

LTE Band 5_Rear_Ch 20525_RB 1_0_0mm

Frequency: 836.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.6°C; Liquid Temperature: 21.8°C
 Medium parameters used : $f = 836.5$ MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 40.451$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(9.45, 9.45, 9.45) @ 836.5 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (121x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
 Maximum value of SAR (interpolated) = 0.807 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.98 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.909 W/kg

SAR(1 g) = 0.667 W/kg; SAR(10 g) = 0.476 W/kg

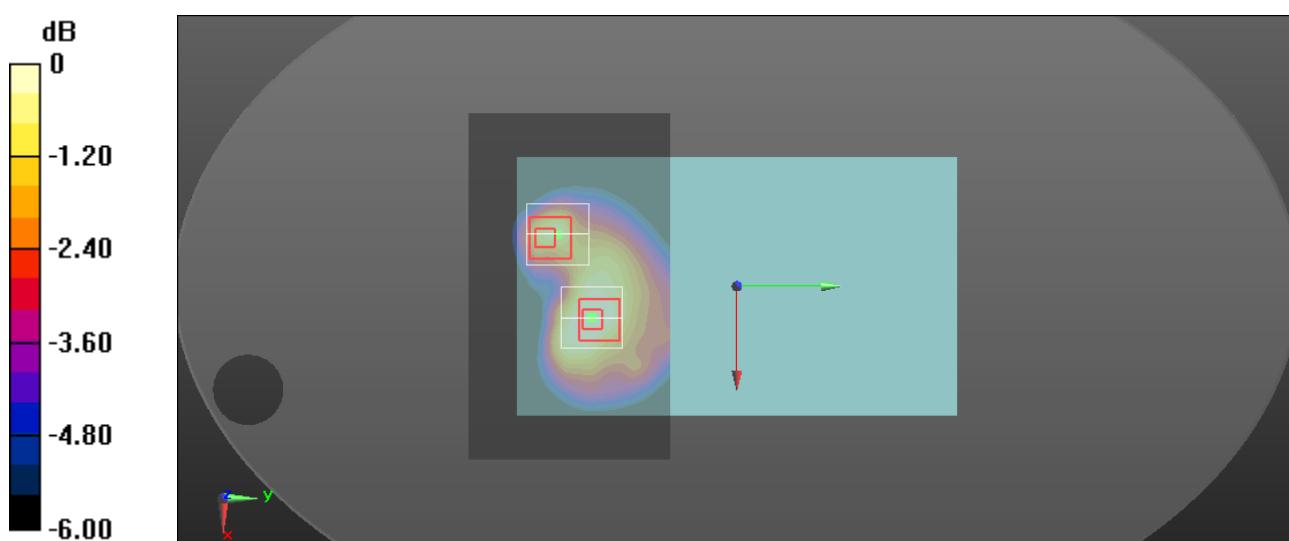
Smallest distance from peaks to all points 3 dB below = 18.7 mm

Ratio of SAR at M2 to SAR at M1 = 73.4%

Maximum value of SAR (measured) = 0.809 W/kg

Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.98 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.539 W/kg; SAR(10 g) = 0.304 W/kg

Smallest distance from peaks to all points 3 dB below = 11.5 mm

Ratio of SAR at M2 to SAR at M1 = 57.8%

Maximum value of SAR (measured) = 0.757 W/kg

LTE Band 7_Edge 4_Ch 20850_RB 1_0_0mm

Frequency: 2510 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.9°C; Liquid Temperature: 21.2°C
Medium parameters used: $f = 2510$ MHz; $\sigma = 1.932$ S/m; $\epsilon_r = 39.296$; $\rho = 1000$ kg/m³

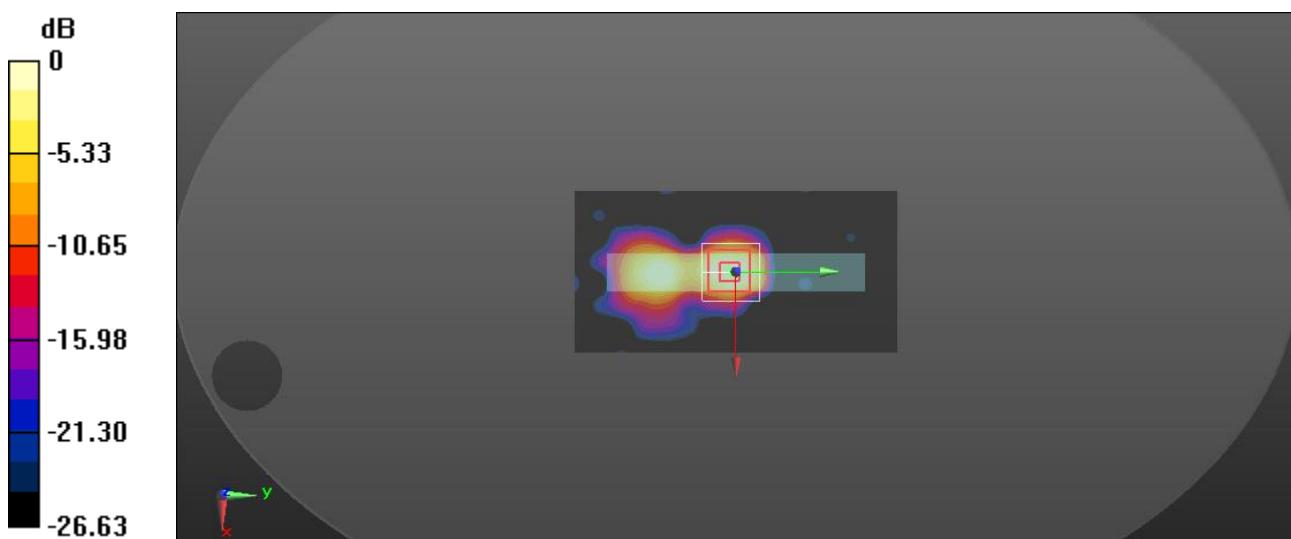
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(7.38, 7.38, 7.38) @ 2510 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (71x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.404 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.808 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 0.400 W/kg

