

Solihull Functional Test Specification

Document Control			
Document Number	SP5514	Original Author	M.Tinkler
Latest Version	1 Live	Owner	A Hope/T Carpenter
Issue Date	04/09/2002	Approver	A Hope

Revision Status			
Version	Author	Date	Change
0.1	M. Tinkler	28/6/2002	First Draft
0.2	M. Tinkler	2/7/2002	Corrections based on input from Christophe Lancelot. PSU use MIN current range for CURR_OFF, CURR_DEEP_SLEEP. BER levels changed to -103dBm based on input from Antoine Assaf.
0.3	M. Tinkler	12/7/2002	Modification to the charge calibration for the Li-Ion battery.
1.0	M. Tinkler	28/8/2002	Modified AUXOP_CONNECTOR test. (Specified EXTERNAL MICROPHONE). Deleted ADIN442 limit, VBATT42 limit, ADIN432 limit, VBATT32 limit. Added GTPR19_190, GSM_TX_Current and PCS_TX_Current. Added PCL column to in call tests. Modified synthesizer checking to be the same as TECN058 to define test frequencies. Changed PCS RX adjust to suit calypso software. Changed GSM850 and PCS1900 Rx adjust to suit calypso software. Removed CHK_VPPMEM.

© 2002 Sendo Ltd. This document is confidential and proprietary to Sendo Ltd. All Rights Reserved. No part of this document may be copied or reproduced, in whole or in part, in any material form (including photocopying and/or storage in any medium by electronic means and whether or not transiently or incidentally to some other use of this document) without the written permission of Sendo Ltd. Application to reproduce the whole or any part of this publication should be addressed to: Sendo Ltd. Sendo Base Station, Hatchford Way, Birmingham, B26 3RZ.

Controlled Statement

The electronic copy of this document held on the Sendo server is the definitive version. Printed copies are uncontrolled.

Update/Amendment Procedure

This document is controlled and updated in accordance with the Sendo change

control procedure.

Table of contents

1. SCOPE.....	4
2. PURPOSE.....	4
3. REFERENCES.....	4
4. HARDWARE MATRIX.....	4
5. TEST SYSTEM SOFTWARE VERSION.....	4
6. FUNCTIONAL BOARD TEST AND ELECTRONIC TUNING	5
6.1. Switch ON procedure	5
6.1.1. Purpose.....	5
6.1.2. Test procedure for switch ON.....	5
6.1.3. TP108 (VRTC) CHK_VRTC	5
6.1.4. Off Current	5
6.1.5. Power up current.....	5
6.2. USP communication test	5
6.2.1. Purpose.....	5
6.2.2. Test procedure.....	5
6.3. Retest Status test	5
6.4. Software Version check.....	5
6.4.1. Purpose.....	5
6.4.2. Test procedure.....	6
6.5. Current in ON mode and supply voltages:.....	6
6.5.1. Purpose.....	6
6.5.2. Test procedure.....	6
6.5.3. ON Current.....	6
6.5.4. TP202 (VCORE) CHK_VCORE	6
6.5.5. TP500 (2V8_RF) CHK_2V8_RF	6
6.6. SIM card control	6
6.6.1. Purpose.....	6
6.6.2. Test procedure.....	6
6.7. Analogue to Digital converter (ADC) Control.....	7
6.7.1. Purpose.....	7
6.7.2. Test procedure:.....	7
6.7.3. Check Battery type measurement.....	7
6.7.4. Check Battery voltage measurement.....	7
6.7.5. Check Temperature measurement	7
6.8. Audio Loop Control.....	8
6.8.1. Purpose.....	8
6.8.2. Test procedure.....	8
6.9. Buzzer	8
6.9.1. Purpose.....	8
6.9.2. Test procedure.....	8
6.10. Vibrator control	8
6.10.1. Purpose.....	9
6.10.2. Test procedure.....	9
6.11. Keyboard/LCD backlight.....	9
6.11.1. Purpose.....	9
6.11.2. Test procedure.....	9
6.12. Check charge current & charger voltage	9
6.12.1. Purpose.....	9
6.12.2. CALIBRATION of the charge DAC:	9

