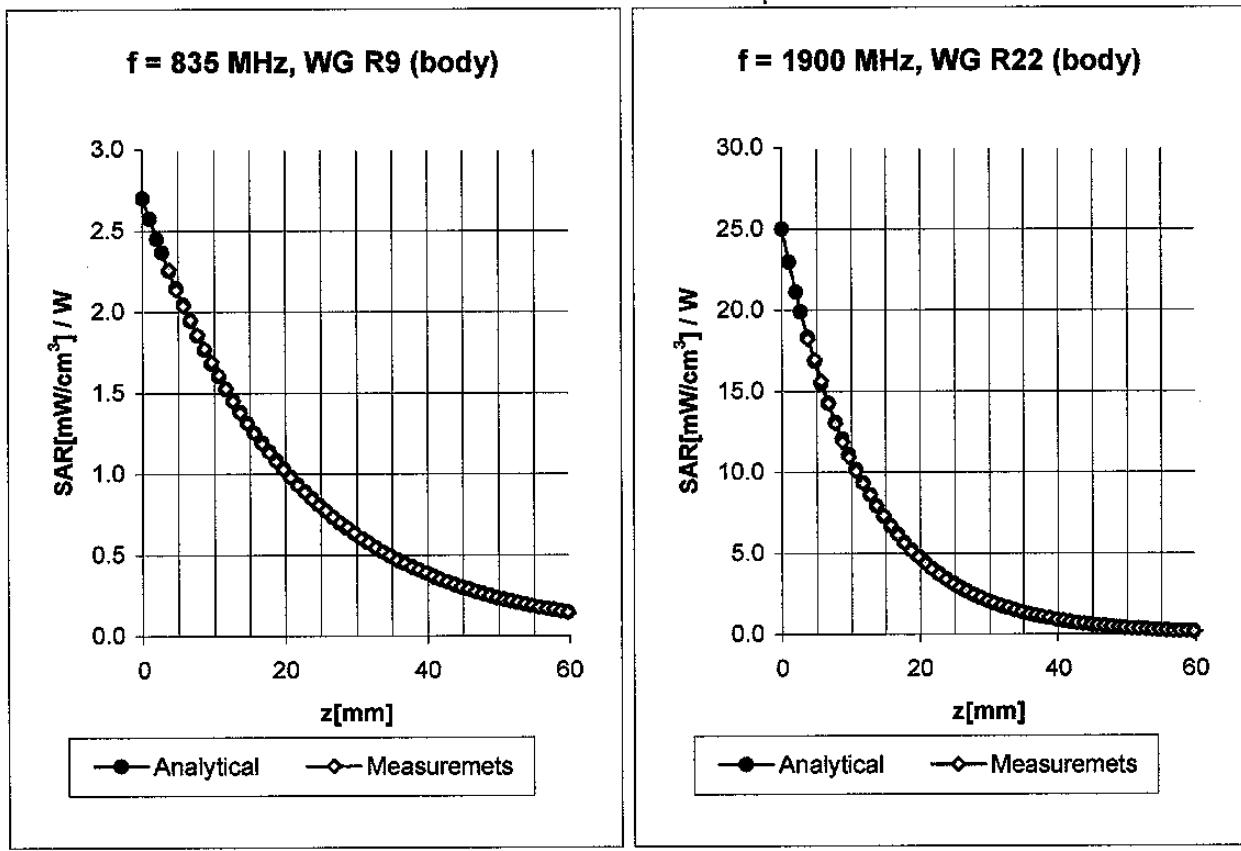
Valid for f=1805-1995 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	4.8 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	4.8 $\pm 9.5\%$ (k=2)	Alpha 0.54
ConvF Z	4.8 $\pm 9.5\%$ (k=2)	Depth 2.58

Conversion Factor Assessment

Body **900 MHz** $\epsilon_r = 55.0 \pm 5\%$ $\sigma = 1.05 \pm 5\% \text{ mho/m}$

Valid for $f=855-945 \text{ MHz}$ with Body Tissue Simulating Liquid according to OET 65 Suppl. C


ConvF X	6.2 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	6.2 $\pm 9.5\%$ (k=2)	Alpha 0.56
ConvF Z	6.2 $\pm 9.5\%$ (k=2)	Depth 2.08

