



## REGULATORY COMPLIANCE TEST REPORT

FCC CFR47 Part 15 SubPart B & ISED ICES-003

Report No.: ALNT92-U2 Rev A

**Company:** Alien Technology, LLC.

**Model** ALR-H460



## REGULATORY COMPLIANCE TEST REPORT

Test of: Alien Technology, LLC. ALR-H460

To: FCC CFR 47 Part 15B & ISED ICES-003

Test Report Serial No.: ALNT92-U2 Rev A

This report supersedes: NONE

Applicant: Alien Technology, LLC. Inc.  
845 Embedded Way  
San Jose, California 95138  
USA

Product Function H460 Handheld Reader Kit

Issue Date: 29<sup>th</sup> August 2019

### This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.  
575 Boulder Court  
Pleasanton California 94566  
USA  
Phone: +1 (925) 462-0304  
Fax: +1 (925) 462-0306  
[www.micomlabs.com](http://www.micomlabs.com)



MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

## Table of Contents

|                                                           |           |
|-----------------------------------------------------------|-----------|
| <b>1. ACCREDITATION, LISTINGS &amp; RECOGNITION .....</b> | <b>4</b>  |
| 1.1. TESTING ACCREDITATION .....                          | 4         |
| 1.2. RECOGNITION .....                                    | 5         |
| 1.3. PRODUCT CERTIFICATION .....                          | 6         |
| <b>2. DOCUMENT HISTORY .....</b>                          | <b>7</b>  |
| <b>3. TEST RESULT CERTIFICATE .....</b>                   | <b>8</b>  |
| <b>4. REFERENCES AND MEASUREMENT UNCERTAINTY .....</b>    | <b>9</b>  |
| 4.1. Normative References .....                           | 9         |
| 4.2. Test and Uncertainty Procedure .....                 | 10        |
| <b>5. TEST SUMMARY .....</b>                              | <b>11</b> |
| <b>6. PRODUCT DETAILS AND TEST CONFIGURATIONS .....</b>   | <b>12</b> |
| 6.1. Scope Of Test Program .....                          | 12        |
| 6.2. Technical Details .....                              | 13        |
| 6.3. External A.C/D.C. PoE Adaptor .....                  | 15        |
| 6.4. Equipment Model(s) and Serial Number(s) .....        | 15        |
| 6.5. Antenna Details .....                                | 15        |
| 6.6. Cabling and I/O Ports .....                          | 15        |
| 6.7. Equipment Modifications .....                        | 15        |
| 6.8. Deviations from the Test Standard .....              | 15        |
| 6.9. Test Configurations .....                            | 15        |
| <b>7. TEST RESULTS .....</b>                              | <b>17</b> |
| 7.1. EMC EMISSIONS TEST RESULTS .....                     | 17        |
| 7.1.1. <i>Radiated Emissions</i> .....                    | 17        |
| 7.1.1.1. Measurement Results: 30-1000MHz .....            | 22        |
| 7.1.1.2. AC Mains Power Input/Output Ports .....          | 26        |
| 7.1.2.2. Measurement Results .....                        | 30        |

## **1. ACCREDITATION, LISTINGS & RECOGNITION**

### **1.1. TESTING ACCREDITATION**

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) [www.a2la.org](http://www.a2la.org) test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>



### **Accredited Laboratory**

A2LA has accredited

**MiCOM LABS**

Pleasanton, CA

for technical competence in the field of

### **Electrical Testing**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14<sup>th</sup> day of May 2018.



President and CEO  
For the Accreditation Council  
Certificate Number 2381.01  
Valid to November 30, 2019



For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

## 1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

| Country   | Recognition Body                                                                                 | Status | Phase      | Identification No.                      |
|-----------|--------------------------------------------------------------------------------------------------|--------|------------|-----------------------------------------|
| USA       | Federal Communications Commission (FCC)                                                          | TCB    | -          | US0159<br>Listing #: 102167             |
| Canada    | Industry Canada (IC)                                                                             | FCB    | APEC MRA 2 | US0159<br>Listing #: 4143A-2<br>4143A-3 |
| Japan     | MIC (Ministry of Internal Affairs and Communication)                                             | CAB    | APEC MRA 2 | RCB 210                                 |
|           | VCCI                                                                                             | --     | --         | A-0012                                  |
| Europe    | European Commission                                                                              | NB     | EU MRA     | NB 2280                                 |
| Australia | Australian Communications and Media Authority (ACMA)                                             | CAB    | APEC MRA 1 | US0159                                  |
| Hong Kong | Office of the Telecommunication Authority (OFTA)                                                 | CAB    | APEC MRA 1 |                                         |
| Korea     | Ministry of Information and Communication Radio Research Laboratory (RRL)                        | CAB    | APEC MRA 1 |                                         |
| Singapore | Infocomm Development Authority (IDA)                                                             | CAB    | APEC MRA 1 |                                         |
| Taiwan    | National Communications Commission (NCC)<br>Bureau of Standards, Metrology and Inspection (BSMI) | CAB    | APEC MRA 1 |                                         |
| Vietnam   | Ministry of Communication (MIC)                                                                  | CAB    | APEC MRA 1 |                                         |

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

### **1.3. PRODUCT CERTIFICATION**

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) [www.a2la.org](http://www.a2la.org) test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>



### **Accredited Product Certification Body**

A2LA has accredited

**MiCOM LABS**

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14<sup>th</sup> day of May 2018



President and CEO  
For the Accreditation Council  
Certificate Number 2381.02  
Valid to November 30, 2019



*For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.*

United States of America – Telecommunication Certification Body (TCB)  
Industry Canada – Certification Body, CAB Identifier – US0159  
Europe – Notified Body (NB), NB Identifier - 2280  
Japan – Recognized Certification Body (RCB), RCB Identifier - 210

## **2. DOCUMENT HISTORY**

| Document History |                              |                                   |
|------------------|------------------------------|-----------------------------------|
| Revision         | Date                         | Comments                          |
| Draft            | 23 <sup>rd</sup> July 2019   | Draft report for client review.   |
| Draft #2         | 11 <sup>th</sup> August 2019 | 2 <sup>nd</sup> draft for comment |
| Rev A            | 29 <sup>th</sup> August 2019 | Initial Release                   |
| .                |                              |                                   |
| .                |                              |                                   |
| .                |                              |                                   |
| .                |                              |                                   |

In the above table the latest report revision will replace all earlier versions.

### 3. TEST RESULT CERTIFICATE

**Manufacturer:** Alien Technology, LLC. Inc.  
845 Embedded Way  
San Jose, California 95138  
USA

**Tested By:** MiCOM Labs, Inc.  
575 Boulder Court  
Pleasanton  
California 94566 USA

**Model:** ALR-H460

**Telephone:** +1 925 462 0304

**Equipment Type:** Hand-held RFID Reader

**Fax:** +1 925 462 0306

**S/N's:** HC720A190500227

**Test Date(s):** 20<sup>th</sup> June – 10<sup>th</sup> July 2019

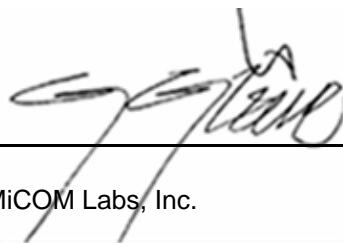
**Website:** [www.micomlabs.com](http://www.micomlabs.com)

#### STANDARD(S)

FCC CFR 47 Part 15B & ISED ICES-003

#### TEST RESULTS

EQUIPMENT COMPLIES


MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

#### Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

**Approved & Released for MiCOM Labs, Inc. by:**

Graeme Grieve  
Quality Manager MiCOM Labs, Inc.



