Radiated Emission Procedure

AError! Bookmark not defined..6 Transmitter Radiated Emissions

Radiated emissions measurements were performed in accordance with the standard, against appropriate limits for each detector function.

Initial pre-scans covering the entire measurement band from the lowest generated frequency declared up to 10 times the highest fundamental frequency stated in section 2.5 of this report were performed within a screened chamber in order to identify frequencies on which the EUT was generating interference. This determined the frequencies from the EUT which required further examination. Repetitive scans were performed to allow for emissions with low repetition rates, and for the duty cycle of the EUT.

The initial scans were performed using an antenna height of 1.5 m and a measurement distance of 3 m. A limit line was set to the specification limit. Levels within 20dB of this limit were measured where possible, on occasion; the receiver noise floor came within the 20dB boundary. On these occasions, the system noise floor may have been recorded.

An open area test site using the appropriate test distance and measuring receiver with a Peak detector was used for final measurements.

On the open area test site, at each frequency where a signal was found, the levels were maximised by initially rotating the turntable through 360° and then varying the antenna height between 1 m and 4 m in the horizontal polarisation. At this point, any signals found to be between the limit and a level 6 dB below it were further maximised by changing the configuration of the EUT, e.g. re-routing cables to peripherals and moving peripherals with respect to the EUT. The procedure was repeated for the vertical polarisation.

Once the final amplitude (maximised) had been obtained and noted. The EUT was replaced by a substitution antenna, and a substitution method applied.

The substitution antennas used were a horn antenna for measurements greater then or equal to 1 GHz and a dipole for measurements below 1 GHz..

The centre of the substitution antenna was set to approximately the same centre location as the EUT. The substitution antenna was set to the horizontal polarity. The substitution antenna was then connected to and fed by a signal generator tuned to the EUT's frequency under test.

The test antenna was then raised and lowered to obtain a maximum reading on the spectrum analyser. The level of the signal generator output was then adjusted until the previously recorded maximum level for this set of conditions was obtained. This procedure was repeated with both antennas vertically polarised. The EIRP was then taken as:-

EIRP = Signal Generator Level - Cable Loss + Antenna Gain

Once the EIRP was obtained, the difference between it and the level of the fundamental emission for the EIRP of the channel under test was noted at the spurious attenuation level in dBc. The following formula was used as described in TIA EIA 603A.

dB = (dBm)

The limit stated in the standard states that emissions shall be attenuated by at least 43+10 Log (P) dB below the transmitter power (P), where (P) is the maximum measured fundamental power for the channel under test.

The tabulated results in the result section of this report show the spurious emission in dBm and as a attenuation relative to the carrier in dBc as required by the authority.

It should be noted that FCC Part 24.238 states that the 1st MHz band immediately adjacent to the applicants declared frequency block may be measured using a resolution bandwidth of at least 1% of the emission bandwidth. This bandwidth was found to be 3 kHz