

MEASUREMENT REPORT

FCC PART 15.247 WLAN 802.11b/g/n

Report No.: S20250424832202E02

Issue Date: 06-13-2025

Applicant: Shanghai MXCHIP Information Technology Co., Ltd

Address: 9th Floor, No.5, Lane 2145, JinshaJiang Road, Putuo District,

Shanghai, China(200333)

P53-EMC3186 FCC ID:

Product: Embedded Wi-Fi/BLE Module

Model No.: EMC3186-E

FCC Classification: Digital Transmission System (DTS)

FCC Rule Part(s): Part 15 Subpart C (15.247)

Test Procedure(s): ANSI C63.10-2013, KDB 558074 D01v05r02

Pass Result:

Item Receipt Date: Apr. 24, 2025

Test Date: Apr. 26 ~ May. 26, 2025

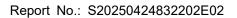
Compiled By

(Stone Zhang) Senior Test Engineer

Approved By

(Line Chen)

Engineer Manager


http://www.fgtest.cn

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) The test report shall not be reproduced except in full without the written approval of Fangquang Inspection & Testing Co., Ltd. Wuxi Branch

The test report must not be used by the client to claim product certifications, approval, or endorsement by NVLAP, NIST or any agency of U.S. Government.

Page Number: 1 of 126

Revision History

Report No.	Version	Description	Issue Date
S20250424832202E02	Rev. 01	1	06-13-2025

CONTENTS

Des	scriptio	n	Page
§2.	1033 G	eneral Information	5
1.	INTR	ODUCTION	6
	1.1.	Scope	6
	1.2.	Fangguang Test Location	
2.	PROI	DUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Product Specification Subjective to this Report	
	2.3.	Operation Frequency / Channel List	
	2.4.	Device Capabilities	
	2.5.	Description of Test Software	
	2.6.	Test Mode	
	2.7.	Test Configuration	14
	2.8.	EMI Suppression Device(s)/Modifications	14
	2.9.	EUT Photo	
	2.10.	Labeling Requirements	14
	2.11.	Calculation with all conversion and correction factors used	15
3.	DESC	CRIPTION OF TEST	16
	3.1.	Evaluation Procedure	16
	3.2.	AC Line Conducted Emissions	16
	3.3.	Radiated Emissions	17
4.	ANTE	NNA REQUIREMENTS	18
5.	TEST	EQUIPMENT CALIBRATION DATE	19
6.	MEAS	SUREMENT UNCERTAINTY	21
7.	TEST	RESULT	22
	7.1.	Summary	22
	7.2.	6dB Bandwidth Measurement	
	7.2.1.	Test Limit	
	7.2.2.	Test Procedure used	
	7.2.3.	Test Setting	
	7.2.4.	Test Setup	
	7.2.5.	Test Result	
	7.3.	Output Power Measurement	

8.

7.3.1.	Test Limit	28
7.3.2.	Test Procedure Used	28
7.3.3.	Test Setting	28
7.3.4.	Test Setup	29
7.3.5.	Test Result of Output Power	29
7.4.	Power Spectral Density Measurement	36
7.4.1.	Test Limit	36
7.4.2.	Test Procedure Used	36
7.4.3.	Test Setting	36
7.4.4.	Test Setup	37
7.4.5.	Test Result	38
7.5.	Conducted Band Edge and Out-of-Band Emissions	44
7.5.1.	Test Limit	44
7.5.2.	Test Procedure Used	44
7.5.3.	Test Settitng	44
7.5.4.	Test Setup	44
7.5.5.	Test Result	45
7.6.	Radiated Spurious Emission Measurement	64
7.6.1.	Test Limit	64
7.6.2.	Test Procedure Used	64
7.6.3.	Test Setting	64
7.6.4.	Test Setup	66
7.6.5.	Test Result	68
7.7.	Radiated Restricted Band Edge Measurement	106
7.7.1.	Test Limit	106
7.7.2.	Test Procedure Used	109
7.7.3.	Test Setting	109
7.7.4.	Test Setup	110
7.7.5.	Test Result	111
7.8.	AC Conducted Emissions Measurement	123
7.8.1.	Test Limit	123
7.8.2.	Test Setup	123
7.8.3.	Test Result	124
CONC	LUSION	125