Gordon Hurst  
President & CEO MiCOM Labs, Inc.



## 4. REFERENCES AND MEASUREMENT UNCERTAINTY

### 4.1. Normative References

| Ref.  | Publication                   | Year                  | Title                                                                                                                                                                |
|-------|-------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)   | FCC CFR 47 Part 15, Subpart B | 2018                  | Title 47 CFR Part 15, Sub Part B; Unintentional Radiators                                                                                                            |
| (ii)  | ICES-003, Issue 6             | 2017                  | Information Technology Equipment (ITE) – Limits and methods of measurement.                                                                                          |
| (iii) | ANSI C63.4                    | 2014                  | American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| (iv)  | M 3003                        | Edition 2 Dec. 2007   | Expression of Uncertainty and Confidence in Measurements                                                                                                             |
| (v)   | LAB34                         | Edition 1 August 2002 | The expression of uncertainty in EMC Testing                                                                                                                         |
| (vi)  | ETSI TR 100 028               | 2001-12               | Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics             |
| (vii) | A2LA                          | August 2018           | R105 - Requirement's When Making Reference to A2LA Accreditation Status                                                                                              |

#### **4.2. Test and Uncertainty Procedure**

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor  $k = 2$ , providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

## **5. TEST SUMMARY**

### **List of Measurements**

The following table represent the list of measurements required under the FCC CFR 47 Part 15 B and ISED ICES-003 standards;

**TABLE OF REQUIRED TESTS – Emissions**

| <b>Test Standard</b>    | <b>Description</b>                      | <b>Limits</b> | <b>Compliance</b> |
|-------------------------|-----------------------------------------|---------------|-------------------|
| FCC Part 15B & ICES-003 | Radiated Emissions                      | Class B       | Complies          |
| FCC Part 15B & ICES-003 | Conducted Emissions - ac power I/O port | Class B       | Complies          |

## **6. PRODUCT DETAILS AND TEST CONFIGURATIONS**

### **6.1. Scope Of Test Program**

#### **Alien Technology, LLC. ALR-H460**

The scope of the test program was to test the Alien Technology, LLC. ALR-H460 for compliance against the following specifications:

- FCC CFR 47 Part 15, Subpart B - Title 47 CFR Part 15, SubPart B; Unintentional Radiators
- ICES-003, Issue 6 - Information Technology Equipment (ITE) – Limits and methods of measurement.

#### **Co-Location or Combination Operational Modes**

|                  | <b>BT</b> | <b>Wi-Fi</b> | <b>Cell Data</b> | <b>RFID</b> |
|------------------|-----------|--------------|------------------|-------------|
| <b>BT</b>        | --        | No           | Yes              | Yes*        |
| <b>Wi-Fi</b>     | No        | --           | No               | Yes*        |
| <b>Cell Data</b> | Yes       | No           | --               | Yes*        |
| <b>RFID</b>      | Yes*      | Yes*         | Yes*             | --          |

\*Does not operate simultaneously. Either Cell Data OR Wi-Fi OR BT

## 6.2. Technical Details

| Details                          | Description                                                                                                                                                                                                                                                                                                              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose:                         | Test of the Alien Technology, LLC. ALR-H460 to FCC Part 15B and ISED ICES-003 including co-location of transmitter testing                                                                                                                                                                                               |
| Applicant:                       | Alien Technology, LLC. Inc.<br>845 Embedded Way<br>San Jose, California 95138<br>USA                                                                                                                                                                                                                                     |
| Manufacturer:                    | Alien Technology, LLC. Inc.                                                                                                                                                                                                                                                                                              |
| Laboratory performing the tests: | MiCOM Labs, Inc.<br>575 Boulder Court<br>Pleasanton California 94566 USA                                                                                                                                                                                                                                                 |
| Test report reference number:    | ALNT92-U2 Draft                                                                                                                                                                                                                                                                                                          |
| Date EUT received:               | 17 <sup>th</sup> July 2019                                                                                                                                                                                                                                                                                               |
| Standard(s) applied:             | FCC CFR 47 Part 15B                                                                                                                                                                                                                                                                                                      |
| Dates of test (from - to):       | 18 <sup>th</sup> July to 19 <sup>th</sup> July 2019                                                                                                                                                                                                                                                                      |
| No of Units Tested:              | 1                                                                                                                                                                                                                                                                                                                        |
| Product Family Name:             | Handheld reader assembly                                                                                                                                                                                                                                                                                                 |
| Model(s):                        | ALR-H460                                                                                                                                                                                                                                                                                                                 |
| Location for use:                | Indoor/Outdoor                                                                                                                                                                                                                                                                                                           |
| Declared Frequency Range(s):     | See following Declared Frequency Range(s) matrix                                                                                                                                                                                                                                                                         |
| Type of Modulation:              | GSM / GPRS: GMSK<br>EDGE: 8PSK<br>WCDMA: AMR/RMC12.2Kbps<br>HDPA/HSUPA HSPA+<br>LTE: QPSK / 16QAM<br>802.11b/g/n HT20/n HT40<br>802.11a/n HT20/HT40<br>Bluetooth 2.1 BDR (1Mbps): GFSK<br>Bluetooth 2.1 EDR (2Mbps): π/4-DQPSK<br>Bluetooth 2.1 EDR (3Mbps) : 8-DPSK<br>Bluetooth 4.0 - LE (1Mbps): GFSK<br>RFID: PR-ASK |
| EUT Modes of Operation:          | LTE, 802.11b/g/a/n, FHSS, Bluetooth                                                                                                                                                                                                                                                                                      |
| Declared Nominal Output Power:   | See following Declared Frequency Range(s) matrix                                                                                                                                                                                                                                                                         |
| Transmit/Receive Operation:      | Transceiver                                                                                                                                                                                                                                                                                                              |
| Rated Input Voltage and Current: | 5 Vdc 1 A                                                                                                                                                                                                                                                                                                                |
| Operating Temperature Range:     | -20 to+50 °C                                                                                                                                                                                                                                                                                                             |
| ITU Emission Designator:         | See following Declared Frequency Range(s) matrix                                                                                                                                                                                                                                                                         |
| Equipment Dimensions:            | 3.5 x 6.0 x 7.0 in                                                                                                                                                                                                                                                                                                       |
| Weight:                          | 1.5 lb                                                                                                                                                                                                                                                                                                                   |
| Hardware Rev:                    | 0501090-001_01                                                                                                                                                                                                                                                                                                           |
| Software Rev:                    | OS: C72A_MT6735_V1.1_GIT938ee72_20171205<br>RFID: v3.7.16                                                                                                                                                                                                                                                                |