6.12.3. CALIBRATION of the end of charge current:.....	10
6.12.4. Charge current tests.	11
6.13. Sleep mode	11
6.13.1. Purpose.....	11
6.13.2. Test procedure.....	11
7. RF PHASING (ALIGNMENT).....	12
7.1. Purpose	12
7.2. Automatic Frequency Control (AFC) DAC calibration	12
7.2.1. Purpose.....	12
7.2.2. Test procedure.....	12
7.3. Synthesizer checking.....	13
7.3.1. Purpose.....	13
7.3.2. Test procedure.....	13
7.4. Adjustment of the 13 MHz oscillator	13
7.4.1. Purpose.....	13
7.4.2. Initial 13MHz Adjustment	14
7.4.3. 13MHz Fine Adjustment.....	14
7.4.4. Store AFC DAC.....	14
7.5. Adjustment of the Transmitter output power level	15
7.5.1. Purpose.....	15
7.5.2. Test Procedure	15
7.6. Adjustment of the Received level	16
7.6.1. Purpose.....	16
7.6.2. GSM850 Tuning Procedure	16
7.6.3. PCS1900 Tuning Procedure	17
7.7. Update Radio section	18
8. RF PERFORMANCE VERIFICATION	18
8.1. Purpose	18
8.2. Test Procedure	18
9. WRITE TRANSCEIVER ID AND SERIAL NUMBER.....	19
9.1. Purpose	19
9.2. Test procedure	20
10. TRANSFER TEST DATA	20
11. END OF PROCEDURE.....	20

2. Scope

This document defines the Functional test procedure.

3. Purpose

The purpose of the Functional test is to verify that all RF functionality is fully operational and that the components on the PCB are fully working and been fitted correctly. Functional test calibrates the RF, Battery and charger control values.

4. References

SP5515 Solihull Functional Test Limits spec.

5. Hardware Matrix

- 1 GS8000 - Wireless Appliance Functional Tester
- 1 Serial Printer RS244648
- 1 Agilent 66319B Dual Output Mobile Communication DC Source
- 1 Agilent 34970A Data Acquisition/Switch Unit
- 2 x PCI -1750 Advantech Digital IO Card
- 2 x Agilent 34903 20 Channel Acuator/General Purpose Switch
- 1 Agilent 34901 20 Channel Multiplexor
- 1 Walker Precision BB Test Fixture Revision 1
- 1 Industrial PC with RS232

6. Test system software version

Software version 1.0

7. Functional board test and electronic tuning

The Serial connection to the mobile should be made with open drain on the RXD line on the modem. A $2k\Omega$ pull up may be necessary if problems occur.

The phone serial number is entered using a barcode scanner at the beginning of the test sequence.

7.2. Switch ON procedure

7.2.1. Purpose

Validate that the switch ON procedure operates correctly using the 'On' Key.

7.2.2. Test procedure for switch ON.

Apply 0V at TP107 (GND)

Apply at X400 PIN 3 (VBATT) +3.6V

Wait 70ms (time to be optimised)

Formatted: Bullets and Numbering

7.2.3. TP108 (VRTC)

CHK_VRTC

This test measures the power supply to the real time clock of calypso

7.2.4. Off Current

Select MIN current range on the DMM of the power supply.

Verify off current provided by power supply. **CURR_OFF**

Select MAX current range on the DMM of the power supply.

7.2.5. Power up current

Apply 0v at TP403 (PWR_ON) for 45ms to switch on phone.

Wait 1 seconds for unit to switch on and initialise.

Measure Power up current. **POWER_UP_CURRENT**

Wait 5 seconds for software to stabilise.

7.3. USP communication test

7.3.1. Purpose

Tests the Micro-controller Serial Port between Iota and Calypso.

7.3.2. Test procedure

Activate Test_UspRW with the command USP_RW. MS should return PASS
(0)/FAIL (non zero) **USP_COMM**

7.4. Retest Status test

Read the prior test indicator in the NVM to determine if the phone has been tested at Functional test. This will be saved in the report file to be used for first time yield calculations.

7.5. Software Version check

7.5.1. Purpose

Verify that the software version matches the test equipment software version.

7.5.2. Test procedure

Get the software version from the MS using the command
GET_SOFTWARE_VERSION **SW_Version**

Check the software version: Application & DSP (if it's in the list of version supported by the test equipment). **DSP_Version**

7.6. Current in ON mode and supply voltages:

7.6.1. Purpose

Verify that the power consumption of the mobile in ON mode is within the limit.

