

Company: Alien Technology, LLC

Test of: ALR-F800

To: FCC Part 15 Subpart C 15.247 (DTS) &
Industry Canada RSS-247 Issue 1

Report No.: ALNT63-U5 Rev A

TEST REPORT

TEST REPORT
FROM
MiCOM Labs
opening wireless markets

Test of: Alien Technology, LLC ALR-F800
to

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) &
Industry Canada RSS-247 Issue 1

Test Report Serial No.: ALNT63-U5 Rev A

This report supersedes: NONE

Applicant: Alien Technology, LLC
845 Embedded Way
San Jose, 95138
USA

Product Function: RFID Reader

Issue Date: 4th December 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
575 Boulder Court
Pleasanton California 94566
USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	5
1.1. TESTING ACCREDITATION.....	5
1.2. RECOGNITION	6
1.3. PRODUCT CERTIFICATION	7
2. DOCUMENT HISTORY	8
3. TEST RESULT CERTIFICATE	9
4. REFERENCES AND MEASUREMENT UNCERTAINTY	10
4.1. Normative References	10
4.2. Test and Uncertainty Procedure	11
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	12
5.1. Technical Details	12
5.2. Scope Of Test Program	13
5.3. Equipment Model(s) and Serial Number(s)	14
5.4. Antenna Details	14
5.5. Cabling and I/O Ports	14
5.6. Test Configurations.....	14
5.7. Equipment Modifications	15
5.8. Deviations from the Test Standard	15
6. TEST SUMMARY	16
7. TEST EQUIPMENT CONFIGURATION(S)	17
7.1. Conducted	17
7.2. Radiated Emissions.....	19
7.3. ac Wireline Emission.....	21
8. MEASUREMENT AND PRESENTATION OF TEST DATA	22
9. WORST CASE MEASUREMENT RESULTS	23
10. TEST RESULTS	23
10.1. 20 dB & 99% Bandwidth	23
10.2. Number of Channels.....	25
10.3. Channel Spacing	27
10.4. Dwell Time & Channel Occupancy	29
10.5. Conducted Output Power	31
10.6. Emissions	34
10.6.1. <i>Conducted Emissions</i>	34
10.6.1.1. Conducted Spurious Emissions	34
10.6.1.2. Conducted Band-Edge Emissions	36
10.6.1.2.1. Conducted Low Band-Edge Emissions	36
10.6.1.2.2. Conducted High Band-Edge Emissions	37
10.6.2. <i>Restricted Band Emissions</i>	38
10.6.2.3. ALR-8696	40
10.6.2.4. ALR-8697	43
10.6.2.5. ALR-8698	46
10.6.2.6. ALR-6590C	49
10.6.2.7. BRA-02-6dBiC	52
10.6.3. <i>Emissions below 1 GHz</i>	55
10.6.3.1 ALR-8696	57
10.6.3.2 ALR-8697	60
10.6.3.4 ALR-8698	63

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.3.3 ALR-8690C	66
10.6.3.5 BRA-02-6dBiC	69
A. APPENDIX - GRAPHICAL IMAGES	76
A.1. 20 dB & 99% Bandwidth	77
A.2. Number of Channels	80
A.3. Channel Spacing	83
A.4. Dwell Time & Channel Occupancy	84
A.5. Emissions	86
A.5.1. <i>Conducted Emissions</i>	86
A.5.1.1. Conducted Spurious Emissions	86
A.5.1.2. Conducted Band-Edge Emissions	89
A.5.1.2.1. Conducted Low Band-Edge Emissions	89
A.5.1.2.2. Conducted High Band-Edge Emissions	90

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI	--	--	A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>

United States of America – Telecommunication Certification Body (TCB)
Industry Canada – Certification Body, CAB Identifier – US0159
Europe – Notified Body (NB), NB Identifier - 2280
Japan – Recognized Certification Body (RCB), RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

2. DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft	30 th November 2015	
Draft #2	3 rd December 2015	
Rev A	4 th December 2015	Initial Release
.		
.		
.		
.		

In the above table the latest report revision will replace all earlier versions.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

3. TEST RESULT CERTIFICATE

Manufacturer: Alien Technology, LLC
845 Embedded Way
San Jose
95138 USA

Model: ALR-F800
Type Of Equipment: RFID Reader

S/N's: Engineering Sample

Test Date(s): 17th – 25th November 2015

Tested By: MiCOM Labs, Inc.
575 Boulder Court
Pleasanton California 94566
USA

Telephone: +1 925 462 0304
Fax: +1 925 462 0306

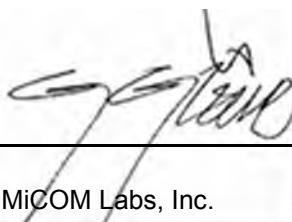
Website: www.micomlabs.com

STANDARD(S)

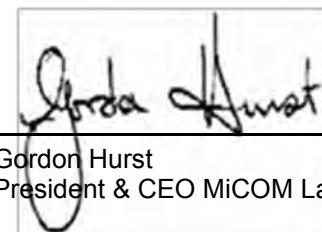
**FCC CFR 47 Part 15 Subpart C 15.247 (DTS) &
Industry Canada RSS-247 Issue 1**

TEST RESULTS

EQUIPMENT COMPLIES


MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:


1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs, Inc.

Gordon Hurst
President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911	2015	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v03r03	9th June 2015	Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
III	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2014	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.
X	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules
XIV	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and test setup diagrams.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Alien Technology ALR-F800 to FCC CFR 47 Part 15 Subpart C 15.247 (DTS) and Industry Canada RSS-247 Issue 1
Applicant:	Alien Technology, LLC 845 Embedded Way San Jose California 95138 USA
Manufacturer:	As Applicant
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Test report reference number:	ALNT63-U5
Date EUT received:	17 th November 2015
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS) Industry Canada RSS-247 Issue 1
Dates of test (from - to):	17 th – 25 th November 2015
No of Units Tested:	1
Type of Equipment:	RFID Reader
Product Family Name:	ALR-F800
Model(s):	ALR-F800
Location for use:	Indoor
Declared Frequency Range(s):	902 - 928 MHz;
Primary function of equipment:	RFID Reader
Secondary function of equipment:	None Provided
Type of Modulation:	PR-ASK
EUT Modes of Operation:	900 - 928 MHz; PR-ASK;
Declared Nominal Output Power (Ave):	+30.00 dBm
Transmit/Receive Operation:	Transceiver
Rated Input Voltage and Current:	AC/ DC adaptor (adaptor sold with unit) 56Vdc
Operating Temperature Range:	Declared Range -20°C to 55°C
ITU Emission Designator:	67K0A1D
Equipment Dimensions:	20.2cm (H) x 19.1cm (W) x 2.8cm (D)
Weight:	0.85kg
Hardware Rev:	Rev. C
Software Rev:	15.11.15

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.2. Scope Of Test Program

Alien Technology, LLC ALR-F800

The scope of the test program was to test the Alien Technology, LLC ALR-F800, RFID Reader configurations in the frequency ranges 902.0 -928.0 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

Alien Technology, LLC ALR-F800

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.3. Equipment Model(s) and Serial Number(s)

Type	Description	Manufacturer	Model	Serial no.	Delivery Date
EUT	RFID Reader	Alien Technology, LLC	ALR-F800	Engineering Sample	17 th November 2015

5.4. Antenna Details

Type	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
external	Alien Technology	ALR-8696	Circular	5.5	-	360	-	902-928
external	Alien Technology	ALR-8697	Circular	5.5	-	360	-	902-928
external	Times-7	A6590C	Circular	6.0	-	360	-	902-928
external	Alien Technology	ALR-8698	Circular	8.0	-	360	-	902-928
external	BroadRadio	BRA-02-6dBic	Circular	3.0	-	360	-	902-928

BF Gain - Beamforming Gain

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
USB	15m	1	Y	USB2.0 Type A	Digital
USB	15m	1	Y	USB 2.0 Type B	Digital
RS232	Unknown	1	Y	DB9	Digital
Ethernet	100m	1	N	RJ45	Packet Data
dc Jack	Unknown	1	N	Power Jack	-

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s) (PR-ASK)	Data Rate with Highest Power Tari	Channel Frequency (MHz)		
		Low	Mid	High
PR-ASK	25.00	902.75	915.25	927.25

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

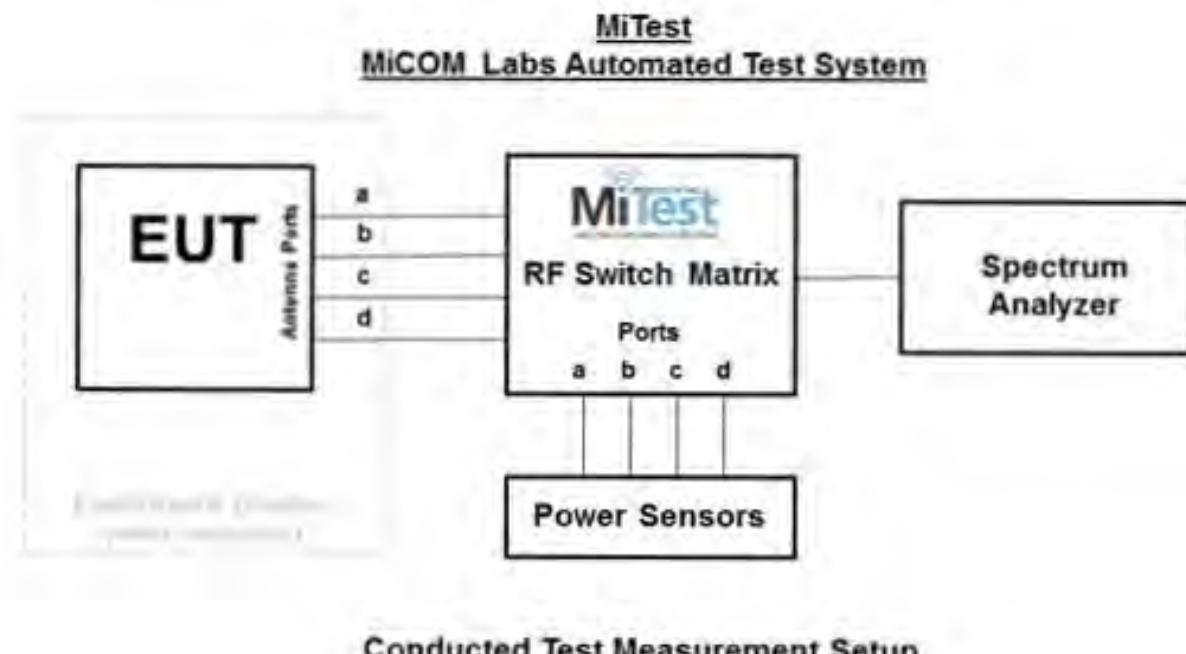
1. NONE

6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
Conducted Test Results		
15.247(a)(2) 20 dB & 99% Bandwidth	Complies	View Data
15.247(b), 15.31(e) Conducted Output Power	Complies	View Data
15.247(d) Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
Radiated Test Results		
(i) 15.205 Restricted Band Emissions	Complies	View Data
15.209 Emissions below 1 GHz	Complies	View Data
ac Wireline Emissions		
(3) 15.209 ac Wireline Emissions (0.15 – 30 MHz)	Complies	View Data

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted

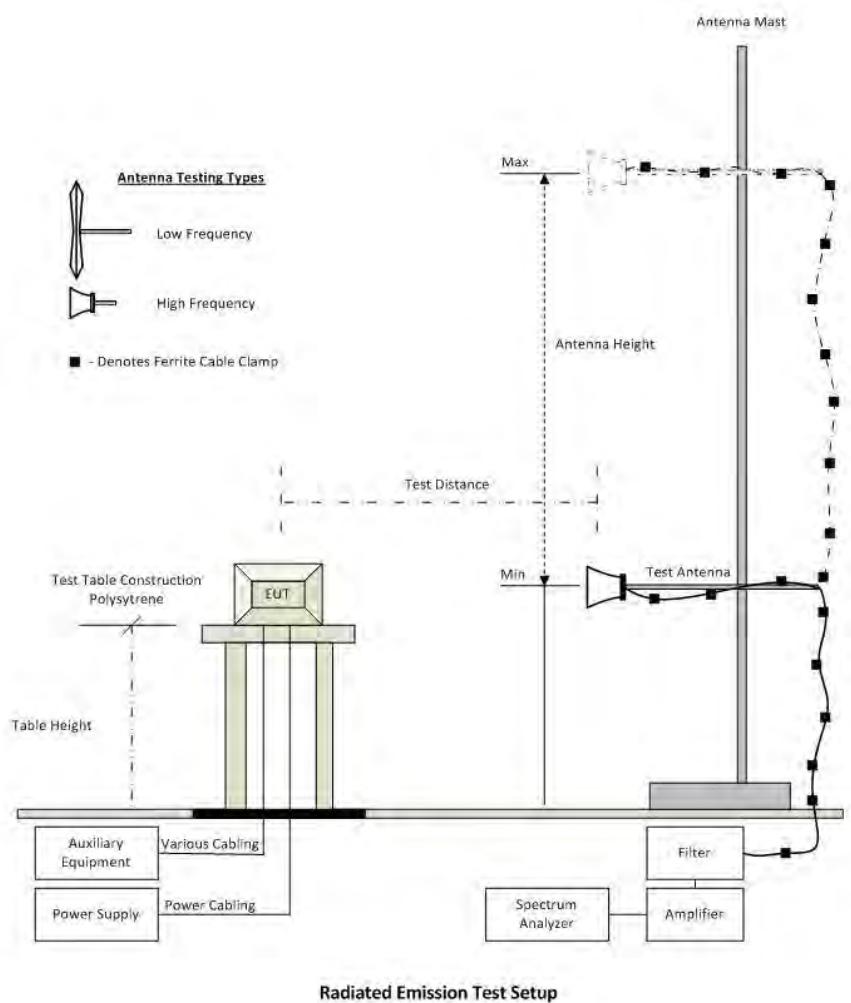
Conducted RF Emission Test Set-up(s).

The following tests were performed using the conducted test set-up shown in the diagram below.

1. 20 dB & 99% Bandwidth
2. Conducted Output Power
3. Conducted Spurious Emissions
4. Conducted Spurious Band-Edge Emissions

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.


Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	14 Jan 2016
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	21 Oct 2016
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	27 Aug 2016
376	USB 10MHz - 18GHz Average Power Sensor	Agilent	U2000A	MY51440005	23 Oct 2016
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	04 Aug 2016
381	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC002	20 Dec 2015
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2016
440	USB Wideband Power Sensor	Boonton	55006	9178	25 Sep 2016
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Sep 2016
442	USB Wideband Power Sensor	Boonton	55006	9181	25 Sep 2016
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
460	Dell Computer	Dell	Optiplex330	BC944G1	Not Required
74	Environmental Chamber 3	Tenney	TTC	12808-1	30 Sep 2016
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Dec 2015
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	20 Dec 2015
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	20 Dec 2015
RF#2 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	20 Dec 2015
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	20 Dec 2015
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

7.2. Radiated Emissions

The following tests were performed using the conducted test set-up shown in the diagram below.

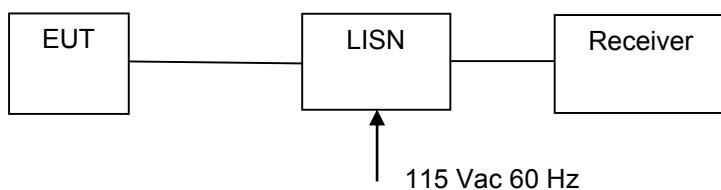
1. Section 9.4.1 Spurious Emissions
2. Section 9.4.2 Restricted Band-Edge Emissions
3. Section 9.5 Radiated Digital Emissions

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Alien Technology, LLC ALR-F800
To: FCC 15.247 (DTS), IC RSS-247 Issue 1
Serial #: ALNT63-U5 Rev A
Issue Date: 4th December 2015
Page: 20 of 91

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Termometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	27 Aug 2016
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2016
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	18 Aug 2016
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	24 Feb 2016
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	18 Aug 2016
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Dec 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	28 May 2016
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
447	Rad Emissions Test Software	MiCOM	Rad Emissions Version 1.0.73	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	25 Feb 2016
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	25 Feb 2016
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	25 Feb 2016
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157-3050360	480	11 Aug 2016
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151-3050787	481	11 Aug 2016
482	Cable - Amp to Antenna	SRC Haverhill	157-157-3051574	482	11 Aug 2016
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

7.3. ac Wireline Emission

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 9.6 ac Wireline Conducted Emissions

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Traceability of Test Equipment Utilized for ac Wireline Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	Cal when used
190	LISN (two-line V-network)	Rhode & Schwarz	ESH3Z5	836679/006	12 Sep 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2016
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by [MiTest](#). [MiTest](#) is an automated test system developed by MiCOM Labs. [MiTest](#) is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "[MiTest](#)" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9. WORST CASE MEASUREMENT RESULTS

10. TEST RESULTS

10.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 20 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Title: Alien Technology, LLC ALR-F800
To: FCC 15.247 (DTS), IC RSS-247 Issue 1
Serial #: ALNT63-U5 Rev A
Issue Date: 4th December 2015
Page: 24 of 91

Equipment Configuration for 20 dB & 99% Bandwidth

Variant:	PR-ASK	Duty Cycle (%):	99.00
Data Rate:	25.00 Tari	Antenna Gain (dBi):	3.00
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 20 dB Bandwidth (MHz)				20 dB Bandwidth (MHz)		Limit	Lowest Margin
	Port(s)				Highest	Lowest		
MHz	a	b	c	d			KHz	KHz
902.8	0.054	--	--	--	0.054	0.054	≤500.0	-446.0
915.3	0.058	--	--	--	0.058	0.058	≤500.0	-442.0
927.3	0.051	--	--	--	0.051	0.051	≤500.0	-449.0

Test Frequency	Measured 99% Bandwidth (MHz)				Maximum 99% Bandwidth (MHz)		
	Port(s)						
MHz	a	b	c	d			
902.8	0.059	--	--	--	0.059		
915.3	0.059	--	--	--	0.059		
927.3	0.059	--	--	--	0.059		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.2. Number of Channels

Conducted Test Conditions for Number Of Channels			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Number of Channels	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies.