### Declared Frequency Range(s)

NOTE: The following matrix was client declared

| Technology       | Frequency Range        | O/P Power    | ITU Emissions Designator              |
|------------------|------------------------|--------------|---------------------------------------|
| GSM850           | 824.2 MHz ~ 848.8MHz   | 1.83 Watts   | 248KGXW                               |
| GSM1900          | 1850.2 MHz ~ 1909.8MHz | 0.82 watts   | 244KGXW/251KG7W                       |
| WCDMA Band II    | 1852.4 MHz ~ 1907.6MHz | 0.27 watts   | 4M23F9W                               |
| WCDMA Band IV    | 1712.4 MHz ~ 1752.6MHz | 0.22 watts   | 4M24F9W                               |
| WCDMA Band V     | 826.4 MHz ~ 846.6MHz   | 0.35 watts   | 4M22F9W                               |
| LTE Band 2       | 1850 MHz ~ 1910 MHz    | 0.21 watts   | 13M5G7D, 13M5G7D,<br>18M0G7D, 18M1W7D |
| LTE Band 4       | 1710 MHz ~ 1755 MHz    | 0.2 watts    | 2M74G7D, 1M11W7D,<br>18M0G7D, 18M1W7D |
| LTE Band 7       | 2500 MHz ~ 2570 MHz    | 0.21 watts   | 13M5G7D, 13M6W7D,<br>18M0G7D, 18M1W7D |
| LTE Band 12      | 699 MHz ~ 716 MHz      | 0.017 watts  | 4M54G7D, 4M54W7D,<br>9M04G7D, 9M03W7D |
| LTE Band 17      | 704 MHz ~ 716 MHz      | 0.16 watts   | 4M54G7D, 4M54W7D,<br>9M03G7D, 9M04W7D |
| WLAN 2.4GHz      | 2412 MHz ~ 2472 MHz    | 0.17 watts   | 12M6G1D, 16M4D1D<br>17M6D1D, 35M8D1D  |
| WLAN 5GHz Band 1 | 5150 MHz ~ 5250 MHz    | 0.14 watts   | 16M7D1D, 15M7D1D<br>36M2D1D           |
| WLAN 5GHz Band 2 | 5250 MHz ~ 5350 MHz    | 0.15 watts   | 16M7D1D, 15M7D1D<br>36M2D1D           |
| WLAN 5GHz Band 3 | 5470 MHz ~ 5725 MHz    | 0.17 watts   | 16M5D1D, 17M7D1D                      |
| WLAN 5GHz Band 4 | 5725 MHz ~ 5850 MHz    | 1.13 watts   | 16M5D1D, 17M7D1D<br>36M2D1D           |
| Bluetooth        | 2402 MHz ~ 2480 MHz    | 0.0039 watts | 1M03D1D, 1M04F1D<br>1M32G1D, 1M29G1D  |
| RFID             | 902 ~ 928 MHz          | 1.2 watts    | 78K0A1D, 78K0K1D                      |
| GPS              | 1575.42MHz             |              |                                       |

### 6.3. External A.C/D.C. PoE Adaptor

| Charging Station                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|
| Manufacturer: GME Technology<br>Model: GME10D-050200FUu<br>I: 100 – 240 V <sub>AC</sub> 0.28 MAX, 50-60 Hz<br>0: 5Vdc 2 A |

### 6.4. Equipment Model(s) and Serial Number(s)

| Type (EUT/ Support) | Equipment Description    | Manufacturer           | Model No. | Serial No.      |
|---------------------|--------------------------|------------------------|-----------|-----------------|
| EUT                 | H460 Handheld Reader Kit | Alien Technology, LLC. | ALR-H460  | HC720A190500227 |

### 6.5. Antenna Details

No antennas were tested as part of this program.

### 6.6. Cabling and I/O Ports

| Port Type | Port Description | Qty | Screened (Yes/ No) | Length |
|-----------|------------------|-----|--------------------|--------|
| USB       | USB Data/Power   | 1   | Yes                | < 3m   |

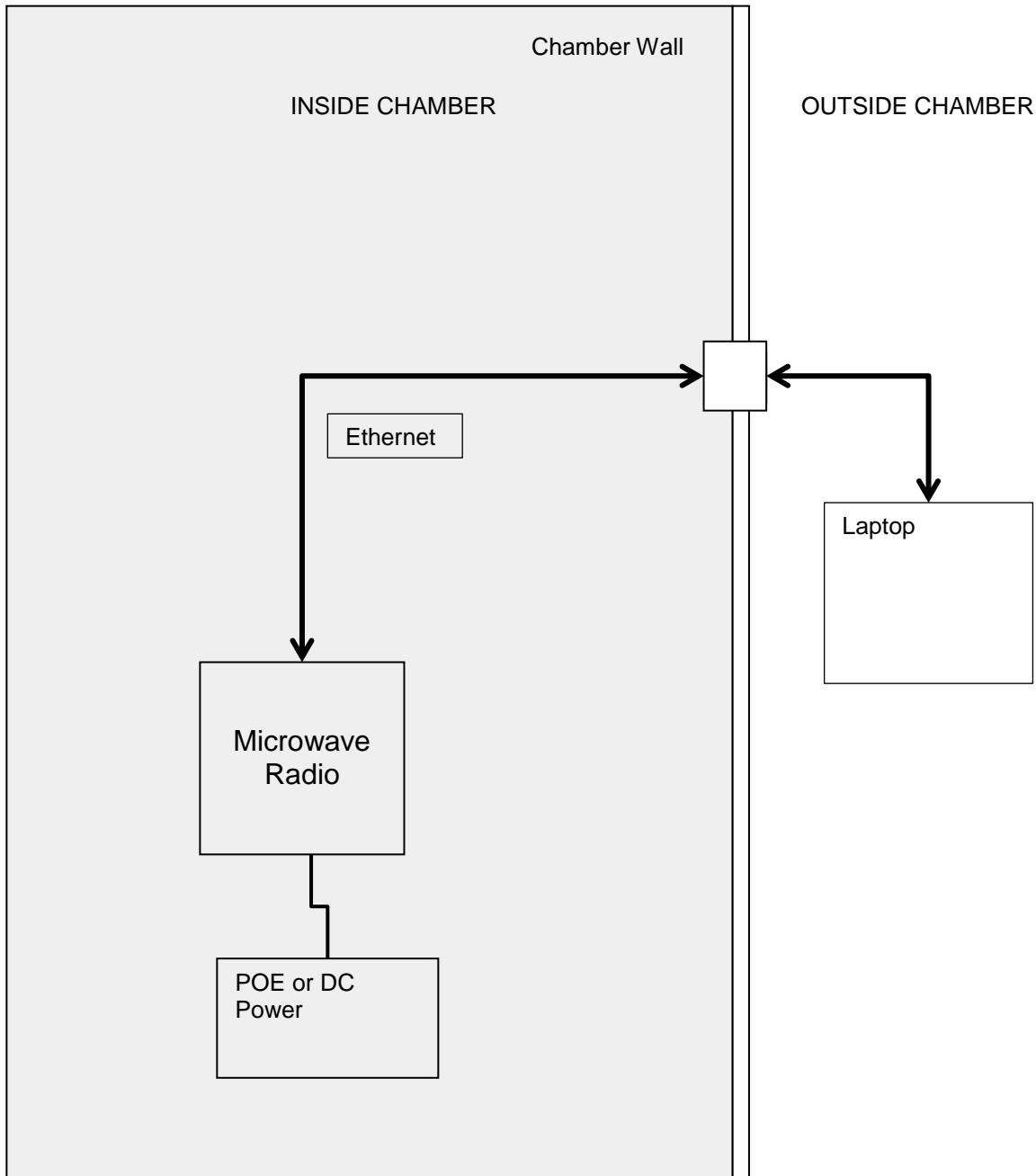
### 6.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

### 6.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:


1. NONE

### 6.9. Test Configurations

Results for the following configurations are provided in this report:

Radiated Emissions powered by the Charging Station with LTE, WiFi, and FHSS Radio being active.  
AC Wireline Emissions powered by the Charging Station with LTE, WiFi, and FHSS Radio being active.

### Diagram of EUT Configuration for Emissions Measurements



## **7. TEST RESULTS**

### **7.1. EMC EMISSIONS TEST RESULTS**

#### **7.1.1. Radiated Emissions**

FCC, Part 15 Subpart B §15.109  
Industry Canada ICES-003 Section 6.2

#### **Test Procedure**

Testing 30 – 1,000 MHz was performed in a anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Only the highest emissions relative to the limit are listed.

## Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$\mathbf{FS = R + AF + CORR - FO}$$

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

FO = Distance Falloff Factor

$$\mathbf{CORR = Correction Factor = CL - AG + NFL}$$

CL = Cable Loss

AG = Amplifier Gain

NFL = Notch Filter Loss or Waveguide Loss

### Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $\mu$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$\mathbf{FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}}$$

Conversion between dB $\mu$ V/m (or dB $\mu$ V) and  $\mu$ V/m (or  $\mu$ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log (level (\mu V/m))}$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

## FCC and IC Spurious Emissions Limits

FCC, Part 15 Subpart B §15.109  
 Industry Canada ICES-003 Section 6.2

Except for Class A digital device, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values.

### Limits below 1 GHz:

Class A limits

| Frequency(MHz) | Quasi-peak Limit (dB $\mu$ V/m) | Measurement Distance (meters) | Quasi-peak Limit (dB $\mu$ V/m) | Measurement Distance (meters) |
|----------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|
| 30 to 88       | 40                              | 10                            | 49.5                            | 3                             |
| 88-216         | 43.5                            | 10                            | 54                              | 3                             |
| 216-960        | 46.4                            | 10                            | 56.5                            | 3                             |
| 960-1000       | 49.5                            | 10                            | 60                              | 3                             |

Class B limits

| Frequency(MHz) | Quasi-peak Limit (dB $\mu$ V/m) | Measurement Distance (meters) | Quasi-peak Limit (dB $\mu$ V/m) | Measurement Distance (meters) |
|----------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|
| 30 to 88       | 29.5                            | 10                            | 40                              | 3                             |
| 88-216         | 33                              | 10                            | 43.5                            | 3                             |
| 216-960        | 35.6                            | 10                            | 46                              | 3                             |
| 960-1000       | 43.5                            | 10                            | 54                              | 3                             |

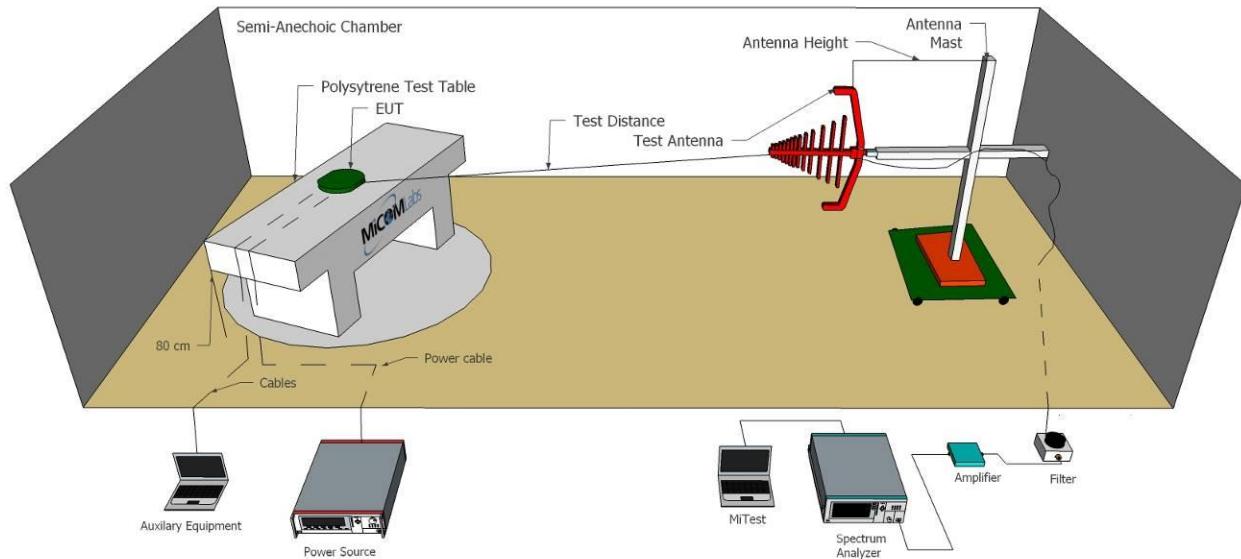
### Limits above 1GHz:

| Frequency(MHz) | Average Limit (dB $\mu$ V/m) | Peak Limit (dB $\mu$ V/m) | Measurement Distance (meters) | Class (A/B) |
|----------------|------------------------------|---------------------------|-------------------------------|-------------|
| 1 000 to 6000  | 54                           | 74                        | 3                             | Class B     |

| Frequency(MHz) | Average Limit (dB $\mu$ V/m) | Peak Limit (dB $\mu$ V/m) | Measurement Distance (meters) | Class (A/B) |
|----------------|------------------------------|---------------------------|-------------------------------|-------------|
| 1 000 to 6000  | 60                           | 80                        | 3                             | Class A     |

### Traceability

#### Laboratory Measurement Uncertainty


|                         |               |
|-------------------------|---------------|
| Measurement uncertainty | +5.6/ -4.5 dB |
|-------------------------|---------------|

#### Method

|                                                     |
|-----------------------------------------------------|
| Work instruction WI-EMC-07: Radiated Emissions Test |
|-----------------------------------------------------|