Body **1800 MHz** $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$

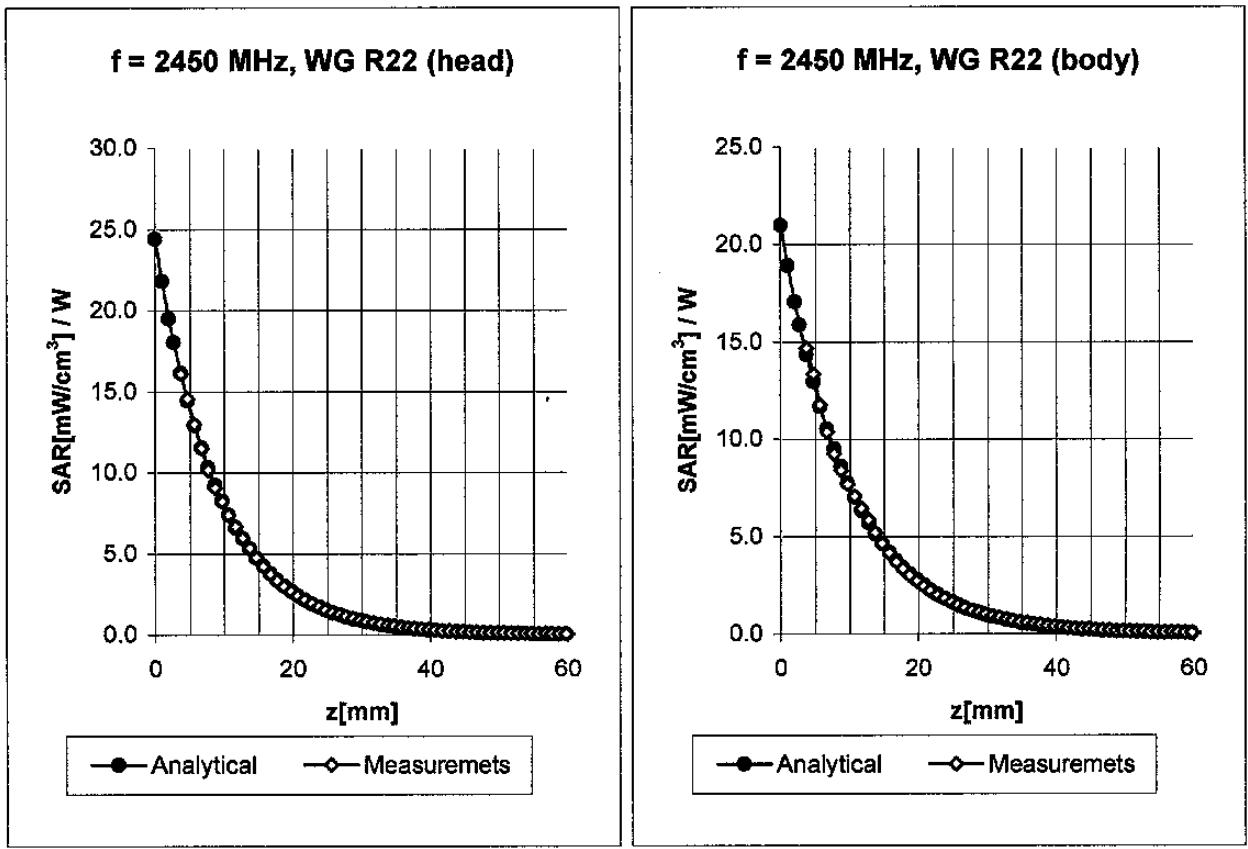
Valid for $f=1710-1890 \text{ MHz}$ with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X	4.7 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	4.7 $\pm 9.5\%$ (k=2)	Alpha 0.62
ConvF Z	4.7 $\pm 9.5\%$ (k=2)	Depth 2.59

Conversion Factor Assessment

Body 835 MHz $\epsilon_r = 55.2 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for f=793-877 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C


ConvF X	6.3 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	6.3 $\pm 9.5\%$ (k=2)	Alpha 0.44
ConvF Z	6.3 $\pm 9.5\%$ (k=2)	Depth 2.40