Title: Alien Technology, LLC ALR-F800
To: FCC 15.247 (DTS), IC RSS-247 Issue 1
Serial #: ALNT63-U5 Rev A
Issue Date: 4th December 2015
Page: 26 of 91

Equipment Configuration for Hopping Sequence

Variant:	PR-ASK	Duty Cycle (%):	Not Applicable
Data Rate:	25.00 Tari	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Modulation	Frequency Range (MHz)	Number of Hopping Channels	Limit	Total Number of Hops	Results
			No of Hopping Channels		
PR-ASK	900.00 – 912.00	19.0	--	19.0	--
PR-ASK	912.00 – 928.00	31.0	--	31.0	--
PR-ASK	902.00 – 928.00	Total No. of Hopping Channels:	≥50	50.0	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.3. Channel Spacing

Conducted Test Conditions for 6 dB and 99% Bandwidth			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Channel Spacing	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limit

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Title: Alien Technology, LLC ALR-F800
To: FCC 15.247 (DTS), IC RSS-247 Issue 1
Serial #: ALNT63-U5 Rev A
Issue Date: 4th December 2015
Page: 28 of 91

Equipment Configuration for Channel Separation

Variant:	PR-ASK	Duty Cycle (%):	Not Applicable
Data Rate:	25.00 Tari	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Center Frequency	Packet Type	Chan Separation	Limit (20 dB Occup. BW)	Result
		MHz	MHz	
915.255	PR-ASK	0.502	> 0.058	Pass
Traceability to Industry Recognized Test Methodologies				
Measurement Uncertainty:		±2.81 dB (Spectrum/Amplitude), ±0.86 ppm (Frequency)		

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.4. Dwell Time & Channel Occupancy

Conducted Test Conditions for Channel Occupancy			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Dwell Time & Channel Occupancy	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limit

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Title: Alien Technology, LLC ALR-F800
To: FCC 15.247 (DTS), IC RSS-247 Issue 1
Serial #: ALNT63-U5 Rev A
Issue Date: 4th December 2015
Page: 30 of 91

Equipment Configuration for Dwell Time & Channel Occupancy

Variant:	Not Applicable	Duty Cycle (%):	Not Applicable
Data Rate:	Not Applicable	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results					
Center Frequency MHz	Variant Type	Dwell Time (Single Channel)	Channel Occupancy	Channel Occupancy Limit	Result
		ms	ms	ms	
915.25	PR-ASK	42.48	84.96	400.00	Pass

Traceability to Industry Recognized Test Methodologies

Measurement Uncertainty:	±2.81 dB (Spectrum/Amplitude), ±0.86 ppm (Frequency)
--------------------------	--

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.5. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (b) & (c)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x)$ dBm

A = Total Power [$10 \times \log_{10} (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

(3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of $10 \log$ (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Title: Alien Technology, LLC ALR-F800
To: FCC 15.247 (DTS), IC RSS-247 Issue 1
Serial #: ALNT63-U5 Rev A
Issue Date: 4th December 2015
Page: 33 of 91

Equipment Configuration for Average Output Power

Variant:	PR-ASK	Duty Cycle (%):	99.00
Data Rate:	25.00 Tari	Antenna Gain (dBi):	3.00
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power + DCCF (+0.04 dB) (dBm)				Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
	Port(s)							
MHz	a	b	c	d	dBm	dBm	dB	
902.8	29.94	--	--	--	29.94	30.00	-0.06	30.00
915.3	29.80	--	--	--	29.80	30.00	-0.20	30.00
927.3	29.72	--	--	--	29.72	30.00	-0.28	30.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

DCCF - Duty Cycle Correction Factor

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6. Emissions

10.6.1. Conducted Emissions

10.6.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (d)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Title: Alien Technology, LLC ALR-F800
To: FCC 15.247 (DTS), IC RSS-247 Issue 1
Serial #: ALNT63-U5 Rev A
Issue Date: 4th December 2015
Page: 35 of 91

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	PR-ASK	Duty Cycle (%):	99.00
Data Rate:	25.00 Tari	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Frequency Range	Transmitter Conducted Spurious Emissions (dBm)							
		Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.8	30.0 - 26000.0	-59.023	-50.96	--	--	--	--	--	--
915.3	30.0 - 26000.0	-59.023	-49.59	--	--	--	--	--	--
927.3	30.0 - 26000.0	-58.923	-50.33	--	--	--	--	--	--

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	"<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB"

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.1.2. Conducted Band-Edge Emissions

10.6.1.2.1. Conducted Low Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	PR-ASK	Duty Cycle (%):	99.00
Data Rate:	25.00 Tari	Antenna Gain (dBi):	3.00
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.8 MHz				
Band-Edge Frequency:	902.0 MHz				
Test Frequency Range:	850.0 - 904.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-45.00	-2.00	902.50	--	--
					-0.500

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	"≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB"		

Note: click the links in the above matrix to view the graphical image (plot).

10.6.1.2.2. Conducted High Band-Edge Emissions

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	PR-ASK	Duty Cycle (%):	99.00
Data Rate:	25.00 Tari	Antenna Gain (dBi):	3.00
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	927.3 MHz				
Band-Edge Frequency:	928.0 MHz				
Test Frequency Range:	926.0 - 940.0 MHz				
Port(s)		Band-Edge Markers and Limit		Revised Limit	Margin
	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-42.50	-4.00	927.50	--	--
					(MHz)

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	"<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB"

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.2. Restricted Band Emissions

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Operational Modes

Operational mode(s) tested for spurious emissions were the modes which delivered maximum spectral density

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log (level (\mu V/m))}$$

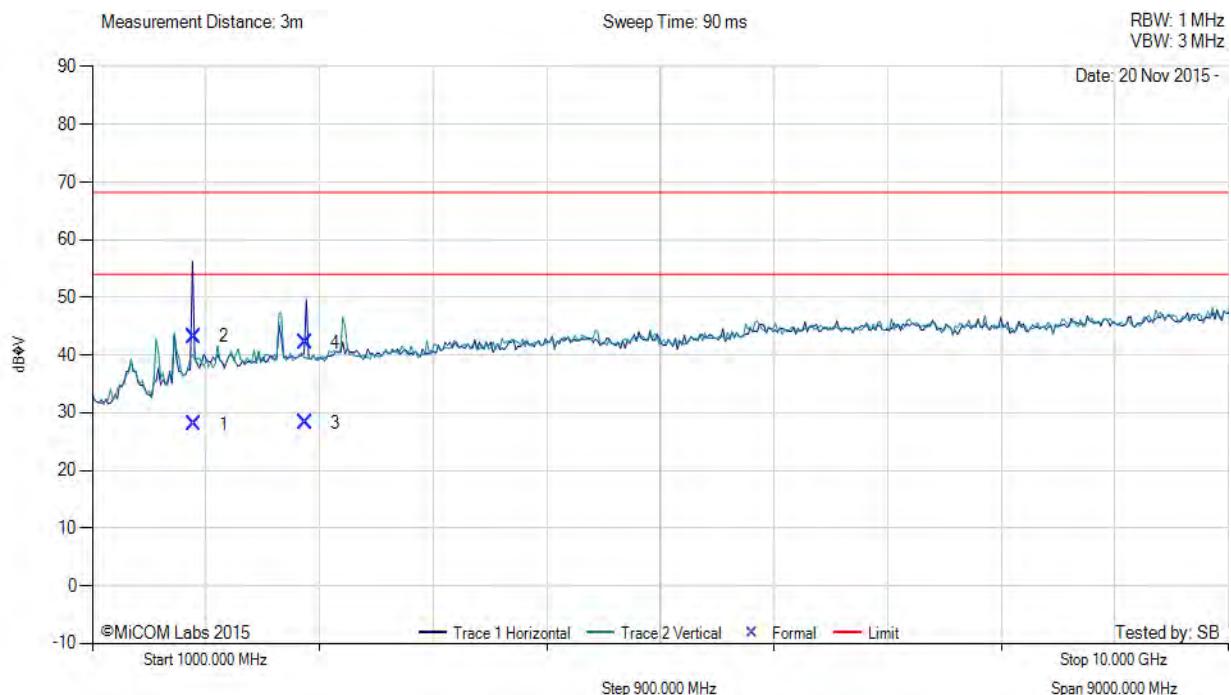
$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

Traceability

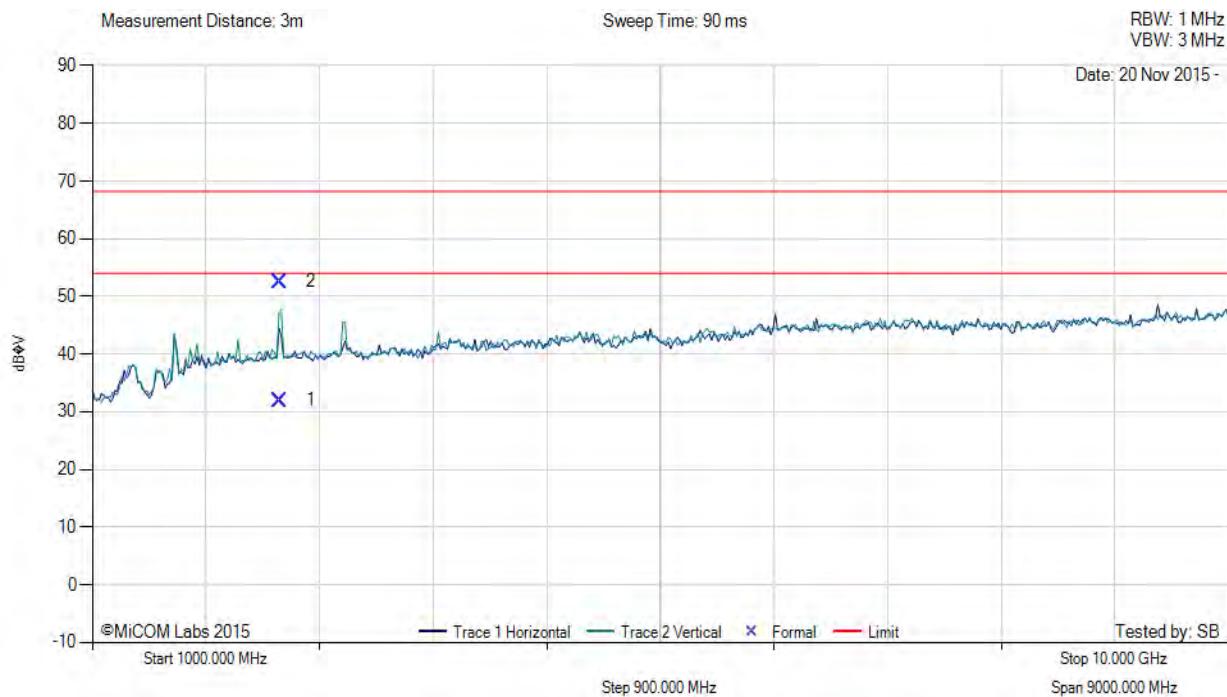
Test Methodology	Measurement Uncertainty
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	+5.6/ -4.5 dB



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

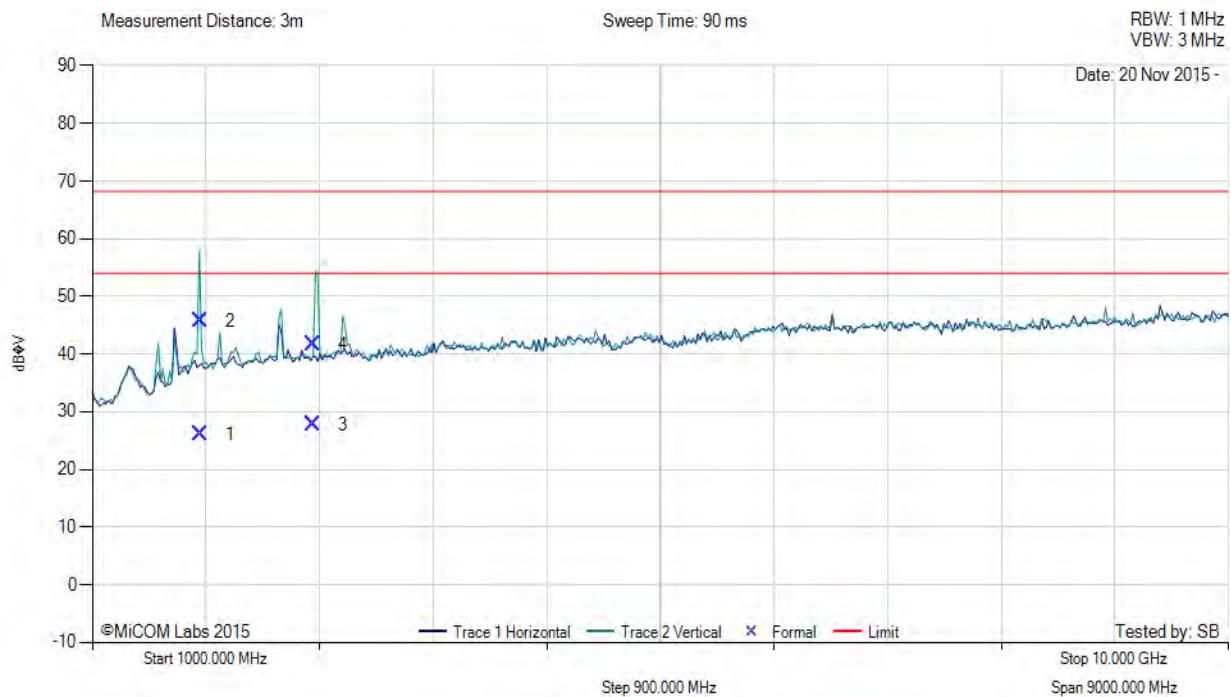
10.6.2.3. ALR-8696

Variant: CW, Test Freq: 902.25 MHz, Antenna: ALR-8696, Power Setting: Max, Duty Cycle (%): 100



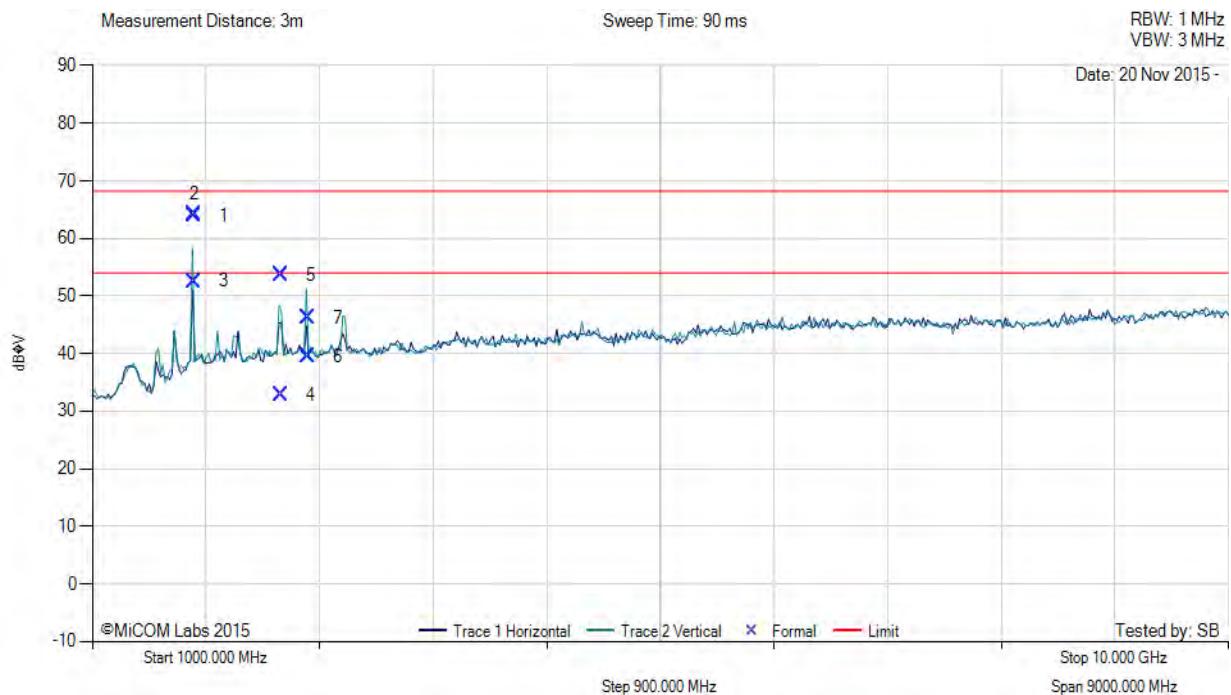
Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	1805.41	39.16	2.45	-13.63	27.98	Max Avg	Horizontal	154	161	54.0	-26.0	Pass
2	1805.41	54.36	2.45	-13.63	43.18	Max Peak	Horizontal	154	161	68.2	-25.1	Pass
3	2688.38	36.83	2.79	-11.36	28.26	Max Avg	Horizontal	142	43	54.0	-25.7	Pass
4	2688.38	50.76	2.79	-11.36	42.19	Max Peak	Horizontal	142	43	68.2	-26.0	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


Variant: CW, Test Freq: 915.25 MHz, Antenna: ALR-8696, Power Setting: Max, Duty Cycle (%): 100

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	2489.90	40.87	2.74	-11.63	31.98	Max Avg	Vertical	103	179	54.0	-22.0	Pass
2	2489.90	61.45	2.74	-11.63	52.56	Max Peak	Vertical	103	179	68.2	-15.7	Pass

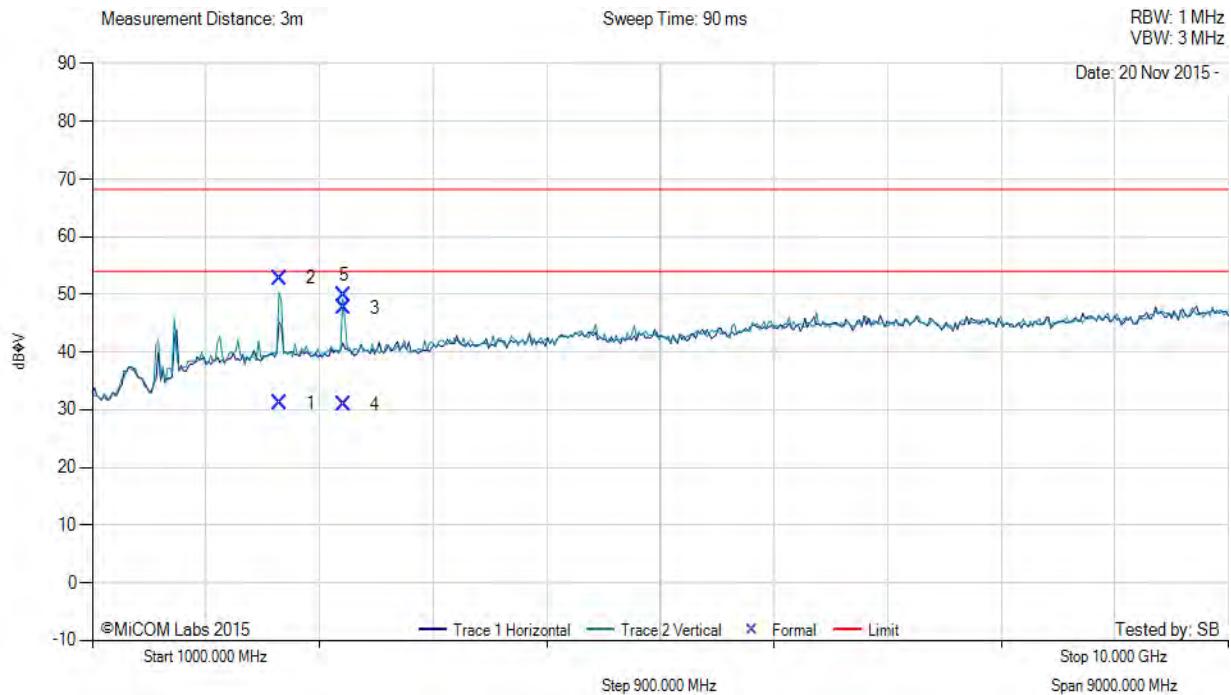
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	1851.63	37.08	2.48	-13.44	26.12	Max Avg	Vertical	198	268	54.0	-27.9	Pass
2	1851.63	56.67	2.48	-13.44	45.71	Max Peak	Vertical	198	268	68.2	-22.5	Pass
3	2745.01	36.28	2.84	-11.35	27.77	Max Avg	Vertical	100	316	54.0	-26.2	Pass
4	2745.01	50.19	2.84	-11.35	41.68	Max Peak	Vertical	100	316	68.2	-26.6	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

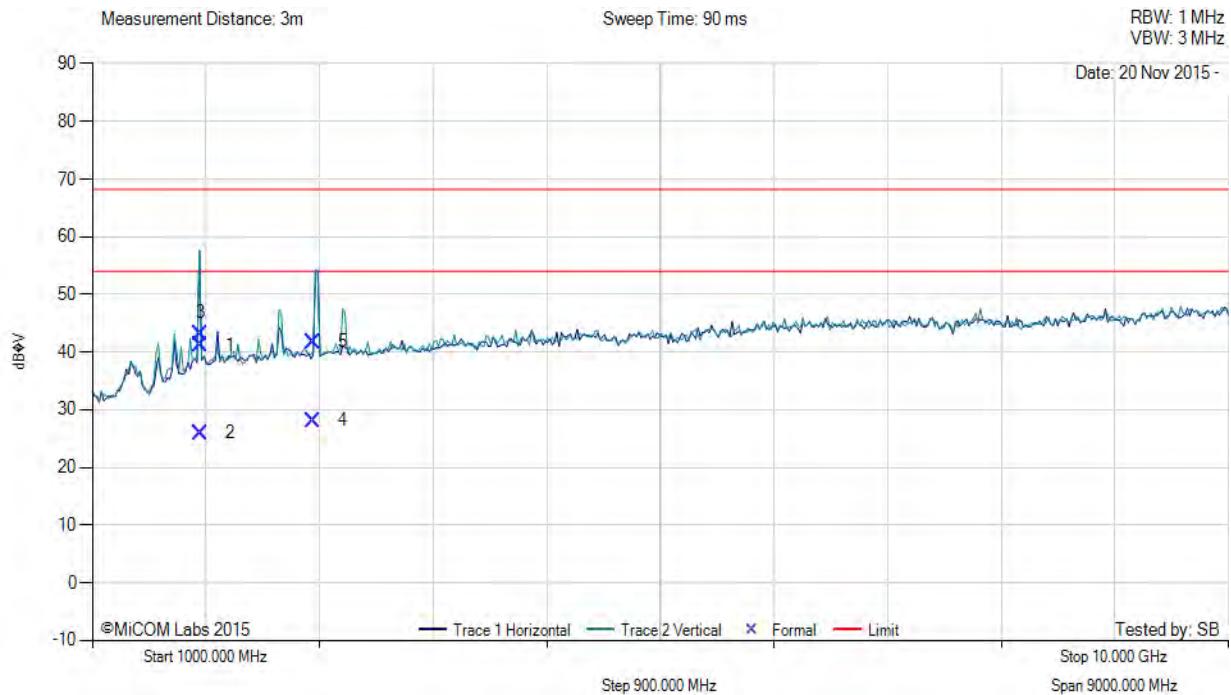
10.6.2.4. ALR-8697

Variant: CW, Test Freq: 902.25 MHz, Antenna: ALR-8697, Power Setting: Max, Duty Cycle (%): 100