§2.1033 General Information

Applicant:	Shanghai MXCHIP Information Technology Co., Ltd		
Applicant Address:	9th Floor, No.5, Lane 2145, JinshaJiang Road, Putuo District, Shanghai,		
	China(200333)		
Manufacturer:	Shanghai MXCHIP Information Technology Co., Ltd		
Manufacturer Address:	9th Floor, No.5, Lane 2145, JinshaJiang Road, Putuo District, Shanghai,		
	China(200333)		
Factory:	Chengdu Xuguang Technology Co., Ltd		
Factory Address:	No.86, Section 2, Gongyuan Road, Longquan Town, Chengdu, Sichuan, China.		
Test Site:	Fangguang Inspection & Testing Co., Ltd.		
LAB ID:	CN5037		
Test Site Address:	No.8 Ningyun Rd., Xinwu District Wuxi, Jiangsu 214000 China		
FCC Rule Part(s):	Part 15 Subpart C (15.247)		
FCC ID:	P53-EMC3186		
Test Device Serial No.:	S/N.:/		
Test Device Serial NO.:	☐ Production ☐ Engineering		
FCC Classification:	Digital Transmission System (DTS)		

Page Number: 5 of 126

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2. Fangguang Test Location

These measurement tests were performed at the Fangguang Inspection and testing Co.,LTD located at No.8 Ningyun Rd., Xinwu District Wuxi, Jiangsu 214000 China. The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.10-2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	Embedded Wi-Fi/BLE Module
Test Model:	EMC3186-E
Trade Mark:	MXCHIP
Input Voltage Range:	DC 3.3V
Software Version:	A245
Hardware Version:	1.0
EUT sample number:	S20250424832202-1-1/-1-2

Note: This information is provided by the Customer and its authenticity is the responsibility of the Customer.

2.2. Product Specification Subjective to this Report

Frequency Range:	802.11b/g/n-HT20: 2412 ~ 2462MHz			
Channel Number:	02.11b/g/n-HT20: 11			
Type of Modulation:	02.11b: DSSS			
	802.11g/n-HT20: OFDM			
Data Rate:	802.11b: 1/2/5.5/11Mbps			
	802.11g: 6/9/12/18/24/36/48/54Mbps			
	802.11n-HT20: MCS0~MCS7			
Antenna Type:	Copper tube Antenna			
Antenna Gain:	2.0dBi			

Note:The maximum Antenna Gain was declared by the manufacturer.

2.3. Operation Frequency / Channel List

802.11b/g/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

EUT was tested with Channel 01, 06 and 11.

2.4. Device Capabilities

This device contains the following capabilities: 2.4GHz WLAN (DTS)

Note: 2.4GHz WLAN (DTS) operation is possible in 20MHz channel bandwidths. The maximum achievable duty cycle was determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 8MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles:

Test Mode	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
	2412	19.00	19.00	100.00
802.11b	2437	19.00	19.00	100.00
	2462	19.00	19.00	100.00
	2412	19.00	19.00	100.00
802.11g	2437	19.00	19.00	100.00
	2462	19.00	19.00	100.00
	2412	19.00	19.00	100.00
802.11n-HT20	2437	19.00	19.00	100.00
	2462	19.00	19.00	100.00

Page Number: 8 of 126

Test Graphs:

2.5. Description of Test Software

The test utility software used during testing was "UI_mptool.exe", pre-scan with all the data rates, and the worst case was performed as below:

Test Mode	Data Rate	Channel	*Power Level Setting
		Low	100
802.11b	1 Mbps	Middle	100
		High	100
		Low	105
802.11g	6 Mbps	Middle	105
		High	105
		Low	102
802.11n-HT20	MCS0	Middle	102
		High	102

2.6. Test Mode

Test Mode	Mode 1: Transmit by 802.11b
	Mode 2: Transmit by 802.11g
	Mode 3: Transmit by 802.11n-HT20

2.7. Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.8. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.9. EUT Photo

The EUT external photo, internal photo and test setup photo, please refer to the plots in the S20250424832202-A1/A2/A3.