Body 1900 MHz $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$

Valid for f=1805-1995 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

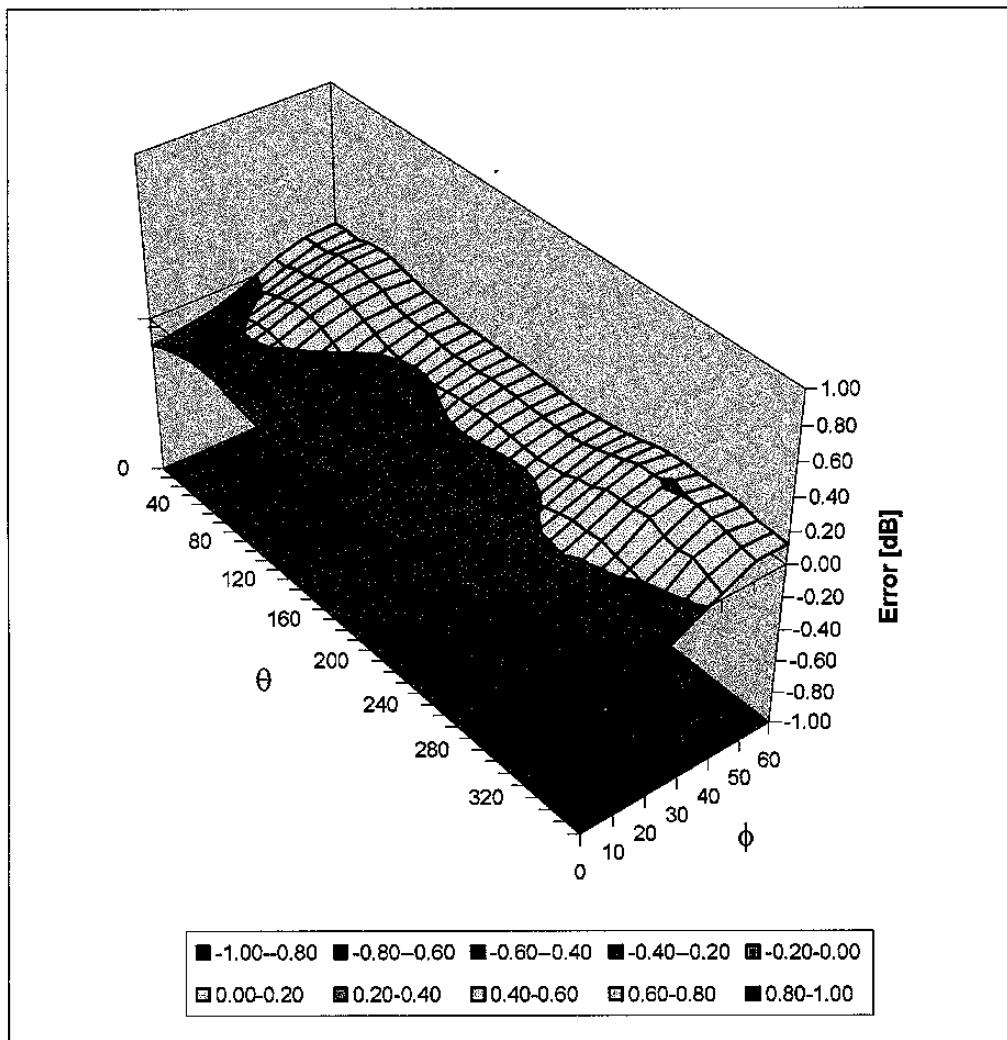
ConvF X	4.6 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	4.6 $\pm 9.5\%$ (k=2)	Alpha 0.65
ConvF Z	4.6 $\pm 9.5\%$ (k=2)	Depth 2.48

Conversion Factor Assessment

Head 2450 MHz $\epsilon_r = 39.2 \pm 5\%$ $\sigma = 1.80 \pm 5\% \text{ mho/m}$

Valid for f=2328-2573 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	4.6 $\pm 8.9\%$ (k=2)	Boundary effect:
ConvF Y	4.6 $\pm 8.9\%$ (k=2)	Alpha 1.04
ConvF Z	4.6 $\pm 8.9\%$ (k=2)	Depth 1.85


Body 2450 MHz $\epsilon_r = 52.7 \pm 5\%$ $\sigma = 1.95 \pm 5\% \text{ mho/m}$

Valid for f=2328-2573 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X	4.3 $\pm 8.9\%$ (k=2)	Boundary effect:
ConvF Y	4.3 $\pm 8.9\%$ (k=2)	Alpha 1.10
ConvF Z	4.3 $\pm 8.9\%$ (k=2)	Depth 1.75