Verify set up of baseband chip set.

7.6.2. Test procedure

Set Current limitation of VBATT to 400mA for this test only.

Send the initialisation procedure STABLE_ON_MODE (This should perform initialisation of the Baseband, switch off the backlight, stop radio activity apart from 13MHz) in order to put phone in well know state.

Wait 50ms – this is to wait for the unit current to stabilize.

7.6.3. ON Current

Measure current provided by power supply. **CURR_ON**

7.6.4. TP202 (VCORE)

CHK_VCORE

This test measures the power supply VCORE from the Iota chip that supplies the Calypso.

7.6.5. TP500 (2V8_RF)

CHK_2V8_RF

This test measures the supply voltage to the front-end module.

7.7. SIM card control

7.7.1. Purpose

Verify that SIM card interface is fully functional.

7.7.2. Test procedure

Use a test SIM card (3V) connected to the test points listed below.

X402-1 (SIMVCC)

X402-2 (SIMRST)

X402-3 (SIMCLK)

X402-6 (SIMIO)

Apply at XP400 PIN 3 (VBATT): +3.6V

Via the serial interface, activate SIM test with the command **CHECK_SIM**

with parameter 3.00V.

Measure X402-1 (SIM_VCC)

SIM_VON

7.8. Analogue to Digital converter (ADC) Control

7.8.1. Purpose

Check link between Calypso and Iota, Iota auxiliary converters and external resistor values.

7.8.2. Test procedure:

Current limitation 475mA max on TP208 (VCHARGE)

Connect a $10\text{ K}\Omega \pm 5\%$ resistor between XP400 pin 2 (TEMP_BATT) and TP107 (GND).

7.8.3. Check Battery type measurement

Via the serial interface, activate TYPE_BAT ADC test with the command READ_ADC and the parameter BATTERY TYPE.

Read result and compare with limit table

TYP_BAT

7.8.4. Check Battery voltage measurement.

An accurate battery voltage measurement is necessary to Monitor discharge level indication and to monitor the voltage regulation for Li Ion charging.

A calibration is done with the two following levels:

+4.2V (ADC_VBAT42 NVM parameter, ADC_ADIN42)

+3.2V (ADC_VBAT32 NVM parameter, ADC_ADIN32)

Apply at XP400 PIN 3 (VBATT): 4.2V (as accurate as possible)

Wait 50ms

Via the serial interface, activate VBATT ADC test with the command READ_ADC with the parameter ADIN4

Read result and compare with

ADIN 4 42
VBATT42

Store result in NVM

Apply at XP400 PIN 3 (VBATT): + 3.2 V

Via the serial interface, activate VBATT ADC test with the command READ_ADC with the parameter ADIN4

Read result and compare with

ADIN 4 32
VBATT32

Store result in NVM

7.8.5. Check Temperature measurement

Via the serial interface, activate TEMP ADC test with the command READ_ADC and the parameter TEMP.

Read result and compare with limit table

ADC_TEMP

7.9. Audio Loop Control

7.9.1. Purpose

Verify Calypso & Iota connections, external filtering and polarisation of components.

7.9.2. Test procedure

Aux-Mic to Aux-Speaker

Via the serial interface, send the command START_AUDIO_LOOP using the parameters:

INPUT DEVICE: EXTERNAL MICROPHONE

OUTPUT DEVICE: AUX_SPEAKER

Side tone and volume gains are fixed:

Side tone = 1dB

Volume control gain = 0dB.

Input gain (uplink PGA), set 0dB = 6

Output gain (downlink PGA), set 0dB = 6

Measure bias of the TP209 (BB_AUX_MIC)

AUX_MIC_BIAS

Measure MICBIAS using ADC ADIN3

AUX_MIC_ADC

Apply a sine wave signal of 150mVrms, F = 1 kHz between BB_AUX_MIC TP209 and GND TP107.

Measure the following on AUX_OP_CONNECTOR TP208:

AC Volts **AUXOP_CONNECTOR**

THD **AUXOP_CONNECTOR_THD**

SINAD **AUXOP_CONNECTOR_SINAD**

Send the command STOP_AUDIO_LOOP

7.10. Buzzer

7.10.1. Purpose

Check and ensure that the buzzer and control components are correctly fitted.