SAR(1 g) = 0.158 W/kg; SAR(10 g) = 0.068 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 40.5%

Maximum value of SAR (measured) = 0.257 W/kg

0 dB = 0.257 W/kg = -5.90 dBW/kg

LTE Band 12_Rear_Ch 23095_RB 1_49_0mm

Frequency: 707.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.3°C; Liquid Temperature: 21.7°C
 Medium parameters used : $f = 707.5$ MHz; $\sigma = 0.882$ S/m; $\epsilon_r = 40.833$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(9.79, 9.79, 9.79) @ 707.5 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (121x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
 Maximum value of SAR (interpolated) = 1.15 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.20 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.36 W/kg

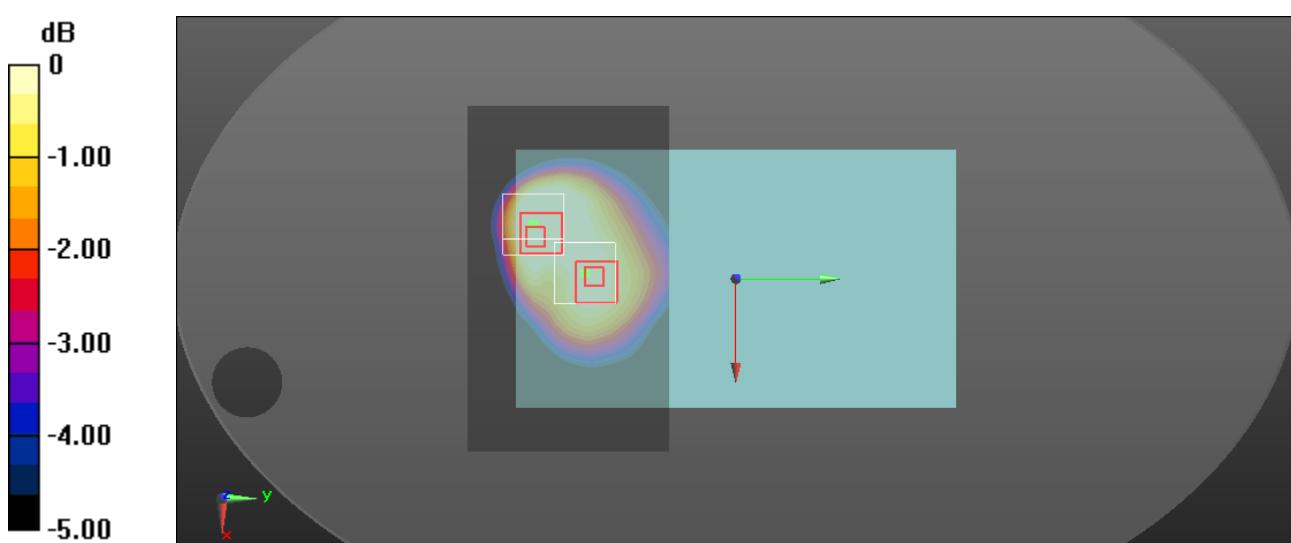
SAR(1 g) = 0.869 W/kg; SAR(10 g) = 0.575 W/kg

Smallest distance from peaks to all points 3 dB below = 15.8 mm

Ratio of SAR at M2 to SAR at M1 = 64.8%

Maximum value of SAR (measured) = 1.13 W/kg

Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 37.20 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.561 W/kg

Ratio of SAR at M2 to SAR at M1 = 70.7%

Maximum value of SAR (measured) = 0.905 W/kg

0 dB = 0.905 W/kg = -0.43 dBW/kg

LTE Band 13_Rear_Ch 23230_RB 1_0_0mm

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.3°C; Liquid Temperature: 21.7°C
 Medium parameters used : $f = 782$ MHz; $\sigma = 0.908$ S/m; $\epsilon_r = 40.583$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(9.79, 9.79, 9.79) @ 782 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (121x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
 Maximum value of SAR (interpolated) = 1.22 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 38.41 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.49 W/kg