Num	Frequency MHz	Raw dB _{Pt} V	Cable Loss	AF dB	Level dB _{Pt} V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB _{Pt} V/m	Margin dB	Pass /Fail
1	1805.57	75.07	2.45	-13.63	63.89	Max Avg	Vertical	166	43	54.0	9.9	Pass
2	1805.57	75.29	2.45	-13.63	64.11	Max Peak	Vertical	166	43	68.2	-4.1	Pass
3	1805.57	63.72	2.45	-13.63	52.54	Peak (NRB)	Vertical	100	1	--	--	Pass
4	2490.90	41.68	2.74	-11.63	32.79	Max Avg	Vertical	100	176	54.0	-21.2	Pass
5	2490.90	62.57	2.74	-11.63	53.68	Max Peak	Vertical	100	176	68.2	-14.6	Pass
6	2708.34	48.01	2.86	-11.37	39.50	Max Avg	Vertical	178	65	54.0	-14.5	Pass
7	2708.34	54.71	2.86	-11.37	46.20	Max Peak	Vertical	178	65	68.2	-22.0	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

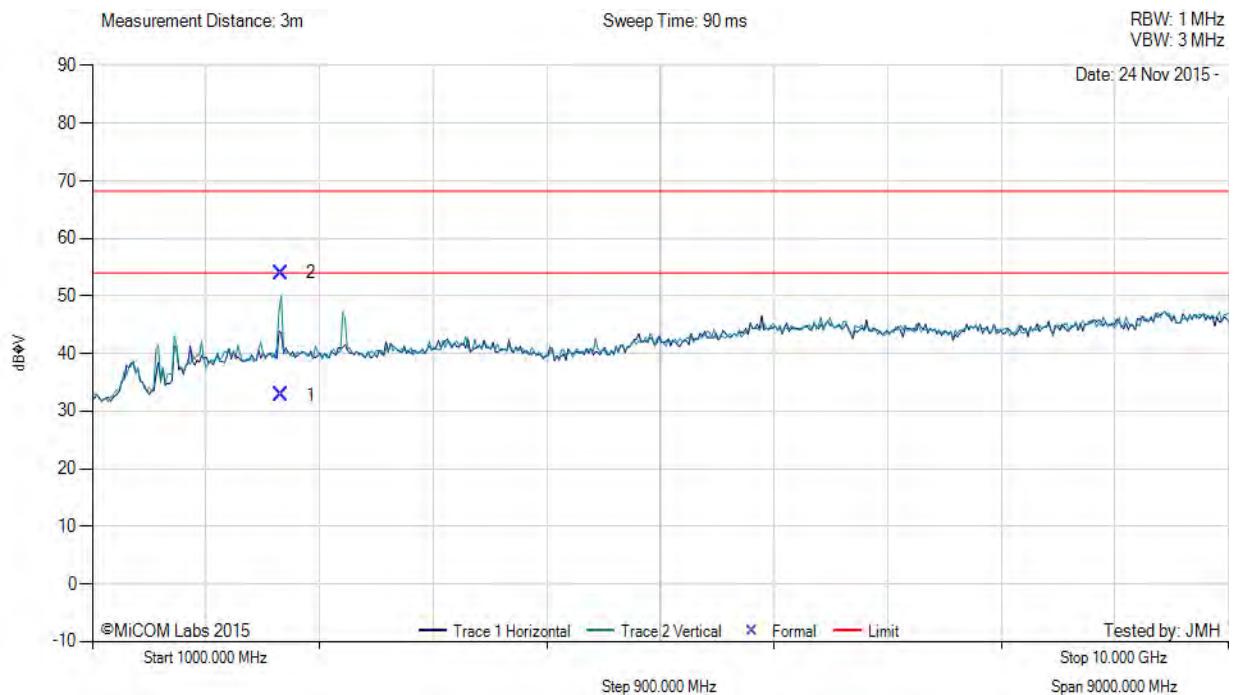


Variant: CW, Test Freq: 915.25 MHz, Antenna: ALR-8697, Power Setting: Max, Duty Cycle (%): 100

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	2488.77	40.05	2.73	-11.63	31.15	Max Avg	Vertical	165	178	54.0	-22.9	Pass
2	2488.77	61.73	2.73	-11.63	52.83	Max Peak	Vertical	165	178	68.2	-15.4	Pass
3	2996.88	55.73	2.93	-10.97	47.69	Peak (NRB)	Vertical	151	166	--	--	Pass
4	2996.88	38.88	2.93	-10.97	30.84	Max Avg	Vertical	166	232	54.0	-23.2	Pass
5	2996.88	57.79	2.93	-10.97	49.75	Max Peak	Vertical	166	232	68.2	-18.5	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

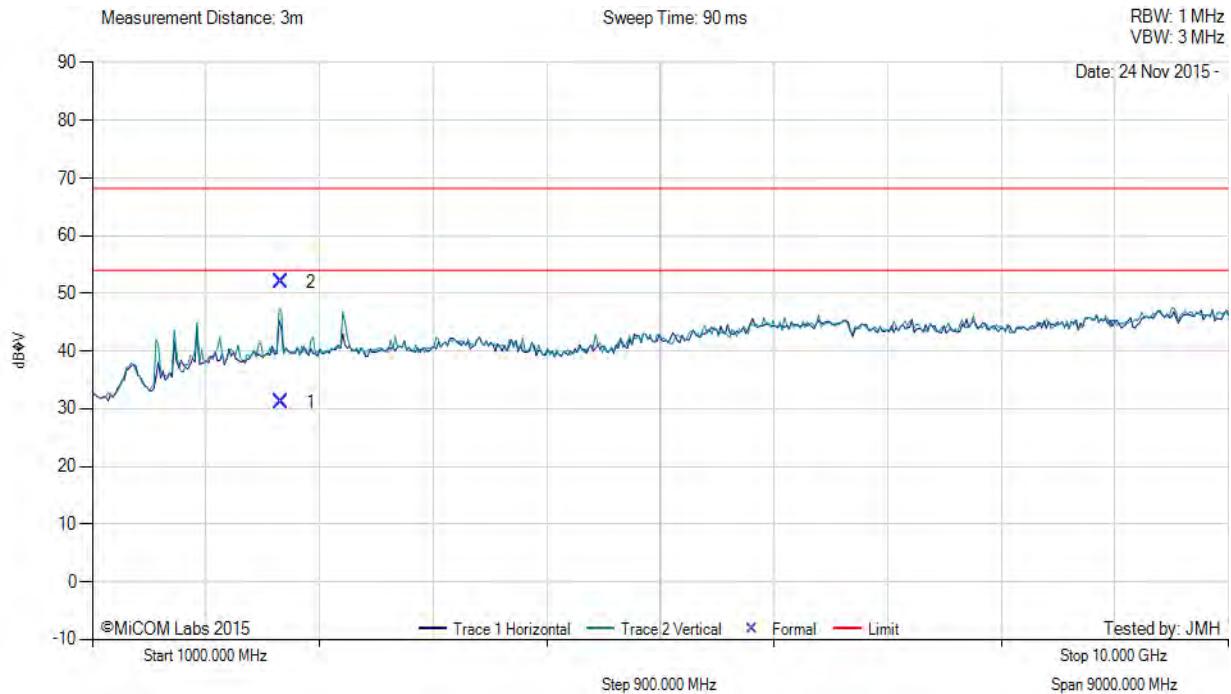
Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	1855.76	52.09	2.49	-13.41	41.17	Peak (NRB)	Horizontal	200	153	--	--	Pass
2	1855.76	36.86	2.49	-13.41	25.94	Max Avg	Horizontal	176	270	54.0	-28.1	Pass
3	1855.76	54.10	2.49	-13.41	43.18	Max Peak	Horizontal	176	270	68.2	-25.1	Pass
4	2746.34	36.61	2.84	-11.35	28.10	Max Avg	Vertical	121	43	54.0	-25.9	Pass
5	2746.34	50.32	2.84	-11.35	41.81	Max Peak	Vertical	121	43	68.2	-26.4	Pass



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.2.5. ALR-8698

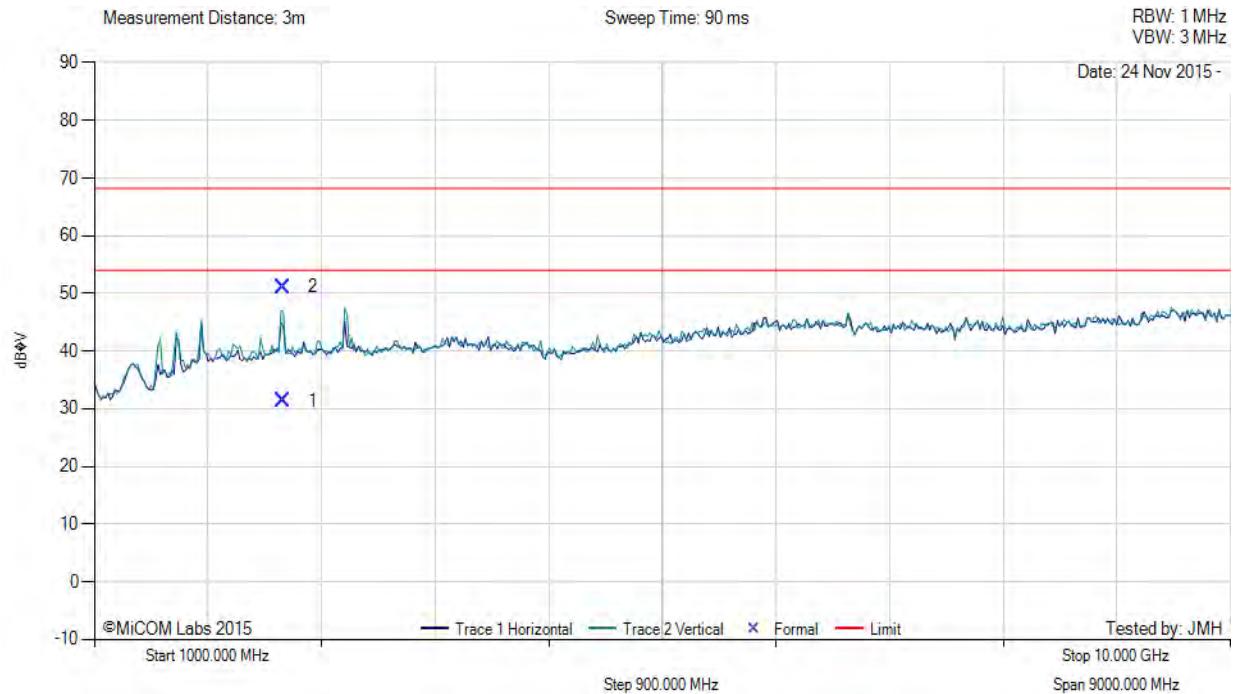
Variant: CW, Test Freq: 902.25 MHz, Antenna: A8698, Power Setting: Max, Duty Cycle (%): 100



Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2491.74	41.64	2.74	-11.63	32.75	Max Avg	Vertical	111	320	54.0	-21.3	Pass
2	2491.74	62.85	2.74	-11.63	53.96	Max Peak	Vertical	111	320	68.2	-14.3	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 915.25 MHz, Antenna: A8698, Power Setting: Max, Duty Cycle (%): 100

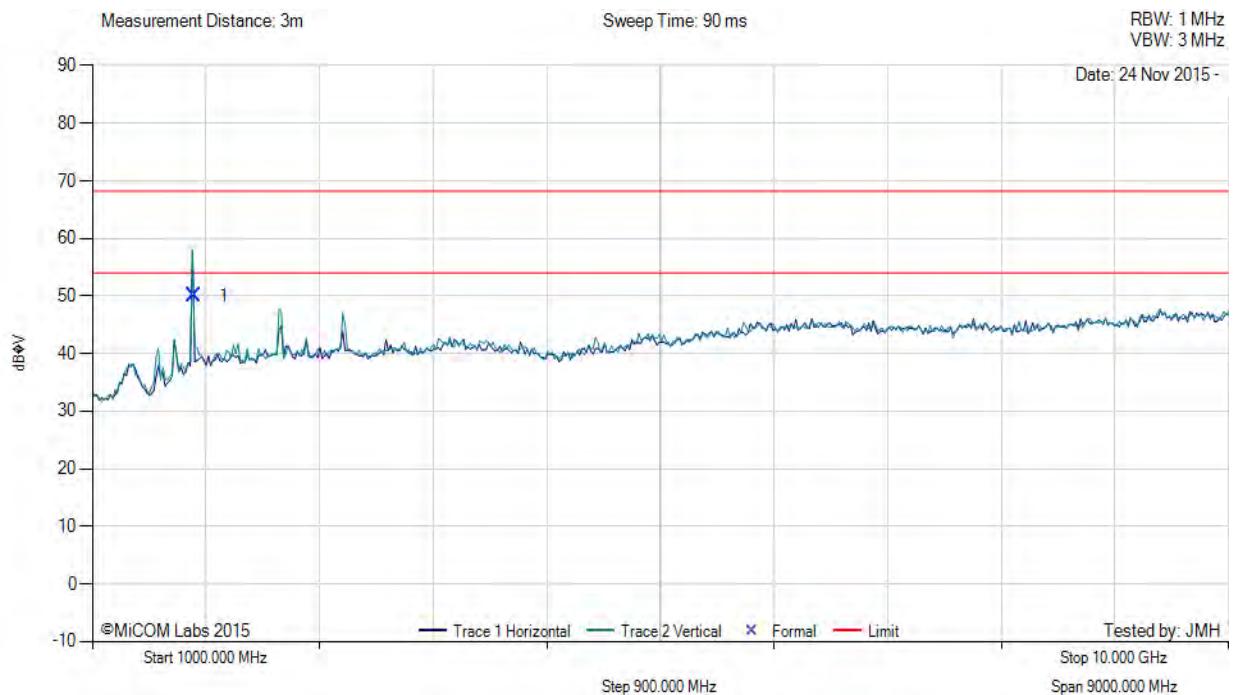


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	2491.22	39.98	2.74	-11.63	31.09	Max Avg	Vertical	197	308	54.0	-22.9	Pass
2	2491.22	60.89	2.74	-11.63	52.00	Max Peak	Vertical	197	308	68.2	-16.2	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 927.25 MHz, Antenna: A8698, Power Setting: Max, Duty Cycle (%): 100

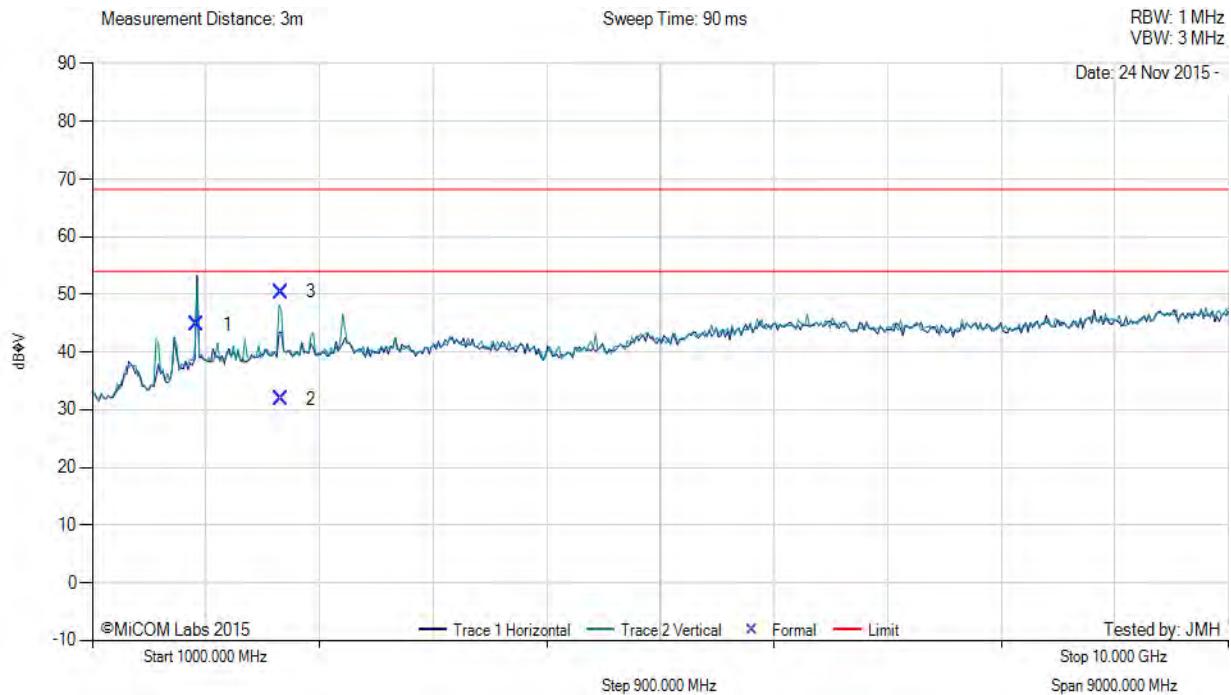
Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	2490.78	40.30	2.74	-11.63	31.41	Max Avg	Vertical	161	304	54.0	-22.6	Pass
2	2490.78	60.05	2.74	-11.63	51.16	Max Peak	Vertical	161	304	68.2	-17.1	Pass



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

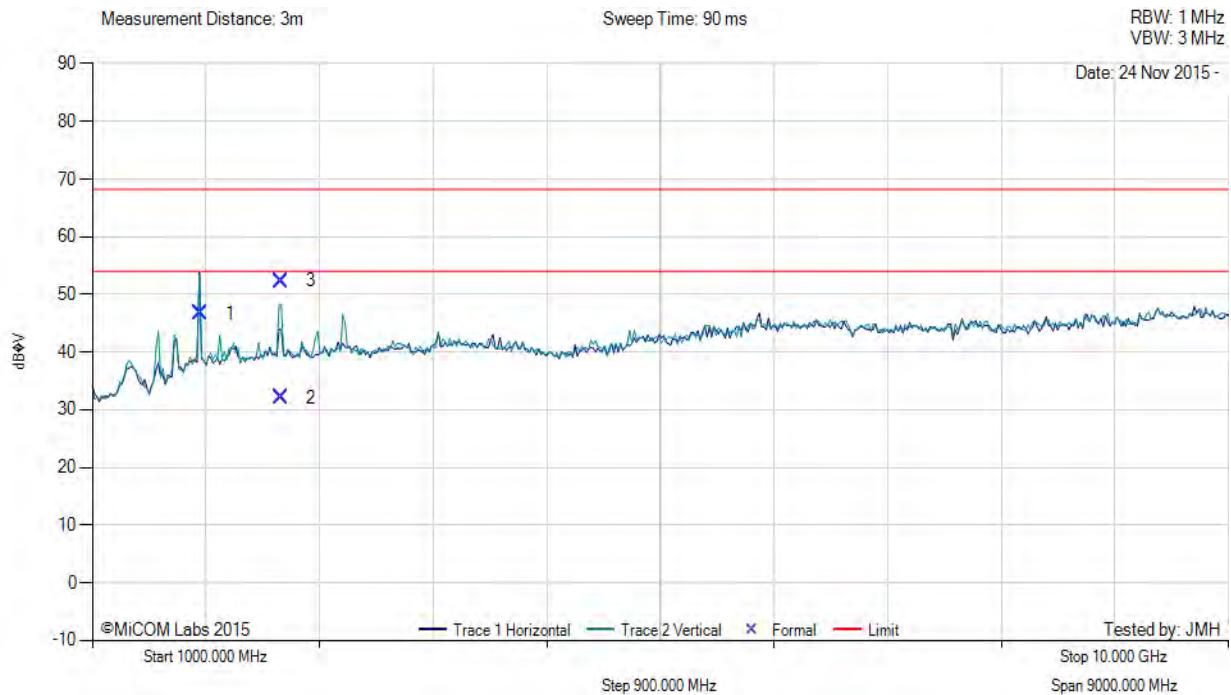
10.6.2.6. ALR-6590C

Variant: CW, Test Freq: 902.25 MHz, Antenna: A6590C, Power Setting: Max, Duty Cycle (%): 100