## Radiated Emission Measurement Setup

### Radiated Emissions Below 1GHz Test Setup



### Radiated Emissions Above 1GHz Test Setup

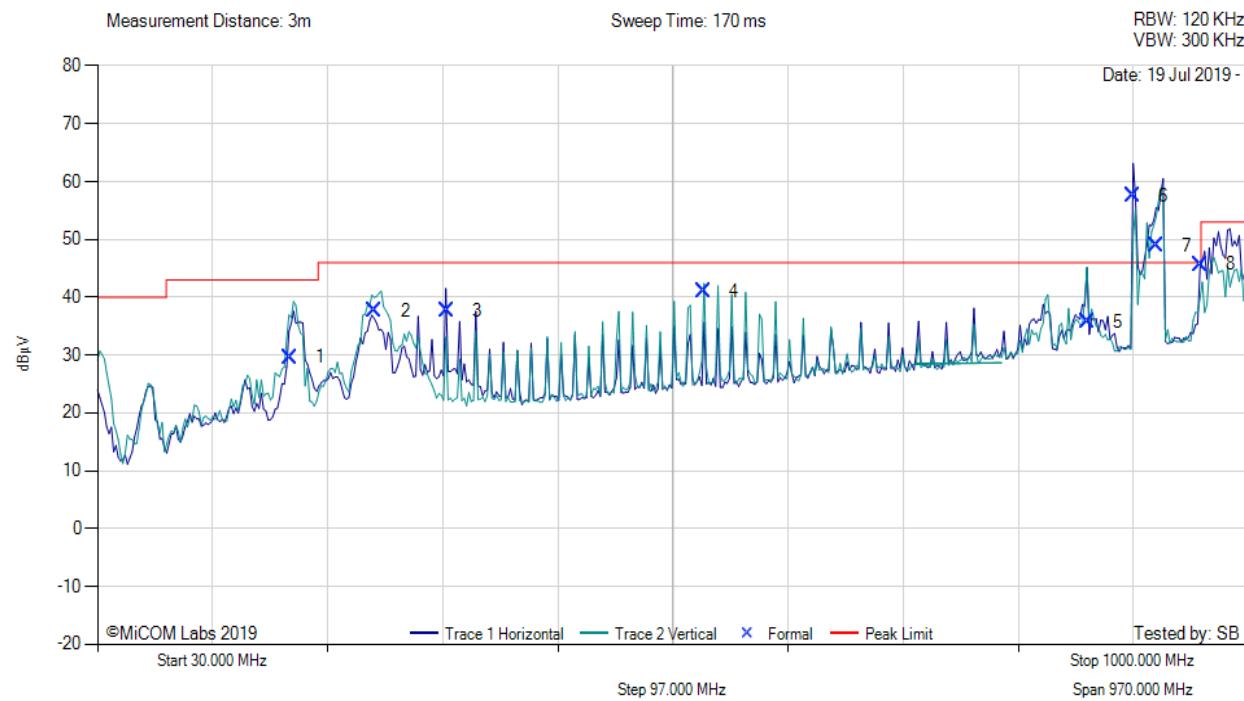


A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

**Test Equipment Utilized**

| Asset#   | Description                                       | Manufacturer         | Model#                                  | Serial#     | Calibration Due Date |
|----------|---------------------------------------------------|----------------------|-----------------------------------------|-------------|----------------------|
| 170      | Video System Controller for Semi Anechoic Chamber | Panasonic            | WV-CU101                                | 04R08507    | Not Required         |
| 298      | 3M Radiated Emissions Chamber Maintenance Check   | MiCOM                | 3M Chamber                              | 298         | 21 Sep 2019          |
| 301      | 5470 to 5725 MHz Notch Filter                     | Microtronics         | RBC50704                                | 001         | 8 Oct 2019           |
| 338      | Sunol 30 to 3000 MHz Antenna                      | Sunol                | JB3                                     | A052907     | 4 Apr 2020           |
| 397      | Amp 10 - 2500MHz                                  | MiCOM Labs           | Amp 10 - 2500 MHz                       | NA          | 12 Sep 2019          |
| 410      | Desktop Computer                                  | Dell                 | Inspiron 620                            | WS38        | Not Required         |
| 411      | Mast/Turntable Controller                         | Sunol Sciences       | SC98V                                   | 060199-1D   | Not Required         |
| 412      | USB to GPIB Interface                             | National Instruments | GPIB-USB HS                             | 11B8DC2     | Not Required         |
| 413      | Mast Controller                                   | Sunol Science        | TWR95-4                                 | 030801-3    | Not Required         |
| 415      | Turntable Controller                              | Sunol Sciences       | Turntable Controller                    | None        | Not Required         |
| 447      | MiTest Rad Emissions Test Software                | MiCOM                | Rad Emissions Test Software Version 1.0 | 447         | Not Required         |
| 462      | Schwarzbeck cable from Antenna to Amplifier.      | Schwarzbeck          | AK 9513                                 | 462         | 9 Oct 2019           |
| 463      | Schwarzbeck cable from Amplifier to Bulkhead.     | Schwarzbeck          | AK 9513                                 | 463         | 9 Oct 2019           |
| 464      | Schwarzbeck cable from Bulkhead to Receiver       | Schwarzbeck          | AK 9513                                 | 464         | 9 Oct 2019           |
| 510      | Barometer/Thermometer                             | Control Company      | 68000-49                                | 170871375   | 11 Dec 2019          |
| 87       | Uninterruptible Power Supply                      | Falcon Electric      | ED2000-1/2LC                            | F3471 02/01 | Cal when used        |
| CC05     | Confidence Check                                  | MiCOM                | CC05                                    | None        | 21 Jul 2019          |
| VLF-1700 | Low pass filter DC-1700 MHz                       | Mini Circuits        | VLF-1700                                | None        | 8 Oct 2019           |

### 7.1.1.1. Measurement Results: 30-1000MHz


#### Equipment Configuration for Radiated Digital Emissions

|                                 |                     |                        |                  |
|---------------------------------|---------------------|------------------------|------------------|
| <b>Antenna:</b>                 | Integral            | <b>Variant:</b>        | 802.11b/FHSS/LTE |
| <b>Antenna Gain (dBi):</b>      | Not Applicable      | <b>Modulation:</b>     | OFDM/FHSS/LTE    |
| <b>Beam Forming Gain (Y):</b>   | Not Applicable      | <b>Duty Cycle (%):</b> | 99               |
| <b>Channel Frequency (MHz):</b> | 2412.00/902-930/LTE | <b>Data Rate:</b>      | Not Applicable   |
| <b>Power Setting:</b>           | Max                 | <b>Tested By:</b>      | SB               |