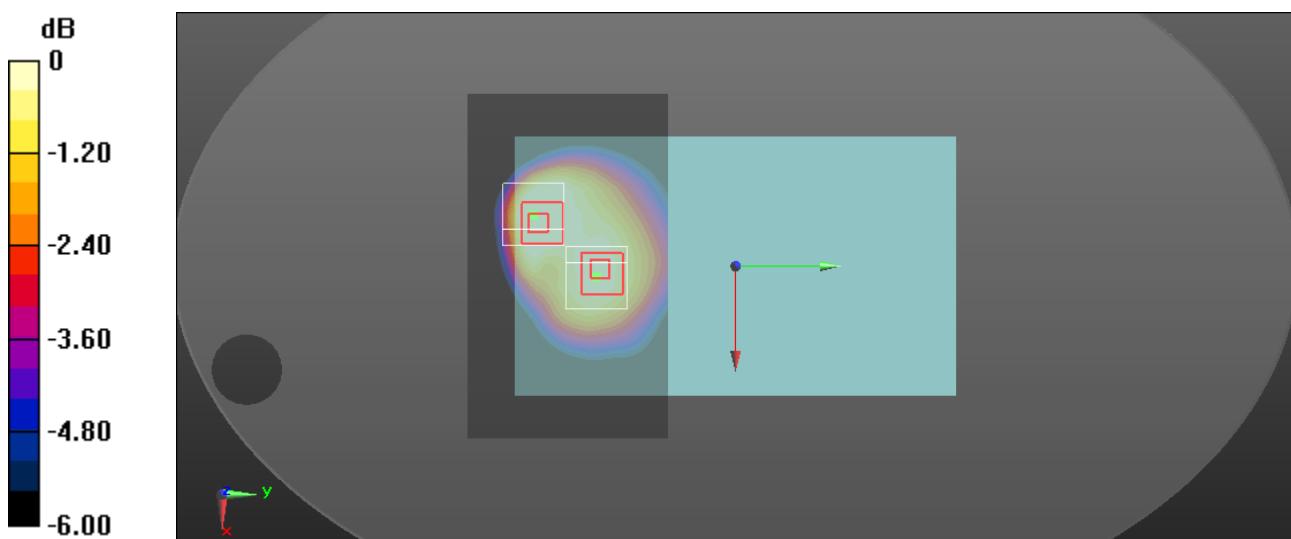
SAR(1 g) = 0.961 W/kg; SAR(10 g) = 0.617 W/kg

Smallest distance from peaks to all points 3 dB below = 13.2 mm

Ratio of SAR at M2 to SAR at M1 = 66%

Maximum value of SAR (measured) = 1.21 W/kg

Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 38.41 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.820 W/kg; SAR(10 g) = 0.605 W/kg

Ratio of SAR at M2 to SAR at M1 = 73.7%

Maximum value of SAR (measured) = 0.970 W/kg

LTE Band 14_Rear_Ch 23330_RB 1_0_0mm

Frequency: 793 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.3°C; Liquid Temperature: 21.7°C
 Medium parameters used : $f = 793$ MHz; $\sigma = 0.912$ S/m; $\epsilon_r = 40.496$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(9.79, 9.79, 9.79) @ 793 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (121x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
 Maximum value of SAR (interpolated) = 1.10 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 35.57 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.34 W/kg

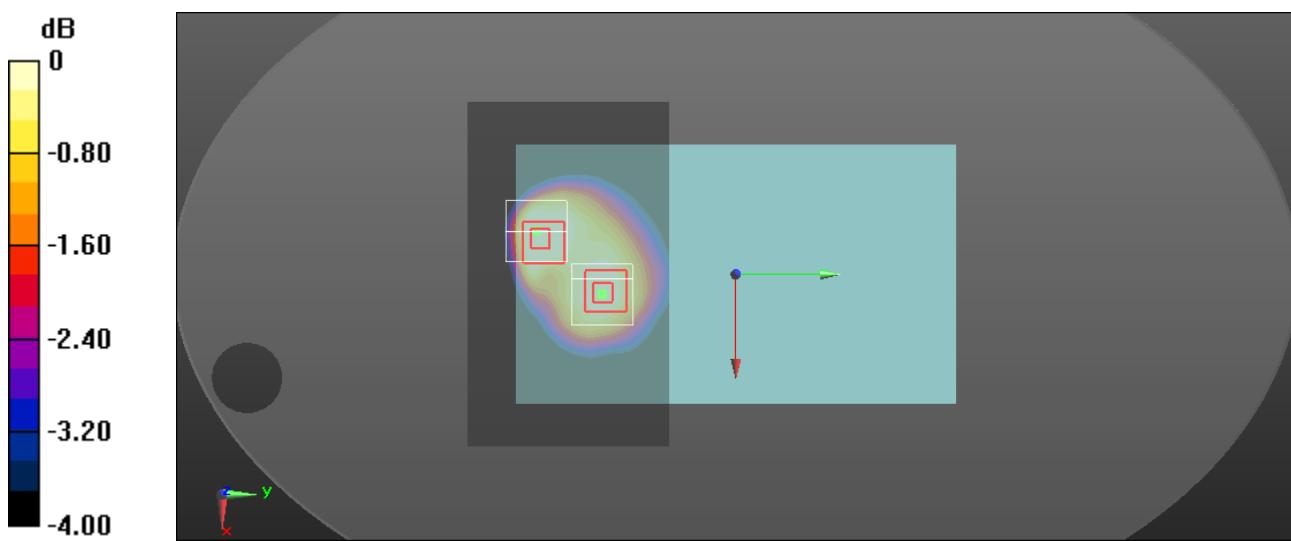
SAR(1 g) = 0.875 W/kg; SAR(10 g) = 0.563 W/kg

Smallest distance from peaks to all points 3 dB below = 14.4 mm

Ratio of SAR at M2 to SAR at M1 = 65.7%

Maximum value of SAR (measured) = 1.11 W/kg

Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 35.57 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.786 W/kg; SAR(10 g) = 0.575 W/kg

Ratio of SAR at M2 to SAR at M1 = 69.4%

Maximum value of SAR (measured) = 0.930 W/kg

0 dB = 0.930 W/kg = -0.32 dBW/kg

LTE Band 25_Edge 3_Ch 26590_RB 1_0_0mm

Frequency: 1905 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.7°C; Liquid Temperature: 21.4°C
Medium parameters used : $f = 1905$ MHz; $\sigma = 1.396$ S/m; $\epsilon_r = 40.585$; $\rho = 1000$ kg/m³