7.10.2. Test procedure

Apply at XP400 PIN 3 (VBATT): +3.6V

Via the serial interface, activate Buzzer test with constant 50% duty cycle (Max volume 63): the command is Test_CheckBuzzer

Measure the increase in supply current:

BUZZ_ON

Switch Buzzer off using the command Test_StopBuzzer

7.11. Vibrator control

7.11.1. Purpose

Verify vibrator drive circuit functions correctly.

7.11.2. Test procedure

Apply to XP400 PIN 3 (VBATT): +3.60V

Connect a resistor 20 ohms 0.5W between TP405 (VIBRATOR) and TP107 (GND).

Via the serial interface, activate Vibrator test with the command Test_RWPorts (vibrator on)

Measure on test point TP405

VIB_ON

Switch Vibrator off using the command Test_RWPorts (Vibrator off)

Wait 10ms

Measure on test point TP405 (VIBRATOR)

VIB_OFF

7.12. Keyboard/LCD backlight

7.12.1. Purpose

Verify that the keyboard / LCD backlight control circuit is functioning correctly.

7.12.2. Test procedure

Apply on XP400 PIN 3 (VBATT) +3.6V

Via the serial interface, activate BACKLIGHT test with the function Test_RWPorts (Backlight On)

Wait 10ms

Measure the supply current

Via the serial interface, disable BACKLIGHT test with function Test_RWPorts (Backlight Off)

Wait 10ms

Measure the supply current.

The backlight current is the difference between these two currents.

BKLT_CURR

7.13. Check charge current & charger voltage

7.13.1. Purpose

To check charging circuit functions correctly.

7.13.2. CALIBRATION of the charge DAC:

Apply at X400-pin 3 (VBATT) 4.2V
Apply GND at X400-pin 1 or TP107 (GND)
Apply at TP208 (VCHARGE): + 6.2v

Set Current limitation for charger 475mA max on power supply.

Find DAC_calib by dichotomy using the following algorithm.

Initialise DAC_up = 800; DAC_low = 200;

< Do >
DAC = (DAC_up + DAC_low)/2;
Write DAC (via serial link by the SW mobile, register CHGREG)

Check VBAT = 4.2, if not adjust it (test equipment)

Read charging current on the test equipment.

If charging current < 20 mA DAC_low = DAC
Else DAC_up = DAC

While DAC_up - DAC_low > 2
Return DAC_calib=DAC
write DAC_calib in the **DAC CALIBRATION VALUE**

7.13.3. CALIBRATION of the end of charge current:

Apply at X400-pin 3 (VBATT) 4.2V
Apply GND at X400-pin 1 or TP107 (GND)
Apply at TP208 (VCHARGE): + 6.2v

Write DAC (via serial link by the SW mobile, register CHGREG=3FF

Set Current limitation for charger 100mA max on power supply.

Check accuracy of VBATT = 4.2 V with the test equipment
Via the serial interface, activate Test_readADC_current test .
CURRENT ADC 1

STORE result ADC to bat_current_end_of_charge_1

Set Current limitation for charger 50mA max on power supply.

Check accuracy of VBATT = 4.2 V with the test equipment

Via the serial interface, activate Test_readADC_current test.
CURRENT ADC 2

STORE result ADC to bat_current_end_of_charge_2

7.13.4. Charge current tests.

Apply GND at X400 pin1 (GND).

Apply at X400 pin3 (VBATT) +4.2V +/- 0.1V

Apply at TP208 (VCHARGE): +6V +/-0.1V, 350mA

Set Current limitation for charger to 350mA max on power supply charger input

Measure charge current with power supply unit.

Charge current should be 0 +/- 1mA **CHARGE_CURR_OFF**

Enable charge current and set CHARGE_DAC to 0x3FF

Measure charge current with power supply charger

Charge current should be 350 mA **CHARGE_CURR_ON**

Measure current with ADC

Result should be 0x100 --> 0x0x300 **CHARGE_CURR_ADC**

Disable charge current

Measure charge current with power supply unit.

Charge current should be 0 +/- 1mA **CHARGE_CURR_OFF2**

7.14. Sleep mode

7.14.1. Purpose

To check deep sleep mode functions correctly

7.14.2. Test procedure

This will be the last test sequence for the PCB tester.

Put the software in deep sleep mode.

Select MIN current range on the DMM of the power supply.