2.10. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or

pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

2.11. Calculation with all conversion and correction factors used

For AC Line Conducted Emissions Test:

Measure Level ($dB\mu V$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

For Radiated Emissions Below 1GHz Test:

Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

For Radiated Emissions Above 1GHz Test:

Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Page Number: 15 of 126

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. The turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-25GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

Use a unique coupling to the intentional radiator.

Page Number: 18 of 126

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	FWXGJC-2016-181	1 year	2025/07/22
Two-Line V-Network	R&S	ENV 216	FWXGJC-2016-182	1 year	2025/07/23
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-385	1 year	2025/09/03

Radiated Emission

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Loop Antenna	Schwarzbeck	FMZB 1519B	FWXGJC-2018-015	1 year	2025/07/23
Bi-Log Antenna	R&S	VULB 9168	FGZZ-2024-036	1 year	2026/01/17
Broadband Horn Antenna	R&S	HF907	FWXGJC-2016-267-07	1 year	2025/07/26
Broadband Horn Antenna	Schwarzbeck	BBHA9170	FWXGJC-2018-016	1 year	2025/07/26
EMI Receiver	R&S	ESCI3	FGZZ-2024-033	1 year	2025/07/18
EXA Signal Analyzer	Keysight	N9020A	FWXGJC-2025-006	1 year	2025/07/13
EXA Signal Analyzer	Keysight	N9010B	FWXGJC-2018-010	1 year	2025/07/15
Pre-Amplifier	Tonscend	TAP0118048	FGZZ-2024-037	1 year	2025/07/23
Pre-Amplifier	Chengyi	EMC184055SE	FWXGJC-2018-018	1 year	2025/07/23
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-387	1 year	2025/09/03
Anechoic Chamber	SAEMC	FSAC318	FWXGJC-2024-035	3 year	2027/06/02

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Keysight	N9010B	FWXGJC-2018-010	1 year	2025/07/15
RF Control Unit	Toncend	JS0806-2	FWXGJC-2018-013	1 year	2025/05/19
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-385	1 year	2025/09/03

Test Software	Manufacturer	Version	Asset No.	Function
JS1120-3 Test System	tonscend	V3.3.10	/	Conducted Test
JS32	tonscend	V5.0.0	/	Radiated Emission
EMI Test Software	R&S	9.26.00	/	Conducted Emission

Page Number: 19 of 126

Auxiliary Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Filter	Tonscend	ZBSF6	07247867	1 year	2025/07/26
Filter	Tonscend	ZHPF6	07233297	1 year	2025/07/26
Attenuator	Tonscend	10dB	/	1 year	2025/07/26
RF Cable	Tonscend	T-1	/	1 year	2025/07/26

Page Number: 20 of 126

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.68dB

Radiated Emission Measurement (9kHz - 30MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

3.06dB

Radiated Emission Measurement (30MHz -1GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

4.01dB

Radiated Emission Measurement (1-18GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

4.97dB

Radiated Emission Measurement (18-40GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

5.32dB

Spurious Emissions, Conducted

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

30MHz-1GHz: 1.00 dB 1GHz-12.75GHz: 1.30 dB

Output Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.60dB

Power Spectrum Density

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.80dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.20MHz