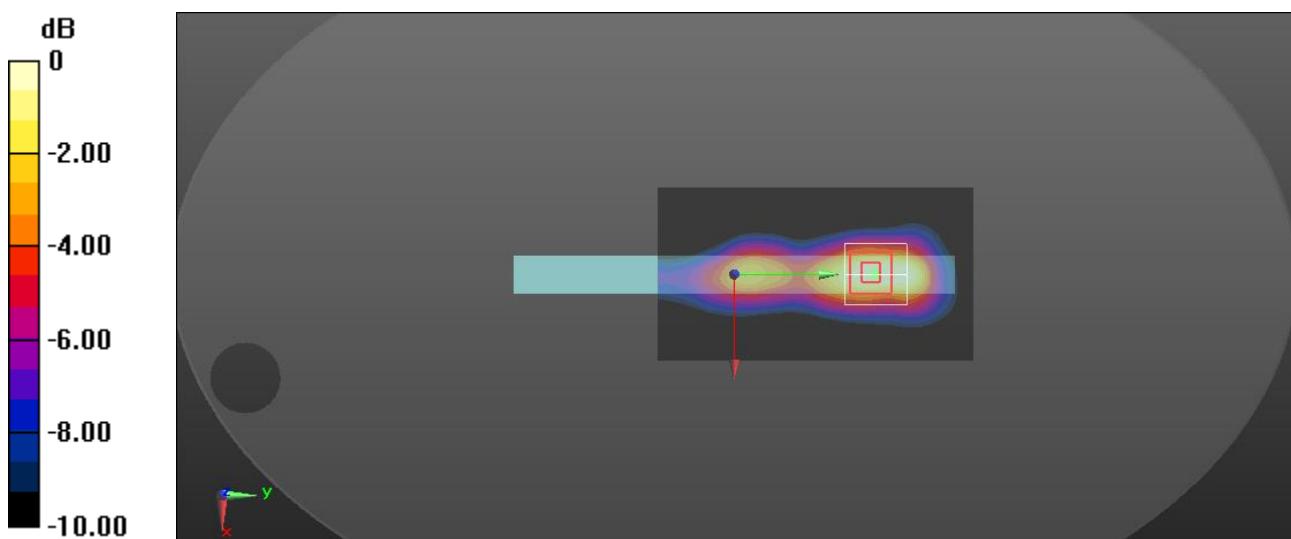
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(8.32, 8.32, 8.32) @ 1905 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.437 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.52 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 0.541 W/kg

SAR(1 g) = 0.306 W/kg; SAR(10 g) = 0.175 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 55.2%

Maximum value of SAR (measured) = 0.426 W/kg

$$0 \text{ dB} = 0.426 \text{ W/kg} = -3.71 \text{ dBW/kg}$$

LTE Band 26_Rear_Ch 26865_RB 1_74_0mm

Frequency: 831.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.6°C; Liquid Temperature: 21.8°C
Medium parameters used : $f = 831.5$ MHz; $\sigma = 0.915$ S/m; $\epsilon_r = 40.472$; $\rho = 1000$ kg/m³

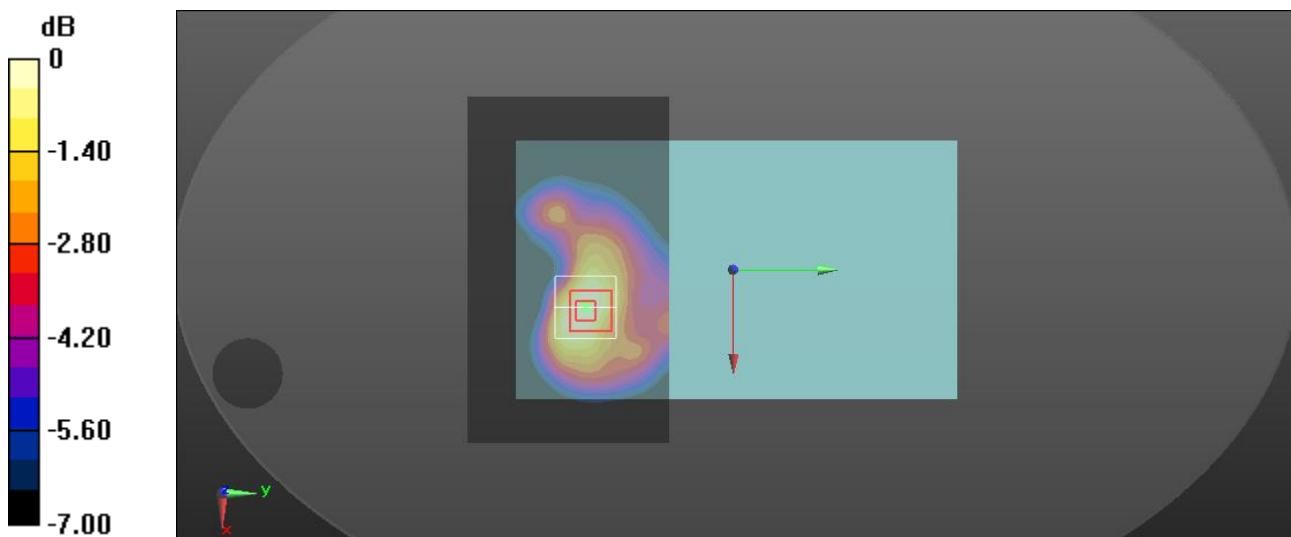
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(9.45, 9.45, 9.45) @ 831.5 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (121x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.983 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.86 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.801 W/kg; SAR(10 g) = 0.548 W/kg

Smallest distance from peaks to all points 3 dB below = 17.2 mm

Ratio of SAR at M2 to SAR at M1 = 73.2%

Maximum value of SAR (measured) = 0.974 W/kg

$$0 \text{ dB} = 0.974 \text{ W/kg} = -0.11 \text{ dBW/kg}$$

LTE Band 41_Edge 3_Ch 41490_RB 50_0_0mm

Frequency: 2680 MHz; Duty Cycle: 1:1.58; Room Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C
Medium parameters used: $f = 2680$ MHz; $\sigma = 2.015$ S/m; $\epsilon_r = 38.901$; $\rho = 1000$ kg/m³