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	1805.42	61.15	2.45	-13.63	49.97	Peak (NRB)	Horizontal	101	0	--	--	Pass

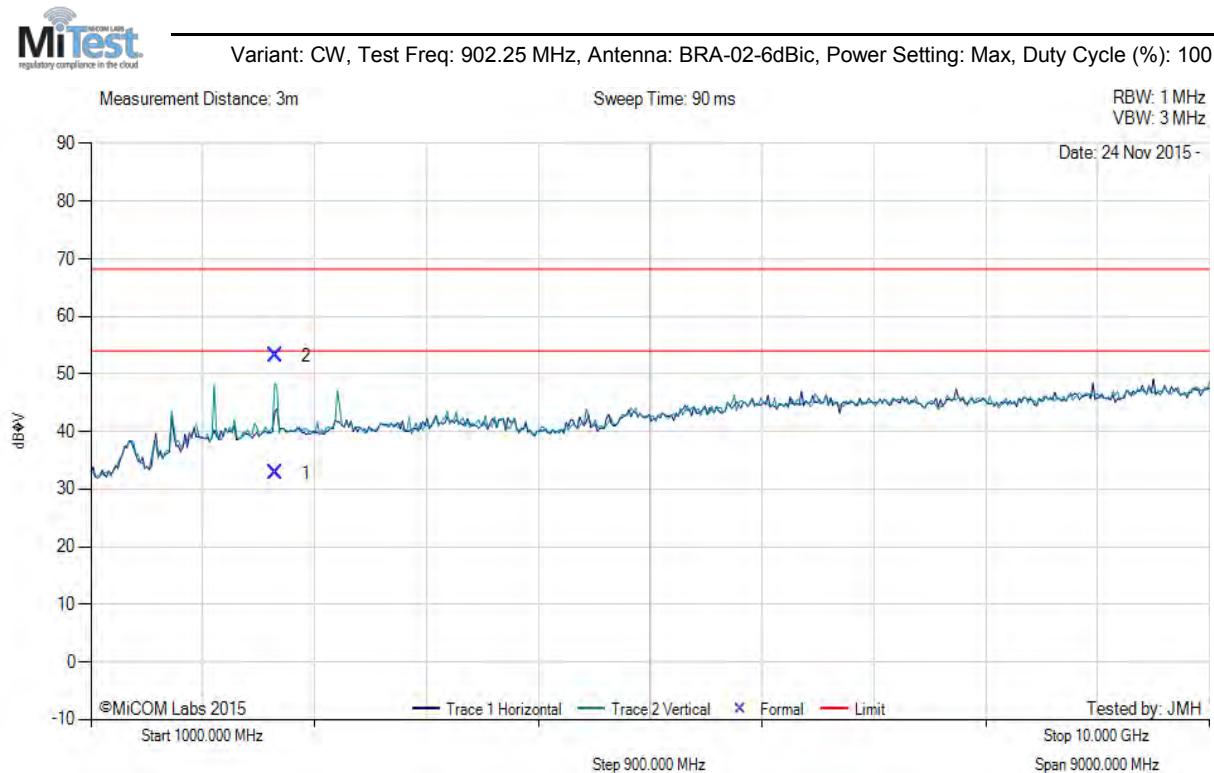
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 915.25 MHz, Antenna: A6590C, Power Setting: Max, Duty Cycle (%): 100


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	1830.47	55.86	2.45	-13.54	44.77	Peak (NRB)	Horizontal	101	0	--	--	Pass
2	2493.43	40.75	2.74	-11.63	31.86	Max Avg	Vertical	187	7	54.0	-22.1	Pass
3	2493.43	59.29	2.74	-11.63	50.40	Max Peak	Vertical	187	7	68.2	-17.8	Pass

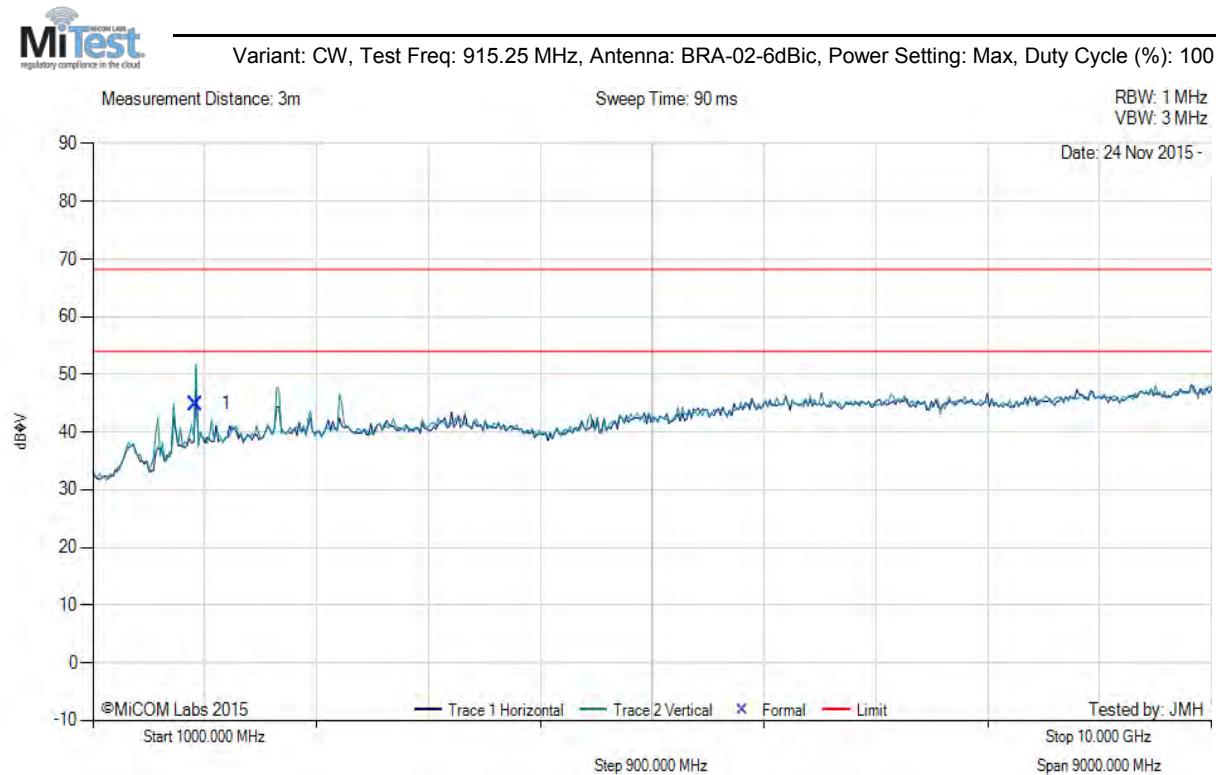
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 927.25 MHz, Antenna: A6590C, Power Setting: Max, Duty Cycle (%): 100



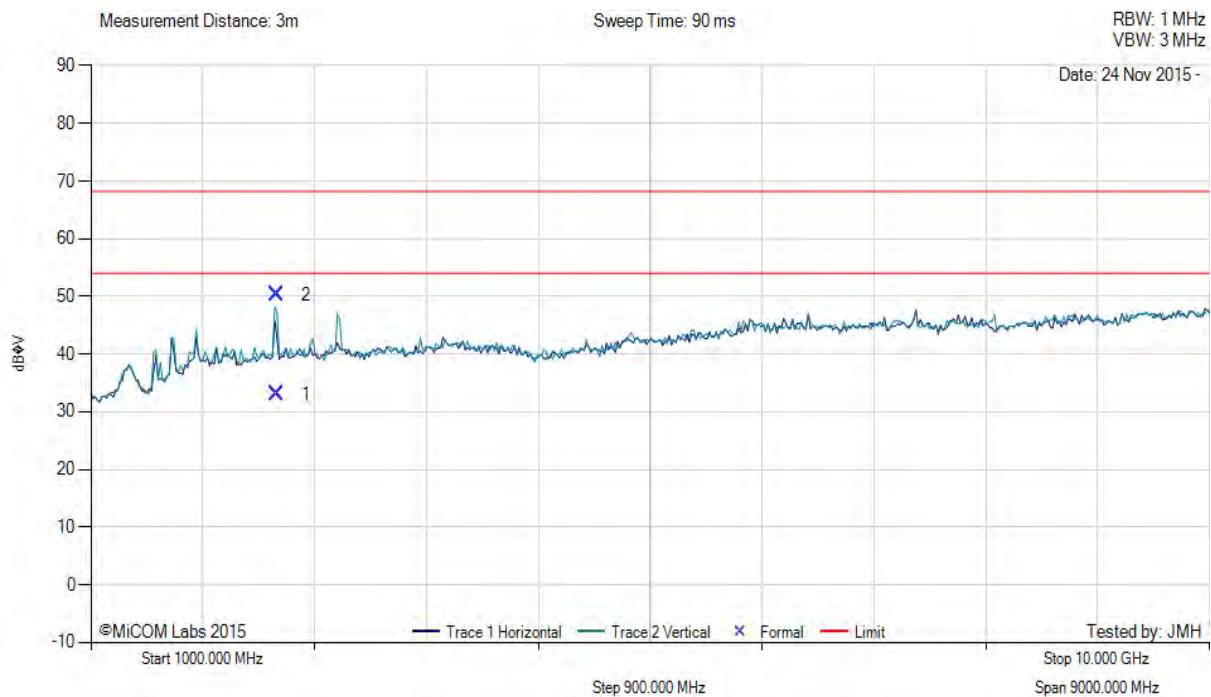
Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	1854.47	57.67	2.48	-13.43	46.72	Peak (NRB)	Horizontal	151	1	--	--	Pass
2	2491.10	41.01	2.74	-11.63	32.12	Max Avg	Vertical	119	309	54.0	-21.9	Pass
3	2491.10	61.17	2.74	-11.63	52.28	Max Peak	Vertical	119	309	68.2	-16.0	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


10.6.2.7. BRA-02-6dBiC

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	2489.44	41.64	2.73	-11.63	32.74	Max Avg	Vertical	178	307	54.0	-21.3	Pass
2	2489.44	62.02	2.73	-11.63	53.12	Max Peak	Vertical	178	307	68.2	-15.1	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	1830.47	56.02	2.45	-13.54	44.93	Peak (NRB)	Vertical	200	1	--	--	Pass

This test report may be reproduced in full only. The document may only be updated by MICOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 927.25 MHz, Antenna: BRA-02-6dBic, Power Setting: Max, Duty Cycle (%): 100

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	2491.59	41.93	2.74	-11.63	33.04	Max Avg	Vertical	193	0	54.0	-21.0	Pass
2	2491.59	59.16	2.74	-11.63	50.27	Max Peak	Vertical	193	0	68.2	-18.0	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.3. Emissions below 1 GHz

FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

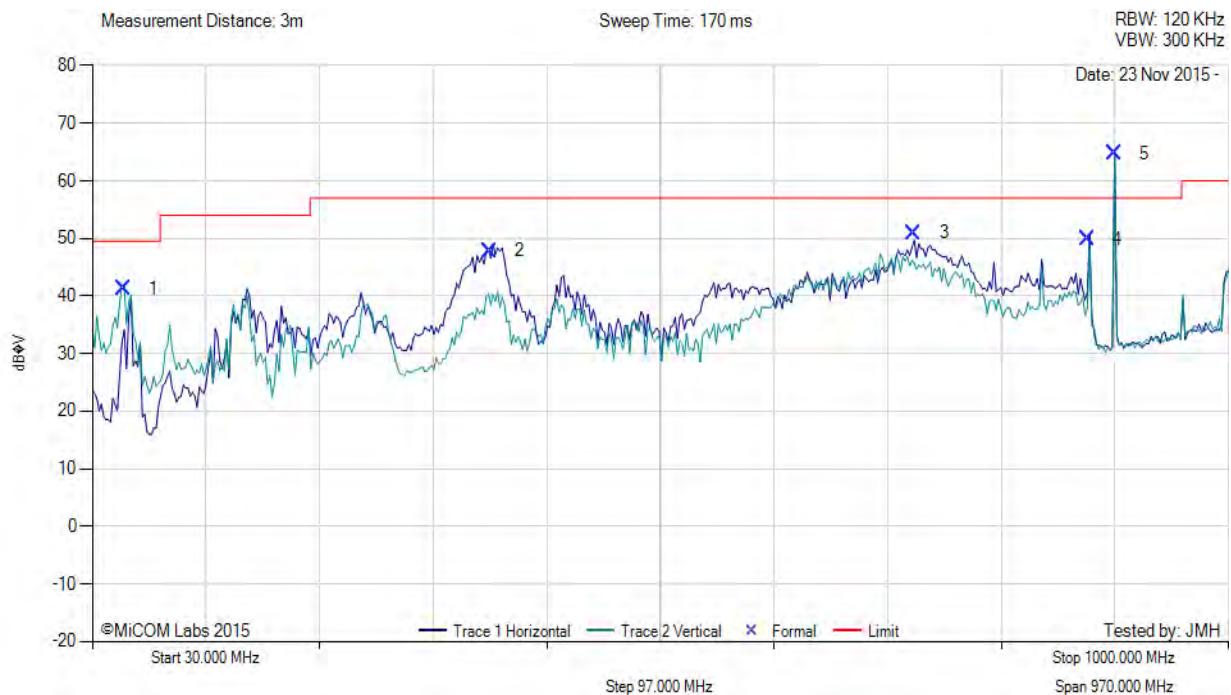
$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log (level (\mu V/m))}$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

Traceability

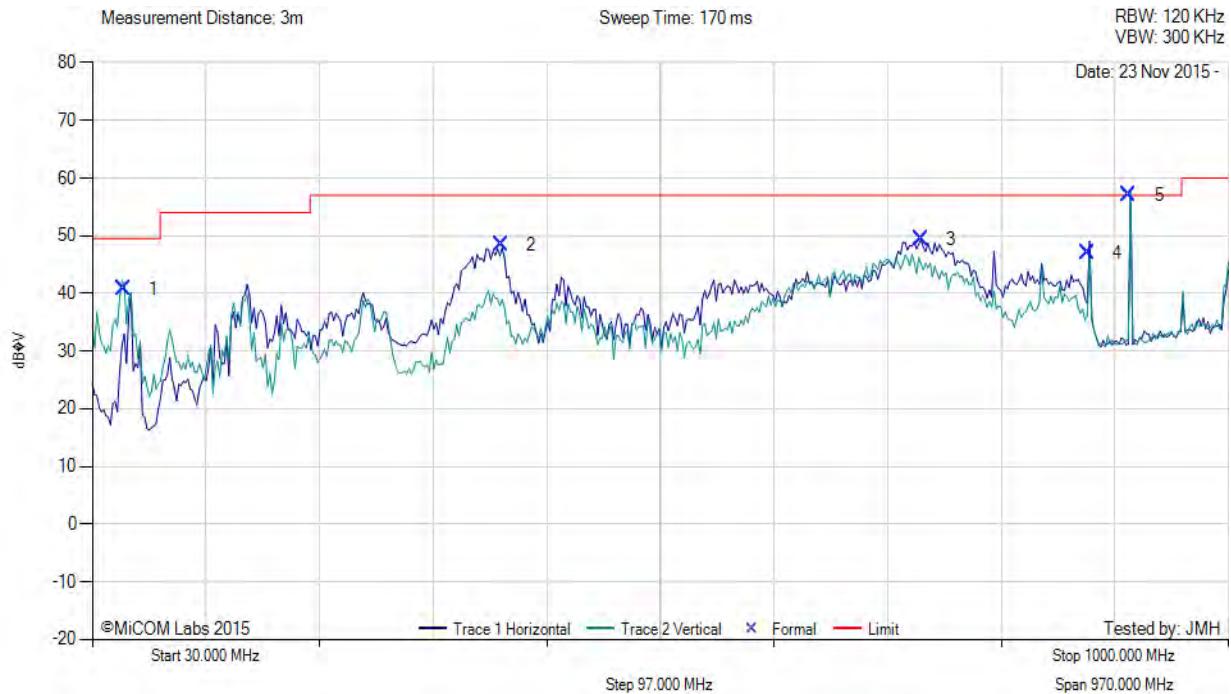
Test Methodology	Laboratory Measurement Uncertainty
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	+5.6/ -4.5 dB



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.3.1 ALR-8696

Variant: CW, Test Freq: 902.80 MHz, Antenna: 8696-C, Power Setting: Max, Duty Cycle (%): 100

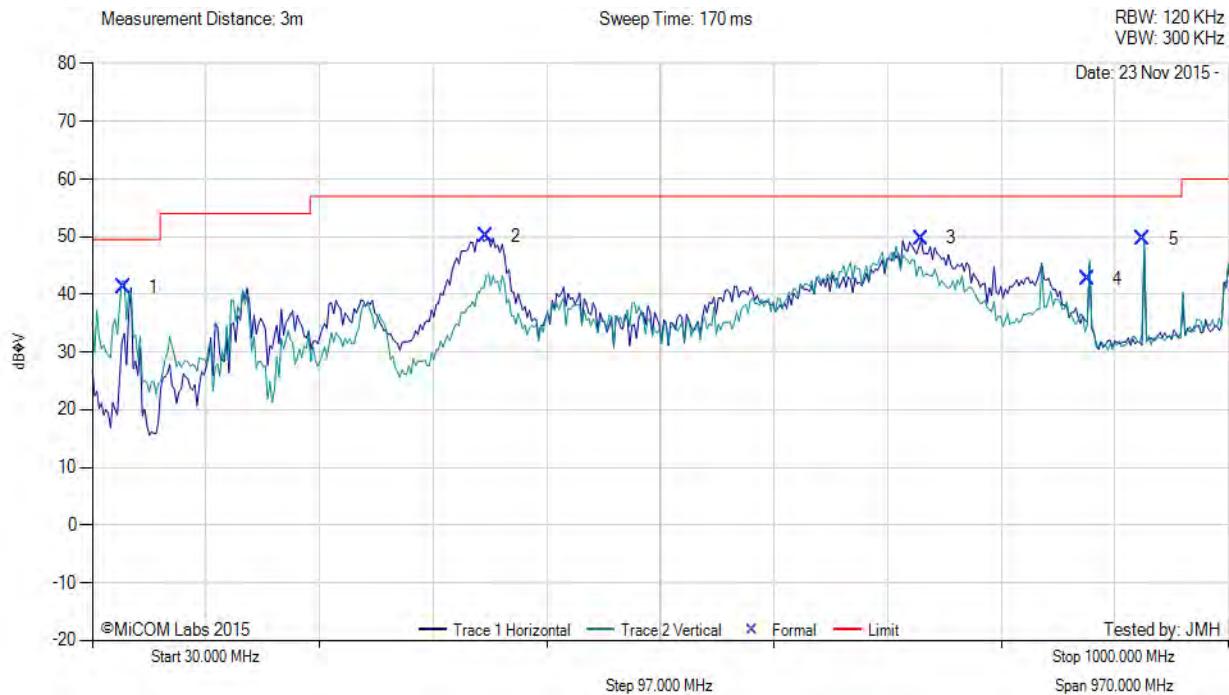


Num	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	56.96	61.81	3.62	-24.22	41.21	MaxQP	Vertical	100	1	49.5	-8.4	Pass
2	368.80	58.15	4.93	-15.29	47.79	MaxQP	Horizontal	100	2	57.0	-9.2	Pass
3	731.61	54.86	5.94	-9.81	50.99	MaxQP	Horizontal	126	357	57.0	-6.0	Pass
4	879.99	51.74	6.28	-8.20	49.82	MaxQP	Horizontal	100	321	57.0	-7.2	Pass
5	902.74	66.14	6.34	-7.75	64.73	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is a Class A device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 915.00 MHz, Antenna: 8696-C, Power Setting: Max, Duty Cycle (%): 100