Deviation from Isotropy in HSL

Error ($\theta\phi$), f = 900 MHz

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

J. H. D. Müller
Curved
n/06/03

Client

RFI

CALIBRATION CERTIFICATE

Object(s)	D1900V2 SN 540
Calibration procedure(s)	QA CAL 05-v2 Calibration procedure for dipole validation kits
Calibration date:	June 4, 2003
Condition of the calibrated item	In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
Power sensor HP 8481A	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Power meter EPM E442	GB37480704	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03

Calibrated by:	Name <i>Judith Müller</i>	Function <i>Technician</i>	Signature <i>J. H. D. Müller</i>
Approved by:	Name <i>Katja Pokorny</i>	Function <i>Laboratory Director</i>	Signature <i>Katja Pokorny</i>

Date issued: June 4, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 1 245 9700, Fax +41 1 245 9779
info@speag.com, <http://www.speag.com>

DASY

Dipole Validation Kit

Type: D1900V2

Serial: 540

Manufactured: July 26, 2001
Calibrated: June 4, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 1900 MHz:

Relative Dielectricity	38.8	$\pm 5\%$
Conductivity	1.44 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.2 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{ mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm^3 (1 g) of tissue: **41.2 mW/g $\pm 16.8\%$ (k=2)**¹

averaged over 10 cm^3 (10 g) of tissue: **21.2 mW/g $\pm 16.2\%$ (k=2)**¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: **1.196 ns** (one direction)
Transmission factor: **0.993** (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: **Re{Z} = 50.3 Ω**

Im {Z} = 3.8 Ω

Return Loss at 1900 MHz **-28.5 dB**

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

6. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 06/04/03 18:39:25

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: SN540_SN1507_HSL1900_040603.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN540
Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz ($\sigma = 1.44 \text{ mho/m}$, $\epsilon_r = 38.78$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 - SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

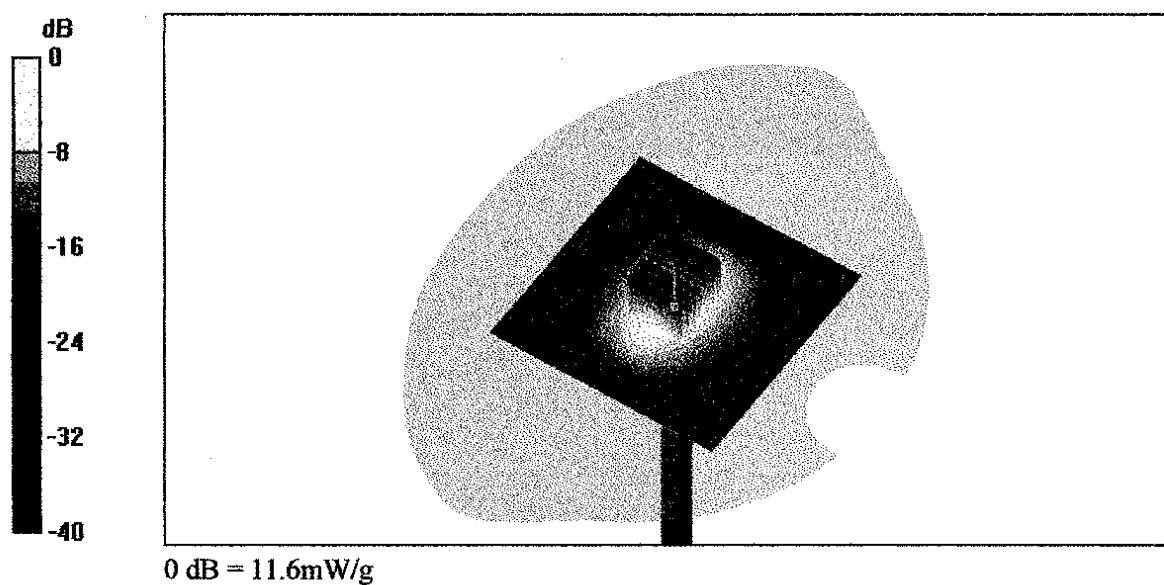
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

