

Test of Alien Technology RFID Reader ALR-9680

To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: ALNT46-U1 Rev A

TEST REPORT
FROM
MiCOMLabs

Test of Alien Technology RFID Reader ALR-9680

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: ALNT46-U1 Rev A

This report supersedes: NONE

Manufacturer: Alien Technology
18220 Butterfield Blvd
Morgan Hill
California 95037, USA

Product Function: 915 MHz RFID Reader

Copy No: pdf **Issue Date:** 15th February 2013

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
440 Boulder Court, Suite 200
Pleasanton, CA 94566 USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

TEST CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 3 of 67

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF CONTENTS

ACCREDITATION, LISTINGS & RECOGNITION	5
TESTING ACCREDITATION	5
RECOGNITION	6
PRODUCT CERTIFICATION	7
1. TEST RESULT CERTIFICATE	9
2. REFERENCES AND MEASUREMENT UNCERTAINTY	10
2.1. Normative References	10
2.2. Test and Uncertainty Procedures	10
3. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
3.1. Technical Details	11
3.2. Scope of Test Program	12
3.3. Equipment Model(s) and Serial Number(s)	13
3.4. Antenna Details	13
3.5. Cabling and I/O Ports	13
3.6. Test Configurations	14
3.7. Equipment Modifications	14
3.8. Deviations from the Test Standard	14
4. TEST SUMMARY	15
5. TEST RESULTS	17
5.1. Device Characteristics	17
5.1.1. 20 dB Bandwidth	17
5.1.2. Transmitter Channels - Channel Spacing	23
5.1.3. Transmitter Channels	26
5.1.4. Output Power	31
5.1.5. Maximum Permissible Exposure	34
5.1.6. Conducted Spurious Emissions Transmitter	35
5.1.7. Conducted Spurious Emissions Stand-By	43
Conducted Stand-By Spurious Emissions 30M - 7 GHz	44
5.1.8. Radiated Emissions	46
5.1.9. Radiated Spurious Emissions – Digital Emissions(0.03-1 GHz)	53
5.1.10. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	58
6. PHOTOGRAPHS	62
6.1. General Measurement Test Set-Up	62
6.2. Radiated Emissions <1 GHz	63
6.3. Radiated Emissions >1 GHz	64
6.4. Cable Connections POE AC Wireline Emissions	65
7. TEST EQUIPMENT DETAILS	66

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 5 of 67

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 *General Requirements for the Competence of Testing and Calibration Laboratories*. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 27th day of March 2012.

President & CEO
For the Accreditation Council
Certificate Number 2381.01
Valid to November 30, 2013

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 6 of 67

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI	--	--	A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 7 of 67

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>

The American Association for Laboratory Accreditation

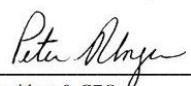
"World Class Accreditation"

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA


for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996 *General requirements for bodies operating product certification systems*. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system.

Presented this 27th day of March 2012.

President & CEO
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2013

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB)

TCB Identifier – US0159

Industry Canada – Certification Body

CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 8 of 67

DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft		
Rev A	15 th February 2013	Initial release.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 9 of 67

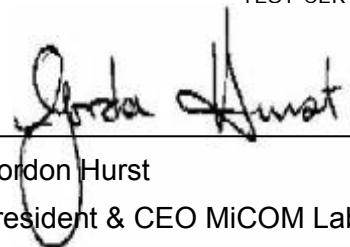
1. TEST RESULT CERTIFICATE

Manufacturer:	Alien Technology 18220 Butterfield Blvd Morgan Hill California 95037, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
EUT:	915 MHz RFID Reader	Telephone:	+1 925 462 0304
Model:	ALR-9680	Fax:	+1 925 462 0306
S/N:	MH1200002		
Test Date(s):	11th to 29th January 2013	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part15.247 & IC RSS-210	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:


1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TEST CERTIFICATE #2381.01

Graeme Grieve
Quality Manager MiCOM Labs,

Gordon Hurst
President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2012	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 8 Dec 2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 3 Jan 2012	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	2008 2006+A1:2 007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 2. Jan 2007	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 11 of 67

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Alien Technology RFID Reader ALR-9680 to FCC Part 15.247 and Industry Canada RSS-210 regulations
Applicant:	As Manufacturer
Manufacturer:	Alien Technology 18220 Butterfield Blvd Morgan Hill California 95037, USA
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	ALNT46-U1 Rev A
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Date EUT received:	11 th January 2013
Dates of test (from - to):	11th to 29th January 2013
No of Units Tested:	One
Type of Equipment:	915 MHz RFID Reader
Manufacturers Trade Name:	Enterprise Reader
Model:	ALR9680
Location for use:	Indoor
Declared Frequency Range(s):	902 - 928 MHz
Type of Modulation:	PR-ASK
Declared Nominal Output Power:	+30 dBm
EUT Modes of Operation:	FHSS
Transmit/Receive Operation:	Transceiver, Simplex
Rated Input Voltage and Current:	115Vac 60 Hz
Operating Temperature Range:	0°C to +50°C (client declared range)
ITU Emission Designator:	56K6L1D
Microprocessor(s) Model:	ARM9 Core
Clock/Oscillator(s):	18.4 MHz; 24 MHz; 25 MHz; 32.768 kHz
Frequency Stability:	±20 ppm
EUT Dimensions:	10.5" x 8" x 1.5"
EUT Weight :	2.4 lbs
Primary function of equipment:	Radio Frequency Identification (RFID) Reader

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.2. Scope of Test Program

The scope of the test program was to test the Alien Technology RFID Reader ALR-9680 in the frequency ranges 902 - 928 MHz against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications for radiated and conducted emissions for intentional radiators. The intentional radiator was tested in a simulated typical installation to demonstrate compliance with the stated standards.

Alien Technology RFID Reader ALR-9680

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 13 of 67

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	RFID Reader	Alien Technology	ALR-9680	MH1200002
EUT	100-240Vac/dc Power Supply Unit 24 Vdc,1.25 A	Autec Power Systems	SA06-30S17R	R00074900 070
EUT	100-240Vac/dc POE 48 Vdc output	ITE Power Supply	PW180KA 4800F01	None
EUT	Laptop	IBM	ThinkPad	None

3.4. Antenna Details

Manufacturer	Model	Type	Frequency	Antenna Gain
Alien	ALR-9696-C	Circular	902-928MHz	5.5 dBi

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. (4x) RF Port (915 MHz)
1. 10/100BT Ethernet
2. dc Supply on single connector +24 Vdc
3. Serial Port (9 pin) Local Maintenance Terminal
4. 5 Pin I/O port.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 14 of 67

3.6. Test Configurations

Test configurations

Operating Channel	Frequencies (MHz)
0	902.75
26	915.75
49	927.25

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 15 of 67

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247**, **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(1) A8.1	20 dB BW	20 dB BW	Conducted	Complies	5.1.1
15.247(a)(1) A8.1	Transmitter Channels	Channel Spacing	Conducted	Complies	5.1.2
15.247(a)(1) A8.1	Transmitter Channels	Number of Channels	Conducted	Complies	5.1.3.1
		Channel Occupancy	Conducted	Complies	5.1.3.2
15.247(b)(2) A8.4	Output Power	Transmit Power	Conducted	Complies	5.1.4
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.5
15.247(d) A8.5	Conducted Spurious Emissions	Band Edge	Conducted	Complies	5.1.6
		Spurious Emissions Transmitter (1 to 10 GHz)	Conducted	Complies	
§7.2.3		Standby	Conducted	Complies	5.1.7

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 16 of 67

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247**, **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 15.209 A8.5 2.2 2.6 4.9	Radiated Emissions above 1 GHz	Transmitter	Radiated	Complies	5.1.8.1
4.10		Receiver	Radiated	Complies	5.1.8.2
15.247(d) 15.205 15.209 A8.5 2.2 2.6	Radiated Emissions below 1 GHz		Radiated	Complies	5.1.9
15.207 7.2.2	Conducted	AC Wireline Conducted Emissions	Conducted	Complies	5.1.10

Note 1: Test results reported in this document relate only to the items tested

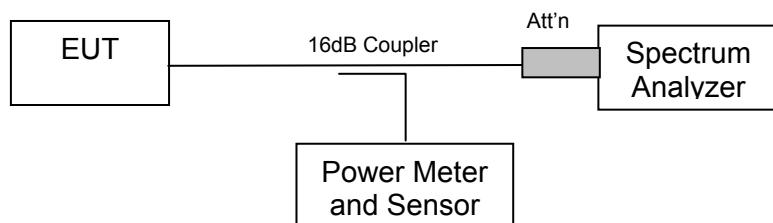
Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 20 dB Bandwidth

FCC, Part 15 Subpart C §15.247(a)(1)
Industry Canada RSS-210 §A8.1

Test Procedure

The 20 dB bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for 20 dB bandwidth test

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 18 of 67

Test Results for 20 dB Bandwidth

Ambient conditions.