Num	Frequency MHz	Raw dB _{μV}	Cable Loss	AF dB	Level dB _{μV/m}	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB _{μV/m}	Margin dB	Pass /Fail
1	56.96	61.32	3.62	-24.22	40.72	MaxQP	Vertical	100	102	49.5	-8.3	Pass
2	379.30	58.83	4.95	-15.28	48.50	MaxQP	Horizontal	100	62	57.0	-8.5	Pass
3	737.57	53.26	5.94	-9.82	49.38	MaxQP	Horizontal	121	0	57.0	-7.6	Pass
4	879.98	48.94	6.28	-8.20	47.02	MaxQP	Horizontal	144	357	57.0	-10.0	Pass
5	915.24	58.36	6.39	-7.75	57.00	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is a Class A device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 928.00 MHz, Antenna: 8696-C, Power Setting: Max, Duty Cycle (%): 100

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	56.96	61.86	3.62	-24.22	41.26	MaxQP	Vertical	100	95	49.5	-8.2	Pass
2	365.82	60.52	4.92	-15.35	50.09	MaxQP	Horizontal	100	320	57.0	-6.9	Pass
3	737.63	53.64	5.94	-9.82	49.76	MaxQP	Horizontal	123	0	57.0	-7.2	Pass
4	879.94	44.54	6.28	-8.20	42.62	MaxQP	Vertical	104	15	57.0	-14.4	Pass
5	927.24	50.67	6.43	-7.51	49.59	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is a Class A device

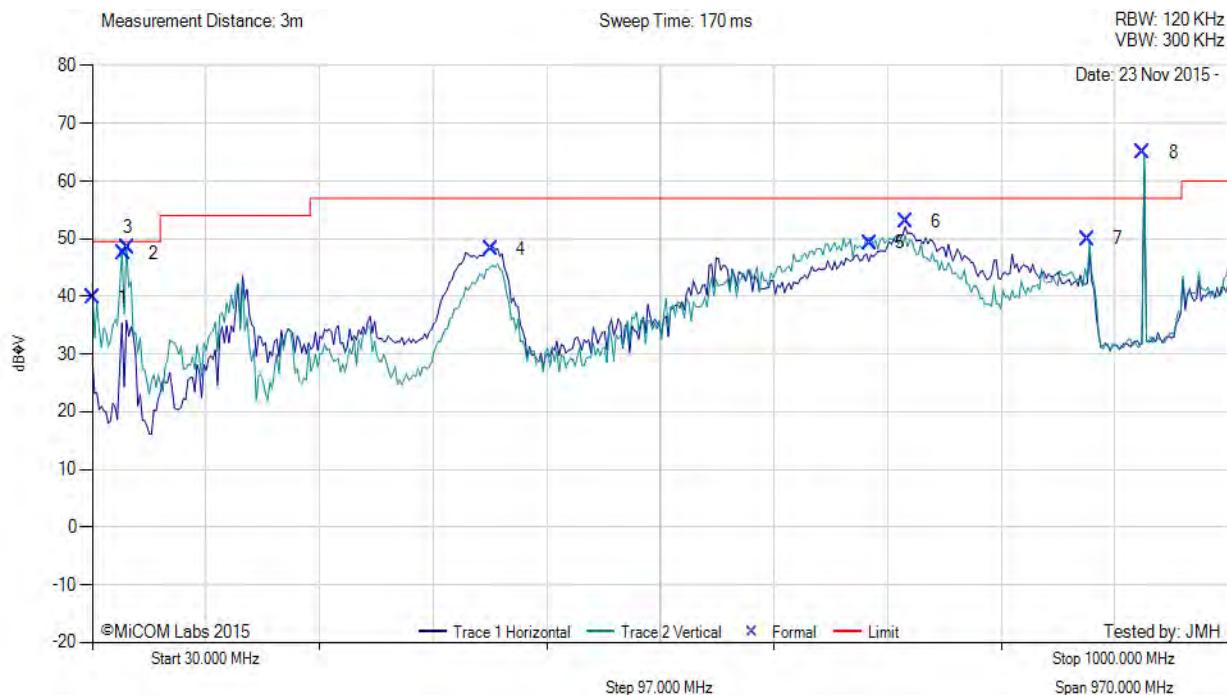
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.3.2 ALR-8697

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	58.46	65.13	3.63	-24.12	44.64	MaxQP	Vertical	106	351	49.5	-4.9	Pass
2	379.30	60.37	4.95	-15.28	44.04	MaxQP	Horizontal	100	81	49.5	-5.5	Pass
3	701.75	49.27	5.86	-10.12	45.01	MaxQP	Vertical	100	293	57.0	-12.0	Pass
4	731.64	53.82	5.94	-9.81	49.95	MaxQP	Horizontal	119	11	57.0	-7.1	Pass
5	731.64	53.96	5.94	-9.81	50.09	MaxQP	Horizontal	123	10	57.0	-6.9	Pass
6	879.98	49.34	6.28	-8.20	47.42	MaxQP	Vertical	105	8	57.0	-9.6	Pass
7	902.74	64.72	6.34	-7.75	63.31	Fundamental	Horizontal	100	1	--	--	

Test Notes: ALR-F800 is class A device.

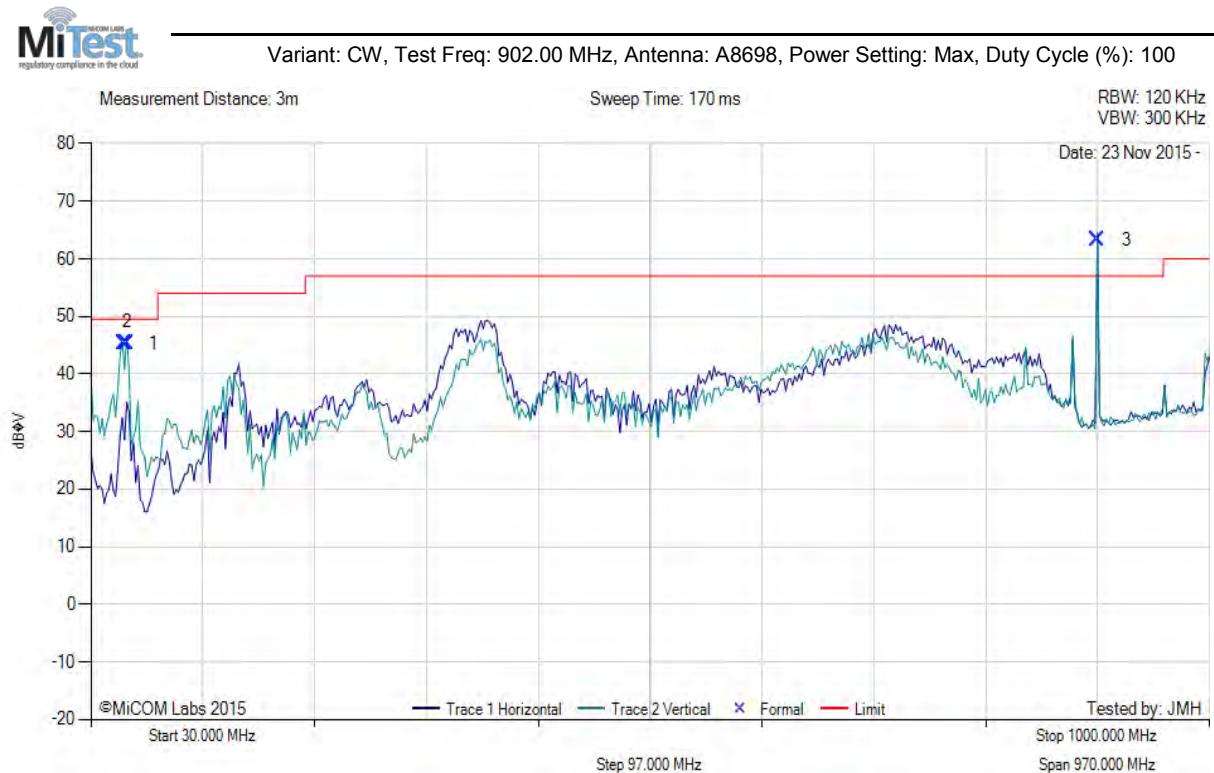
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


Num	Frequency MHz	Raw dB _{PtV}	Cable Loss	AF dB	Level dB _{PtV/m}	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB _{PtV/m}	Margin dB	Pass /Fail
1	30.05	41.25	3.42	-9.72	34.95	MaxQP	Vertical	100	131	49.5	-14.6	Pass
2	56.96	68.10	3.62	-24.22	47.50	MaxQP	Vertical	100	169	49.5	-2.0	Pass
3	59.97	69.17	3.64	-24.02	48.79	MaxQP	Vertical	104	358	49.5	-0.7	Pass
4	373.28	59.32	4.94	-15.31	48.95	MaxQP	Horizontal	100	360	57.0	-8.1	Pass
5	713.65	53.50	5.89	-9.94	49.45	MaxQP	Vertical	196	293	57.0	-7.6	Pass
6	727.10	56.38	5.94	-9.77	52.55	MaxQP	Horizontal	126	14	57.0	-4.5	Pass
7	879.99	52.19	6.28	-8.20	50.27	MaxQP	Vertical	104	13	57.0	-6.7	Pass
8	915.24	73.86	6.39	-7.75	72.50	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MICOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 928.00 MHz, Antenna: 8697, Power Setting: Max, Duty Cycle (%): 100

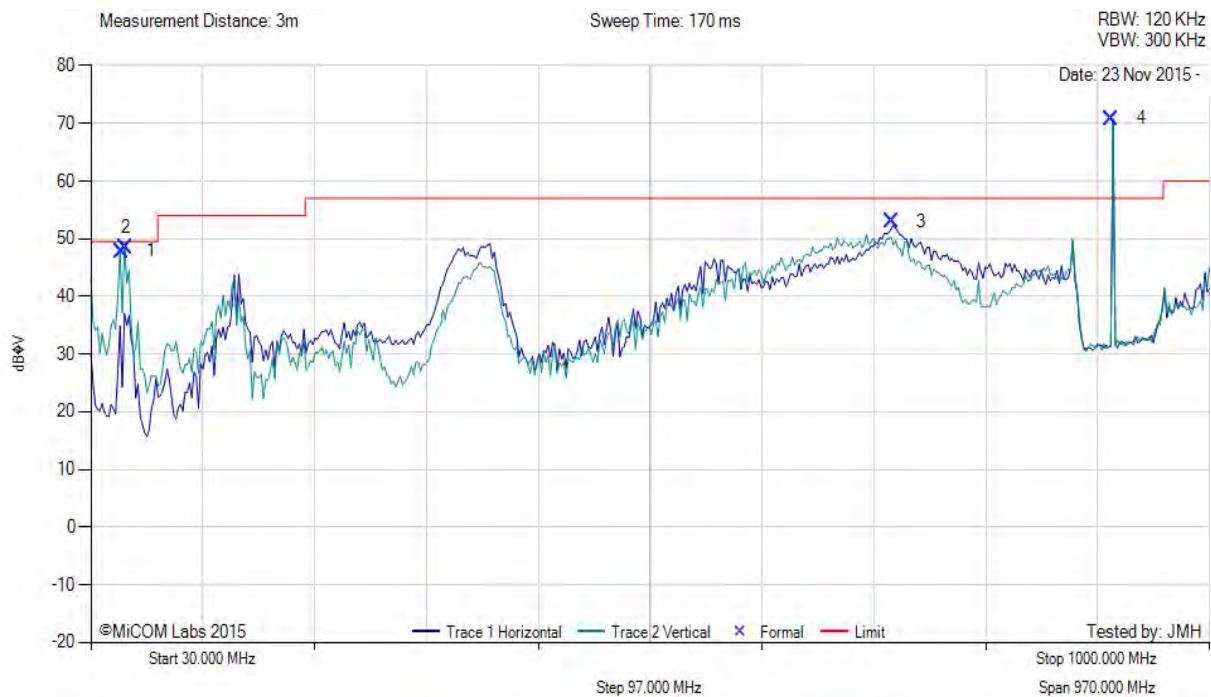


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	30.02	46.11	3.42	-9.72	39.81	MaxQP	Vertical	100	174	49.5	-9.7	Pass
2	56.96	68.00	3.62	-24.22	47.40	MaxQP	Vertical	100	147	49.5	-2.1	Pass
3	59.96	68.79	3.64	-24.02	48.41	MaxQP	Vertical	103	359	49.5	-1.1	Pass
4	370.28	58.47	4.93	-15.27	48.13	MaxQP	Horizontal	100	1	57.0	-8.9	Pass
5	694.12	53.68	5.84	-10.28	49.24	MaxQP	Vertical	100	299	57.0	-7.8	Pass
6	724.15	56.79	5.93	-9.75	52.97	MaxQP	Horizontal	131	5	57.0	-4.0	Pass
7	879.98	51.95	6.28	-8.20	50.03	MaxQP	Vertical	102	12	57.0	-7.0	Pass
8	927.24	66.04	6.43	-7.51	64.96	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

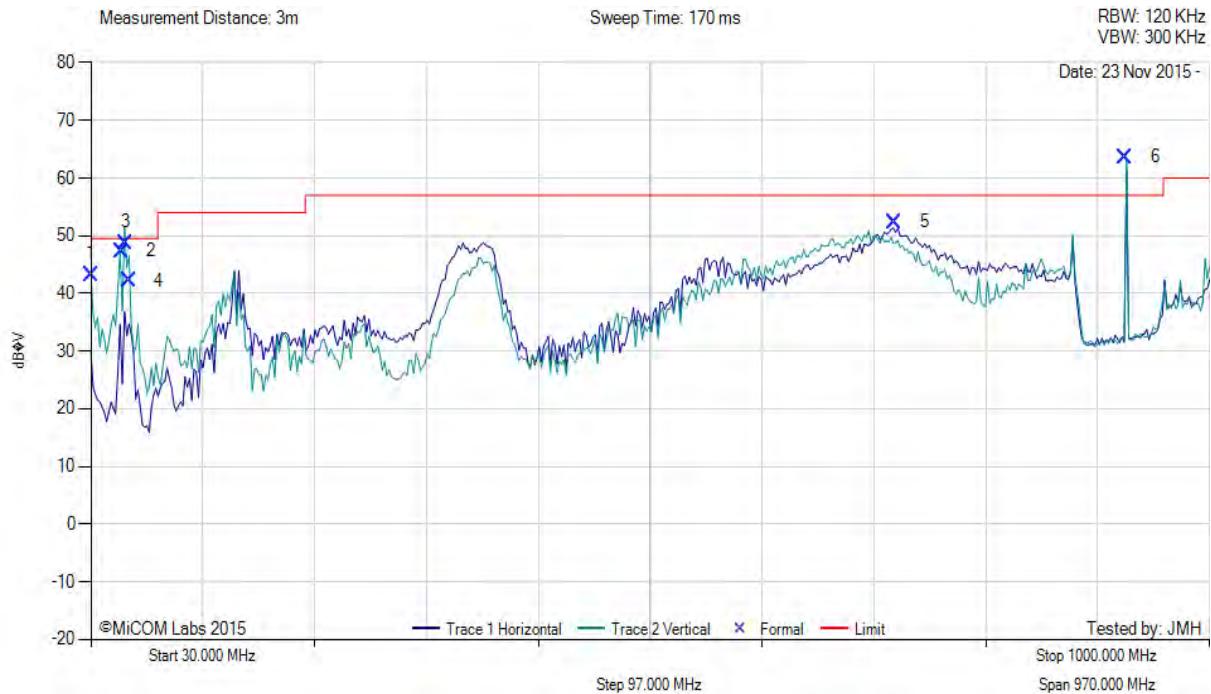
10.6.3.4 ALR-8698


Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	58.46	65.88	3.63	-24.12	45.39	MaxQP	Vertical	100	356	49.5	-4.1	Pass
2	61.47	65.68	3.65	-23.92	45.41	MaxQP	Vertical	106	360	49.5	-4.1	Pass
3	902.74	64.75	6.34	-7.75	63.34	Fundamental	Horizontal	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

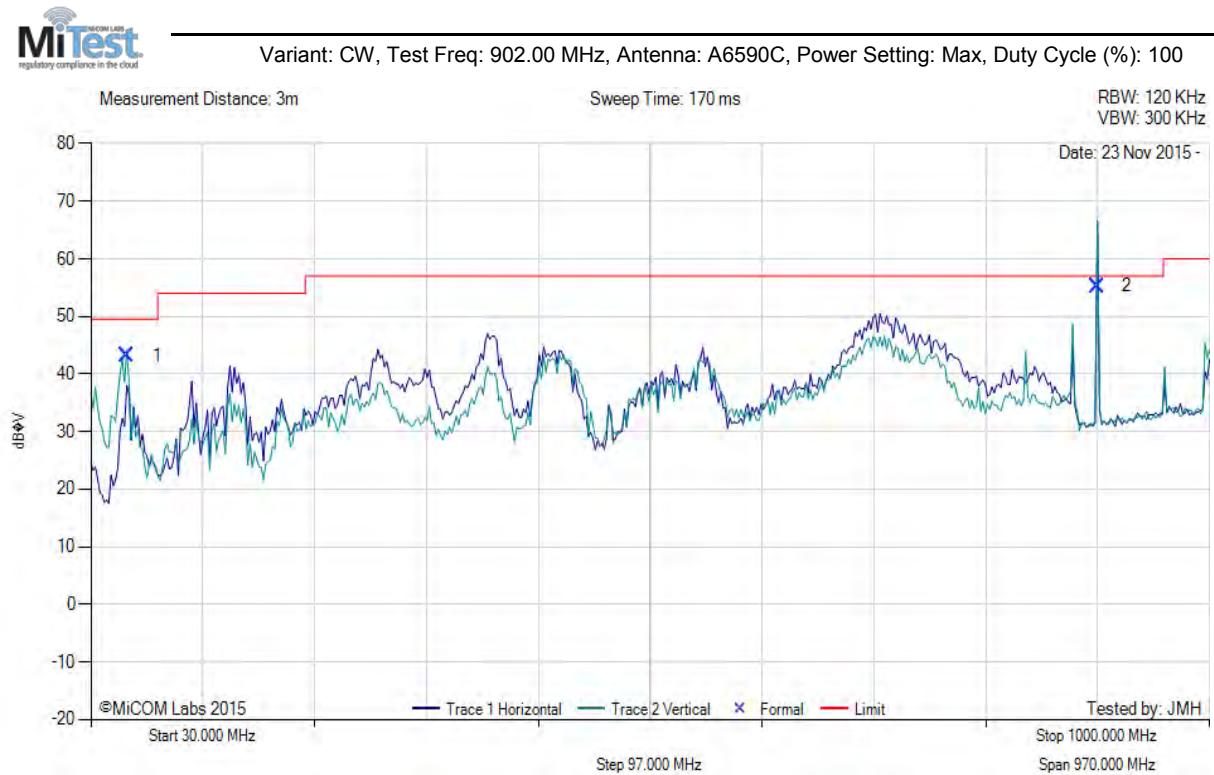
Variant: CW, Test Freq: 915.00 MHz, Antenna: A8698, Power Setting: Max, Duty Cycle (%): 100


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	56.96	68.43	3.62	-24.22	47.83	MaxQP	Vertical	100	22	49.5	-1.7	Pass
2	59.97	69.88	3.64	-24.02	48.50	MaxQP	Vertical	100	355	49.5	-1.0	Pass
3	724.11	56.80	5.93	-9.75	52.98	MaxQP	Horizontal	127	3	57.0	-4.0	Pass
4	915.23	72.17	6.39	-7.75	70.81	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 928.00 MHz, Antenna: A8698, Power Setting: Max, Duty Cycle (%): 100



Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	30.00	49.58	3.42	-9.72	43.28	MaxQP	Vertical	100	180	49.5	-6.2	Pass
2	56.97	67.98	3.62	-24.22	47.38	MaxQP	Vertical	100	0	49.5	-2.1	Pass
3	59.98	69.14	3.64	-24.02	48.76	MaxQP	Vertical	100	356	49.5	-0.7	Pass
4	62.95	62.31	3.66	-23.71	42.26	MaxQP	Vertical	100	0	49.5	-7.2	Pass
5	727.12	56.22	5.94	-9.77	52.39	MaxQP	Horizontal	124	12	57.0	-4.6	Pass
6	927.24	64.72	6.43	-7.51	63.64	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