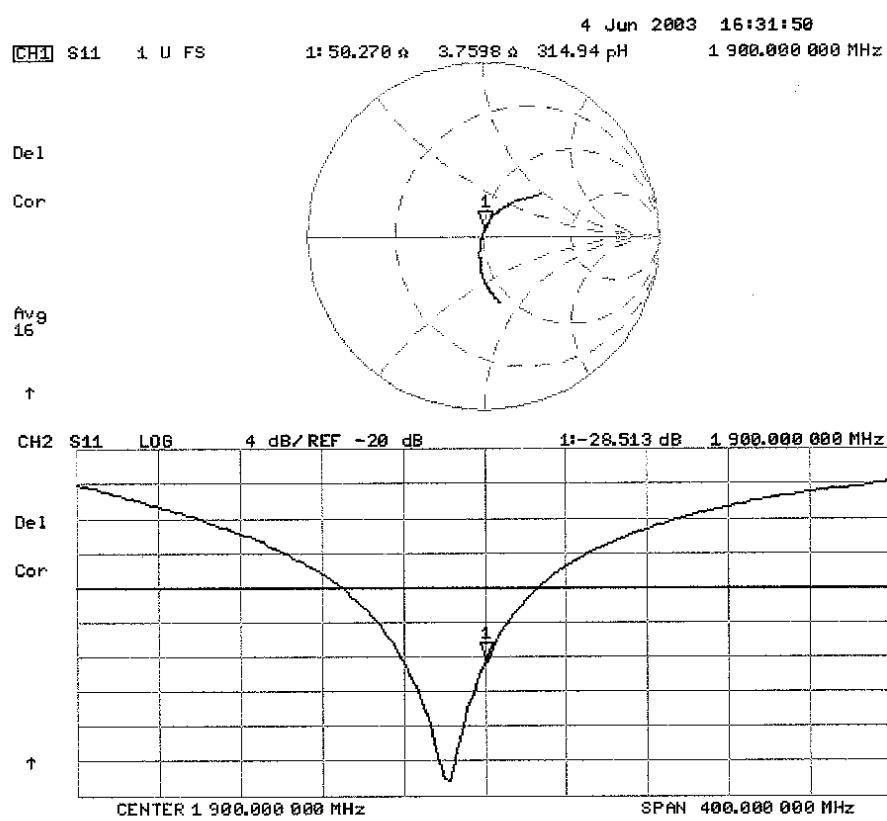
Reference Value = 94.4 V/m

Power Drift = 0.01 dB

Maximum value of SAR = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 18 W/kg


SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.29 mW/g

Reference Value = 94.4 V/m

Power Drift = 0.01 dB

Maximum value of SAR = 11.6 mW/g

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 31 of 32

Issue Date: 15 March 2002

Appendix 5. Photographs of EUT

This appendix contains the following photographs

Photo Reference Number	Title
PHT/45077JD20/001	View of Fluid Level
PHT/45077JD20/002	Front View of EUT
PHT/45077JD20/003	Rear View of EUT
PHT/45077JD20/004	View of Tilt Left
PHT/45077JD20/005	View of Tilt Right
PHT/45077JD20/006	View of Touch Left
PHT/45077JD20/007	View of Touch Right

These pages are not included in the total number of pages for this report

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB2/RP45077JD20A

Page 32 of 32

Issue Date: 15 March 2002

This page has been left intentionally blank.

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

TEST REPORT

Photograph Section

S.No. RFI/SARB2/RP45077JD20A

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/45077JD20/001 View of Fluid Level

RADIO FREQUENCY INVESTIGATION LTD.
Operations Department

TEST REPORT
Photograph Section
S.No. RFI/SARB2/RP45077JD20A

Test Of: Sendo Ltd.
SendoX
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/45077JD20/002 Front View of EUT

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

TEST REPORT

Photograph Section

S.No. RFI/SARB2/RP45077JD20A

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/45077JD20/003 Rear View of EUT