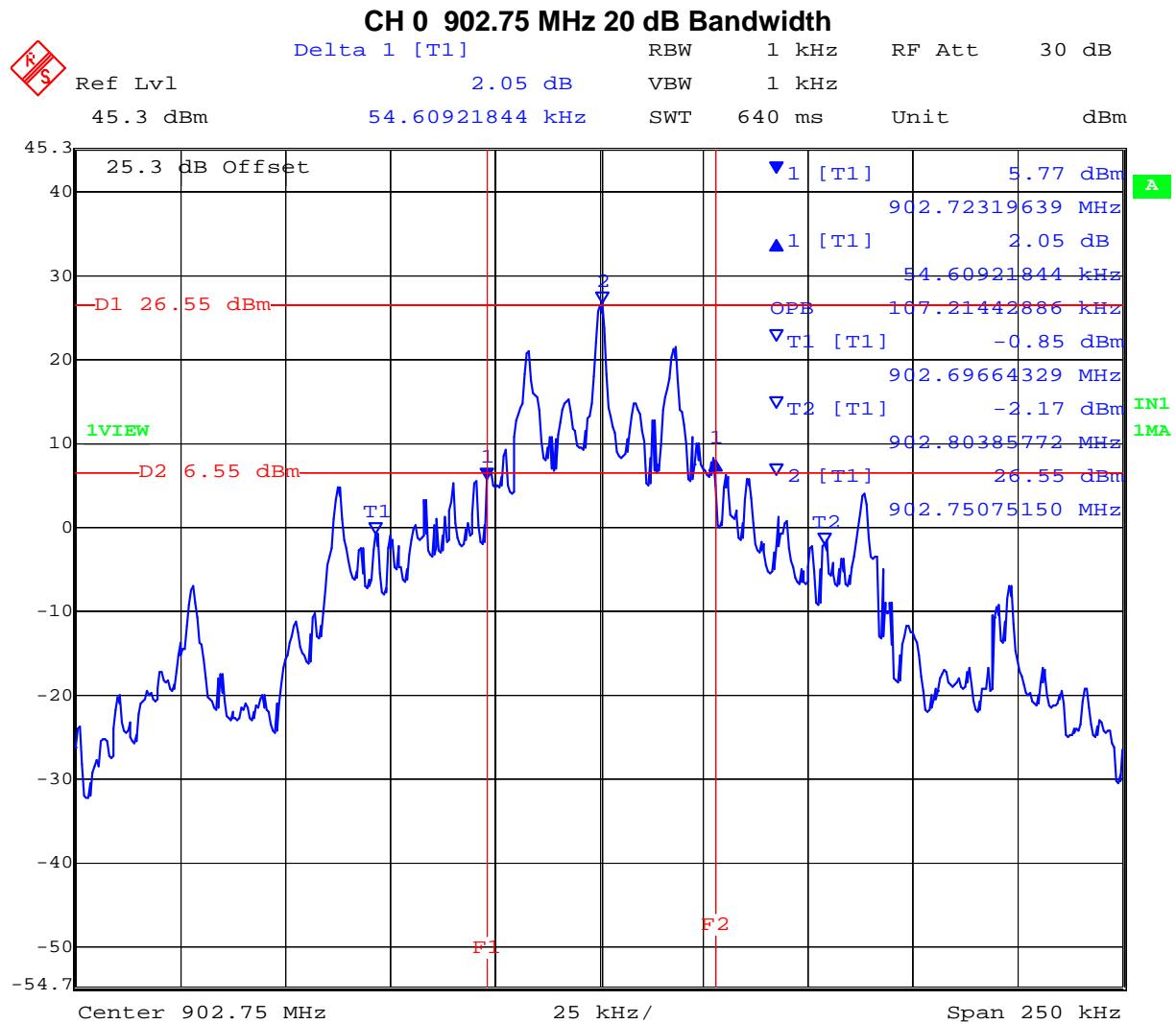
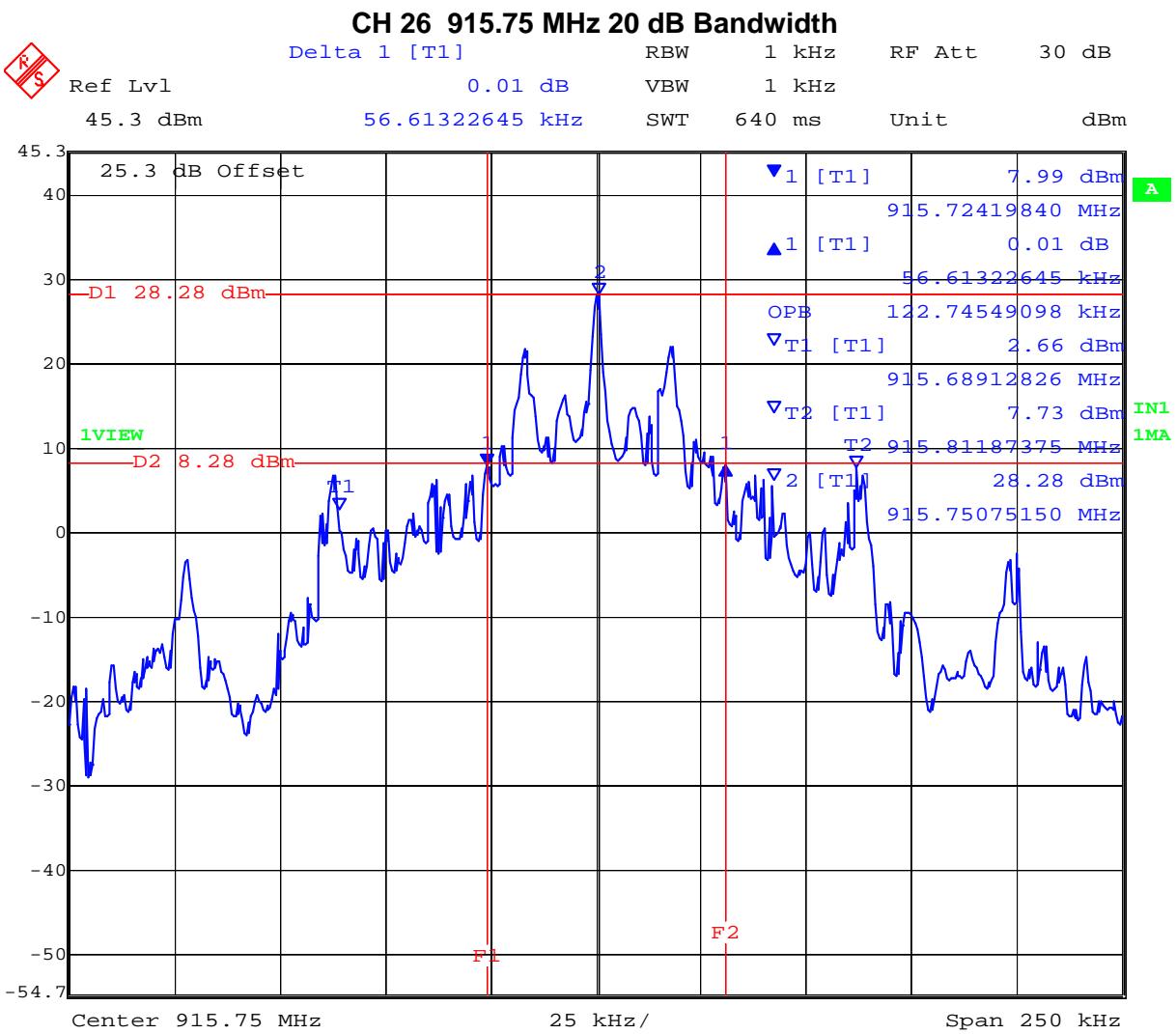

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	Specification (kHz)
0	902.75	54.6	<500
26	915.75	56.6	
49	927.25	50.6	



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Date: 29.JAN.2013 12:41:37

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Date: 29.JAN.2013 12:48:19

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

CH 49 927.25 MHz 20 dB Bandwidth

Date: 29.JAN.2013 12:51:59

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 22 of 67

Specification

Limits

FCC §15.247 (a)(1)
Industry Canada RSS-210 §8.1(c)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

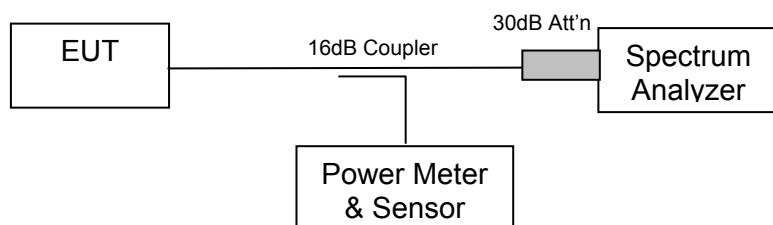
Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.2. Transmitter Channels - Channel Spacing

FCC, Part 15 Subpart C §15.247(a)(1)
Industry Canada RSS-210 §8.1(b)

Test Procedure

The channel spacing is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for Channel Spacing Test

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Ambient conditions.

Temperature: 17 to 23 °C

Relative humidity: 31 to 57 %

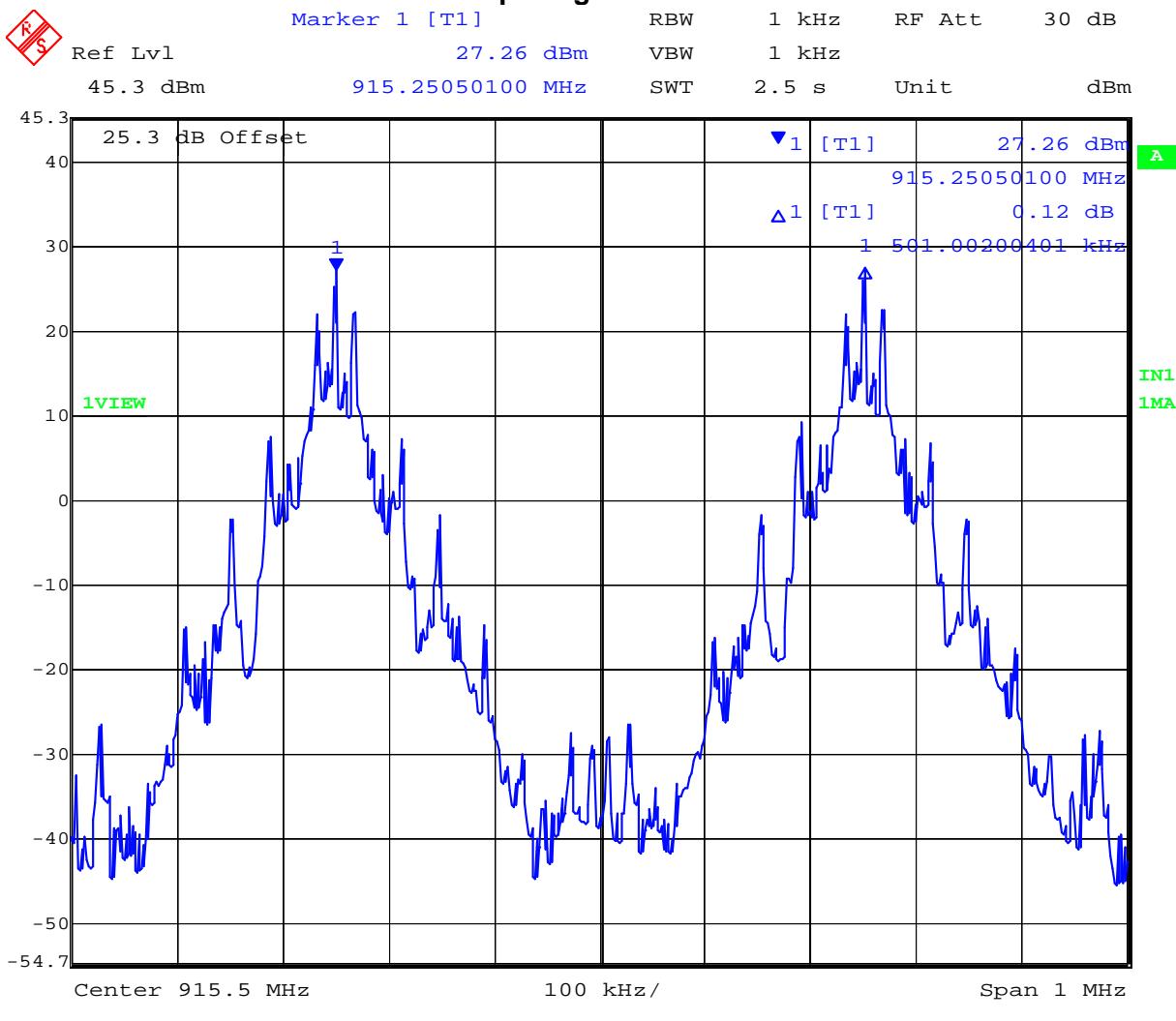

Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel(s)	Channel Spacing (KHz)	Specification
25-26	501.002	Greater than maximum 20 dB Bandwidth

Maximum 20 dB bandwidth = 52.6052 kHz

Channel Spacing for CH 25 – CH 26

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 25 of 67

Specification for Channel Spacing

Limits

FCC §15.247 (a)(1)
Industry Canada RSS-210 §A8.1(c)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Uncertainty for Frequency Measurements

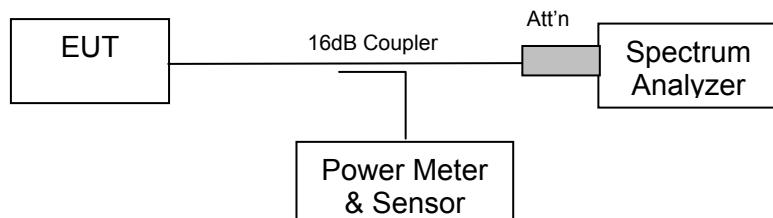
Measurement uncertainty	±0.86ppm
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-02 'Frequency Measurement'	0078, 0134, 0158, 0184, 0193, 0250, 0252 0310, 0312.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.3. Transmitter Channels