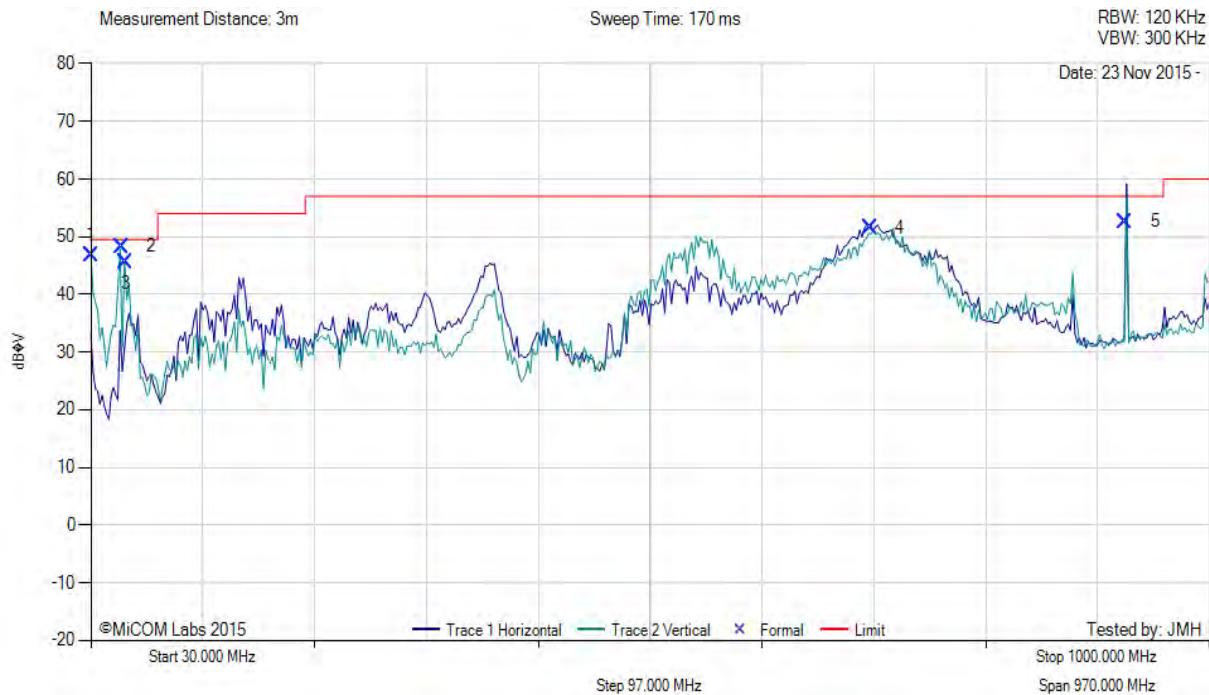
10.6.3.3 ALR-8690C

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	61.47	63.47	3.65	-23.92	43.20	MaxQP	Vertical	100	292	49.5	-6.3	Pass
2	902.73	56.63	6.34	-7.75	55.22	Fundamental	Horizontal	100	0	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 915.00 MHz, Antenna: A6590C, Power Setting: Max, Duty Cycle (%): 100


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	56.96	66.61	3.62	-24.22	46.01	MaxQP	Vertical	100	309	49.5	-3.5	Pass
2	59.97	67.36	3.64	-24.02	46.98	MaxQP	Vertical	100	288	49.5	-2.5	Pass
3	709.14	60.46	5.88	-9.98	56.36	MaxQP	Horizontal	131	181	57.0	-0.6	Pass
4	716.63	59.55	5.90	-9.91	55.54	MaxQP	Horizontal	127	180	57.0	-1.5	Pass
5	879.99	54.27	6.28	-8.20	52.35	MaxQP	Vertical	104	4	57.0	-4.7	Pass
6	915.24	67.29	6.39	-7.75	65.93	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 928.00 MHz, Antenna: A6590C, Power Setting: Max, Duty Cycle (%): 100

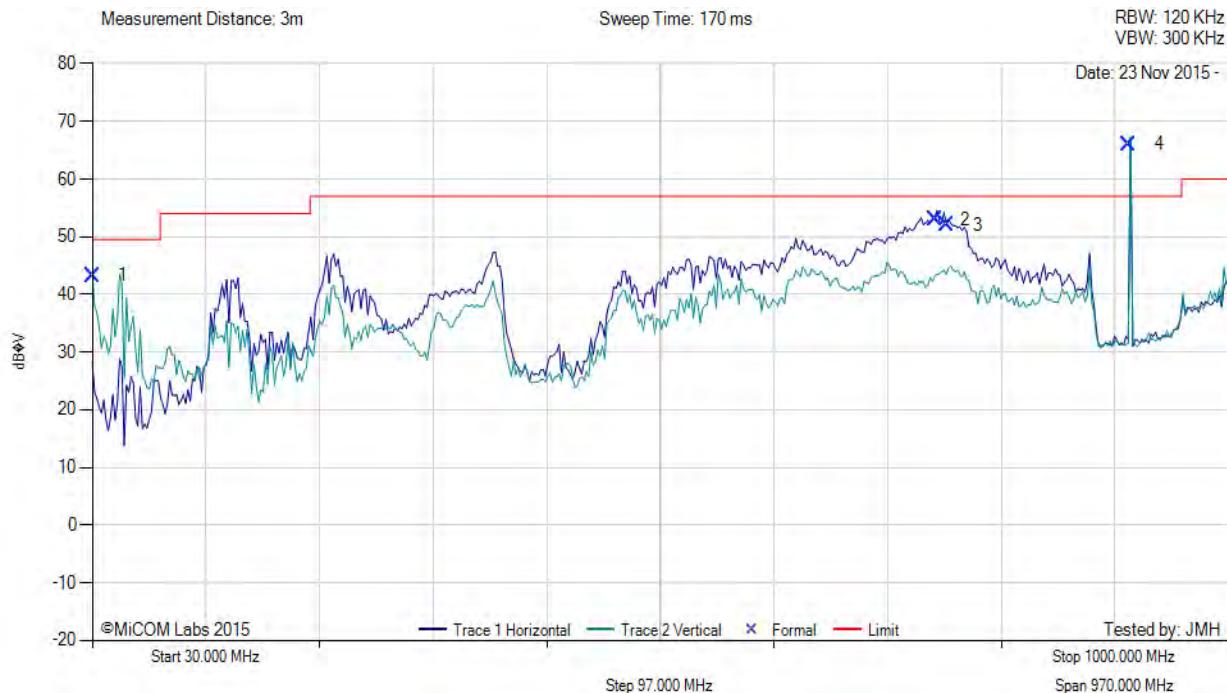


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	30.00	53.12	3.42	-9.72	46.82	MaxQP	Vertical	100	131	49.5	-2.7	Pass
2	56.96	68.89	3.62	-24.22	48.29	MaxQP	Vertical	100	312	49.5	-1.2	Pass
3	59.97	65.94	3.64	-24.02	45.56	MaxQP	Vertical	100	290	49.5	-3.9	Pass
4	706.17	55.70	5.88	-10.04	51.54	MaxQP	Horizontal	112	313	57.0	-5.5	Pass
5	927.24	53.68	6.43	-7.51	52.60	Fundamental	Horizontal	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.3.5 BRA-02-6dBiC


Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	61.47	63.47	3.65	-23.92	43.20	MaxQP	Vertical	100	292	49.5	-6.3	Pass
2	902.73	56.63	6.34	-7.75	55.22	Fundamental	Horizontal	100	0	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Variant: CW, Test Freq: 915.00 MHz, Antenna: BRA-02-6dBic, Power Setting: Max, Duty Cycle (%): 100

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	30.00	49.60	3.42	-9.72	43.30	MaxQP	Vertical	100	178	49.5	-6.2	Pass
2	749.59	56.38	5.99	-9.42	52.95	MaxQP	Horizontal	120	169	57.0	-4.1	Pass
3	759.99	55.34	6.02	-9.30	52.06	MaxQP	Horizontal	118	155	57.0	-4.9	Pass
4	915.23	67.39	6.39	-7.75	66.03	Fundamental	Vertical	100	0	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

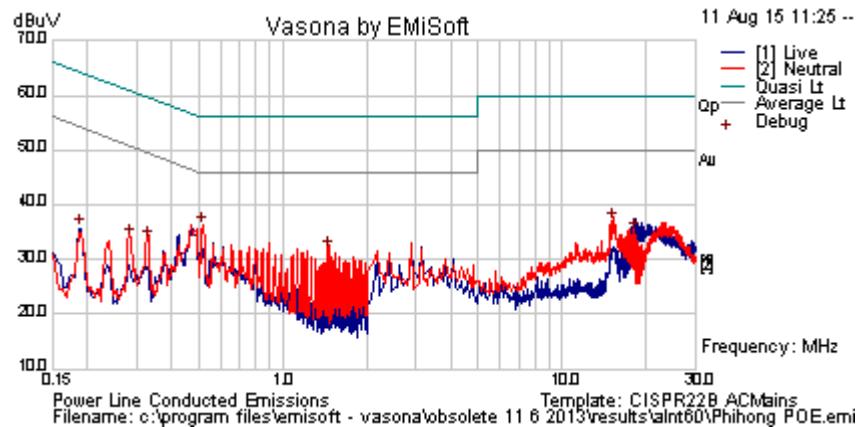
Variant: CW, Test Freq: 928.00 MHz, Antenna: BRA-02-6dBic, Power Setting: Max, Duty Cycle (%): 100

Num	Frequency MHz	Raw dB μ V	Cable Loss	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
1	751.11	57.89	6.00	-9.40	54.49	MaxQP	Horizontal	111	161	57.0	-2.5	Pass
2	759.98	55.39	6.02	-9.30	52.11	MaxQP	Horizontal	112	165	57.0	-4.9	Pass
3	927.24	62.94	6.43	-7.51	61.86	Fundamental	Vertical	100	1	--	--	

Test Notes: ALR-F800 is Class A Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

10.6.4. ac Wireline Emissions

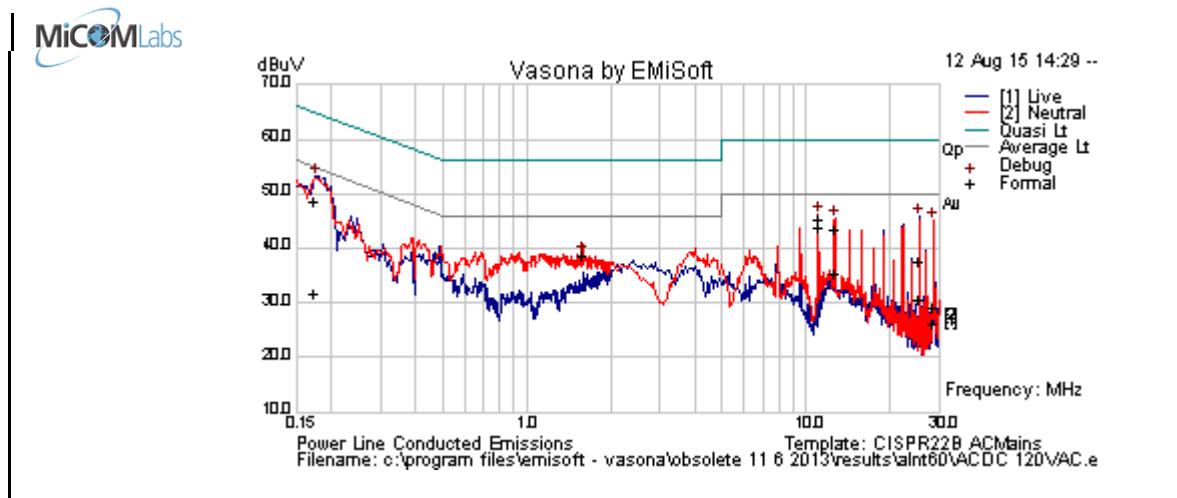

FCC, Part 15 Subpart C §15.207

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Measurement Results for ac Wireline Conducted Emissions (150 kHz – 30 MHz)

Model Number	POE30U-560(G)	Engineer	SB
Variant	AC Wireline 120Vac 60 Hz	Temp (°C)	10
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	37
Power Setting	N/A	Press. (mBars)	1010
Antenna	50 Ohm Termination		
Test Notes 1	120VAC / 1.0A (56VDC / 0.55A);		
Test Notes 2	Class B Limits		



Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.520	26.0	9.9	0.1	36.0	Peak [Scan]	Neutral	46	-10.0	Pass	
15.373	26.0	10.4	0.6	37.0	Peak [Scan]	Neutral	50	-13.0	Pass	
1.455	21.8	10.0	0.1	31.9	Peak [Scan]	Neutral	46	-14.1	Pass	
18.377	23.9	10.5	0.7	35.1	Peak [Scan]	Live	50	-14.9	Pass	
0.333	23.5	9.9	0.1	33.4	Peak [Scan]	Neutral	49.38	-15.9	Pass	
0.287	24.2	9.9	0.1	34.1	Peak [Scan]	Neutral	50.61	-16.5	Pass	
0.190	25.7	9.9	0.1	35.6	Peak [Scan]	Live	54.04	-18.4	Pass	
Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Model Number	PSAC30U-120	Engineer	SB
Variant	AC Wireline 120Vac 60 Hz	Temp (°C)	10
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	37
Power Setting	N/A	Press. (mBars)	1010
Antenna	50 Ohm Termination		
Test Notes 1	Switching PSU; Model:		
Test Notes 2	Class B Limits		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.173	38.7	9.9	0.1	48.7	Quasi Peak	Neutral	64.8	-16.1	Pass	
11.122	34.6	10.3	0.4	45.3	Quasi Peak	Neutral	60.0	-14.7	Pass	
25.429	26.2	10.6	0.9	37.7	Quasi Peak	Neutral	60.0	-22.3	Pass	
12.718	32.5	10.3	0.5	43.4	Quasi Peak	Neutral	60.0	-16.6	Pass	
28.567	17.6	10.8	0.9	29.3	Quasi Peak	Neutral	60.0	-30.7	Pass	
0.173	21.6	9.9	0.1	31.6	Average	Neutral	54.8	-23.2	Pass	
11.122	33.2	10.3	0.4	44.0	Average	Neutral	50.0	-6.1	Pass	
25.429	19.0	10.6	0.9	30.6	Average	Neutral	50.0	-19.4	Pass	
12.718	24.4	10.3	0.5	35.2	Average	Neutral	50.0	-14.8	Pass	
28.567	14.4	10.8	0.9	26.1	Average	Neutral	50.0	-23.9	Pass	
1.598	28.7	10.0	0.1	38.8	Peak [Scan]	Neutral	46.0	-7.2	Pass	
Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Specification

Limits

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

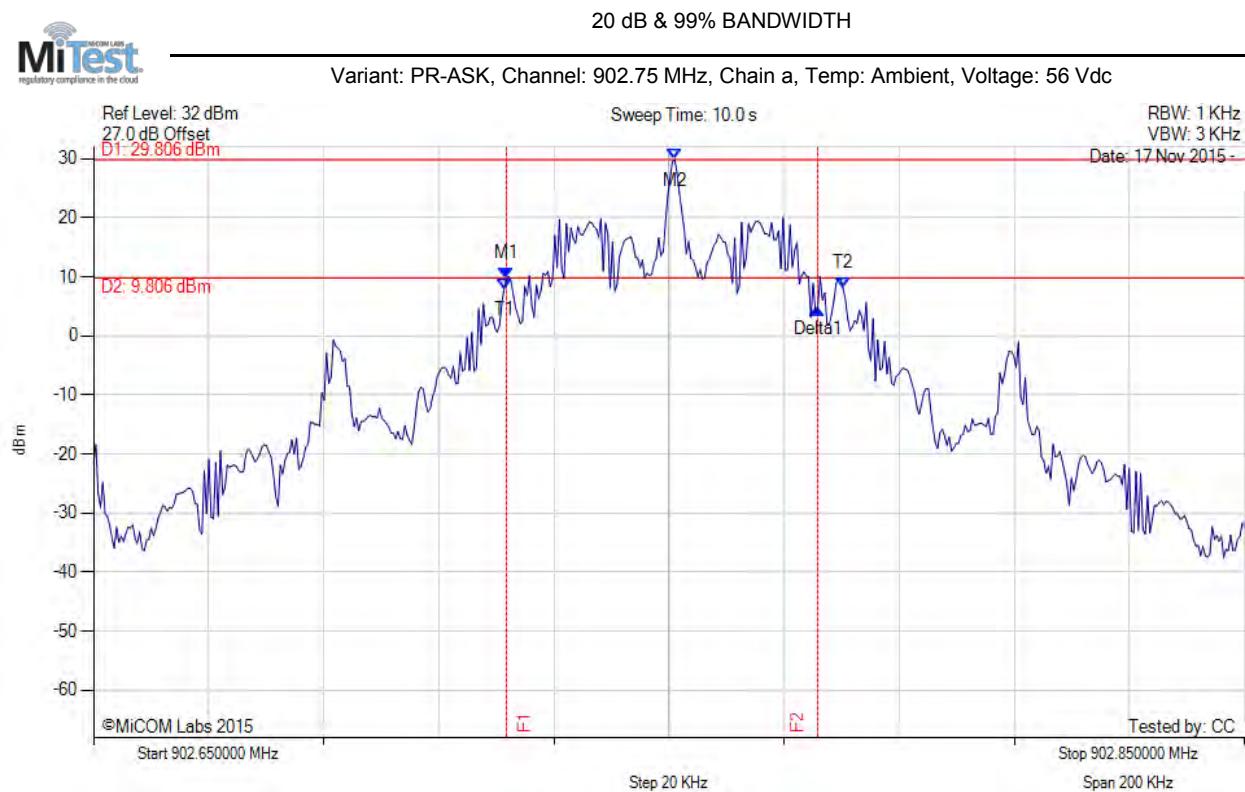
§15.207 (a) Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

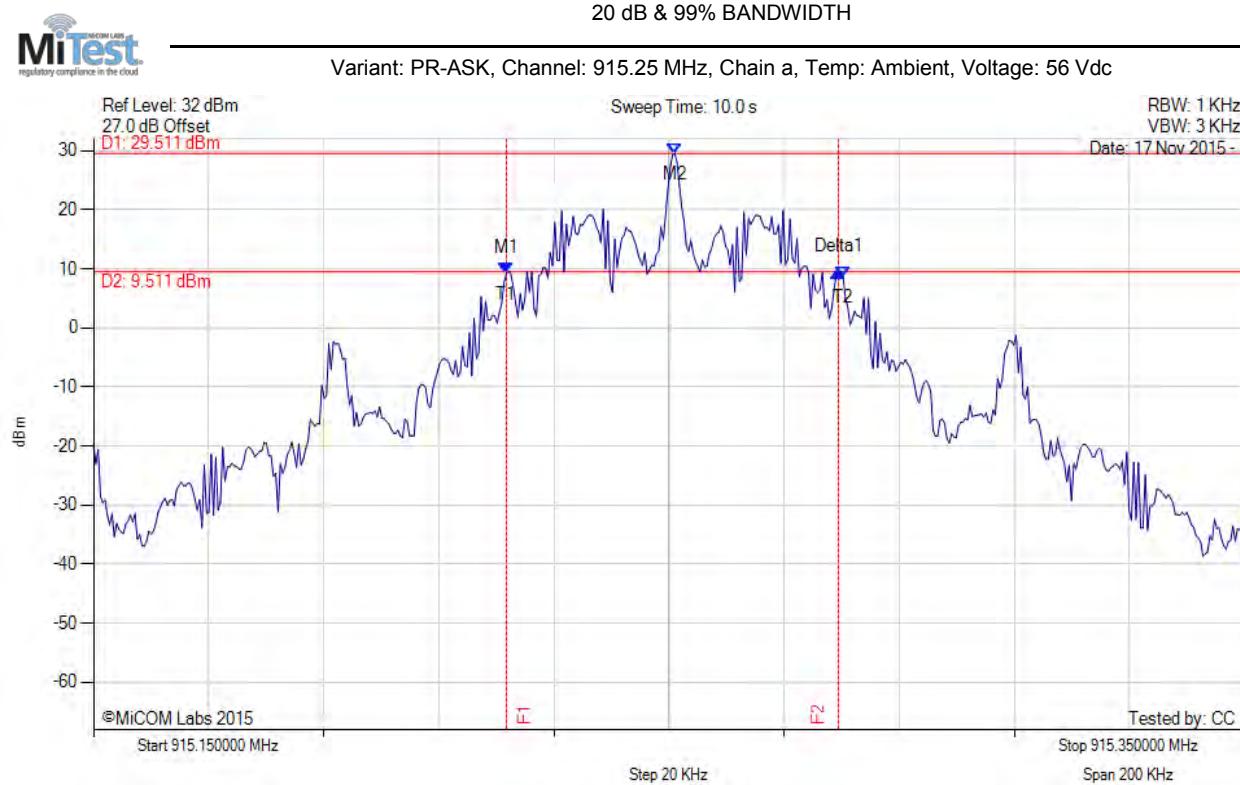
* Decreases with the logarithm of the frequency