Frequency Stability

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

 $0.1 \times 10^{-6} MHz$

7. TEST RESULT

7.1. Summary

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section
. , , ,					7.2
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section
10.217 (5)(6)	Output 1 owor	_ 000Biii		1 400	7.3
15 247(0)	Power Spectral	≤ 8dBm/3kHz	Conducted	Pass	Section
15.247(e)	Density	≥ OUDIII/3KI IZ	Conducted	F 455	7.4
15 047(4)	Dand Edge	nd Edge ≥ 30dBc		Pass	Section
15.247(d)	Band Edge			F455	7.5
45 047(4)	Out-of-Band	> 2040-		Dees	Section
15.247(d)	Emissions	≥ 30dBc		Pass	7.6
	General Field	Emissions in			
15.205	Strength Limits	restricted bands			Section
15.205	(Restricted Bands	must meet the	Radiated	Radiated Pass	
15.209	and Radiated	radiated limits			7.7
	Emission Limits)	detailed in 15.209			
	AC Conducted		Line	Not	Continu
15.207	Emissions	< FCC 15.207 limits		Not	Section
	150kHz - 30MHz		Conducted	Applicable	7.8

Notes:

- All modes of operation and data rates were investigated. For radiated emission test, every axis
 (X, Y, Z) was also verified. The test results shown in the following sections represent the worst
 case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

7.2. 6dB Bandwidth Measurement

7.2.1. Test Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.2.2. Test Procedure used

ANSI C63.10-2013 Section 11.8.2 Option 1

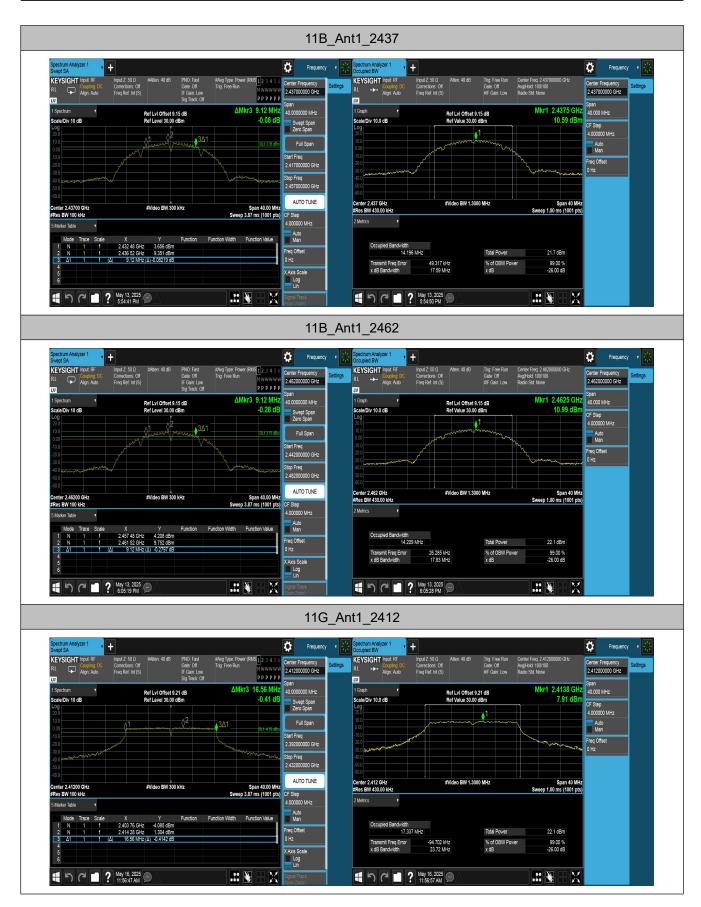
KDB 558074 D01 v05r02 - Section 8.2

7.2.3. Test Setting

- 1. Set RBW = 100 kHz
- 2. VBW ≥ 3 × RBW
- 3. Detector = peak
- 4. Trace mode = max hold
- 5. Sweep = auto couple
- 6. Allow the trace was allowed to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.2.4. Test Setup

7.2.5. Test Result


Temperature:	25.0~30.0 °C
Relative Humidity:	40~70 %
ATM Pressure:	101.4 kPa
Test Data:	2025-05-13~2025-05-16
Test Engineer:	Stone Zhang