**Test Measurement Results:** Emissions observed above the limit line at 902-928 MHz is the RFID fundamental frequency



Power Setting: Max, Duty Cycle (%): 99

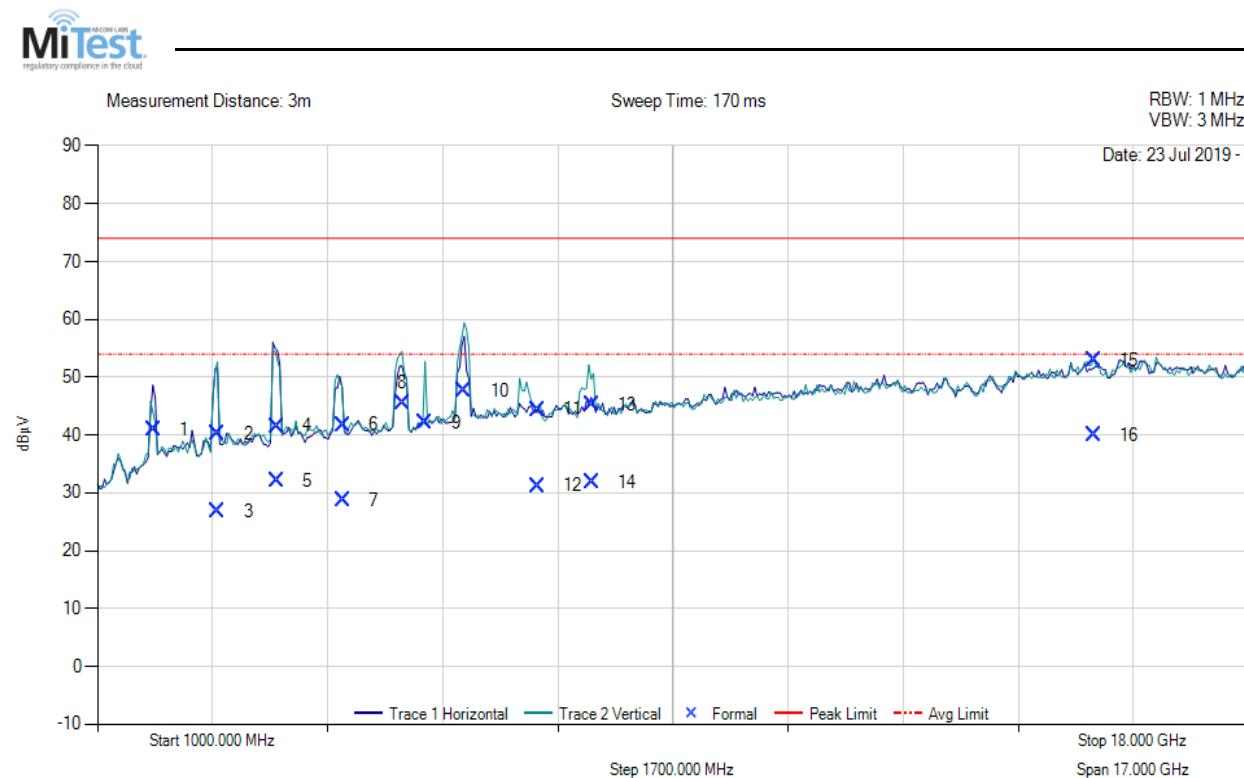


| 30.00 - 1000.00 MHz |               |          |               |         |              |                  |            |        |         |              |           |            |  |
|---------------------|---------------|----------|---------------|---------|--------------|------------------|------------|--------|---------|--------------|-----------|------------|--|
| Num                 | Frequency MHz | Raw dBµV | Cable Loss dB | AF dB/m | Level dBµV/m | Measurement Type | Pol        | Hgt cm | Azt Deg | Limit dBµV/m | Margin dB | Pass /Fail |  |
| 1                   | 192.25        | 41.79    | 4.42          | -16.60  | 29.61        | Peak (NRB)       | Vertical   | 137    | 0       | --           | --        | Pass       |  |
| 2                   | 263.76        | 48.19    | 4.71          | -15.20  | 37.70        | MaxQP            | Vertical   | 207    | 175     | 46.0         | -8.3      | Pass       |  |
| 3                   | 324.40        | 46.59    | 4.92          | -13.80  | 37.71        | MaxQP            | Horizontal | 98     | 257     | 46.0         | -8.3      | Pass       |  |
| 4                   | 540.63        | 44.77    | 5.62          | -9.40   | 40.99        | Peak (NRB)       | Vertical   | 137    | 0       | --           | --        | Pass       |  |
| 5                   | 864.03        | 34.45    | 6.54          | -5.20   | 35.79        | Peak (NRB)       | Vertical   | 137    | 0       | --           | --        | Pass       |  |
| 6                   | 902.84        | 55.95    | 6.65          | -5.10   | 57.50        | Peak (NRB)       | Horizontal | 100    | 0       | --           | --        | Pass       |  |
| 7                   | 922.37        | 47.26    | 6.70          | -5.00   | 48.96        | Fundamental      | Horizontal | 100    | 0       | --           | --        |            |  |
| 8                   | 959.51        | 42.99    | 6.81          | -4.10   | 45.70        | Peak (NRB)       | Horizontal | 137    | 0       | --           | --        | Pass       |  |

## Equipment Configuration for Radiated Digital Emissions

|                                 |                     |                        |                  |
|---------------------------------|---------------------|------------------------|------------------|
| <b>Antenna:</b>                 | Integral            | <b>Variant:</b>        | 802.11b/FHSS/LTE |
| <b>Antenna Gain (dBi):</b>      | Not Applicable      | <b>Modulation:</b>     | OFDM/FHSS/LTE    |
| <b>Beam Forming Gain (Y):</b>   | Not Applicable      | <b>Duty Cycle (%):</b> | 99               |
| <b>Channel Frequency (MHz):</b> | 2412.00/902-930/LTE | <b>Data Rate:</b>      | Not Applicable   |
| <b>Power Setting:</b>           | Max                 | <b>Tested By:</b>      | SB               |

## Test Measurement Results




| 1000.00 - 6000.00 MHz |               |                |               |         |                    |                  |          |        |         |                    |           |            |
|-----------------------|---------------|----------------|---------------|---------|--------------------|------------------|----------|--------|---------|--------------------|-----------|------------|
| Num                   | Frequency MHz | Raw dB $\mu$ V | Cable Loss dB | AF dB/m | Level dB $\mu$ V/m | Measurement Type | Pol      | Hgt cm | Azt Deg | Limit dB $\mu$ V/m | Margin dB | Pass /Fail |
| 1                     | 1811.29       | 60.85          | -1.54         | -14.35  | 44.96              | Peak (NRB)       | Vertical | 153    | 0       | --                 | --        | Pass       |
| 2                     | 2780.26       | 54.76          | -1.89         | -11.93  | 40.94              | Max Peak         | Vertical | 98     | 181     | 74.0               | -33.1     | Pass       |
| 3                     | 2780.26       | 41.46          | -1.89         | -11.93  | 27.64              | Max Avg          | Vertical | 98     | 181     | 54.0               | -26.4     | Pass       |
| 4                     | 3629.04       | 67.50          | -2.17         | -11.91  | 53.42              | Max Peak         | Vertical | 162    | 175     | 74.0               | -20.6     | Pass       |
| 5                     | 3629.04       | 42.19          | -2.17         | -11.91  | 28.11              | Max Avg          | Vertical | 162    | 175     | 54.0               | -25.9     | Pass       |
| 6                     | 4613.81       | 57.30          | -2.45         | -11.95  | 42.90              | Max Peak         | Vertical | 168    | 193     | 74.0               | -31.1     | Pass       |
| 7                     | 4613.81       | 48.27          | -2.45         | -11.95  | 33.87              | Max Avg          | Vertical | 168    | 193     | 54.0               | -20.1     | Pass       |
| 8                     | 5464.55       | 65.91          | -2.68         | -11.78  | 51.45              | Peak (NRB)       | Vertical | 153    | 0       | --                 | --        | Pass       |

## Equipment Configuration for Radiated Spurious Emissions (Collocation)

|                                 |                     |                        |                  |
|---------------------------------|---------------------|------------------------|------------------|
| <b>Antenna:</b>                 | Integral            | <b>Variant:</b>        | 802.11b/FHSS/LTE |
| <b>Antenna Gain (dBi):</b>      | Not Applicable      | <b>Modulation:</b>     | OFDM/FHSS/LTE    |
| <b>Beam Forming Gain (Y):</b>   | Not Applicable      | <b>Duty Cycle (%):</b> | 99               |
| <b>Channel Frequency (MHz):</b> | 2412.00/902-930/LTE | <b>Data Rate:</b>      | Not Applicable   |
| <b>Power Setting:</b>           | Max                 | <b>Tested By:</b>      | SB               |

## Test Measurement Results



| 1000.00 - 18000.00 MHz |               |                |               |         |                    |                  |            |        |         |                    |           |            |
|------------------------|---------------|----------------|---------------|---------|--------------------|------------------|------------|--------|---------|--------------------|-----------|------------|
| Num                    | Frequency MHz | Raw dB $\mu$ V | Cable Loss dB | AF dB/m | Level dB $\mu$ V/m | Measurement Type | Pol        | Hgt cm | Azt Deg | Limit dB $\mu$ V/m | Margin dB | Pass /Fail |
| 1                      | 1829.58       | 56.51          | -1.52         | -14.04  | 40.95              | Peak (NRB)       | Horizontal | 151    | 0       | --                 | --        | Pass       |
| 2                      | 2780.42       | 54.11          | -1.89         | -11.93  | 40.29              | Max Peak         | Vertical   | 151    | 358     | 74.0               | -33.7     | Pass       |
| 3                      | 2780.42       | 40.62          | -1.89         | -11.93  | 26.80              | Max Avg          | Vertical   | 151    | 358     | 54.0               | -27.2     | Pass       |
| 4                      | 3647.86       | 55.55          | -2.17         | -11.85  | 41.53              | Max Peak         | Horizontal | 159    | 218     | 74.0               | -32.5     | Pass       |
| 5                      | 3647.86       | 46.05          | -2.17         | -11.85  | 32.03              | Max Avg          | Horizontal | 159    | 218     | 54.0               | -22.0     | Pass       |
| 6                      | 4628.54       | 56.39          | -2.48         | -12.12  | 41.79              | Max Peak         | Vertical   | 147    | 245     | 74.0               | -32.2     | Pass       |
| 7                      | 4628.54       | 43.26          | -2.48         | -12.12  | 28.66              | Max Avg          | Vertical   | 147    | 245     | 54.0               | -25.3     | Pass       |
| 8                      | 5504.10       | 59.81          | -2.69         | -11.60  | 45.52              | Peak (NRB)       | Vertical   | 151    | 0       | --                 | --        | Pass       |