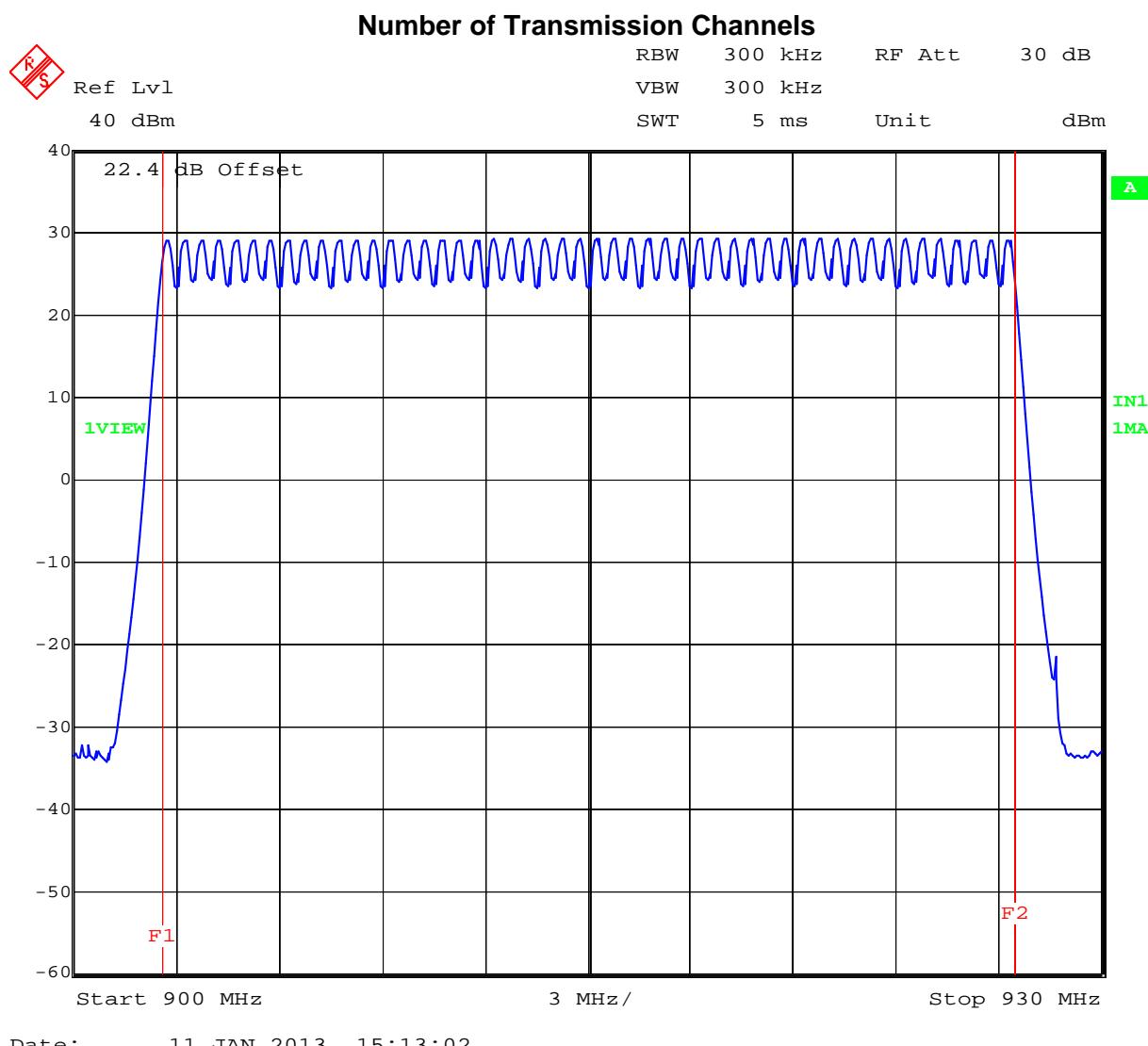

5.1.3.1. Number of Channels

FCC, Part 15 Subpart C §15.247(a)(1)
Industry Canada RSS-210 §A8.1

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up


Test set up to measure the number of channels and channel occupancy

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

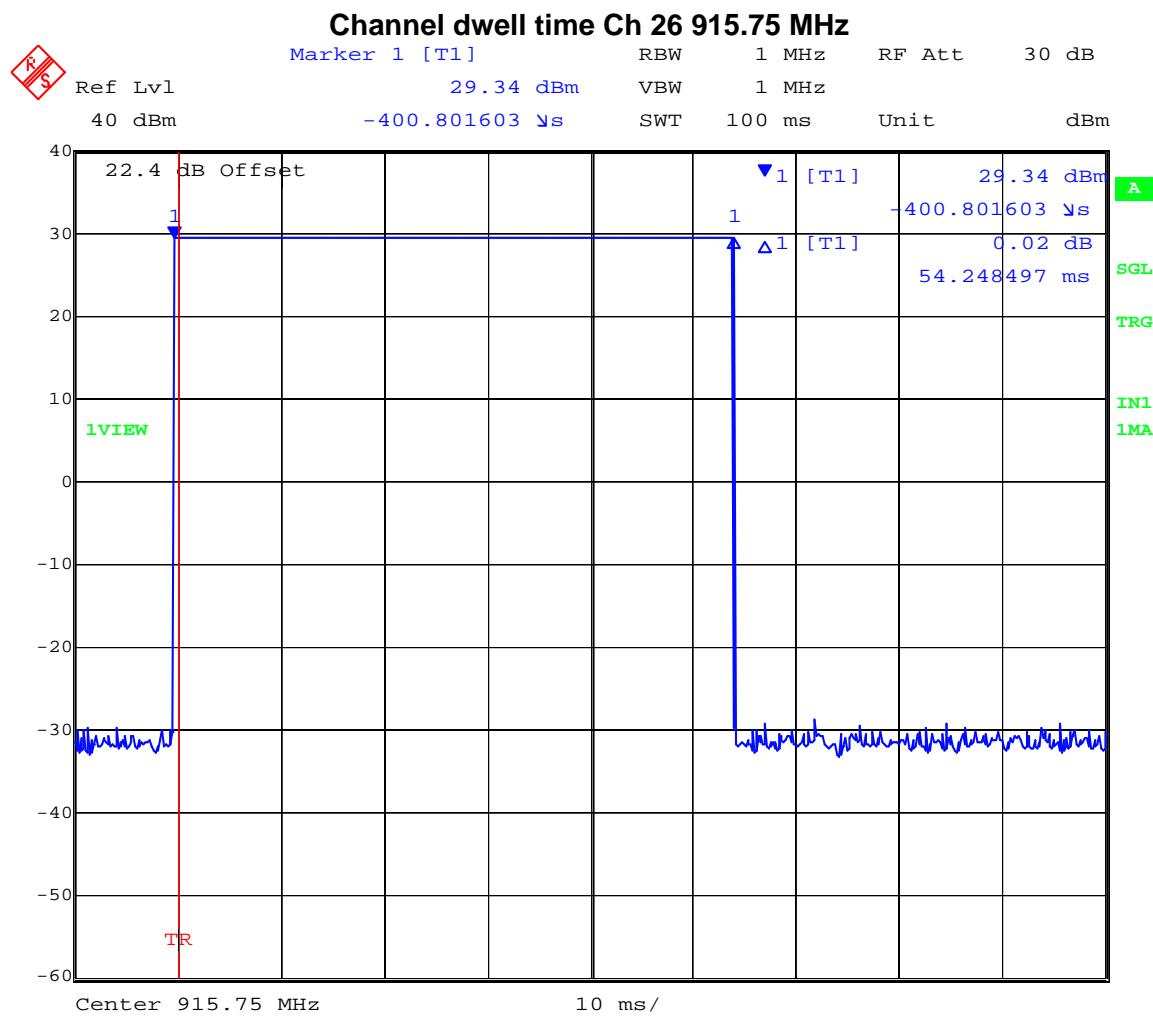
TABLE OF RESULTS

Number of Channels	Specification
50	Minimum of 50 hopping channels

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.3.2. Channel Occupancy

FCC, Part 15 Subpart C §15.247(a)(1)
 Industry Canada RSS-210 §A8.1

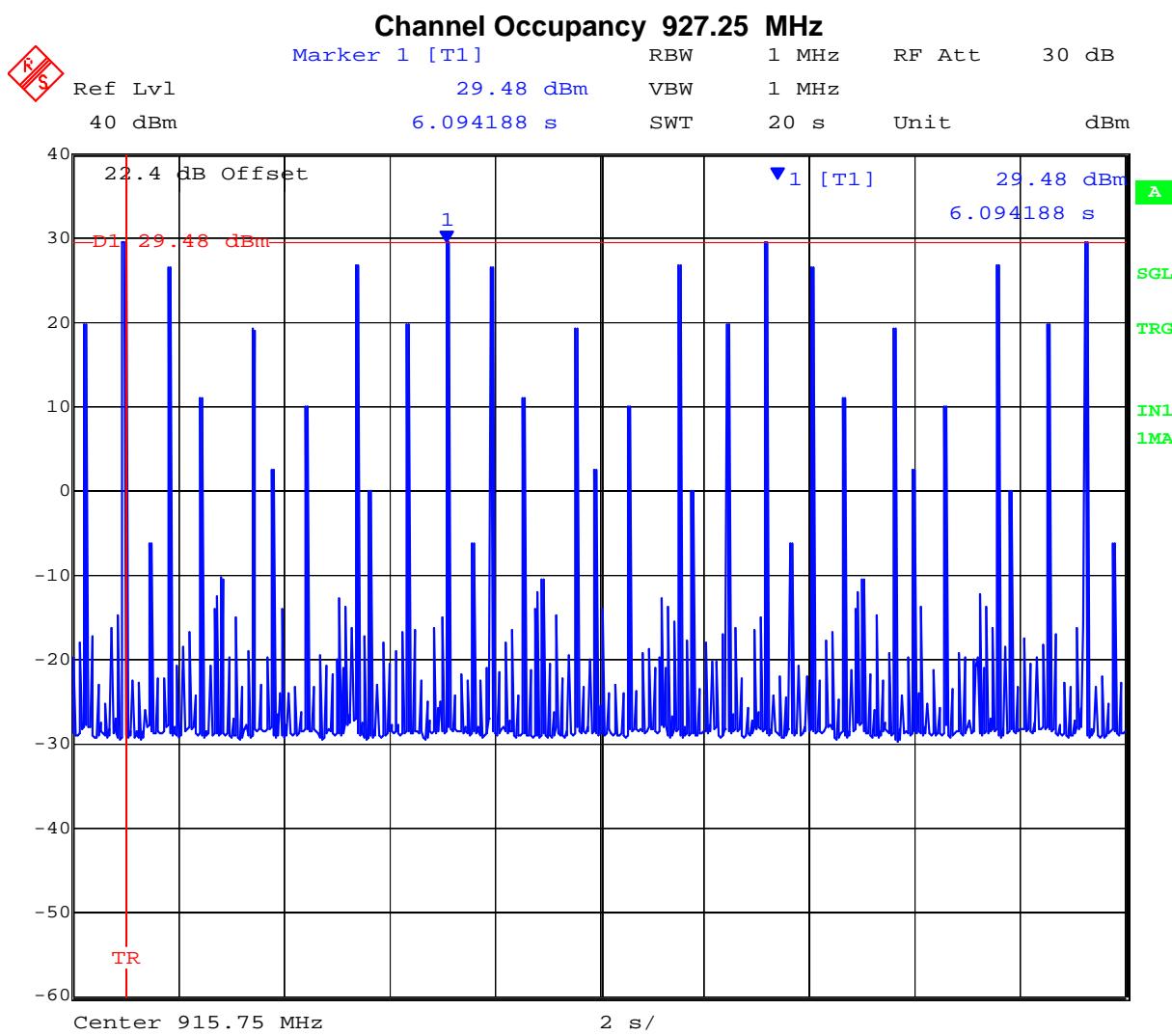

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Channel Dwell Time

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Channel Dwell Time (single channel) (mSecs)
26	915.75	54.248



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Channel Occupancy

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Channel Occupancy within 10 Second Period (mSeconds)
26	915.75	20 x 54.248 = 1048.96

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 30 of 67

Specification for Number of Channels and Channel Occupancy

Limits

FCC, Part 15 Subpart C §15.247(a)(1)
Industry Canada RSS-210 §A8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

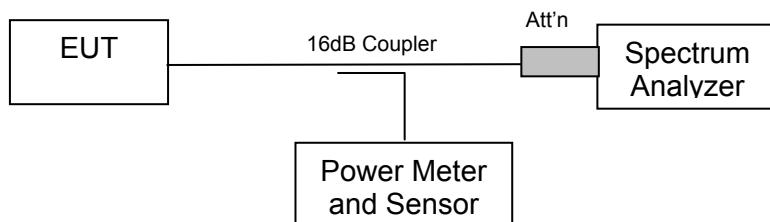
Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-02 'Frequency Measurement'	0078, 0134, 0158, 0184, 0193, 0250, 0252 0310, 0312.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.4. Output Power

FCC, Part 15 Subpart C §15.247(b)(2)
Industry Canada RSS-210 §A8.4

Test Procedure

The transmitter terminal of EUT was set for CW (continuous wave) operation and connected to the input of the power meter which was calibrated to measure power. The value of measured power including antenna cable loss was reported.