Traceability


Test Methodology	Laboratory Measurement Uncertainty
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	±2.64 dB

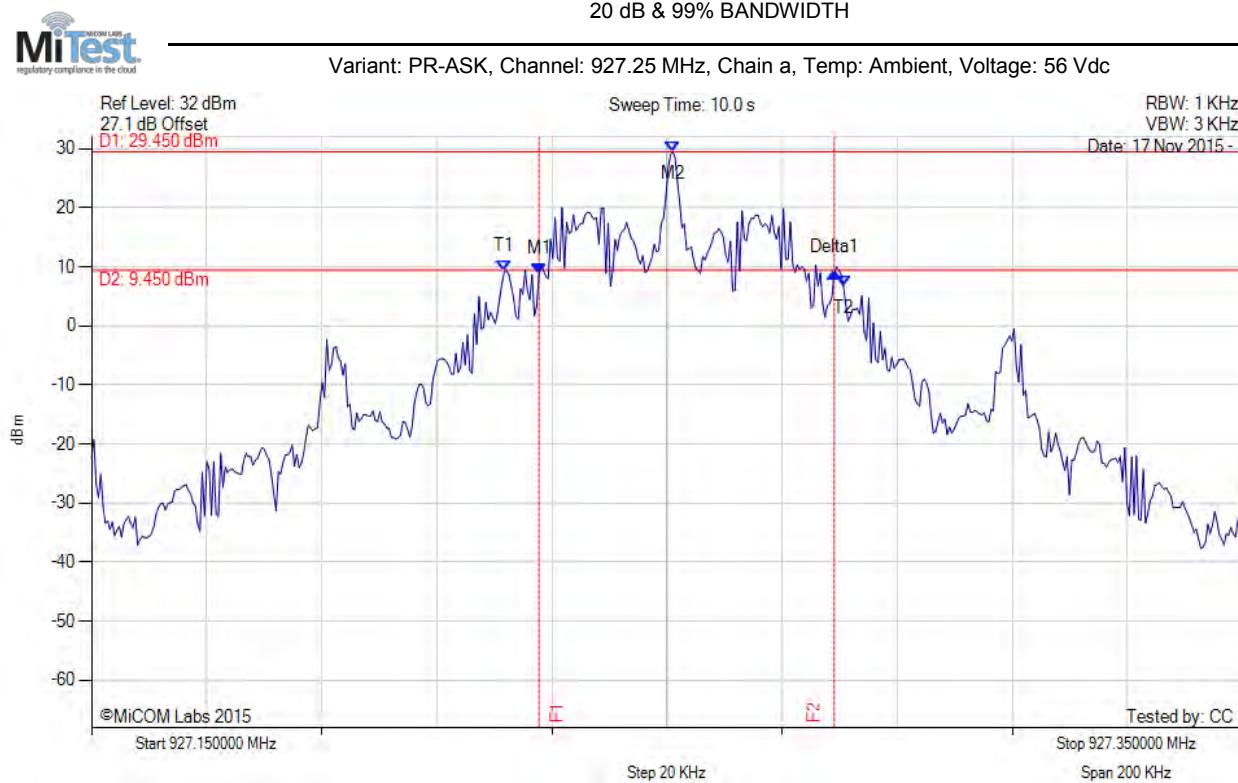
A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


A.1. 20 dB & 99% Bandwidth

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 902.722 MHz : 9.785 dBm M2 : 902.751 MHz : 29.806 dBm Delta1 : 54 KHz : -5.127 dB T1 : 902.721 MHz : 7.902 dBm T2 : 902.780 MHz : 8.002 dBm OBW : 59 KHz	Measured 6 dB Bandwidth: 0.054 MHz Limit: ≥ 500.0 kHz Margin: 0.45 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

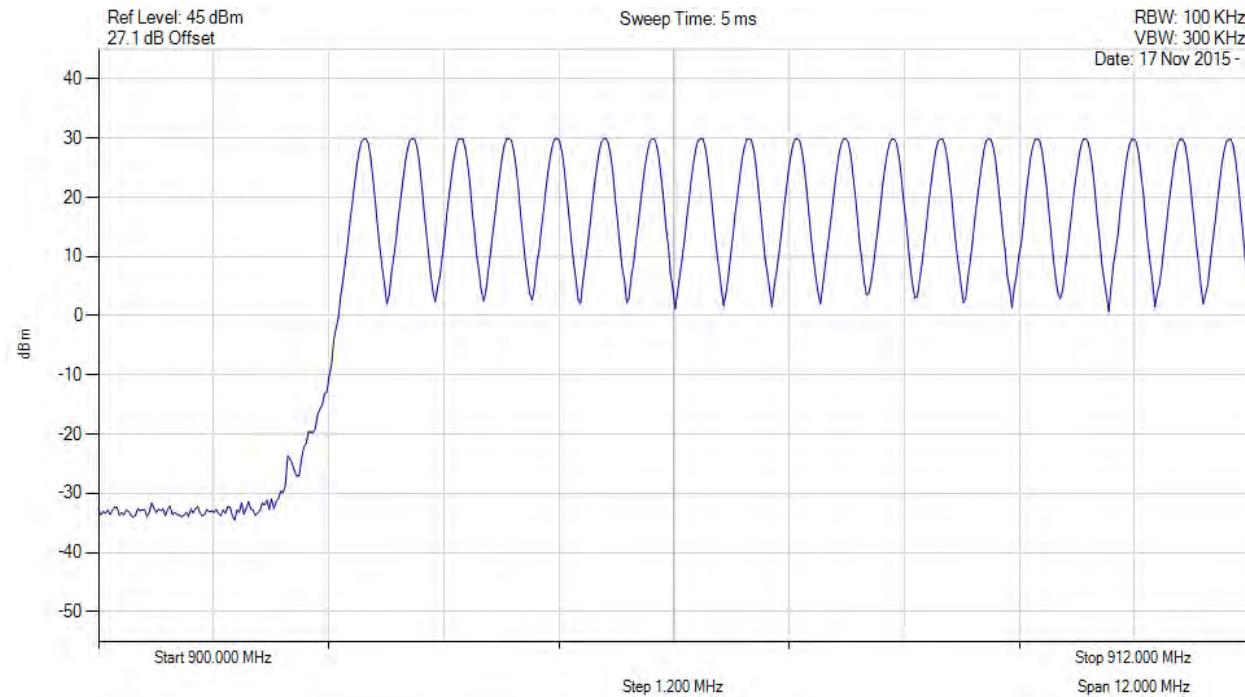
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 915.222 MHz : 9.226 dBm M2 : 915.251 MHz : 29.511 dBm Delta1 : 58 KHz : 0.368 dB T1 : 915.222 MHz : 9.226 dBm T2 : 915.280 MHz : 8.679 dBm OBW : 59 KHz	Measured 6 dB Bandwidth: 0.058 MHz Limit: \geq 500.0 kHz Margin: 0.44 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 927.228 MHz : 8.803 dBm M2 : 927.251 MHz : 29.450 dBm Delta1 : 51 KHz : 0.146 dB T1 : 927.222 MHz : 9.171 dBm T2 : 927.281 MHz : 6.668 dBm OBW : 59 KHz	Measured 6 dB Bandwidth: 0.051 MHz Limit: \geq 500.0 kHz Margin: 0.45 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

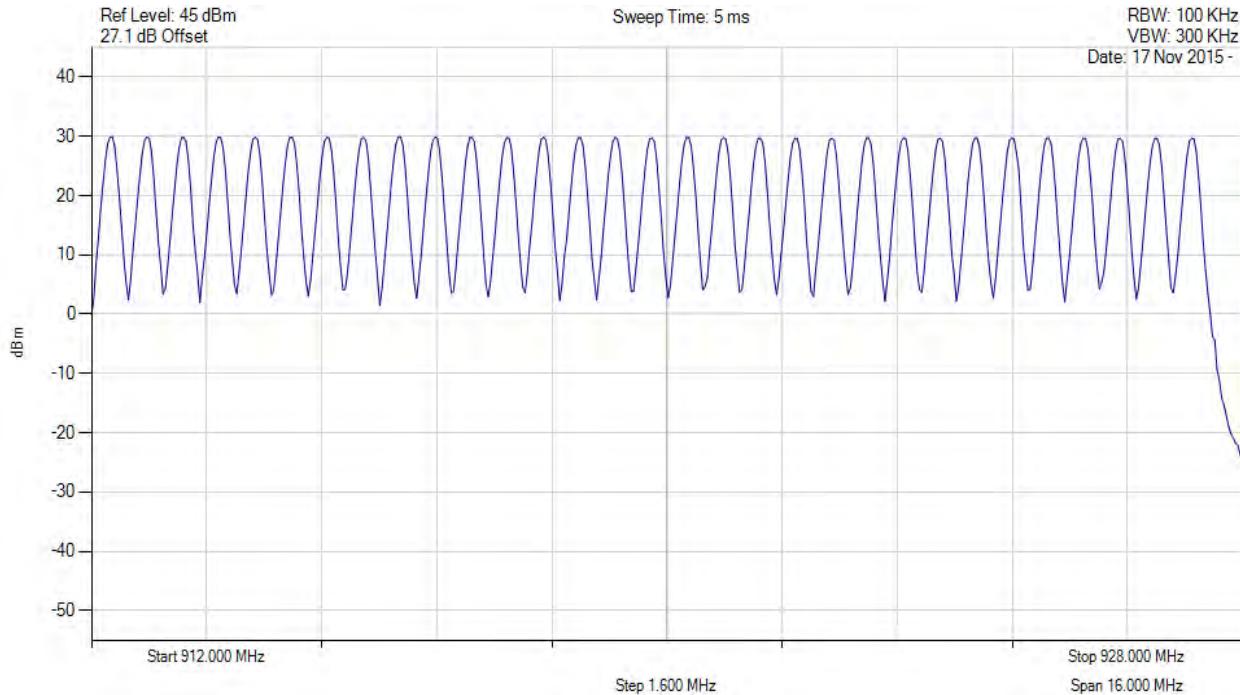
A.2. Number of Channels

Hopping Sequence 902-912 MHz

Variant: PR-ASK, Channel: Hopping, Chain a, Temp: Ambient, Voltage: 56 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: Hopping Number of Hops: 19.0

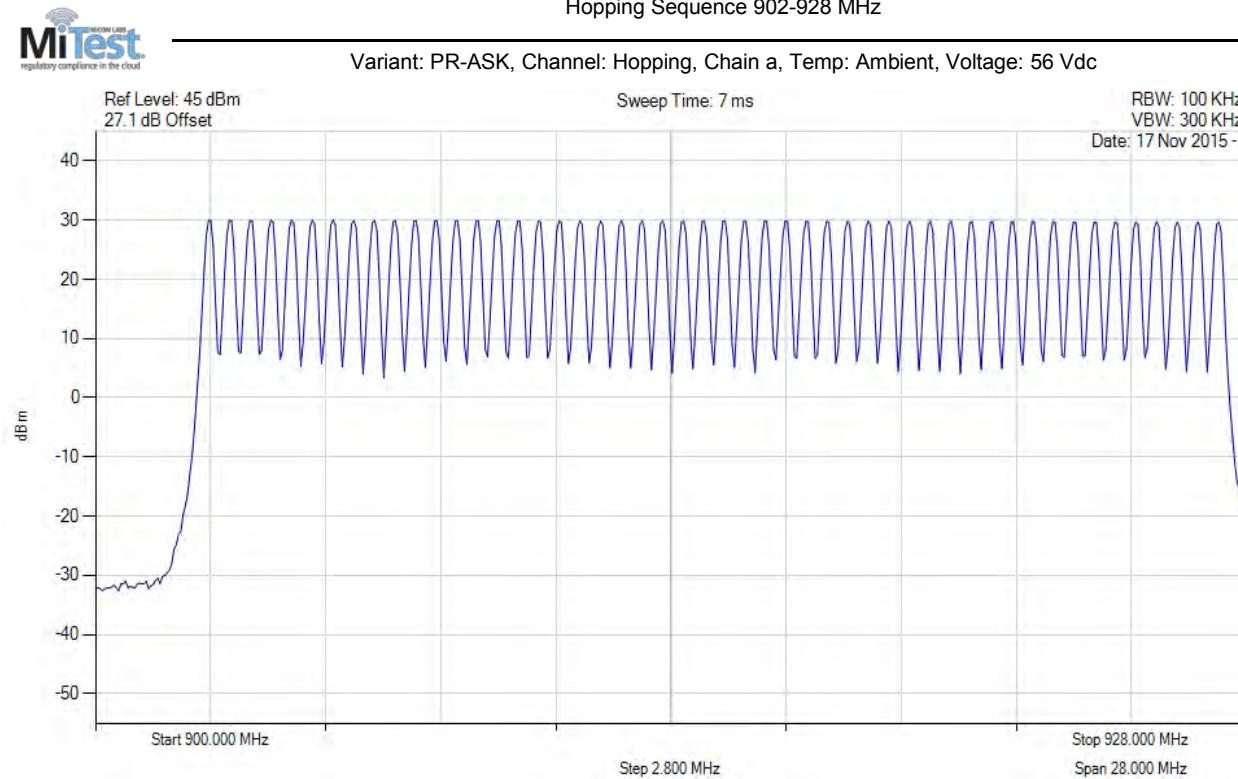
[back to matrix](#)



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Hopping Sequence 912-928 MHz

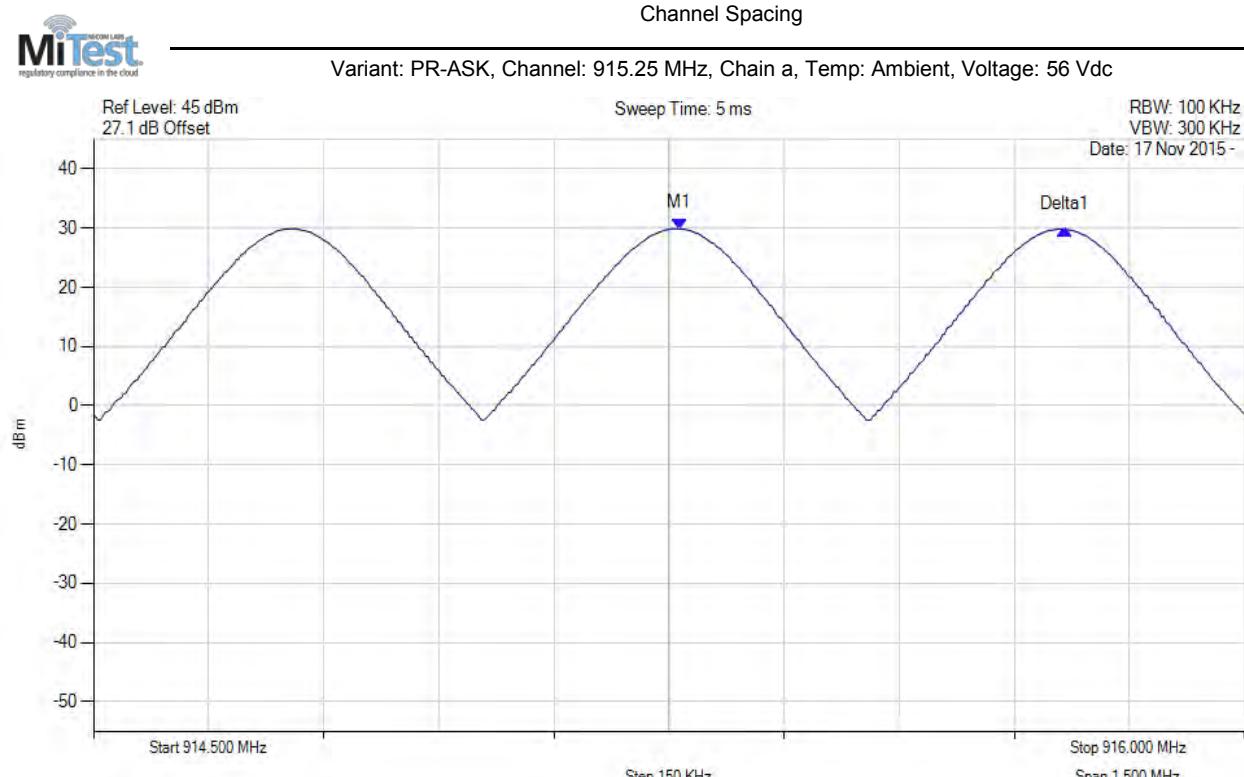
Variant: PR-ASK, Channel: Hopping, Chain a, Temp: Ambient, Voltage: 56 Vdc



Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: Hopping Number of Hops: 31.0

[back to matrix](#)

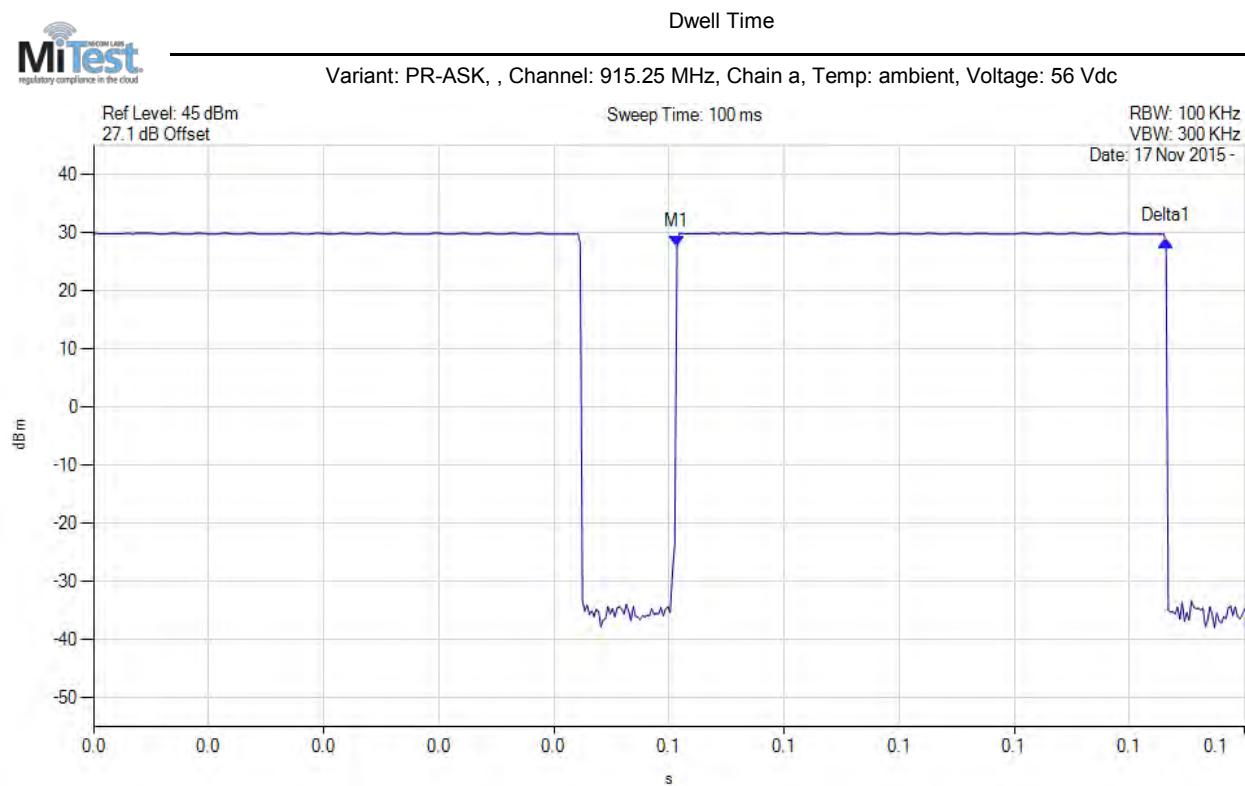
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: Hopping Number of Hops: 50