Measure the supply current **CURR_DEEP_SLEEP**

Select MAX current range on the DMM of the power supply.

8. RF Phasing (Alignment)

8.1. Purpose

The purpose of this phase is to describe the production alignment of the radio. The alignment is done at the PCB level. The alignment procedures necessary are:

AFC 1V Calibration.
13MHz oscillator calibration
Transmit output power calibration
Receiver Level output calibration
Save the updated RAM values into the EEPROM in the phone

These procedures are detailed in the following sub sections.

A test SIM is not necessary for these tests.

The alignment procedure will make adjustments to the default values and then the new table has to be saved in the EEPROM in the phone.

The default table should be as close as possible to the post alignment values. This table will be updated from time to time according to the values found after the prototype runs, and during the production. A statistical analysis should be made (over a significant sample size) in order to determine the default values. The average value shall be used to update the default parameters; the min and max values must be recorded in order to determine the failure specification levels.

The radio table should be written to the flash memory before call connect and also care should be taken not to write erroneous values if the radio fails.

8.2. Automatic Frequency Control (AFC) DAC calibration

8.2.1. Purpose

Calibrate the AFC value at + **1.20V** (middle of the DAC output range).
This value will be used to adjust the 13 MHz.

8.2.2. Test procedure

Apply to X400 PIN 3 (VBATT): +3.6V

Apply low value **-2300₁₀** (called AFC_LOW) on AFC

Send the command Test_WriteDAC (AFC_LOW)

Read voltage TP204

AFC_VOLT_LOW

Apply high value **1200₁₀** (called AFC_HIGH) on AFC

Send the command Test_WriteDAC (AFC_HIGH)

Read voltage at TP204

AFC_VOLT_HIGH

Calculate the DAC value to give **1.20V** on TP204 (AFC_INITIAL_DAC)

Send the command Test_WriteDAC (AFC_INITIAL_DAC)

The test equipment must measure TP204 (AFC): **+1.20V +/- 1%**

AFC_INITIAL_VOLTAGE

Store the result **AFC_INITIAL_DAC** in test rack memory.

Store INITIAL DAC value (AFC_INITIAL_DAC) in the test result. Save this

value as AFC_INITIAL_DAC for later use.

Keep the following value -AFC slope- AFC_DAC_PER_VOLT for later user
(in section 6.4.2.1)

$$\text{AFC_DAC_PER_VOLT} = \frac{(\text{AFC_HIGH} - \text{AFC_LOW})}{(\text{AFC_VOLT_HIGH} - \text{AFC_VOLT_LOW})} (\text{LSB/Volt})$$

8.3. Synthesizer checking

8.3.1. Purpose

The purpose of this procedure is to check the RF chip set synthesizers.

The synthesizers performances are subject to PCB and components tolerances.

The aim of this procedure is to read VCOs lock registers for various frequencies that are GSM/DCS limits.

8.3.2. Test procedure

Switch ON the RF BLOCK: set RF_REF_ON to ON.

Initialise AERO: Aero_Initialise().

Read_Vco_Lock_Register with the following arguments:

VCO Number	Frequency (MHz)	Result has to be stored in the following variables and checked against limits spec.
1	1738	N_PLL1_FMAX_QB
1	1805	N_PLL1_FMAX_DB
1	1990	N_PLL1_FMIN
2	1223	N_PLL2_FMAX_QB
2	1279	N_PLL2_FMAX_DB
2	1483	N_PLL2_FMIN
3	766	N_PLL3_FMAX
3	854	N_PLL3_FMIN

8.4. Adjustment of the 13 MHz oscillator

8.4.1. Purpose

The system timing and reference source for the synthesizers is provided by the onboard 13MHz VCO. The first version of BRUM will use the 4133 T (IC602). This device requires an external VCXO (IC 603 OSC1622A). In Q2 2002 IC602 will be replaced by SI4143T and IC603 will be removed. In this case the adjustment of the 13 MHz procedure will have to change. Therefore the following adjustment procedure will be applied as long as the following ICs are in the BOM (and ECN will be released):

SI4143T AND OSC1622A.

The purpose of the 13 MHz adjustment algorithm is to determine the DAC value applied on the VCXO when the mobile is switched on. According to the specs, after soldering the VCXO (OSC1622), the frequency offset should be at 3.5PPM (max).