Cont'd

|    |          |       |       |        |       |            |          |     |     |      |       |      |
|----|----------|-------|-------|--------|-------|------------|----------|-----|-----|------|-------|------|
| 9  | 5842.52  | 55.84 | -2.81 | -10.84 | 42.19 | Peak (NRB) | Vertical | 151 | 0   | --   | --    | Pass |
| 10 | 6417.11  | 59.90 | -2.95 | -9.23  | 47.72 | Peak (NRB) | Vertical | 151 | 0   | --   | --    | Pass |
| 11 | 7493.53  | 55.38 | -2.98 | -8.00  | 44.40 | Max Peak   | Vertical | 127 | 185 | 74.0 | -29.6 | Pass |
| 12 | 7493.53  | 42.19 | -2.98 | -8.00  | 31.21 | Max Avg    | Vertical | 127 | 185 | 54.0 | -22.8 | Pass |
| 13 | 8305.98  | 56.35 | -3.33 | -7.81  | 45.21 | Max Peak   | Vertical | 118 | 123 | 74.0 | -28.8 | Pass |
| 14 | 8305.98  | 43.04 | -3.33 | -7.81  | 31.90 | Max Avg    | Vertical | 118 | 123 | 54.0 | -22.1 | Pass |
| 15 | 15722.52 | 59.66 | -4.84 | -1.94  | 52.88 | Max Peak   | Vertical | 113 | 268 | 74.0 | -21.1 | Pass |
| 16 | 15722.52 | 46.72 | -4.84 | -1.94  | 39.94 | Max Avg    | Vertical | 113 | 268 | 54.0 | -14.1 | Pass |

### **7.1.2. AC Mains Power Input/Output Ports**

#### **Scope**

This test assesses the ability of the EUT to limit its internal noise from being present on the AC mains power input/output ports.

#### **Test Procedure**

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

## Limits

The equipment shall meet the class A limits given in FCC Part 15: 107. Alternatively, for equipment intended to be used in non-residential environments, the class A limits given in FCC Part 15: 107 may be used.

Limits for conducted disturbance at the mains ports of class B ITE

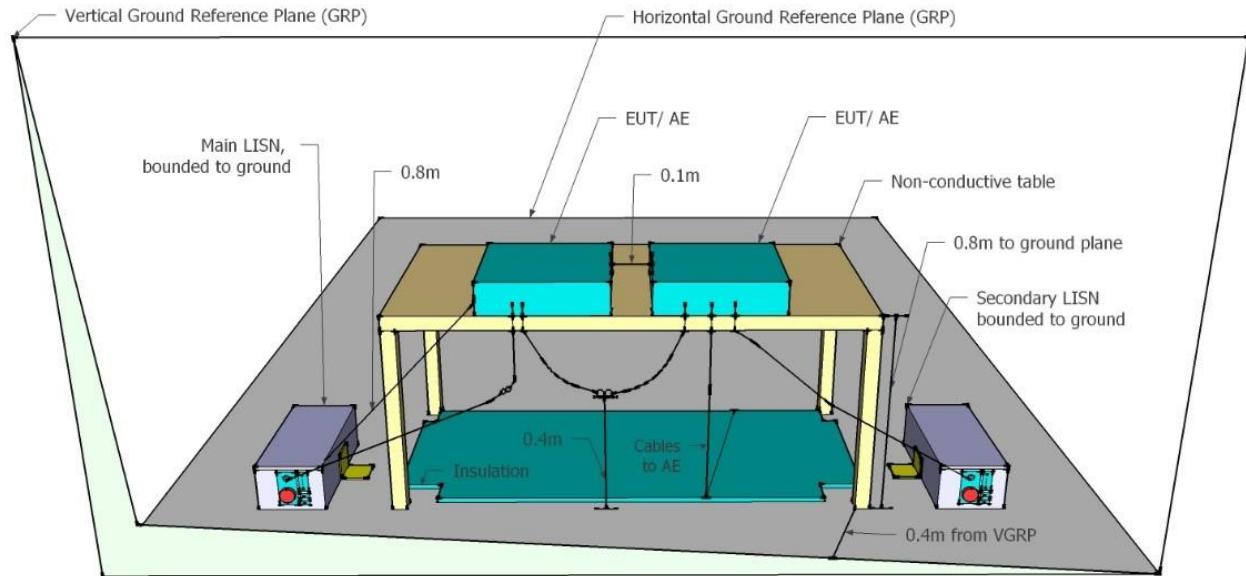
| Frequency of emission (MHz) | Quasi-peak dBuV                                                    | Average dBuV |
|-----------------------------|--------------------------------------------------------------------|--------------|
| 0.15–0.5                    | 66 to 56*                                                          | 56 to 46*    |
| 0.5–5                       | 56                                                                 | 46           |
| 5–30                        | 60                                                                 | 50           |
| Note 1                      | * Decreases with the logarithm of the frequency                    |              |
| Note 2                      | * The lower limit applies at the boundary between frequency ranges |              |

Limits for conducted disturbance at the mains ports of class A ITE

| Frequency of emission (MHz) | Quasi-peak dBuV                                            | Average dBuV |
|-----------------------------|------------------------------------------------------------|--------------|
| 0.15–0.5                    | 79                                                         | 66           |
| 0.5–30                      | 73                                                         | 60           |
| Note 1                      | * The lower limit shall apply at the transition frequency. |              |

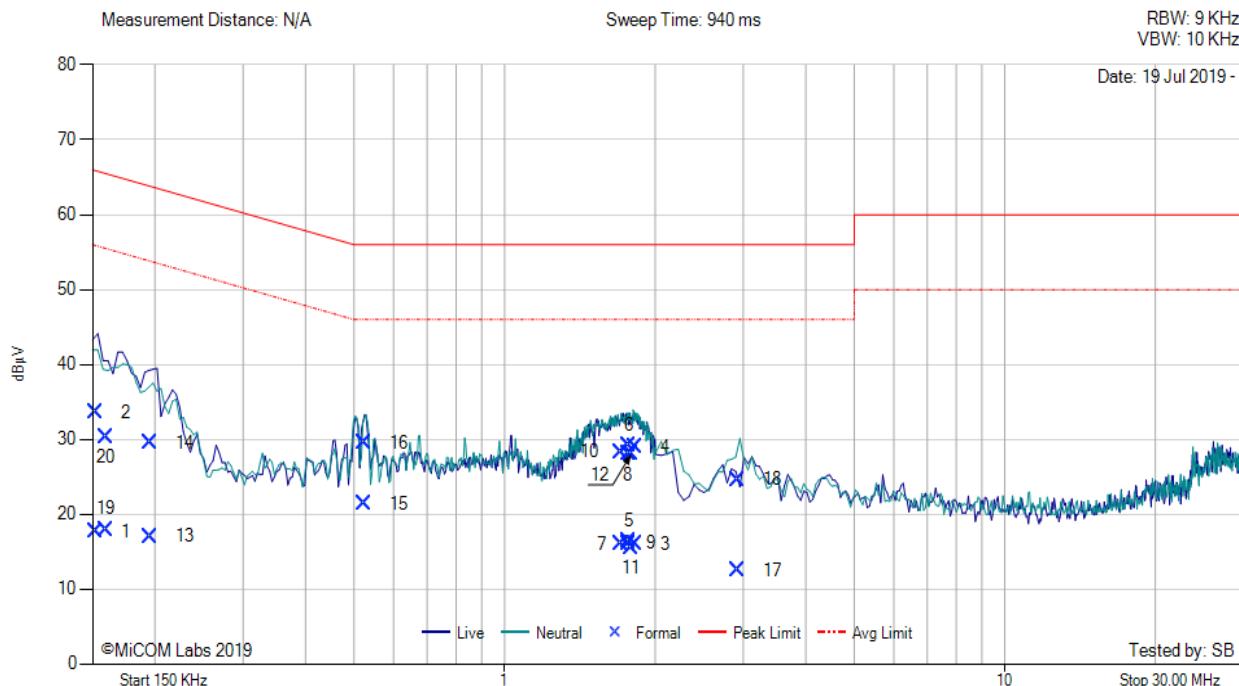
## Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz – 30 MHz (Average & Quasi-peak) is  $\pm 2.64$  dB.


