

Project No.: TM-2203000017P  
Report No.: TMWK2203000758KR

FCC ID: P4Q-N702  
IC: 2420C-N702

Page: 1 / 31  
Rev.: 02

## FCC 47 CFR PART 15 SUBPART C & INDUSTRY CANADA RSS-210

### TEST REPORT

For

**Connected Digital Recorder**

**Model No.: N702**

**Brand Name: MiTAC, Mio, MAGELLAN, Navman**

Issued to

**FCC: Mitac Digital Technology Corporation**  
4F., No. 1, R&D Road 2, Hsinchu Science Park, Hsinchu 30076 Taiwan  
**IC: MiTAC Digital Technology Corporation**  
4F., No. 1, R&D Road 2, Hsinchu Science Park, Hsinchu 30076 Taiwan

Issued by

**Compliance Certification Services Inc.**  
**Wugu Laboratory**  
No.11, Wugong 6th Rd., Wugu Dist.,  
New Taipei City, Taiwan. (R.O.C.)  
**Issued Date: August 31 2022**

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.  
除非另有說明，此報告結果僅對測試之樣品負責，同時此樣品僅保留90天。本報告未經本公司書面許可，不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com.tw/Terms-and-Conditions> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com.tw/Terms-and-Conditions>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

## Revision History

| Rev. | Issue Date      | Revisions                       | Effect Page        | Revised By   |
|------|-----------------|---------------------------------|--------------------|--------------|
| 00   | August 15, 2022 | Initial Issue                   | ALL                | Allison Chen |
| 01   | August 19, 2022 | See the following Note Rev.(01) | P.6, 12, 14, 20-24 | Allison Chen |
| 02   | August 31, 2022 | See the following Note Rev.(02) | P.5-6              | Allison Chen |

**Note:****Rev.(01)**

1. Modify antenna information in section 2.2 and remark description in section 5.3.
2. Modify test procedure in section 7.1 and remark of formular in section 7.2.

**Rev.(02)**

1. Modify antenna information in section 2.2.

## TABLE OF CONTENTS

|                                                                        |            |
|------------------------------------------------------------------------|------------|
| <b>1. TEST RESULT CERTIFICATION.....</b>                               | <b>4</b>   |
| <b>2. EUT DESCRIPTION.....</b>                                         | <b>5</b>   |
| 2.1    EUT INFORMATION .....                                           | 5          |
| 2.2    ANTENNA INFORMATION .....                                       | 6          |
| <b>3. TEST METHODOLOGY.....</b>                                        | <b>7</b>   |
| 3.1    EUT CONFIGURATION .....                                         | 7          |
| 3.2    FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS.....             | 7          |
| 3.3    RSS GEN SECTION 8.10 RESTRICTED BANDS OF OPERATIONS.....        | 8          |
| 3.4    DESCRIPTION OF TEST MODES.....                                  | 9          |
| <b>4. TEST SUMMARY.....</b>                                            | <b>10</b>  |
| <b>5. INSTRUMENT CALIBRATION.....</b>                                  | <b>11</b>  |
| 5.1    MEASURING INSTRUMENT CALIBRATION.....                           | 11         |
| 5.2    MEASUREMENT EQUIPMENT USED.....                                 | 11         |
| 5.3    MEASUREMENT UNCERTAINTY .....                                   | 12         |
| 5.4    FACILITIES AND TEST LOCATION .....                              | 12         |
| <b>6. SETUP OF EQUIPMENT UNDER TEST.....</b>                           | <b>13</b>  |
| 6.1    SETUP CONFIGURATION OF EUT .....                                | 13         |
| 6.2    SUPPORT EQUIPMENT.....                                          | 13         |
| <b>7. FCC PART 15.225 REQUIREMENTS &amp; RSS-210 REQUIREMENTS.....</b> | <b>14</b>  |
| 7.1    OCCUPIED BANDWIDTH(99%) AND 20 DB BANDWIDTH.....                | 14         |
| 7.2    FUNDAMENTAL AND RADIATED EMISSIONS .....                        | 16         |
| 7.3    FREQUENCY STABILITY .....                                       | 27         |
| 7.4    POWERLINE CONDUCTED EMISSIONS .....                             | 31         |
| <b>APPENDIX A PHOTOGRAPHS OF TEST SETUP .....</b>                      | <b>A-1</b> |