Test Mode	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit [MHz]	99% BW[MHz]	Verdict
	2412	9.120	2407.480	2416.600	≥0.5	14.187	PASS
802.11b	2437	9.120	2432.480	2441.600	≥0.5	14.196	PASS
	2462	9.120	2457.480	2466.600	≥0.5	14.209	PASS
	2412	16.560	2403.760	2420.320	≥0.5	17.337	PASS
802.11g	2437	16.560	2428.760	2445.320	≥0.5	17.361	PASS
	2462	16.560	2453.760	2470.320	≥0.5	17.333	PASS
	2412	17.760	2403.160	2420.920	≥0.5	18.294	PASS
802.11n-HT20	2437	17.800	2428.160	2445.960	≥0.5	18.277	PASS
	2462	17.760	2453.160	2470.920	≥0.5	18.353	PASS


Test Graphs



7.3. Output Power Measurement

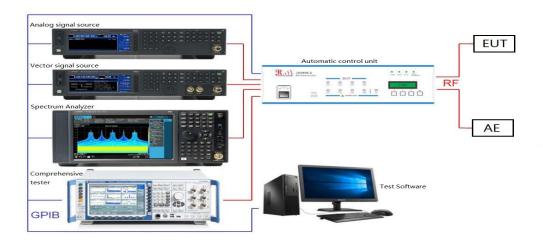
7.3.1. Test Limit

The maximum permissible conducted output power is 1 Watt (30dBm). And for antenna gain greater than 6dBi the limit shall reduce by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.3.2. Test Procedure Used

ANSI C63.10-2013 - Section 11.9.2.2.4

KDB 558074 D01 v05r02 – Section 8.3.2.2


7.3.3. Test Setting

- 1. Set span to at least 1.5 times the OBW..
- 2. Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- 3. Set VBW ≥ $[3 \times RBW]$.
- 4. Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing RBW / 2, so that narrowband signals are not lost between frequency bins.)
- 5.Sweep time = auto.
- 6. Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- 7. Do not use sweep triggering. Allow the sweep to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- 9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum. 10Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power

during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add $[10 \log (1/0.25)] = 6 dB$ if the duty cycle is 25%.