Test Measurement Set up

Measurement set up for Transmitter Output Power

15.247 (c) Operation with directional antenna gains greater than 6 dBi.
 If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Model	Gain (dBi)	Max. Allowable Conducted Peak Power (dBm)	Maximum EIRP (dBm)
ALR-9696-C	5.5	30.0	+36.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 32 of 67

Measurement Results for Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Power (dBm)
0	902.75	+28.90
26	915.75	+29.70
49	927.25	+29.54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 33 of 67

Specification

Limits

FCC, Part 15 Subpart C §15.247 (b)(2) The maximum output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Industry Canada RSS-210 §A8.4

For frequency hopping systems operating in the band 902–928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 34 of 67

5.1.5. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i)

Industry Canada RSS-Gen §5.6

Calculations for Maximum Permissible Exposure Levels

$$\text{Power Density} = P_d \text{ (mW/cm}^2\text{)} = \text{EIRP}/(4\pi d^2)$$

$$\text{EIRP} = P * G$$

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

$$\text{Numeric Gain} = 10 ^ {(G \text{ (dBi)})/10}$$

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 0.6 mW/cm²

Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 0.6mW/cm ² Limit(cm)
5.5	3.55	+29.70	933.3	21.0

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

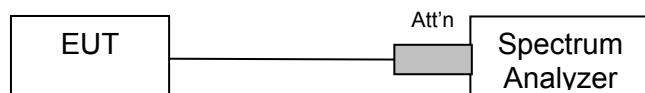
FCC §1.1310 Limit = $f/1500 = 0.6 \text{ mW / cm}^2$ from 1.310 Table 1

RSS-Gen §5.6 Category I and Category II equipment shall comply with the applicable requirements of RSS-102.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.6. Conducted Spurious Emissions Transmitter

FCC, Part 15 Subpart C §15.247(d)
Industry Canada RSS-210 §A8.5

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

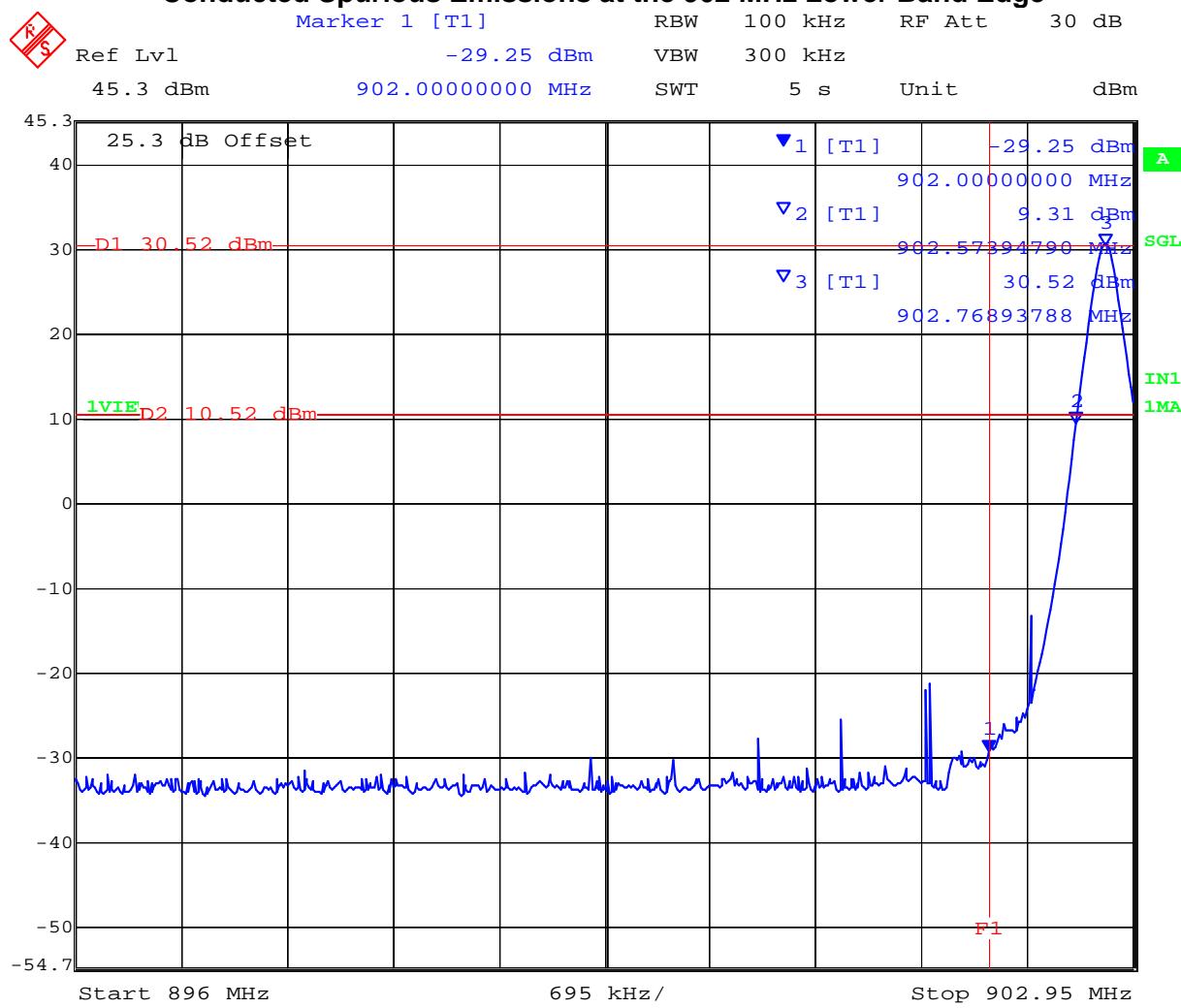
Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

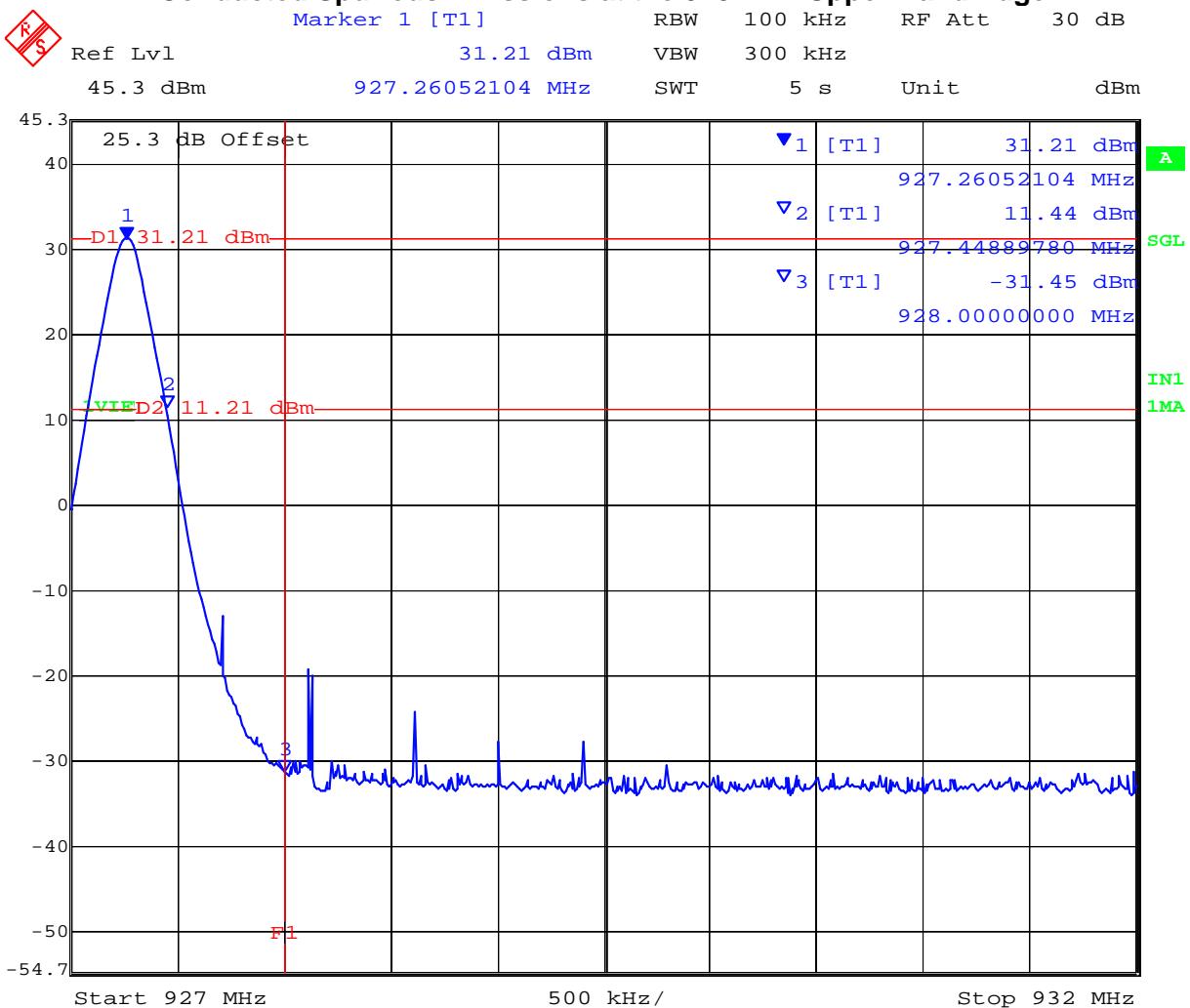
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Conducted Band-Edge Results

TABLE OF RESULTS –

Channel #	Center Frequency (MHz)	Band-edge Frequency (MHz)	Limit (dBm)	Amplitude @ Band-edge (dBm)	Margin (dB)
0	902.75	902.0	+10.52	-29.25	-39.77
49	927.25	928.0	+11.21	-33.00	-44.21


Conducted Spurious Emissions at the 902 MHz Lower Band Edge

Date: 29.JAN.2013 14:19:44

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Conducted Spurious Emissions at the 928 MHz Upper Band Edge

Date: 29.JAN.2013 14:23:01

This test report may be reproduced in full only. The document may only be updated by MiCOM
 Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 38 of 67

Spurious Emissions (1-10 GHz)

Conducted spurious emissions (1-10 GHz) are provided indicated by the following matrix. Measurements were performed with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
902.75	30	10,000	-23.33	+10.13	-33.46
915.75	30	10,000	-26.42	+11.01	-37.43
927.25	30	10,000	-26.55	+10.59	-37.14

The emission breaking the limit line is the carrier.