This value must set the reference frequency shift to less than 1 PPM at room temperature.

To achieve this, the transmit frequency needs to be adjusted to tolerance less than +/- 1 PPM or on transmit ARFCN 190 to a tolerance less than +/- 902 Hz.

NOTE – The AFC DAC calibration must be completed before this section is attempted i.e. the AFC DAC value is set to 1.20V.

8.4.2. Initial 13MHz Adjustment

Apply on VBATT (test point TP400): +3.6V

Radio initialisation: Test_InitRadio. This will set the phone to use its default value for the AFC DAC. This AFC DAC has been calculated in the previous section (section 7.2), AFC_FINAL_DAC.

Set the transmission on channel ARFCN 190: Test_StartTXBurst

Set the output power level 19: (1 to 9 dBm)

Measure the channel frequency error:

Stop the Transmit burst by: Test_StopTXBurst

$F_{\text{error}} = F_{\text{normal}} - F_{\text{measured}} \text{ (Hz)}$

Where F_{normal} is Theoretical Frequency for Channel

F_{measured} is the measured Frequency for Channel

Then compute $F_{\text{error_ppm}} = F_{\text{error}} / (902.4) \text{ (PPM)}$

Record in the test result file the following values:

FREQ_ERROR_INITIAL_PPM

If $\text{abs}(F_{\text{error_ppm}})$ is less than 1 PPM then AFC is calibrated go to 7.17.4.

NB: If the tester is not able to measure the frequency error, the VCXO is damaged, and the phone must be declared as a failure.

8.4.3. 13MHz Fine Adjustment

If $\text{abs}(F_{\text{error_ppm}})$ is greater than 1 PPM then correct the transmit frequency by modifying the AFC DAC value, compute a new AFC_FINAL_DAC as following:

$$\text{AFC_FINAL_DAC} += \frac{\text{AFC_DAC_PER_VOLT} * F_{\text{error_ppm}}}{13}$$

Repeat section 7.13.3

NB: If after 4 loops the TX frequency is not tuned(i.e. $\text{abs}(F_{\text{error_ppm}}) > 1\text{PPM}$, there is a failure in the VCXO an the phone must be declared as a failure.

8.4.4. Store AFC DAC

Record in the test result file the following values:

FREQ_ERROR_FINAL_PPM
AFC_FINAL_DAC

Save AFC_FINAL_DAC in the mobile EEPROM.

Compute the AFC DAC voltage as following:

$$\text{AFC_VOLTAGE} = \text{AFC_INITIAL_VOLT} + \frac{(\text{AFC_FINAL_DAC} - \text{AFC_INITIAL_DAC})}{\text{AFC_DAC_PER_VOLT}}$$

AFC_INITIAL_DAC computed in section 6.3.3

And store this value in the test file.

AFC_DAC_VOLTAGE

This value must be between AFC_VOLTAGE_MIN and AFC_VOLTAGE_MAX *otherwise the phone must be declared as failure.*
By this, we avoid reading AFC DAC voltage at TP204 (AFC_VOLT).

8.5. Adjustment of the Transmitter output power level

8.5.1. Purpose

The transmitter output power level needs to be adjusted to meet the criteria in the test limits specification.

8.5.2. Test Procedure

Apply on VBATT (test point TP400): +3.6V

Radio initialisation: Test_InitRadio

Set the transmission on channel ARFCN 190 in the GSM850 band
Test_StartTXBurst

Select PCL 7 and measure the average power from the mobile over 1 burst. If the measured value is not as specified above adjust the APC DAC value for level 7 until the tolerance of output power is met.

The DAC value range is 0 to 1023.

Repeat the above procedure for:

Channel	PCL
GSM850 - 190	19 to 8
PCS1900 - 661	15 to 0
GSM850 - 128	7
GSM850 - 251	7
PCS1900 - 512	0
PCS1900 - 810	0

All the values computed and calibrated must be saved in the EEPROM at the end of the calibration procedure for the phone. The measured power levels are recorded in the test results obviating the need to repeat the measurements in the verification phase later.

Stop the Transmit burst by: Test_StopTXBurst

8.6. Adjustment of the Received level

8.6.1. Purpose

Tune the VGA (Voltage Gain Adjustment) of the reception chain.

Input -98 dBm, nominal value of 60dB, and adjust the VGA so the receiver reads this value to ± 1 dB accuracy.