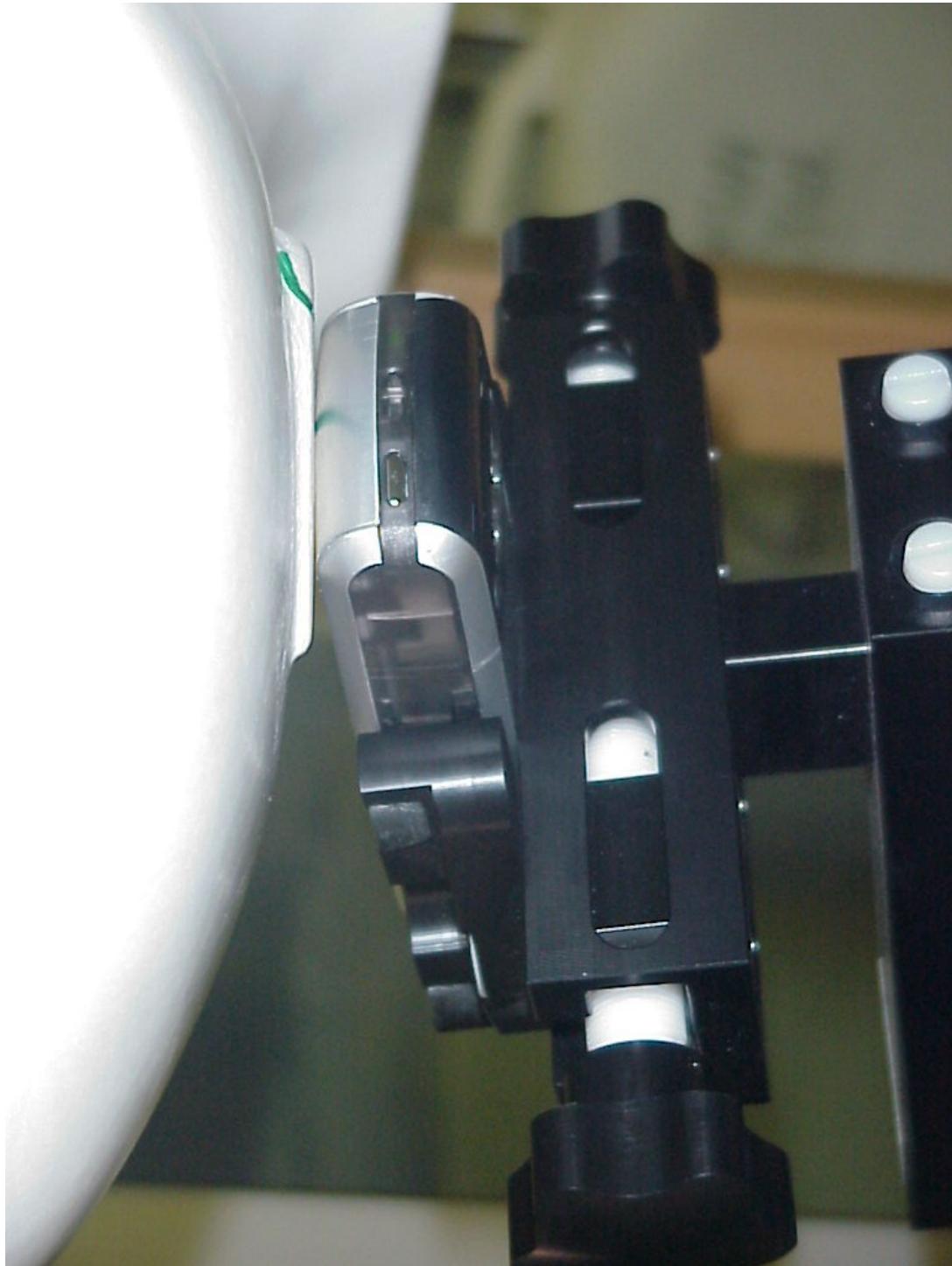
RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

TEST REPORT

Photograph Section

S.No. RFI/SARB2/RP45077JD20A


Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/45077JD20/004 View of Tilt Left

RADIO FREQUENCY INVESTIGATION LTD.
Operations Department

TEST REPORT
Photograph Section
S.No. RFI/SARB2/RP45077JD20A

Test Of: Sendo Ltd.
SendoX
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/45077JD20/005 View of Tilt Right

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

TEST REPORT

Photograph Section

S.No. RFI/SARB2/RP45077JD20A

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/45077JD20/006 View of Touch Left