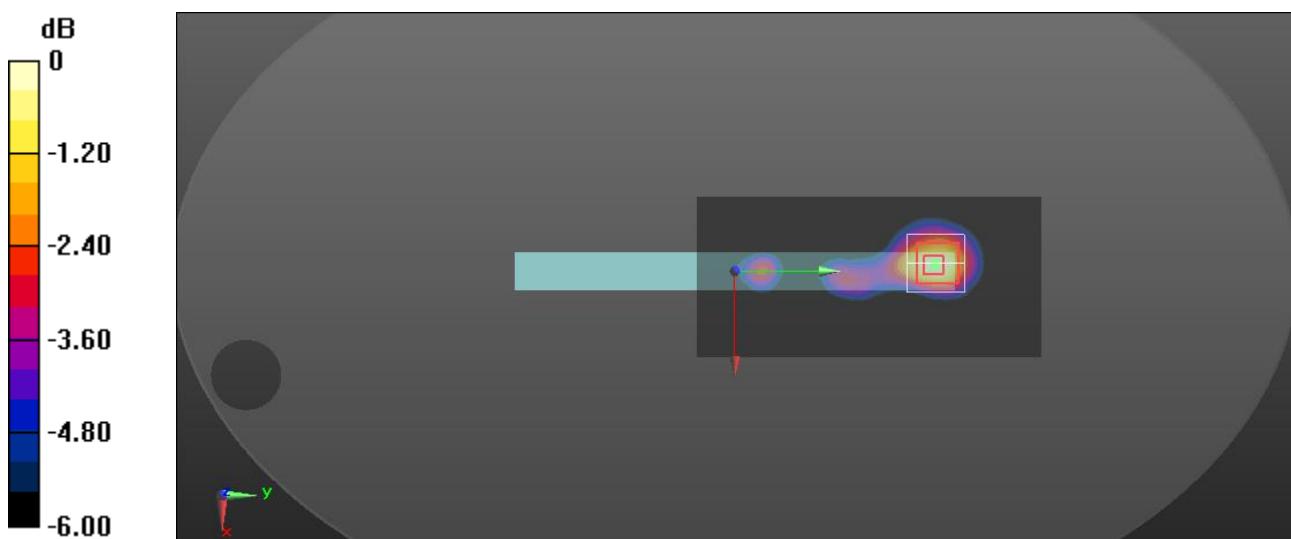
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(7.38, 7.38, 7.38) @ 2680 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.340 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.06 V/m; Power Drift = -0.16 dB


Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.230 W/kg; SAR(10 g) = 0.116 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 49.8%

Maximum value of SAR (measured) = 0.340 W/kg

$$0 \text{ dB} = 0.340 \text{ W/kg} = -4.69 \text{ dBW/kg}$$

LTE Band 66_Edge 3_Ch 132072_RB 1_0_0mm

Frequency: 1720 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.4°C; Liquid Temperature: 21.7°C
 Medium parameters used: $f = 1720$ MHz; $\sigma = 1.303$ S/m; $\epsilon_r = 40.701$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(8.61, 8.61, 8.61) @ 1720 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
 Maximum value of SAR (interpolated) = 0.921 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.55 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.637 W/kg; SAR(10 g) = 0.369 W/kg

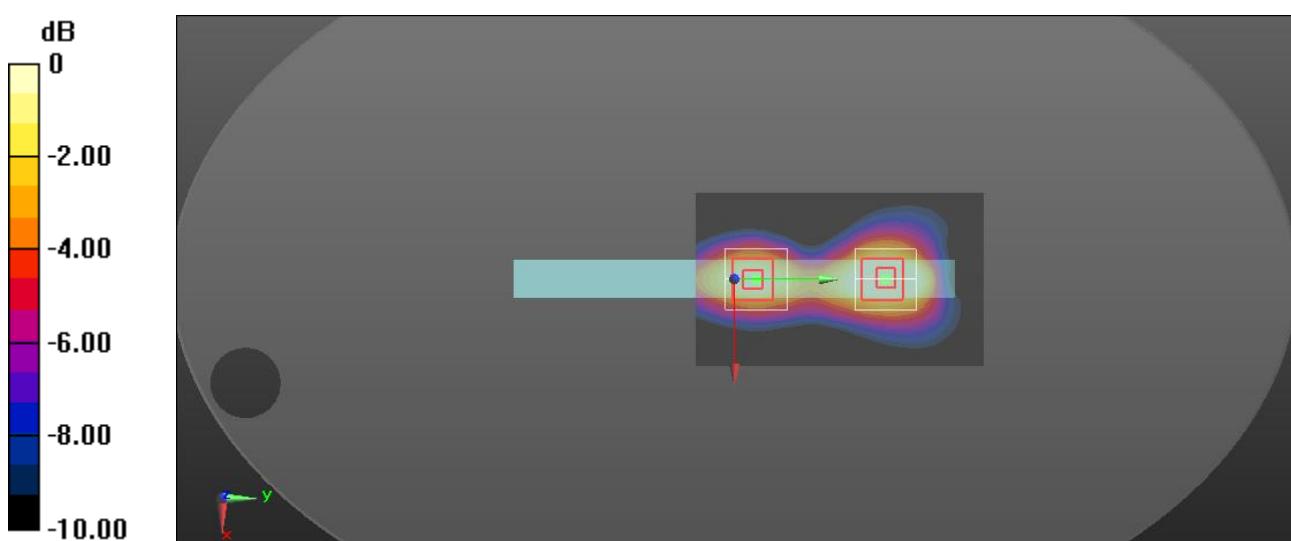
Smallest distance from peaks to all points 3 dB below = 12.8 mm