Report No.: TMWK2203000758KR

Page: 4 / 31  
Rev.: 02

## 1. TEST RESULT CERTIFICATION

**FCC Applicant:** Mitac Digital Technology Corporation  
4F., No. 1, R&D Road 2, Hsinchu Science Park, Hsinchu 30076  
Taiwan

**FCC Manufacturer:** MITAC COMPUTER (KUNSHAN) CO., LTD.  
No. 269, 2nd Avenue, District A, Comprehensive Free Trade  
Zone, Kunshan, Jiangsu, P.R. China

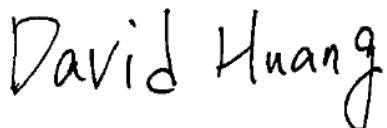
**IC Applicant:** MiTAC Digital Technology Corporation  
4F., No. 1, R&D Road 2, Hsinchu Science Park, Hsinchu 30076  
Taiwan

**IC Manufacturer:** MITAC COMPUTER (KUNSHAN) CO., LTD.  
No. 269, 2nd Rd, Export Processing Zone Changjiang South  
Road Kushan, Jiangsu China (Peoples Republic Of)

**Equipment Under Test:** Connected Digital Recorder

**Brand Name:** MiTAC, Mio, MAGELLAN, Navman

**Model No.:** N702


| APPLICABLE STANDARDS                                                                                                                                   |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| STANDARD                                                                                                                                               | TEST RESULT |
| FCC 47 CFR Part 15 Subpart C&<br>RSS-210 Issue 10 and RSS-GEN Issue 5                                                                                  | Compliance  |
| Statements of Conformity                                                                                                                               |             |
| Determination of compliance is based on the results of the compliance measurement,<br>not taking into account measurement instrumentation uncertainty. |             |

### We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.225.

The test results of this report relate only to the tested sample identified in this report.

Approved by:



David Huang  
Supervisor

## 2. EUT DESCRIPTION

### 2.1 EUT INFORMATION

|                             |                                                                                            |
|-----------------------------|--------------------------------------------------------------------------------------------|
| <b>Equipment</b>            | Connected Digital Recorder                                                                 |
| <b>Model Name</b>           | N702                                                                                       |
| <b>Model Discrepancy</b>    | Difference of those brand names (list on this report) are just for marketing purpose only. |
| <b>Brand Name</b>           | MiTAC, Mio, MAGELLAN, Navman                                                               |
| <b>Received Date</b>        | June 28, 2022                                                                              |
| <b>Date of Test</b>         | July 6~12, 2022                                                                            |
| <b>Power Supply</b>         | Power from power supply.                                                                   |
| <b>Frequency Range</b>      | 13.56MHz                                                                                   |
| <b>Modulation Technique</b> | ASK                                                                                        |
| <b>Number of Channels</b>   | 1 Channel                                                                                  |
| <b>Antenna Requirement</b>  | Antenna type: FPC Antenna                                                                  |
| <b>HW Version</b>           | R02                                                                                        |
| <b>SW Version</b>           | R01                                                                                        |
| <b>EUT Serial #</b>         | HAQ26E0002                                                                                 |

**Remark:**

1. For more details, refer to the User's manual of the EUT.
2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.
3. Disclaimer: The variant trademarks are assessed as identical in hardware and software to each other, hence all variants are fully covered by the test results in this test report without further verification test.

## 2.2 ANTENNA INFORMATION

|                              |                                                                                                                                                                   |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Antenna Specification</b> | <input type="checkbox"/> PIFA <input type="checkbox"/> PCB <input type="checkbox"/> Dipole <input type="checkbox"/> Coils <input checked="" type="checkbox"/> FPC |
| <b>Antenna Gain</b>          | Gain: N/A dBi                                                                                                                                                     |
| <b>Antenna connector</b>     | MHF                                                                                                                                                               |

**Notes:**

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-Gen 6.8.