NB: The receiver GAIN values are nominal and they should be reviewed and after the first test and checked by the RF team.

8.6.2. GSM850 Tuning Procedure

Apply on VBATT (test point TP400): +3.6V

Radio initialisation: Test_InitRadio0

Set for reception on channel ARFCN 190: Test_StartRXBurst

Set the GSM tester as a continuous RF signal generator, and feed the mobile with this signal. We call this signal GSM850_RX_INPUT_LEVEL and it has the following settings:

Level: -98 dBm

Modulation: GMSK.

Frequency: RX Channel 190.

NB: Check the calibration of the receive path.

Get from the mobile the value that is on "AGC_IL_VGA_GAIN_REF" in the production table (You can find this value in the Sate production table), measure the GSM850_RX_LEVEL reported by the mobile and update AGC_IL_VGA_GAIN_REF as following:

AGC_IL_VGA_GAIN_REF +=
(int) ((GSM850_RX_INPUT_LEVEL - GSM850_RX_LEVEL) * 2).

Until $ABS(GSM850_RX_INPUT_LEVEL - GSM850_RX_LEVEL) < 1.0$ dB
The 1.0 dB limit should be tuned.

NB: Normally we should have an accuracy of **1/2 (0.5 dB** on the reading, the DSP reports the power on **1/2 dB** units) but, due to the fluctuation of the reading this may affect the calibration get some phones declared as faulty whereas they are correct.

If after 5 loops condition is FALSE the phone is untenable and therefore it should declared as *FAULTY ON THE GSM850 RX PATH*.

Each loop record AGC_IL_VGA_GAIN_REF so this should be helpful for debug purposes.

If the tuning is successful store this value into the test report as

GSM850_AGC_DAC.

This value is modelled as:

GSM850_AGC_DAC = SW_Gain + 2*GSM850_VGA_GAIN,
therefore one part of it is used for the HW compensation (VGA compensation) and another part is used for SW compensation.

8.6.3. PCS1900 Tuning Procedure

Once GSM850 receive path is tuned, the PCS1900 receive path has to be tuned using a similar method.

Set for reception on channel ARFCN 661: Test_StartRXBurst

Set the GSM tester as a continuous RF signal generator, and feed the mobile with this signal. We call this signal PCS1900_RX_INPUT_LEVEL and it has the following settings:

Level: -98 dBm

Modulation: GMSK.

Frequency: RX Channel 661.

NB: Check the calibration of the receive path.

Get from the mobile the value that is on “AGC_IL_VGA_GAIN_REF” in the production table (You can find this value in the Sate production table), measure the PCS1900_RX_LEVEL reported by the mobile and update AGC_IL_VGA_GAIN_REF as following:

```
AGC_IL_VGA_GAIN_REF +=  
(int) ((PCS1900_RX_INPUT_LEVEL - PCS1900_RX_LEVEL) * 2).
```

Until ABS(PCS1900_RX_INPUT_LEVEL-PCS1900_RX_LEVEL)<1.0 dB
The **1.0** dB limit should be tuned.

NB: Normally we should have an accuracy of **1/2 (0.5 dB** on the reading, the DSP reports the power on **1/2 dB** units) but, due to the fluctuation of the reading this may affect the calibration get some phones declared as faulty whereas they are correct.

If after 5 loops condition is FALSE the phone is untenable and therefore it should declared as *FAULTY ON THE PCS1900 RX PATH*.

Each loop record AGC_IL_VGA_GAIN_REF so this should be helpful for debug purposes.

If the tuning is successful store this value into the test report as

PCS1900_AGC_DAC.

This value is modelled as:

$\text{PCS1900_AGC_DAC} = \text{SW_Gain} + 2 * \text{PCS1900_VGA_GAIN}$,
therefore one part of it is used for the HW compensation (VGA compensation)
and another part is used for SW compensation.

8.7. Update Radio section

The calibration of the phone is now complete.

Transfer the modified alignment values from RAM to EEPROM.

In EEPROM set flag to confirm successful calibration of the phone.

9. RF Performance Verification

9.1. Purpose

The tests detailed below are necessary to ensure the radio section has been manufactured correctly and conforms to the Sendo requirements.
A test SIM (Part No - 9JF1-01022-00000) is necessary for these tests.