Ratio of SAR at M2 to SAR at M1 = 62.1%

Maximum value of SAR (measured) = 0.851 W/kg

Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.55 V/m; Power Drift = 0.10 dB


Peak SAR (extrapolated) = 0.740 W/kg

SAR(1 g) = 0.449 W/kg; SAR(10 g) = 0.261 W/kg

Smallest distance from peaks to all points 3 dB below = 12.9 mm

Ratio of SAR at M2 to SAR at M1 = 61.7%

Maximum value of SAR (measured) = 0.601 W/kg

LTE Band 71_Edge 4_Ch 133297_RB 1_0_0mm

Frequency: 680.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.6°C; Liquid Temperature: 21.8°C
Medium parameters used : $f = 680.5$ MHz; $\sigma = 0.869$ S/m; $\epsilon_r = 42.319$; $\rho = 1000$ kg/m³

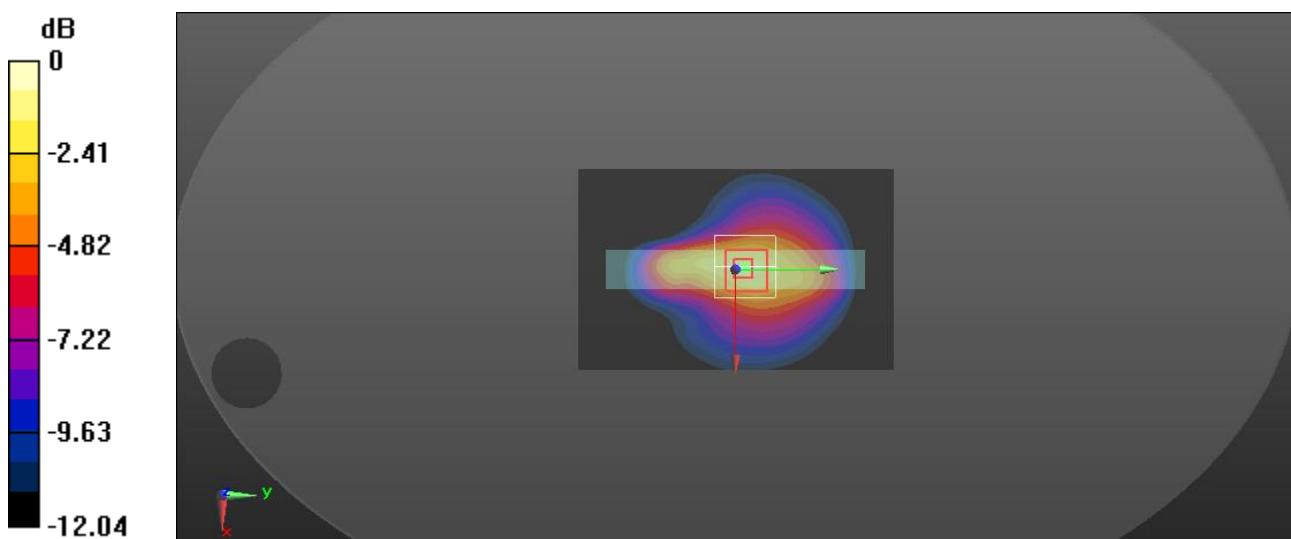
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(9.79, 9.79, 9.79) @ 680.5 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.860 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.04 V/m; Power Drift = 0.10 dB


Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.781 W/kg; SAR(10 g) = 0.458 W/kg

Smallest distance from peaks to all points 3 dB below = 9.7 mm

Ratio of SAR at M2 to SAR at M1 = 53.4%

Maximum value of SAR (measured) = 1.14 W/kg

$$0 \text{ dB} = 1.14 \text{ W/kg} = 0.57 \text{ dBW/kg}$$

WiFi 2.4GHz_Edge 1_802.11b_Ch 6_0mm

Frequency: 2437 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.6°C; Liquid Temperature: 21.7°C
Medium parameters used: $f = 2437$ MHz; $\sigma = 1.761$ S/m; $\epsilon_r = 38.806$; $\rho = 1000$ kg/m³

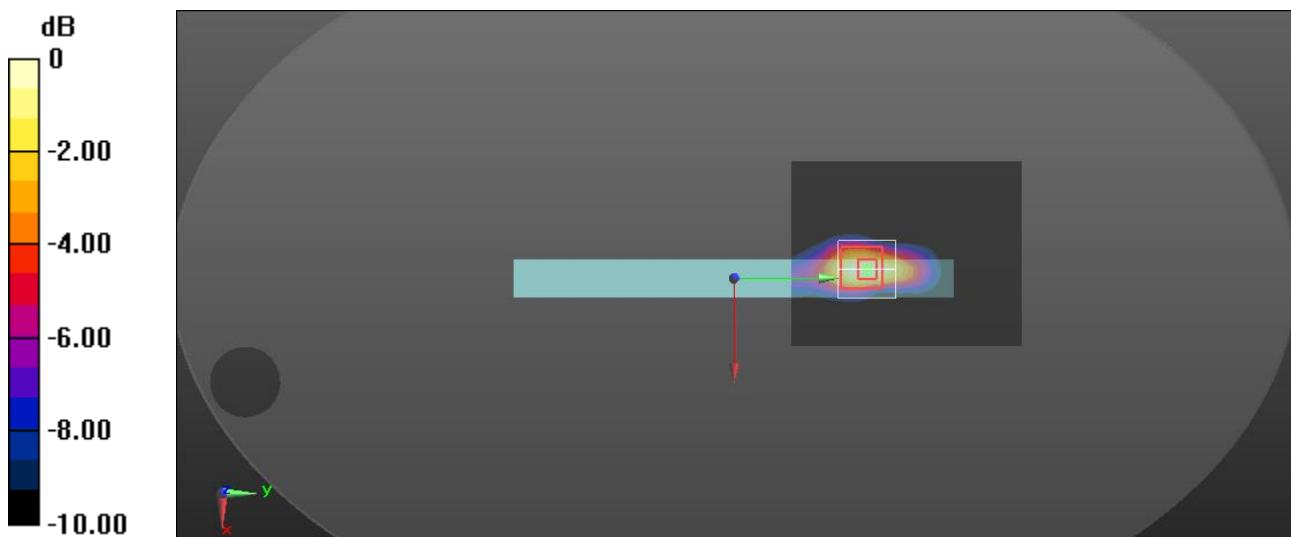
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(7.35, 7.35, 7.35) @ 2437 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.928 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.85 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.596 W/kg; SAR(10 g) = 0.275 W/kg