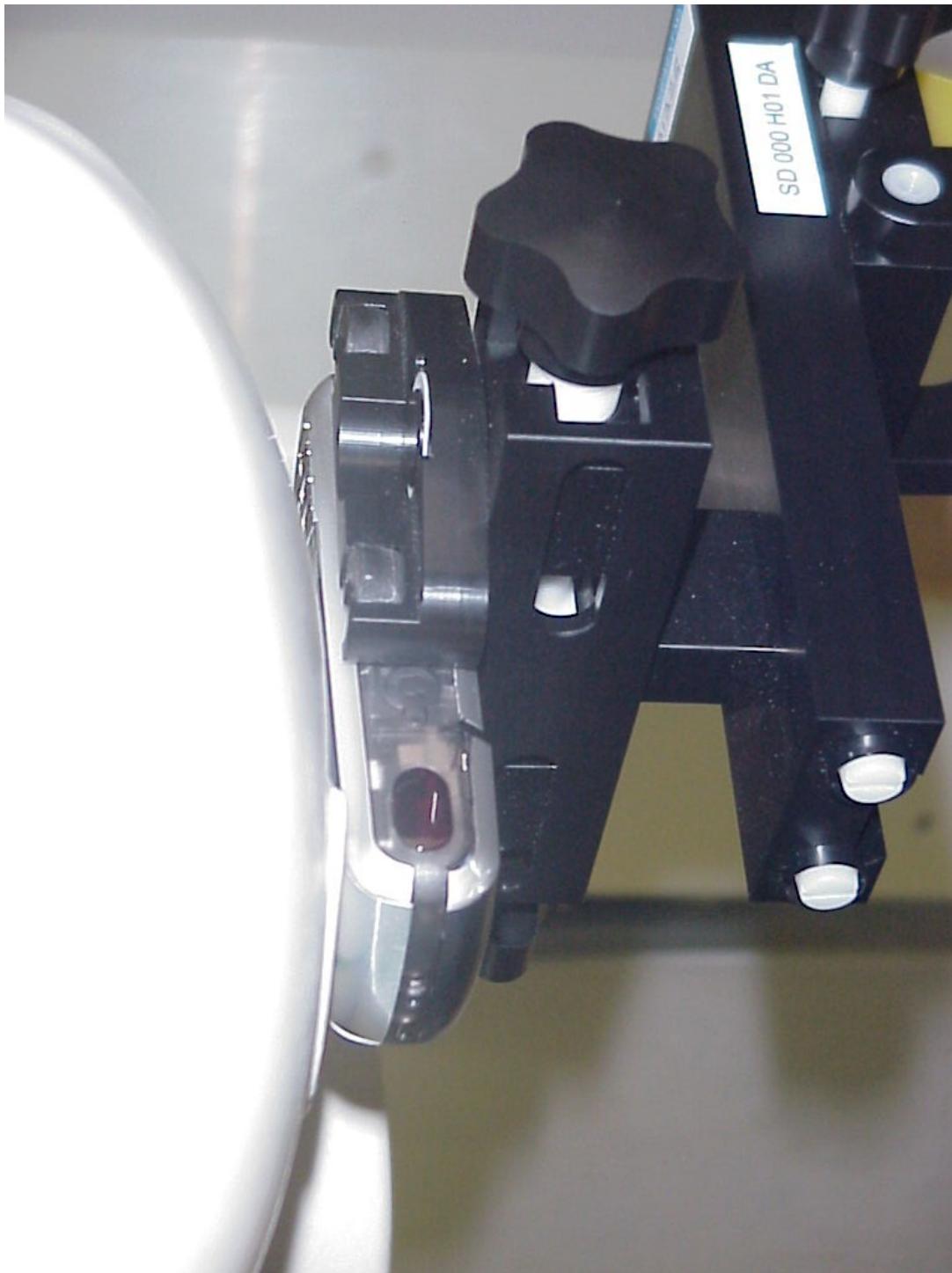
RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

TEST REPORT

Photograph Section

S.No. RFI/SARB2/RP45077JD20A


Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

PHT/45077JD20/007 View of Touch Right

RADIO FREQUENCY INVESTIGATION LTD.

Operations Department

TEST REPORT

Photograph Section

S.No. RFI/SARB2/RP45077JD20A

Test Of: Sendo Ltd.

SendoX

To: OET Bulletin 65 Supplement C: (2001-01)

This page has been left intentionally blank.