9.2. Test Procedure

Apply on VBATT (test point TP400): +3.6V

The tests detailed in the table below are conducted and results stored in a text file that can be manipulated to check production yield and product performance.

Reference to RF signal levels assume no cable losses, therefore the actual signal levels used will increase due to cable losses.

Channel	PCL	TEST	Measure Code
GSM850		Test Set in GSM850 mode initiates call and answer on mobile	CALL_CON
128	19	Transmit o/p Average Power	C_GTXP19_128
128	7	Receiver Level	GRXL_128_0795
128	7	Receiver Quality	GRXQ_128_0795
128	7	Transmitter Power Ramp	GTPR07_128
128	7	RMS Phase Error	GRMP07_128
128	7	Peak Phase Error	GPKP07_128
128	7	Frequency Error	GFRQ07_128
128	7	Transmit o/p Average Power	C_GTXP07_128
190	19	Transmit o/p Average Power	C_GTXP19_190
190	19	Transmitter Power Ramp	GTPR19_190
190	7	Receiver Level	GRXL_190_0795
190	7	Receiver Quality	GRXQ_190_0795
190	7	Average Tx current	GSM_TX_Current
190	7	Transmitter Power Ramp	GTPR07_190
190	7	RMS Phase Error	GRMP07_190

190	7	Peak Phase Error	GPKP07_190
190	7	Frequency Error	GFRQ07_190
190	7	Transmit o/p Average Power	C_GTXP07_190
190	7	RBER classII average over 100 bursts	GRBRII190_103
190	7	RBER class 1b average over 100 bursts	GRBRIIB190_103
251	19	Transmit o/p Average Power	C_GTXP19_251
251	7	Receiver Level Receiver Quality	GRXL_251_0795 GRXQ_251_0795
251	7	Transmitter Power Ramp	GTPR07_251
251	7	RMS Phase Error	GRMP07_251
251	7	Peak Phase Error	GPKP07_251
251	7	Frequency Error	GFRQ07_251
251	7	Transmit o/p Average Power	C_GTXP07_251
PCS1900		Dual Band Handover from GSM850 to PCS1900	G_P_HAND
512	15	TX Output Average Power	C_PTXP15_512
512	0	Receiver Level Receiver Quality	PRXL_512_0795 PRXQ_512_0795
512	0	Transmitter Power Ramp	PTPR00_512
512	0	RMS Phase Error	PRMP00_512
512	0	Peak Phase Error	PPKP00_512
512	0	Frequency Error	PFRQ00_512
512	0	TX Output Average Power	C_PTXP00_512
661	15	Transmitter Power Ramp	PTPR15_661
661	15	TX Output Average Power	C_PTXP15_661
661	0	Receiver Level Receiver Quality	PRXL_661_0795 PRXQ_661_0795
661	0	Average Tx current	PCS_TX_Current
661	0	Transmitter Power Ramp	PTPR00_661
661	0	RMS Phase Error	PRMP00_661
661	0	Peak Phase Error	PPKP00_661
661	0	Frequency Error	PFRQ00_661
661	0	TX Output Average Power	C_PTXP00_661
661	0	RBER class II average over 100 bursts	PRBRII661_103
661	0	RBER class 1b average over 100 bursts	PRBRIIB661_103
810	15	TX Output Average Power	C_PTXP15_810
810	0	Receiver Level Receiver Quality	PRXL_810_0795 PRXQ_810_0795
810	0	Transmitter Power Ramp	PTPR00_810
810	0	RMS Phase Error	PRMP00_810
810	0	Peak Phase Error	PPKP00_810
810	0	Frequency Error	PFRQ00_810
810	0	TX Output Average Power	C_PTXP00_810
		Terminate call from test set	TS_END_CALL

10. Write Transceiver ID and Serial Number

10.1. Purpose

To store the transceiver ID and serial number into the phone ensuring that they

are the correct format.

10.2. Test procedure

Check Serial number digits to ensure all digits are of acceptable alpha-numeric values.

Read Serial number from NVM to ensure it matches scanned value.

Read Transceiver ID from NVM and confirm that it matches model.

11. Transfer Test data

Write to the phone NVM 198:

Test Status (Pass/Fail)

Increment Pass or Fail test iteration storage location

BABT results

Fixture ID

Channel ID

Test station (RF)

Fail code

Software ID

12. End of Procedure