Smallest distance from peaks to all points 3 dB below = 7.3 mm

Ratio of SAR at M2 to SAR at M1 = 46.2%

Maximum value of SAR (measured) = 0.914 W/kg

0 dB = 0.914 W/kg = -0.39 dBW/kg

WiFi 5.3GHz_Edge 1_802.11a_Ch 52_0mm

Frequency: 5260 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.8°C; Liquid Temperature: 21.5°C
Medium parameters used: $f = 5260$ MHz; $\sigma = 4.698$ S/m; $\epsilon_r = 36.901$; $\rho = 1000$ kg/m³

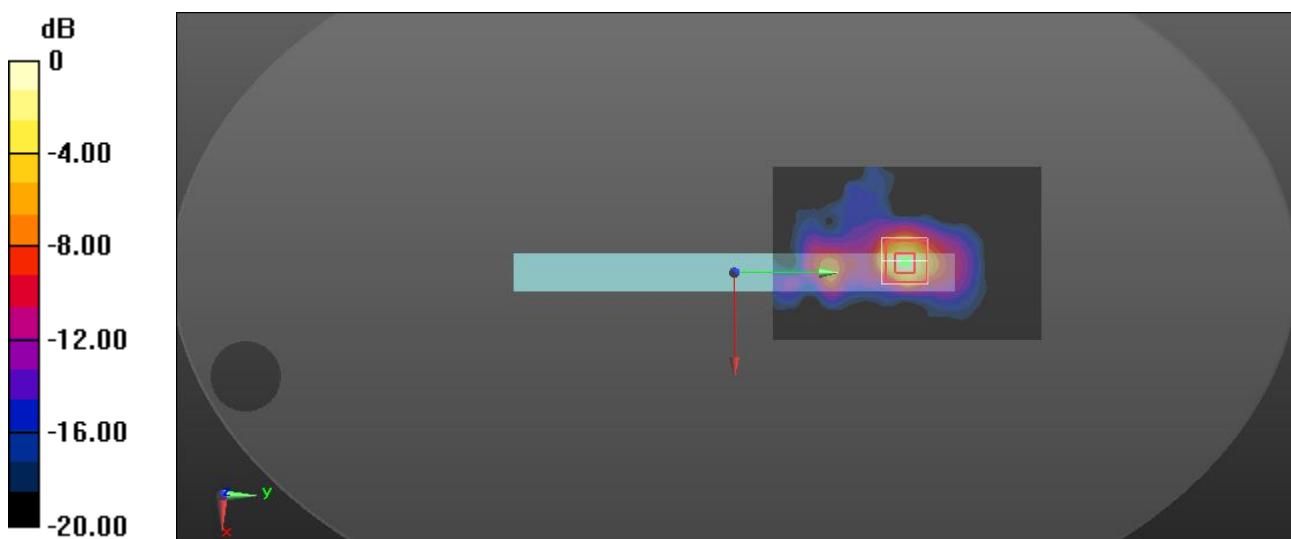
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(5.27, 5.27, 5.27) @ 5260 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (91x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 1.47 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.77 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 2.91 W/kg

SAR(1 g) = 0.707 W/kg; SAR(10 g) = 0.197 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 55.4%

Maximum value of SAR (measured) = 1.42 W/kg

$$0 \text{ dB} = 1.42 \text{ W/kg} = 1.52 \text{ dBW/kg}$$

WiFi 5.5GHz_Edge 1_802.11a_Ch 100_0mm

Frequency: 5500 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.8°C; Liquid Temperature: 21.5°C
 Medium parameters used: $f = 5500$ MHz; $\sigma = 5.011$ S/m; $\epsilon_r = 36.686$; $\rho = 1000$ kg/m³