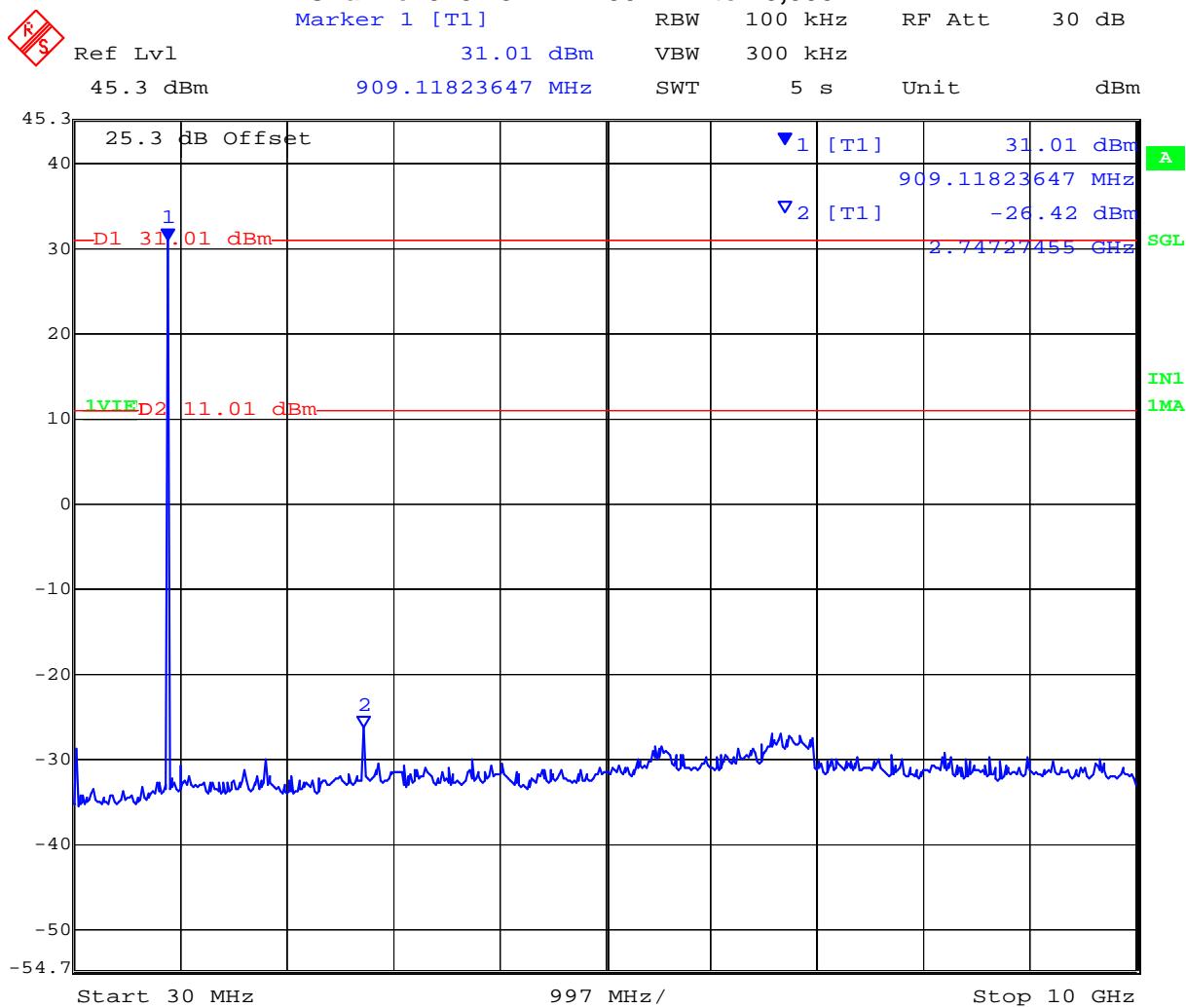


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions

Channel 902.75 MHz - 30 MHz to 10,000 MHz

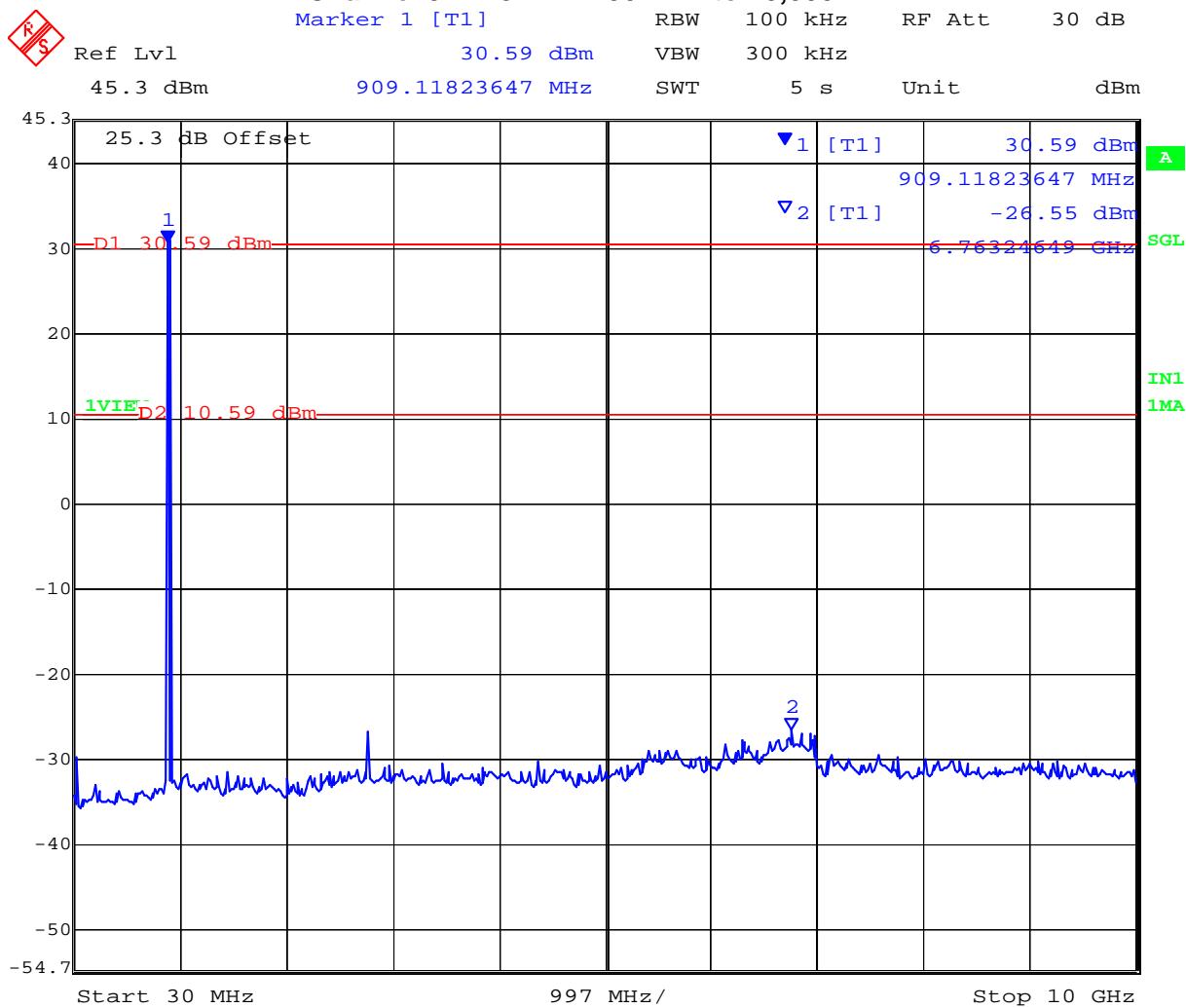


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions

Channel 915.75 MHz - 30 MHz to 10,000 MHz


Date: 29.JAN.2013 14:28:08

This test report may be reproduced in full only. The document may only be updated by MiCOM
 Labs personnel. Any changes will be noted in the Document History section of the report.

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions

Channel 927.25 MHz - 30 MHz to 10,000 MHz

Date: 29.JAN.2013 14:29:44

This test report may be reproduced in full only. The document may only be updated by MiCOM
 Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 42 of 67

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
902 MHz	928 MHz	≥ 20 dB

FCC, Part 15 Subpart C §15.247(d)

Industry Canada RSS-210 §A.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

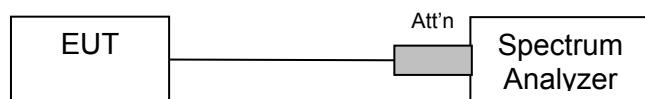
Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.7. Conducted Spurious Emissions Stand-By

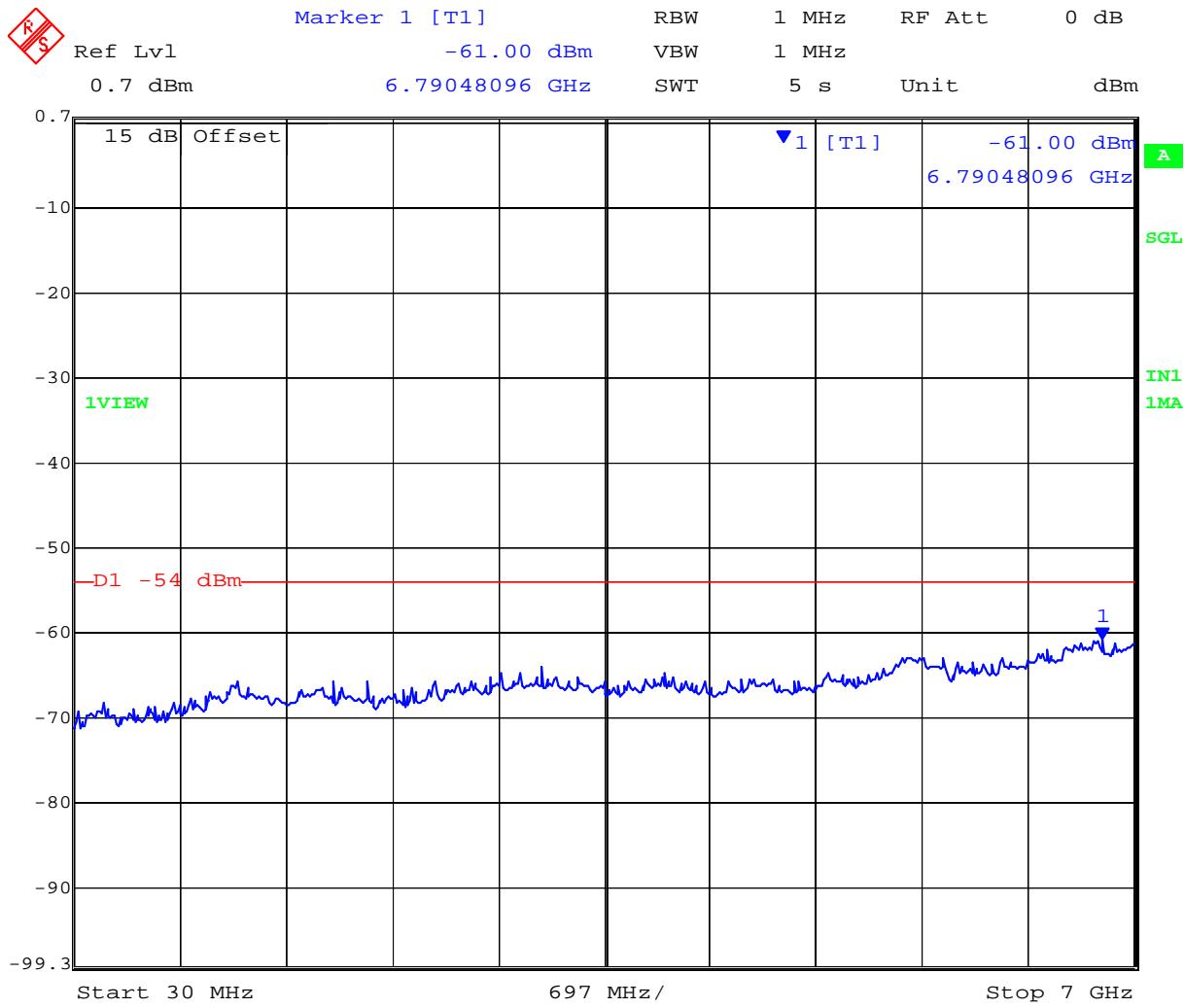
Industry Canada RSS-Gen §6.2

Test Procedure

Conducted Stand-By emissions were measured on the device on the mid channel. The EUT was placed in Stand-By mode and emissions were measured 30 MHz – 7 GHz.