| Laboratory Measurement Uncertainty |               |
|------------------------------------|---------------|
| Measurement uncertainty            | $\pm 2.64$ dB |

| Method                                                                                     |
|--------------------------------------------------------------------------------------------|
| Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions' |

### Test Equipment Utilized


| Asset#  | Description                                    | Manufacturer           | Model#                                        | Serial#     | Calibration Due Date |
|---------|------------------------------------------------|------------------------|-----------------------------------------------|-------------|----------------------|
| 184     | Pulse Limiter                                  | Rhode & Schwarz        | ESH3Z2                                        | 357.8810.52 | 6 Oct 2019           |
| 190     | LISN (two-line V-network)                      | Rhode & Schwarz        | ESH3Z5                                        | 836679/006  | 18 Oct 2019          |
| 193     | Receiver 20 Hz to 7 GHz                        | Rhode & Schwarz        | ESI 7                                         | 838496/007  | 10 Oct 2019          |
| 287     | Rohde & Schwarz 40 GHz Receiver                | Rhode & Schwarz        | ESIB40                                        | 100201      | 2 Aug 2019           |
| 295     | Conducted Emissions Chamber Maintenance Check  | MiCOM                  | Conducted Emissions Chamber                   | 295         | 19 Aug 2019          |
| 307     | BNC-CABLE                                      | Megaphase              | 1689 1GVT4                                    | 15F50B002   | 11 Sep 2019          |
| 316     | Dell desktop computer workstation              | Dell                   | Desktop                                       | WS04        | Not Required         |
| 372     | AC Variable PS                                 | California Instruments | 1251P                                         | L06951      | Cal when used        |
| 378     | Rohde & Schwarz 40 GHz Receiver with Generator | Rhode & Schwarz        | ESIB40                                        | 100107/040  | 12 Oct 2019          |
| 388     | LISN (3 Phase) 9kHz - 30MHz                    | Rhode & Schwarz        | ESH2-Z5                                       | 892107/022  | 20 Oct 2019          |
| 496     | MiTest Conducted Emissions test software.      | MiCOM                  | Conducted Emissions Test Software Version 1.0 | 496         | Not Required         |
| 510     | Barometer/Thermometer                          | Control Company        | 68000-49                                      | 170871375   | 11 Dec 2019          |
| CCEMC01 | Confidence Check.                              | MiCOM                  | CCEMC01                                       | None        | 11 Aug 2019          |

## Test Setup – Power Input / Output Port



### 7.1.2.2. Measurement Results

|              |                          |                       |            |
|--------------|--------------------------|-----------------------|------------|
| Model:       | ALR-H460                 | Configuration tested: | AC POWERED |
| Input power: | 120V <sub>AC</sub> /60Hz | Standard:             | FCC 15B    |



| Num | Frequency MHz | Raw dBµV | Cable Loss dB | Factor dB | Total Correction dBµV | Corrected Value dBµV | Measurement Type | Line    | Limit dBµV/m | Margin dB | Pass /Fail |
|-----|---------------|----------|---------------|-----------|-----------------------|----------------------|------------------|---------|--------------|-----------|------------|
| 1   | 0.152         | 7.69     | 0.05          | 9.92      | 9.97                  | 17.66                | Max Avg          | Live    | 55.9         | -38.3     | Pass       |
| 2   | 0.152         | 23.59    | 0.05          | 9.92      | 9.97                  | 33.56                | Max Qp           | Live    | 65.9         | -32.4     | Pass       |
| 3   | 1.821         | 5.92     | 0.17          | 9.97      | 10.14                 | 16.06                | Max Avg          | Neutral | 46.0         | -29.9     | Pass       |
| 4   | 1.821         | 18.78    | 0.17          | 9.97      | 10.14                 | 28.92                | Max Qp           | Neutral | 56.0         | -27.1     | Pass       |
| 5   | 1.773         | 6.33     | 0.16          | 9.96      | 10.12                 | 16.45                | Max Avg          | Neutral | 46.0         | -29.6     | Pass       |
| 6   | 1.773         | 19.05    | 0.16          | 9.96      | 10.12                 | 29.17                | Max Qp           | Neutral | 56.0         | -26.8     | Pass       |
| 7   | 1.766         | 5.94     | 0.16          | 9.96      | 10.12                 | 16.06                | Max Avg          | Live    | 46.0         | -29.9     | Pass       |
| 8   | 1.766         | 17.90    | 0.16          | 9.96      | 10.12                 | 28.02                | Max Qp           | Live    | 56.0         | -28.0     | Pass       |
| 9   | 1.705         | 6.01     | 0.15          | 9.96      | 10.11                 | 16.12                | Max Avg          | Neutral | 46.0         | -29.9     | Pass       |
| 10  | 1.705         | 18.20    | 0.15          | 9.96      | 10.11                 | 28.31                | Max Qp           | Neutral | 56.0         | -27.7     | Pass       |
| 11  | 1.791         | 5.45     | 0.16          | 9.96      | 10.12                 | 15.57                | Max Avg          | Live    | 46.0         | -30.4     | Pass       |
| 12  | 1.791         | 17.97    | 0.16          | 9.96      | 10.12                 | 28.09                | Max Qp           | Live    | 56.0         | -27.9     | Pass       |

Cont'd

|    |       |       |      |       |       |       |         |         |      |       |      |
|----|-------|-------|------|-------|-------|-------|---------|---------|------|-------|------|
| 13 | 0.196 | 7.07  | 0.06 | 9.93  | 9.99  | 17.06 | Max Avg | Neutral | 54.7 | -37.6 | Pass |
| 14 | 0.196 | 19.51 | 0.06 | 9.93  | 9.99  | 29.50 | Max Qp  | Neutral | 64.7 | -35.2 | Pass |
| 15 | 0.523 | 11.34 | 0.09 | 9.92  | 10.01 | 21.35 | Max Avg | Live    | 46.0 | -24.7 | Pass |
| 16 | 0.523 | 19.49 | 0.09 | 9.92  | 10.01 | 29.50 | Max Qp  | Live    | 56.0 | -26.5 | Pass |
| 17 | 2.926 | 2.25  | 0.24 | 10.01 | 10.25 | 12.50 | Max Avg | Neutral | 46.0 | -33.5 | Pass |
| 18 | 2.926 | 14.35 | 0.24 | 10.01 | 10.25 | 24.60 | Max Qp  | Neutral | 56.0 | -31.4 | Pass |
| 19 | 0.160 | 8.01  | 0.05 | 9.92  | 9.97  | 17.98 | Max Avg | Neutral | 55.7 | -37.7 | Pass |
| 20 | 0.160 | 20.36 | 0.05 | 9.92  | 9.97  | 30.33 | Max Qp  | Neutral | 65.7 | -35.4 | Pass |

**Test Notes:** AC Mains 120V, LTE, WiFi, 900 MHz FHSS Radios are active.



575 Boulder Court  
Pleasanton, California 94566, USA  
Tel: +1 (925) 462 0304  
Fax: +1 (925) 462 0306  
[www.micomlabs.com](http://www.micomlabs.com)