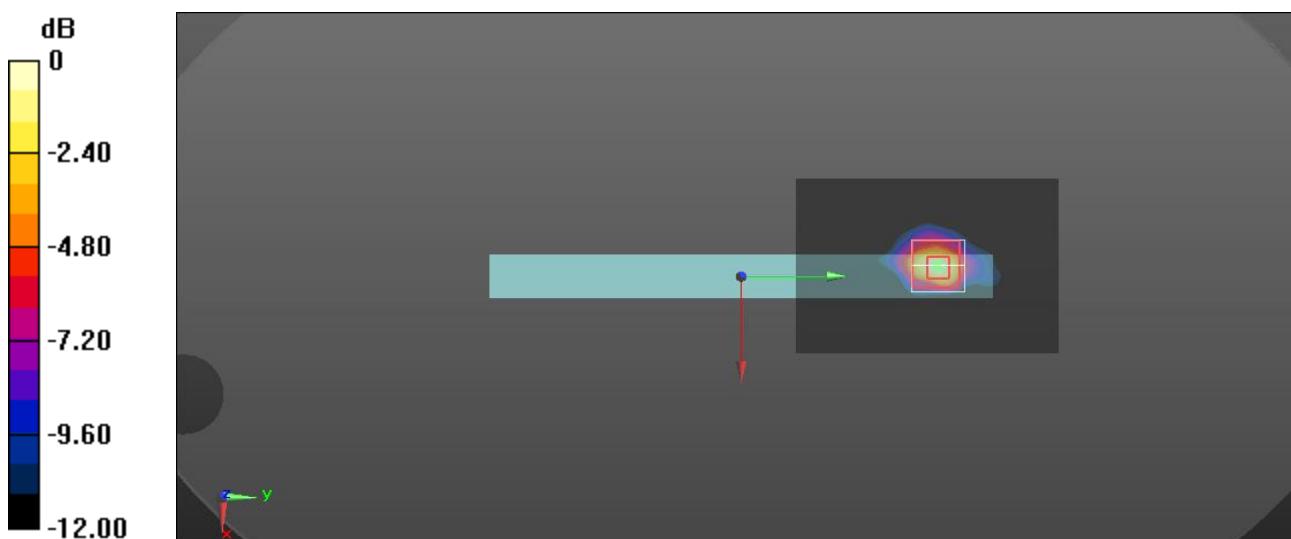
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(4.97, 4.97, 4.97) @ 5500 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
 Maximum value of SAR (interpolated) = 1.05 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.575 V/m; Power Drift = 0.18 dB


Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 0.529 W/kg; SAR(10 g) = 0.157 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 1.07 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

WiFi 5.8GHz_Edge 1_802.11a_Ch 149_0mm

Frequency: 5745 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.8°C; Liquid Temperature: 21.5°C
Medium parameters used: $f = 5745$ MHz; $\sigma = 5.288$ S/m; $\epsilon_r = 36.155$; $\rho = 1000$ kg/m³

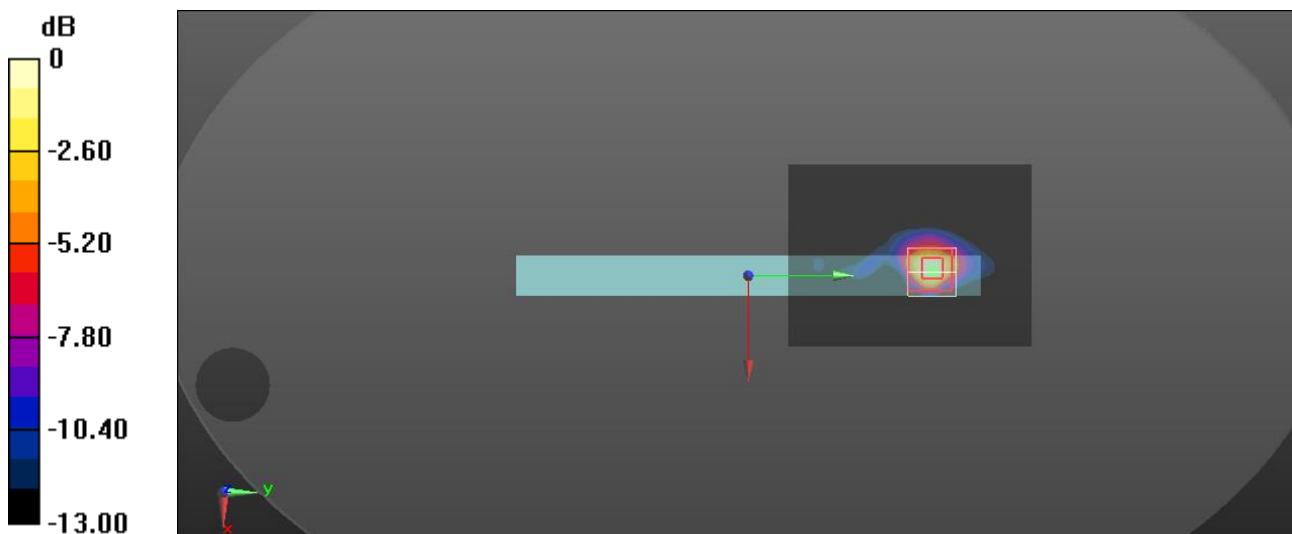
DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(5.05, 5.05, 5.05) @ 5745 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.964 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.369 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.479 W/kg; SAR(10 g) = 0.133 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 52.5%

Maximum value of SAR (measured) = 0.961 W/kg

$$0 \text{ dB} = 0.961 \text{ W/kg} = -0.17 \text{ dBW/kg}$$

Bluetooth_Edge 1_GFSK_1M_Ch 78_0mm

Frequency: 2480 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 22.6°C; Liquid Temperature: 21.7°C
Medium parameters used: $f = 2480$ MHz; $\sigma = 1.797$ S/m; $\epsilon_r = 38.795$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1751; Calibrated: 2024/3/13
- Probe: EX3DV4 - SN3665; ConvF(7.35, 7.35, 7.35) @ 2480 MHz; Calibrated: 2023/8/18
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI

Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 0.101 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.519 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 0.139 W/kg

SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.029 W/kg

Smallest distance from peaks to all points 3 dB below = 7.6 mm

Ratio of SAR at M2 to SAR at M1 = 48.8%

Maximum value of SAR (measured) = 0.100 W/kg

0 dB = 0.100 W/kg = -10.00 dBW/kg