Test Measurement Set up

Stand-By spurious emissions test configuration


Measurement Results of Stand –By Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Conducted Stand-By Spurious Emissions 30M - 7 GHz

Stand-By Conducted Emissions 30 MHz – 7 GHz

Date: 29.JAN.2013 14:42:20

No emissions were observed breaking the limit.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 45 of 67

Specification

Antenna Conducted Measurement

Industry Canada RSS-Gen §6.2

If the receiver has a detachable antenna of known impedance, antenna conducted spurious emissions measurement is permitted as an alternative to radiated measurement.

The antenna conducted test shall be performed with the antenna disconnected and the receiver antenna terminals connected to a measuring instrument having equal impedance to that specified for the antenna.

The receiver spurious emissions measured at the antenna terminals by the antenna conducted method shall then comply with the following limits:

Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts in the band 30–1000 MHz, and 5 nanowatts above 1000 MHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

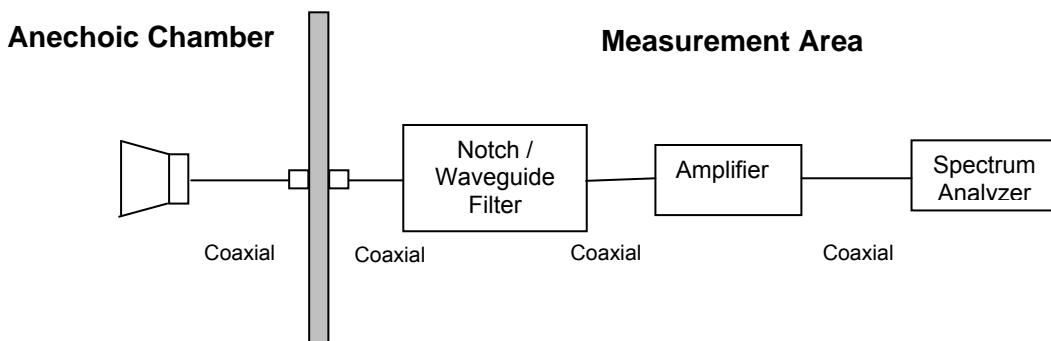
Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.8. Radiated Emissions


FCC, Part 15 Subpart C §15.247(d)
Industry Canada RSS-210 §A8.5

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 47 of 67

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

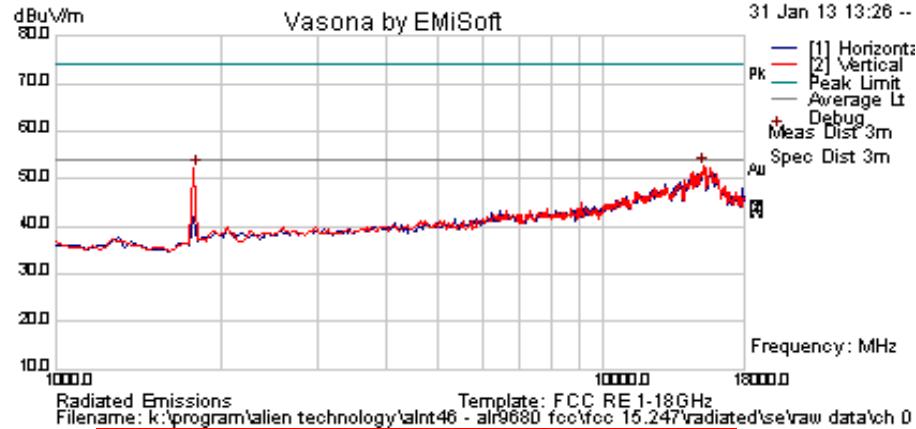
$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (\mu V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

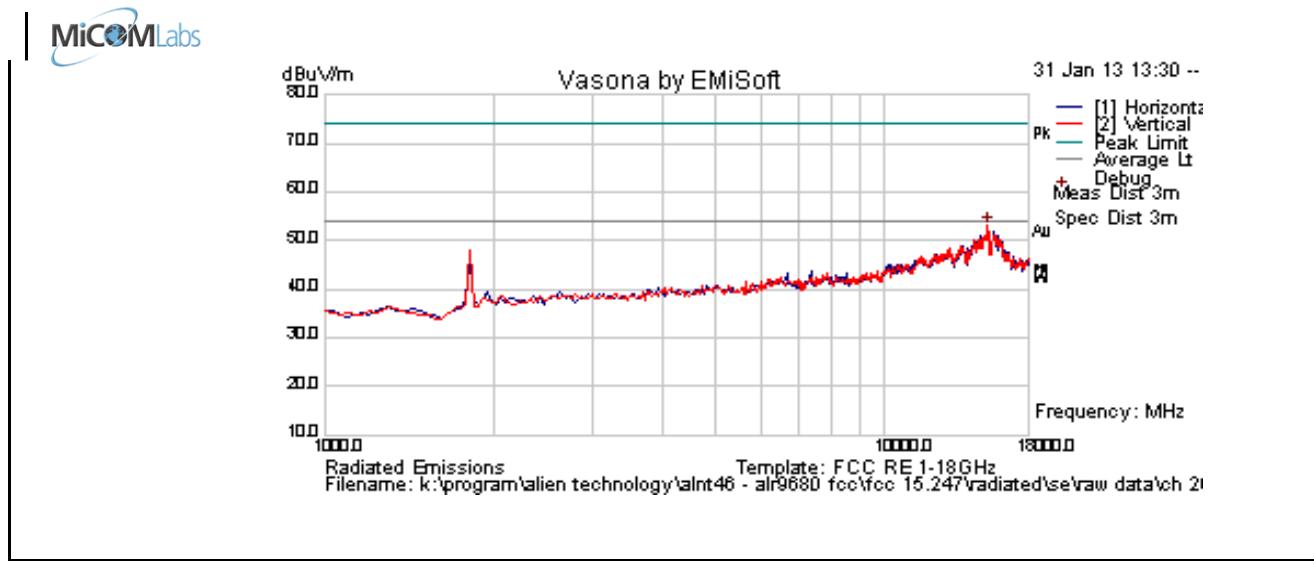


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.8.1. Transmitter Radiated Spurious Emissions - Antenna ALR-8696-C

Radiated Spurious Emissions – Above 1 GHz

Test Freq.	CH 0	Engineer	SB
Variant	Cont Tx	Temp (°C)	19.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)		
Test Notes 1	Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	POE PSU		

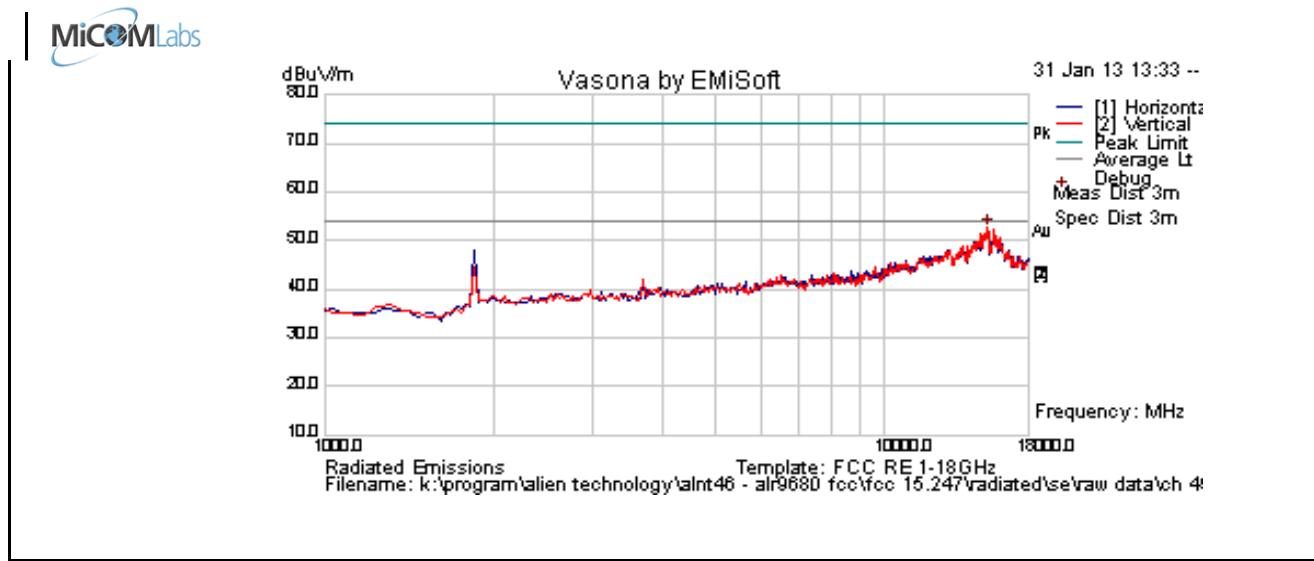


Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
15206.413	45.8	8.2	-1.5	52.5	Peak [Scan]	H						NRB
1805.541	62.0	2.6	-12.6	52.1	Peak [Scan]	V						NRB
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission												
RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	CH 26	Engineer	SB
Variant	Cont Tx	Temp (°C)	19.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)	Duty Cycle (%)	0
Test Notes 1	Pant Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	POE PSU		

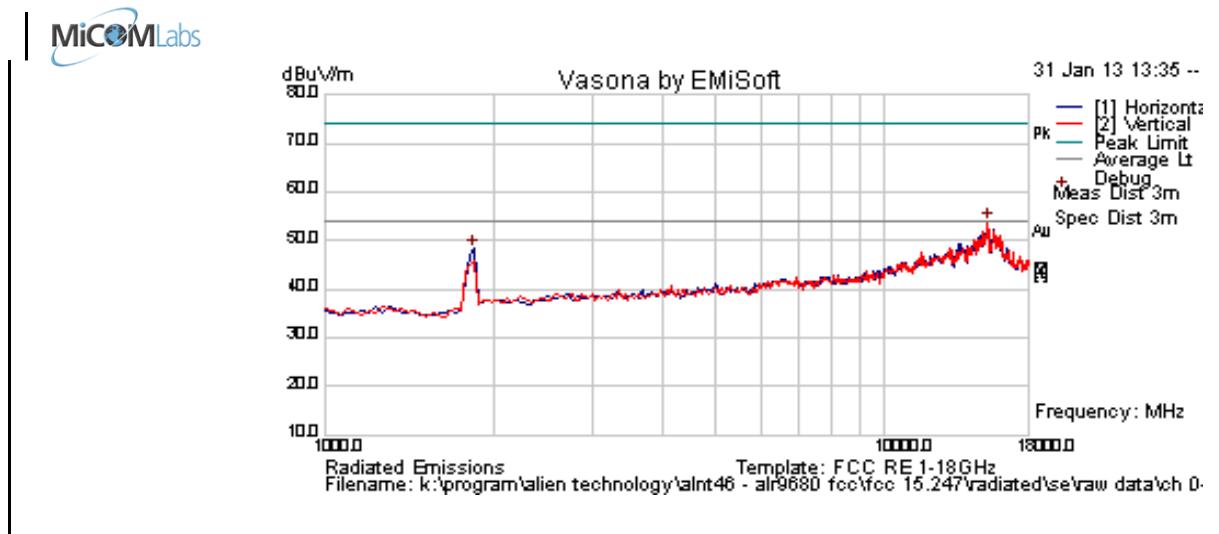


Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
15206.413	45.8	8.2	-1.5	52.5	Peak [Scan]	H						NRB
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission												
RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	CH 49	Engineer	SB
Variant	Cont Tx	Temp (°C)	19.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)	Duty Cycle (%)	0
Test Notes 1	Pant Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	POE PSU		



Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
15206.413	45.8	8.2	-1.5	52.5	Peak [Scan]	H						NRB
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission												
RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	CH 0-49	Engineer	SB
Variant	FHSS	Temp (°C)	19.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)		
Test Notes 1	Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	POE PSU		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
15274.549	46.9	8.2	-1.2	53.9	Peak [Scan]	V						NRB
1851.703407	58.2	2.7	-12.4	48.4	Peak [Scan]	H						NRB
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission												
RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 52 of 67

**FCC, Part 15 Subpart C §15.247(d)
Industry Canada RSS-210 §A8.5**

Specification

FCC Part 15 Subpart C §15.247(d)

Industry Canada §A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Radiated Emissions

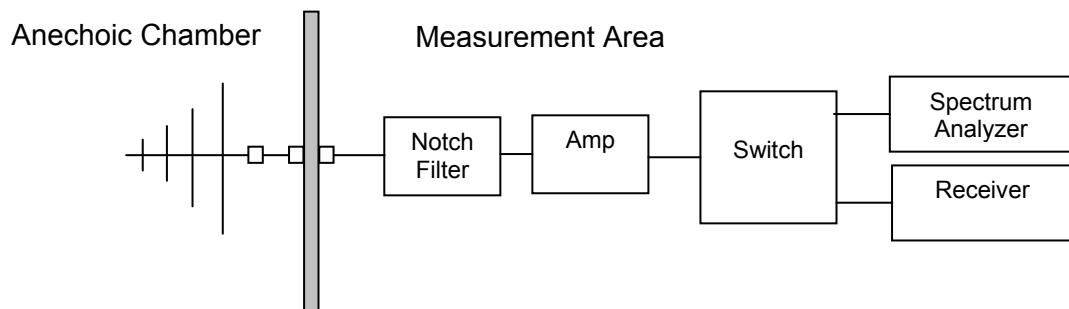
Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0335, 0338, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.9. Radiated Spurious Emissions – Digital Emissions(0.03-1 GHz)


FCC, Part 15 Subpart C §15.247(d), §15.205, 15.209
Industry Canada RSS-Gen §6.1

Test Procedure

Preliminary radiated emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a CISPR compliant spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. A photograph of the test set-up in the anechoic chamber in Section 6 Test Set-Up Photographs.

A notch filter with >70 dB of rejection was used to remove the fundamental frequency.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 54 of 67

For example:

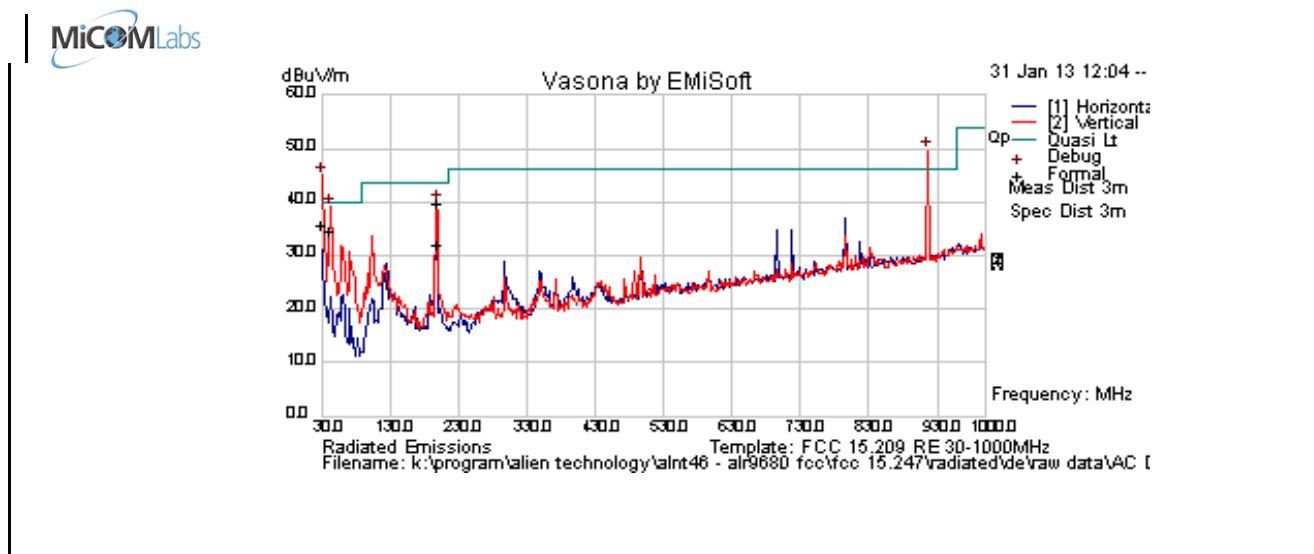
Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

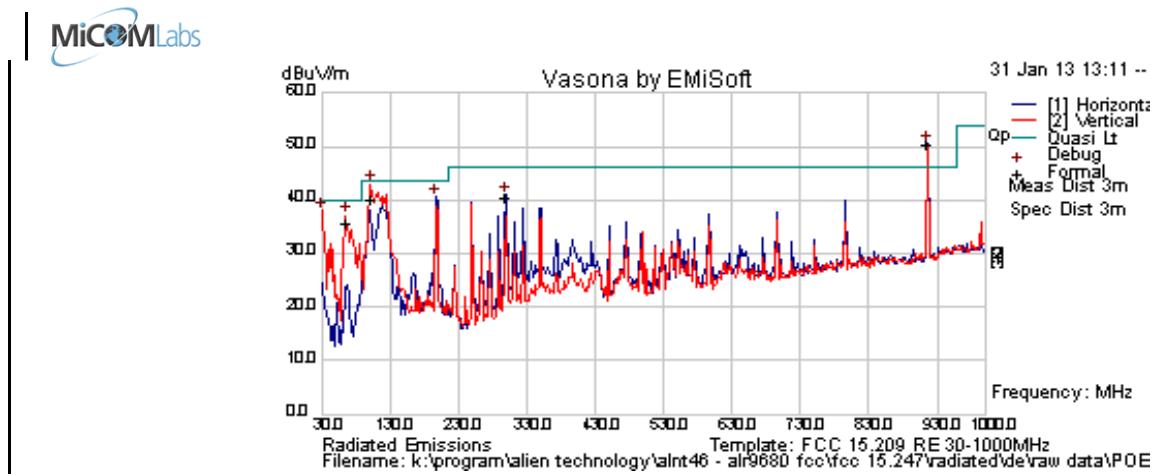
$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$


$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.9.1. Radiated Digital Emissions – Antenna ALR-8696-C

Test Freq.	915.25 MHz	Engineer	SB
Variant	Digital Emissions	Temp (°C)	19.5
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)		
Test Notes 1	Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	AC/DC 120VAC (Not supplied or SOLD w/ EUT);PS Autec Power Systems;MDL:SA06-30S17R-U;S/N:R00074900070		


Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
30.000	41.8	3.5	-9.7	35.6	Quasi Max	V	107	107	40	-4.5	Pass	
42.834	50.5	3.6	-19.5	34.6	Quasi Max	V	103	103	40	-5.4	Pass	
198.664	45.7	4.6	-18.4	31.9	Quasi Max	V	314	314	43.5	-11.6	Pass	
916.413	51.0	7.2	-7.7	50.4	Peak [Scan]	H						FUND

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency
 NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	915.25 MHz	Engineer	SB
Variant	Digital Emissions	Temp (°C)	19.5
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)		
Test Notes 1	Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	POE PSU		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
103.655	56.1	4.1	-20.2	40.0	Quasi Max	V	108	360	43.5	-3.5	Pass	
65.599	55.5	3.8	-23.5	35.8	Quasi Max	V	98	158	40.0	-4.2	Pass	
300.058	52.7	5.1	-17.2	40.6	Quasi Max	H	93	123	46.0	-5.5	Pass	
30.000	41.8	3.5	-9.7	35.6	Quasi Max	V	107	107	40	-4.5	Pass	
198.664	45.7	4.6	-18.4	31.9	Quasi Max	V	314	314	43.5	-11.6	Pass	
916.413	51.0	7.2	-7.7	50.4	Peak [Scan]	H						FUND

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency
 NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 57 of 67

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §6.1 Limit Matrix

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

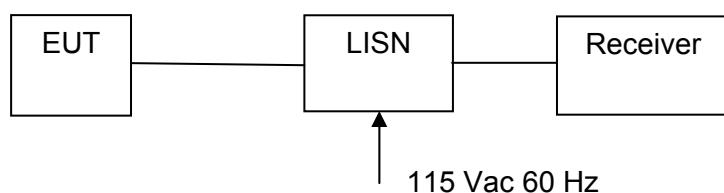
Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0335, 0338, 0158, 0134, 0304, 0311, 0315, 0310, 0312, 0341

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.10. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207
Industry Canada RSS-Gen §7.2.4

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

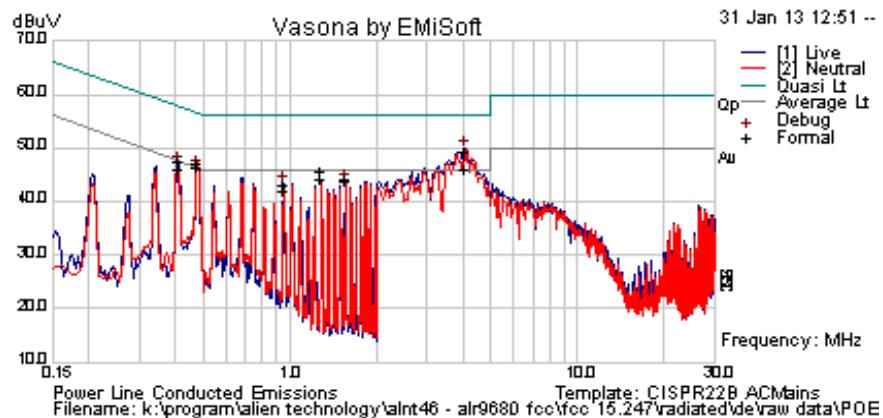
Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters:

Transmitting on Channel 26. 915.25 MHz

Transmit Power +30 dBm

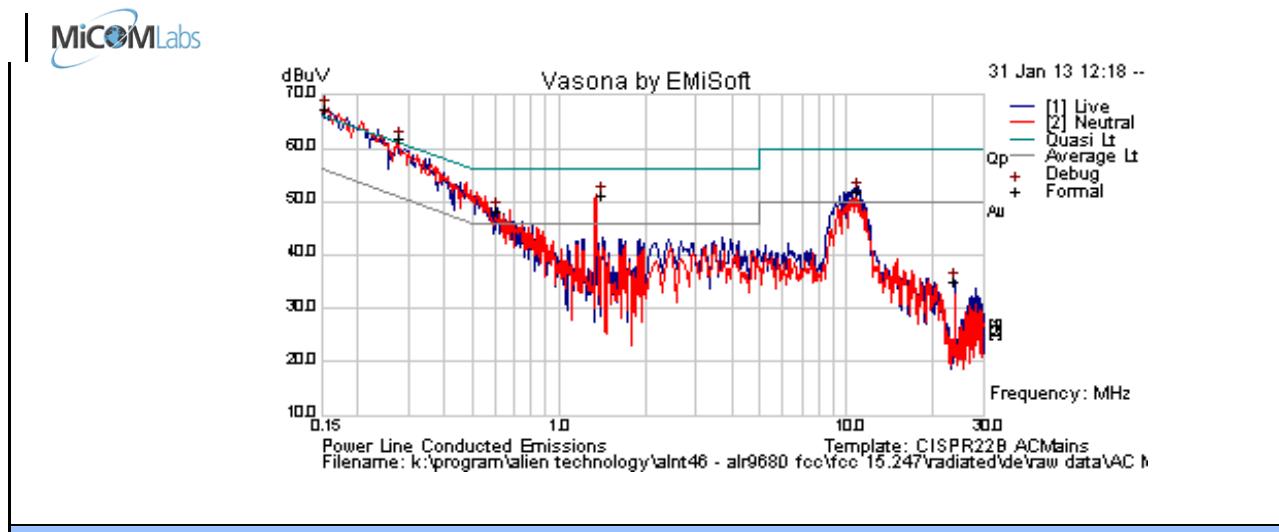

Active antenna port was terminated in a 50Ω termination

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS - POE

Test Freq.	N/A	Engineer	SB
Variant	AC Line Emissions	Temp (°C)	19.5
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)		
Test Notes 1	Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	POE PSU		