[back to matrix](#)

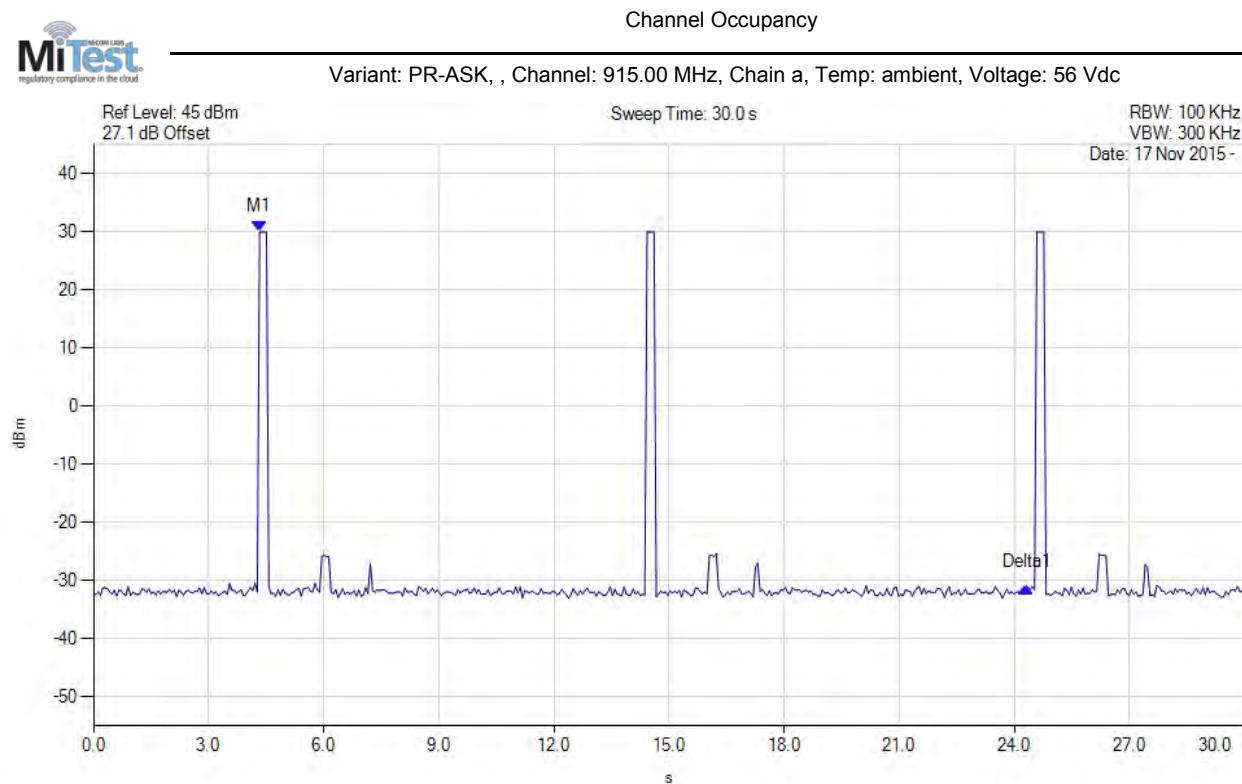
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.3. Channel Spacing


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAXH	M1 : 915.264 MHz : 29.901 dBm Delta1 : 502 KHz : -0.112 dB	Channel Frequency: 915.25 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


A.4. Dwell Time & Channel Occupancy

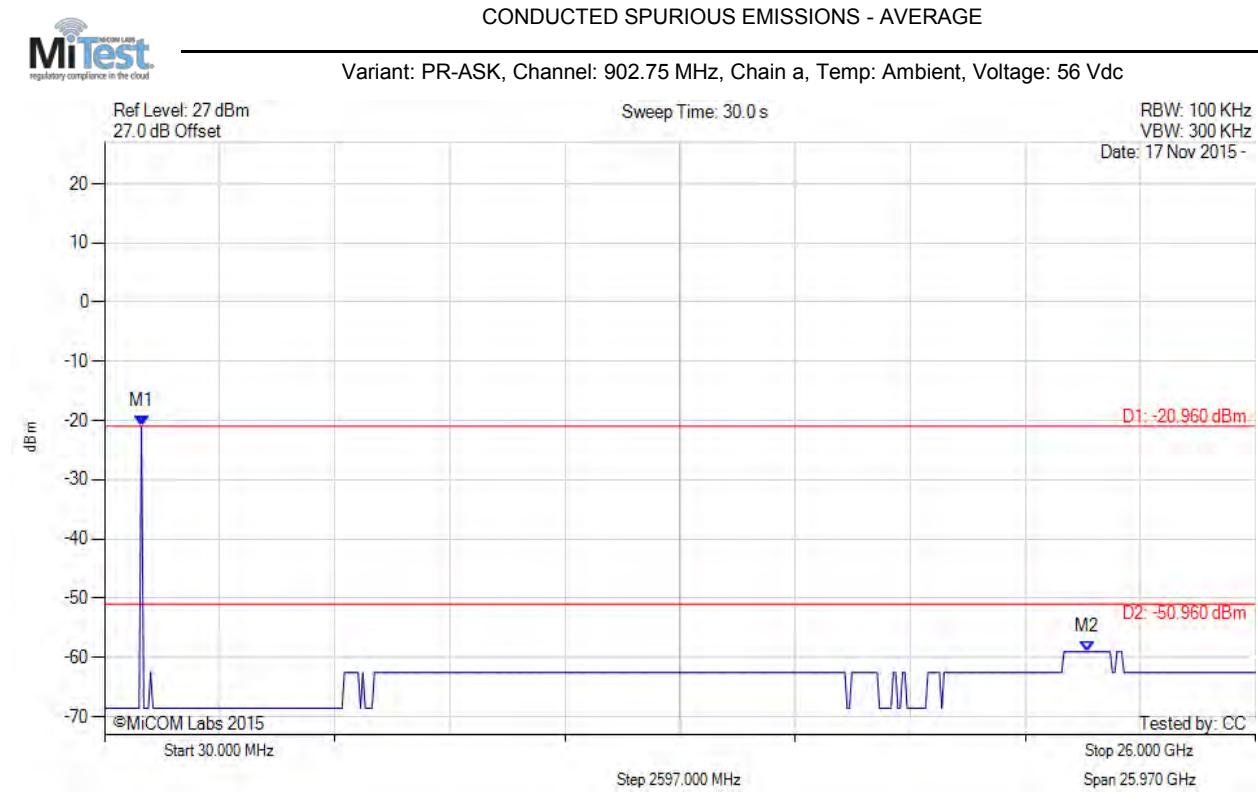
Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIFW	M1(915.25 MHz) : 0.051 s : 27.654 dBm Delta1(915.25 MHz) : 0.042 s : 0.848 dB	Channel Frequency: 915.25 MHz Dwell Time: 0.042 s

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1(915.00 MHz) : 2.164 s : 29.324 dBm Delta1(915.00 MHz) : 20.000 s : -68.944 dB	Channel Frequency: 902.75 MHz Dwell Time: 42ms Occupancy: 84.96 ms Limit: 400ms/20s

[back to matrix](#)



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

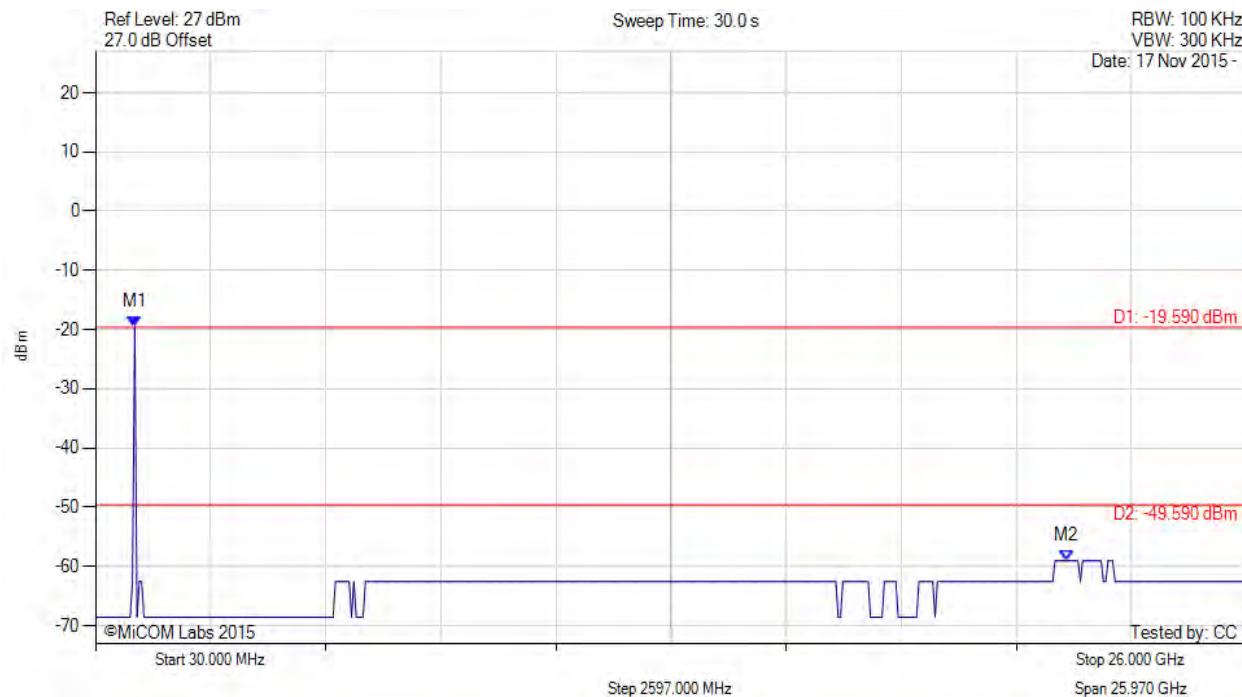
A.5. Emissions

A.5.1. Conducted Emissions

A.5.1.1. Conducted Spurious Emissions

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 862.705 MHz : -20.961 dBm M2 : 22.201 GHz : -59.023 dBm	Limit: -50.96 dBm Margin: -8.06 dB

[back to matrix](#)



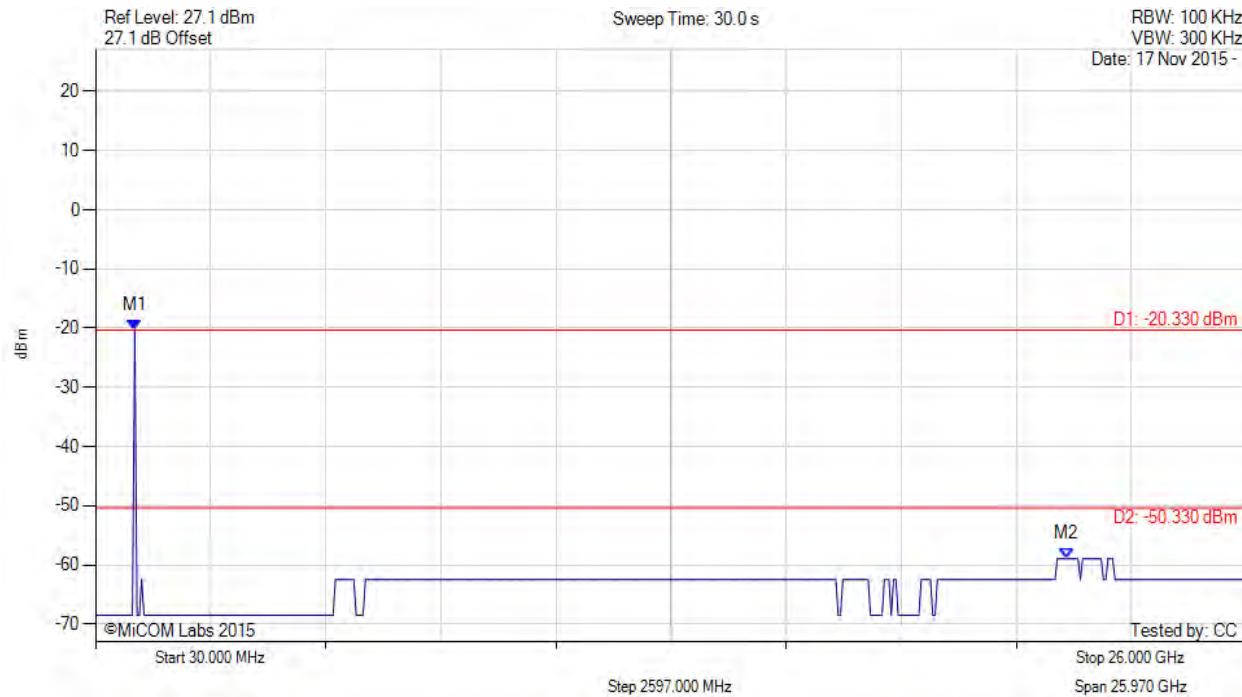
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Variant: PR-ASK, Channel: 915.25 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 914.749 MHz : -19.591 dBm M2 : 21.941 GHz : -59.023 dBm	Limit: -49.59 dBm Margin: -9.43 dB

[back to matrix](#)

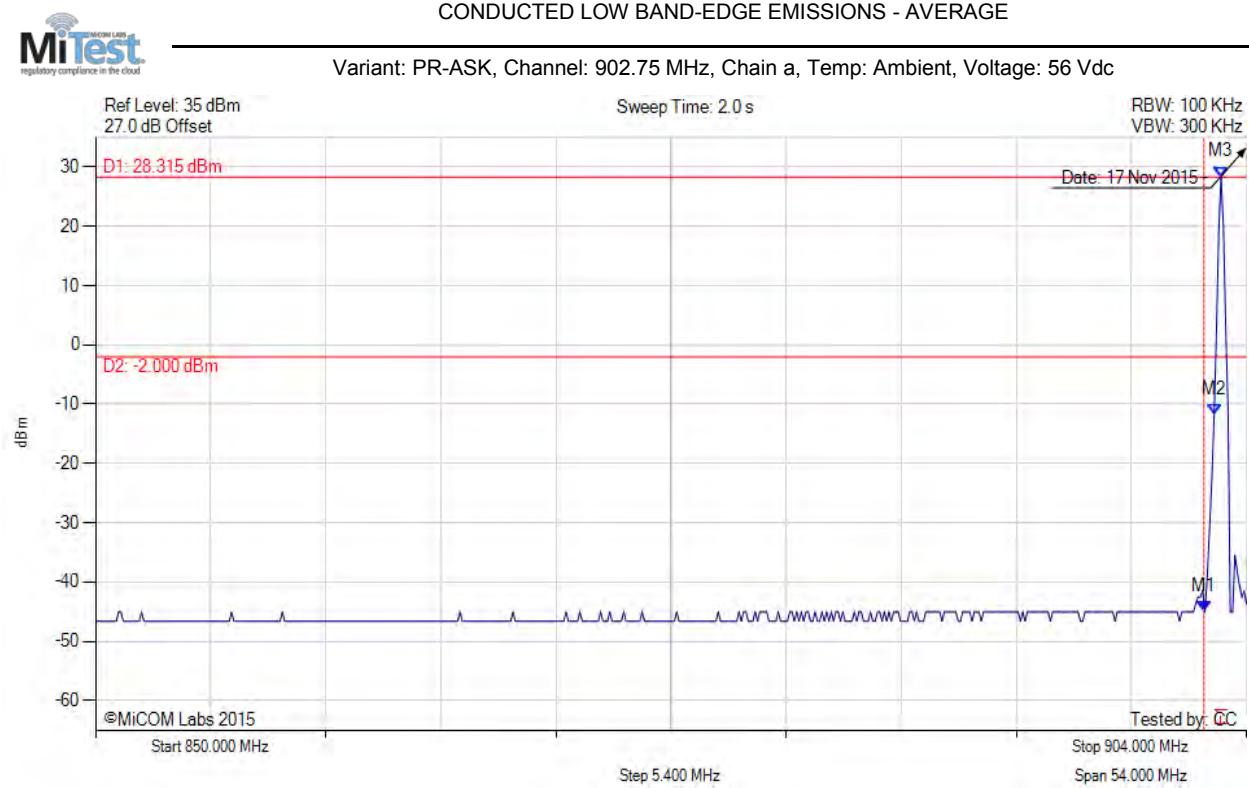


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Variant: PR-ASK, Channel: 927.25 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc

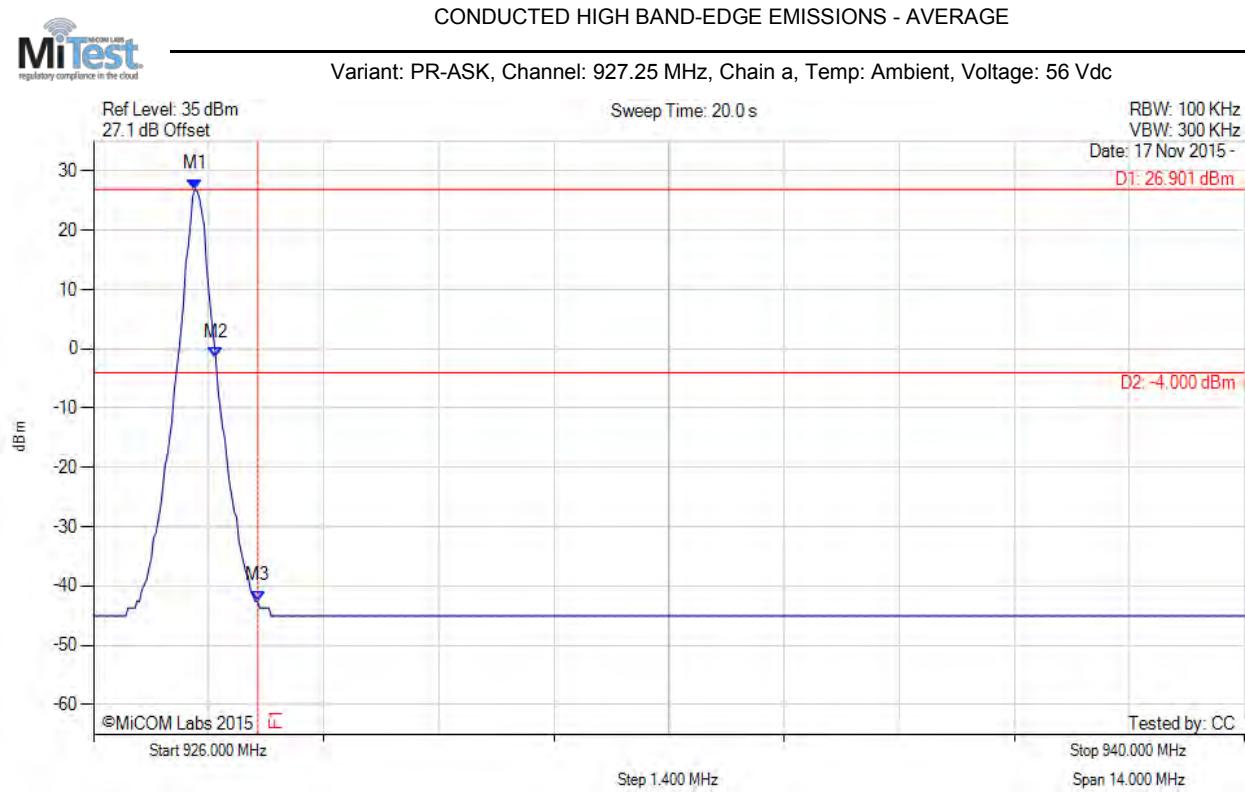
Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 914.749 MHz : -20.335 dBm M2 : 21.941 GHz : -58.923 dBm	Limit: -50.33 dBm Margin: -8.59 dB


[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.5.1.2. Conducted Band-Edge Emissions

A.5.1.2.1. Conducted Low Band-Edge Emissions



Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 902.000 MHz : -45.002 dBm M2 : 902.485 MHz : -11.716 dBm M3 : 902.810 MHz : 28.315 dBm	Channel Frequency: 902.75 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.5.1.2.2. Conducted High Band-Edge Emissions

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 927.234 MHz : 26.901 dBm M2 : 927.487 MHz : -1.519 dBm M3 : 928.000 MHz : -42.504 dBm	Channel Frequency: 927.25 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com