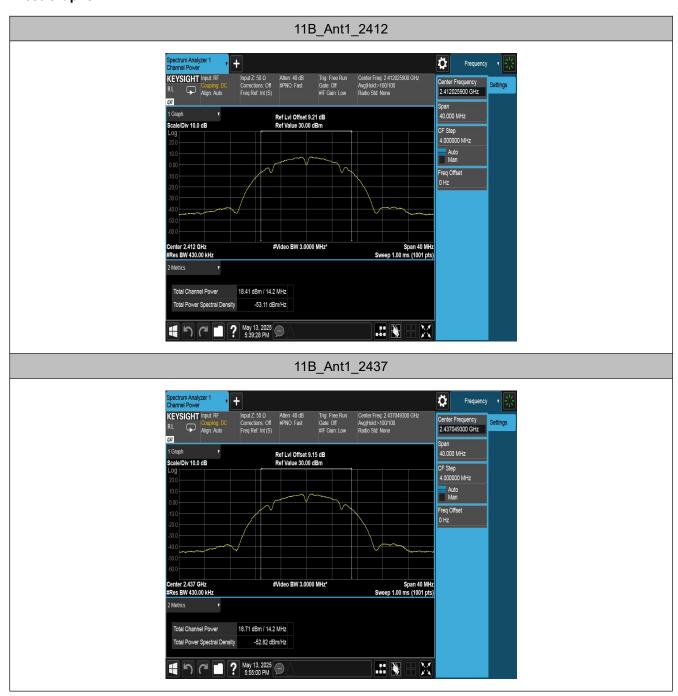
7.3.4. Test Setup

7.3.5. Test Result of Output Power

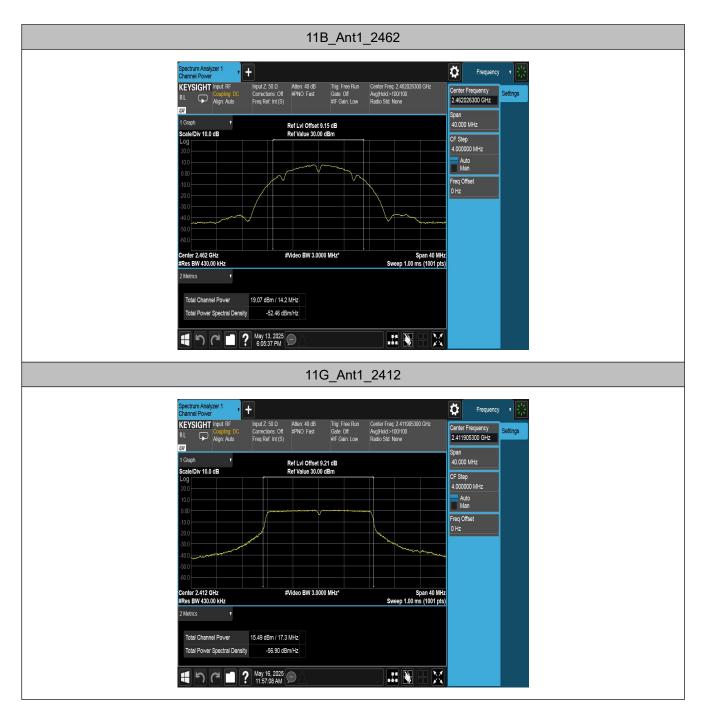
Temperature:	25.0~30.0 °C
Relative Humidity:	40~70 %
ATM Pressure:	101.4 kPa
Test Data:	2025-05-13~2025-05-16
Test Engineer:	Stone Zhang

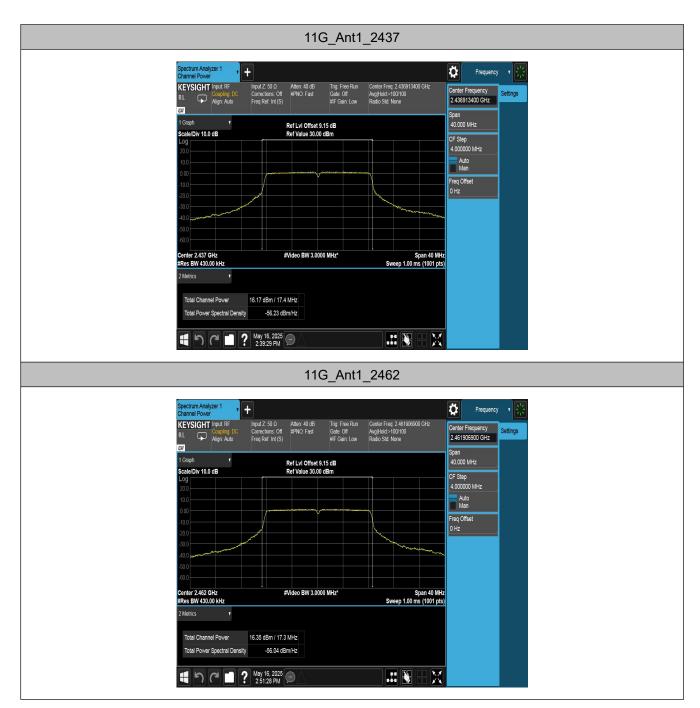
Test Mode	Channel	Average power [dBm]	Limit[dBm]	Verdict
	2412	18.41	≤30	PASS
802.11b	2437	18.72	≤30	PASS
	2462	19.06	≤30	PASS
	2412	15.49	≤30	PASS
802.11g	2437	16.16	≤30	PASS
	2462	16.33	≤30	PASS
802.11n-HT20	2412	15.71	≤30	PASS
002.1111-H120	2437	15.93	≤30	PASS

Page Number: 29 of 126



2462	15.92	<30	PASS
2402	13.92	≥30	FASS


The Duty Cycle Factor is compensated in the Offset of graph.


Test Graphs