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
4.074	39.0	10.1	0.2	49.3	Quasi Peak	Live	56.0	-6.7	Pass	
0.476	37.2	9.9	0.1	47.2	Quasi Peak	Live	56.4	-9.2	Pass	
0.408	37.5	9.9	0.1	47.4	Quasi Peak	Live	57.7	-10.3	Pass	
1.290	34.0	10.0	0.1	44.1	Quasi Peak	Live	56.0	-11.9	Pass	
1.561	34.1	10.0	0.1	44.2	Quasi Peak	Live	56.0	-11.8	Pass	
0.952	32.1	9.9	0.1	42.1	Quasi Peak	Live	56.0	-13.9	Pass	
4.074	35.3	10.1	0.2	45.6	Average	Live	46.0	-0.5	Pass	
0.476	36.1	9.9	0.1	46.1	Average	Live	46.4	-0.3	Pass	
0.408	36.9	9.9	0.1	46.9	Average	Live	47.7	-0.8	Pass	
1.290	35.5	10.0	0.1	45.5	Average	Live	46.0	-0.5	Pass	
1.561	33.6	10.0	0.1	43.7	Average	Live	46.0	-2.3	Pass	
0.952	32.7	9.9	0.1	42.7	Average	Live	46.0	-3.3	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency
 NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – ac/dc Converter

Test Freq.	N/A	Engineer	SB
Variant	AC Line Emissions	Temp (°C)	19.5
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum. (%)	33
Power Setting	MAX (29 dBm)	Press. (mBars)	1012
Antenna	Port 3 (Directional Panel)		
Test Notes 1	Port 3 gave highest output power and used for all testing for worst case.		
Test Notes 2	AC/DC 120VAC (Not supplied or SOLD w/ EUT);PS Autec Power Systems;MDL:SA06-30S17R-U;S/N:R00074900070		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.610	33.8	9.9	0.1	43.8	Quasi Peak	Live	56	-12.2	Pass	
10.917	38.0	10.3	0.4	48.7	Quasi Peak	Live	60	-11.3	Pass	
24.003	23.2	10.6	0.9	34.7	Quasi Peak	Live	60	-25.3	Pass	
0.154	50.8	9.9	0.1	60.8	Quasi Peak	Neutral	65.78	-5.0	Pass	
0.279	43.5	9.9	0.1	53.4	Quasi Peak	Neutral	60.85	-7.4	Pass	
1.419	29.5	10.0	0.1	39.6	Quasi Peak	Neutral	56	-16.4	Pass	
0.610	26.3	9.9	0.1	36.3	Average	Live	46	-9.7	Pass	
10.917	29.4	10.3	0.4	40.2	Average	Live	50	-9.8	Pass	
24.003	19.2	10.6	0.9	30.7	Average	Live	50	-19.3	Pass	
0.154	20.8	9.9	0.1	30.8	Average	Neutral	55.78	-25.0	Pass	
0.279	20.6	9.9	0.1	30.6	Average	Neutral	50.85	-20.3	Pass	
1.419	24.4	10.0	0.1	34.5	Average	Neutral	46	-11.6	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 61 of 67

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.4

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

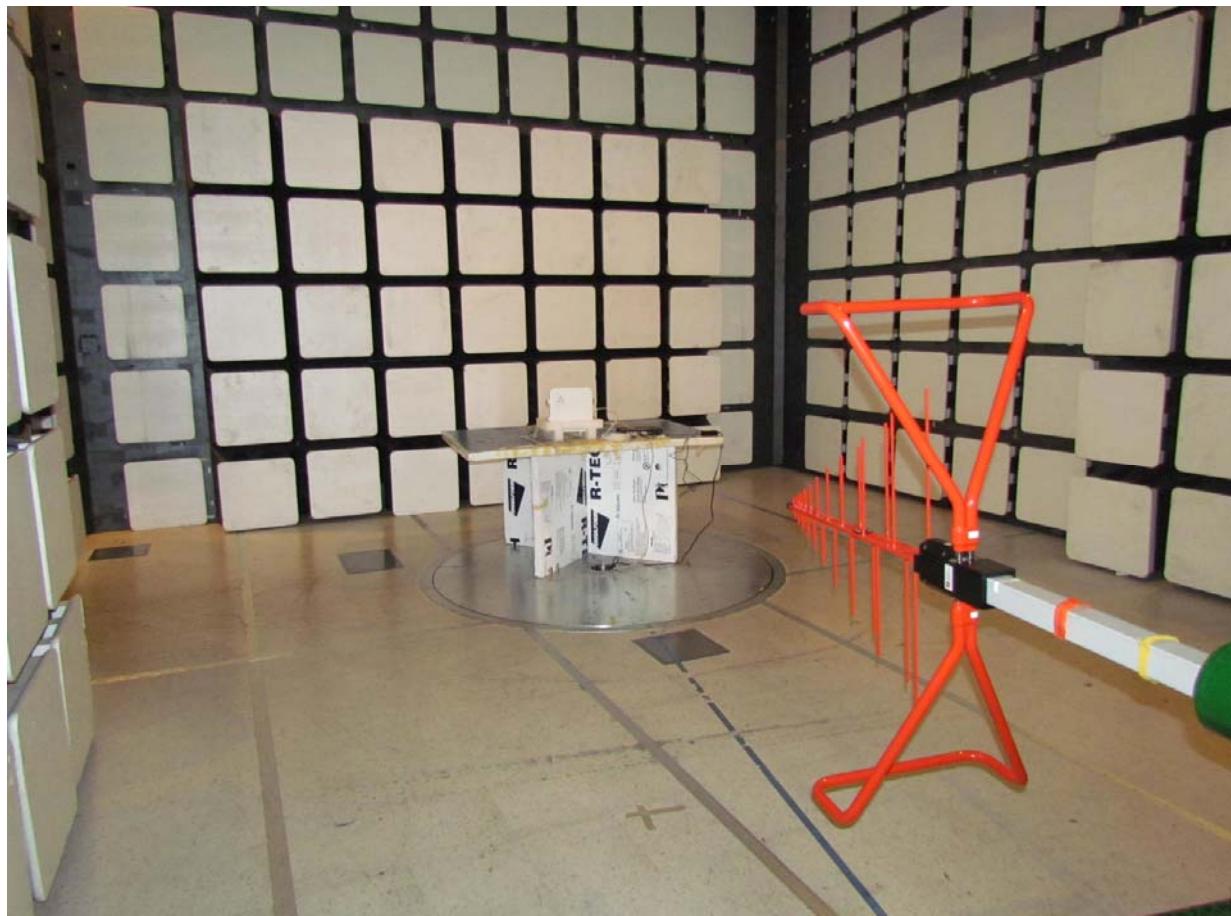
Measurement uncertainty	± 2.64 dB
-------------------------	---------------

Traceability

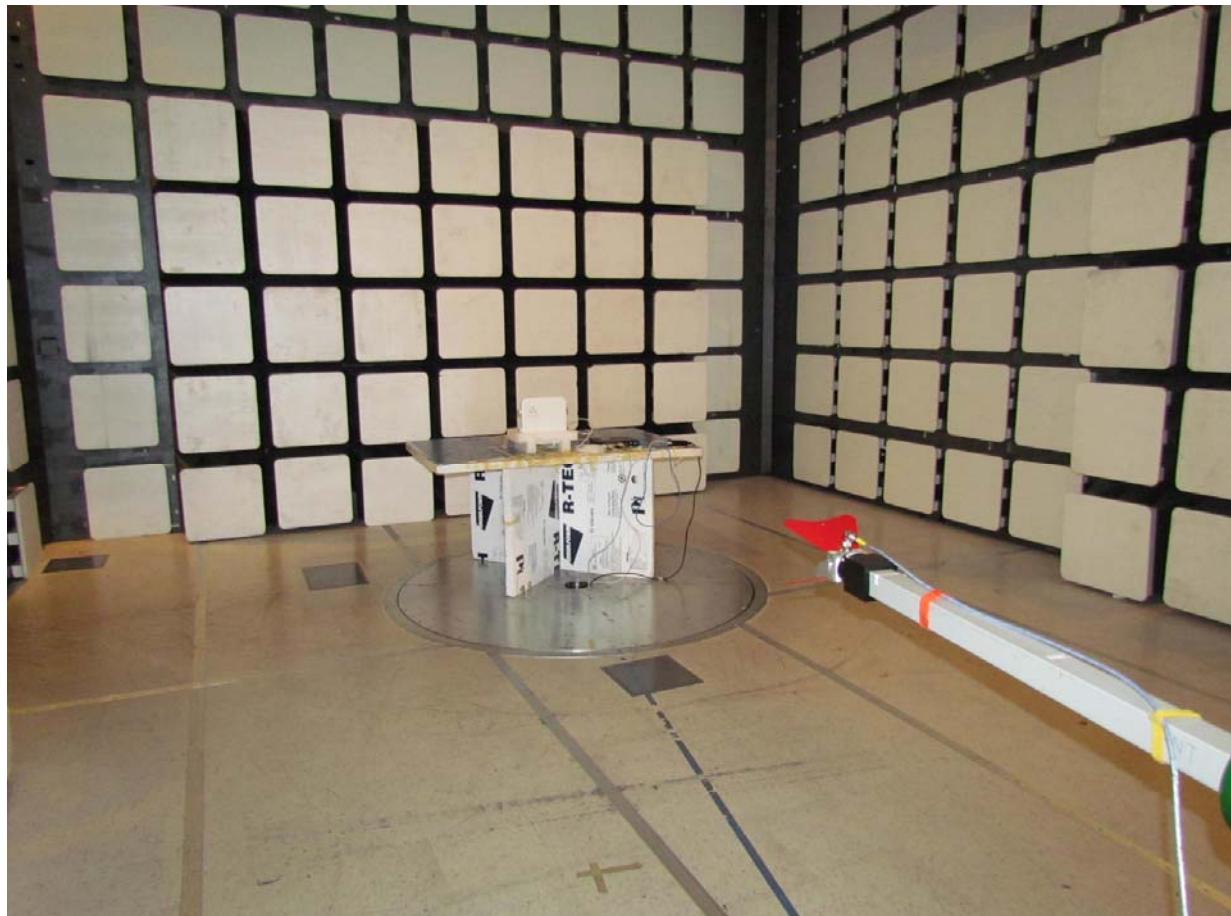
Method	Test Equipment Used
Measurements were made per Sanmina work instruction	0190, 0193

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6. PHOTOGRAPHS


6.1. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


6.2. Radiated Emissions <1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.3. Radiated Emissions >1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.4. Cable Connections POE AC Wireline Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Alien Technology RFID Reader ALR-9680
To: FCC 47 CFR Part15.247 & IC RSS-210
Serial #: ALNT46-U1 Rev A
Issue Date: 15th February 2013
Page: 66 of 67

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 13
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 13
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 13
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 13
0376	Power Sensor	Agilent	U2000A	MY51440005	8 th Dec 13
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 13
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 13
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 13
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 13
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 13
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A
	EMC Test Software	EMISoft	Vasona	5.0051	N/A
	RF Conducted Test Software	National Instruments	Labview	Version 8.2	N/A
	RF Conducted Test Software	MiCOM Labs ATS		Version 1.5	N/A

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200
Pleasanton, CA 94566, USA
Tel: 1.925.462.0304
Fax: 1.925.462.0306
www.micomlabs.com