### 3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR 47 Part 15.207, 15.209, 15.225.

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, and ANSI C63.10: 2013

#### 3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

#### 3.2 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                 | MHz             | GHz              |
|----------------------------|---------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423      | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475 | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67        | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25        | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6           | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2         | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94        | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138           | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05      | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 -         | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.52525           | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 156.7 - 156.9       | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 162.0125 - 167.17   | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 167.72 - 173.2      | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 240 - 285           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              | 322 - 335.4         |                 |                  |

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

### 3.3 RSS GEN SECTION 8.10 RESTRICTED BANDS OF OPERATIONS

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).
- (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

**Table 7 – Restricted frequency bands <sup>Note 1</sup>**

| MHz                 | MHz                 | MHz             | GHz           |
|---------------------|---------------------|-----------------|---------------|
| 0.090 - 0.110       | 16.42 - 16.423      | 608 - 614       | 9.0 - 9.2     |
| 0.495 - 0.505       | 16.69475 - 16.69525 | 960 - 1427      | 9.3 - 9.5     |
| 2.1735 - 2.1905     | 16.80425 - 16.80475 | 1435 - 1626.5   | 10.6 - 12.7   |
| 3.020 - 3.026       | 25.5 - 25.67        | 1645.5 - 1646.5 | 13.25 - 13.4  |
| 4.125 - 4.128       | 37.5 - 38.25        | 1660 - 1710     | 14.47 - 14.5  |
| 4.17725 - 4.17775   | 73 - 74.6           | 1718.8 - 1722.2 | 15.35 - 16.2  |
| 4.20725 - 4.20775   | 74.8 - 75.2         | 2200 - 2300     | 17.7 - 21.4   |
| 5.677 - 5.683       | 108 - 138           | 2310 - 2390     | 22.01 - 23.12 |
| 6.215 - 6.218       | 149.9 - 150.05      | 2483.5 - 2500   | 23.6 - 24.0   |
| 6.26775 - 6.26825   | 156.52475 -         | 2655 - 2900     | 31.2 - 31.8   |
| 6.31175 - 6.31225   | 156.52525           | 3260 - 3267     | 36.43 - 36.5  |
| 8.291 - 8.294       | 156.7 - 156.9       | 3332 - 3339     | Above 38.6    |
| 8.362 - 8.366       | 162.0125 - 167.17   | 3345.8 - 3358   |               |
| 8.37625 - 8.38675   | 167.72 - 173.2      | 3500 - 4400     |               |
| 8.41425 - 8.41475   | 240 - 285           | 4500 - 5150     |               |
| 12.29 - 12.293      | 322 - 335.4         | 5350 - 5460     |               |
| 12.51975 - 12.52025 | 399.9 - 410         | 7250 - 7750     |               |
| 12.57675 - 12.57725 |                     | 8025 - 8500     |               |
| 13.36 - 13.41       |                     |                 |               |

**Note 1:** Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

### 3.4 DESCRIPTION OF TEST MODES

The EUT had been tested under engineering test mode condition and the EUT staying in continuous transmitting mode.

All modes and data rates were investigated and it was determined that ISO 14443A/B and ISO 18092 Type y, 106/212/424/848 kbps.

All data rates were investigated and it was determined that 106 Kbps was considered worst-case. Therefore, all testing was performed in 106 Kbps mode.

| Radiated Emission Measurement Below 1G |                                                                                                                                                                                                                                              |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Condition                         | Radiated Emission Below 1G                                                                                                                                                                                                                   |
| Power supply Mode                      | <b>Mode 1: EUT power by Power supply(No Camera/12V)</b><br><b>Mode 2: EUT power by Power supply(With Camera/12V)</b><br><b>Mode 3: EUT power by Power supply(No Camera/24V)</b><br><b>Mode 4: EUT power by Power supply(With Camera/24V)</b> |
| Worst Mode                             | <input type="checkbox"/> Mode 1 <input checked="" type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4                                                                                                   |

Remark:

1. The worst mode was record in this test report.
2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Y-Plane) were recorded in this report

## 4. TEST SUMMARY

| FCC Standard Sec. | IC Standard Sec. | Chapter | Test Item                                   | Result |
|-------------------|------------------|---------|---------------------------------------------|--------|
| 15.203            | RSS-GEN Sec. 6.8 | 2       | Antenna Requirement                         | Pass   |
| 15.215            | RSS-210          | 8.1     | Occupied Bandwidth (99%) and 20dB Bandwidth | Pass   |
| 15.209            | RSS-210          | 8.2     | Radiated Emissions                          | Pass   |
| 15.225            | RSS-210          | 8.3     | Frequency Stability                         | Pass   |
| 15.207            | RSS-GEN Sec. 8.8 | 8.4     | AC Power-line Conducted Emission            | N/A    |

## 5. INSTRUMENT CALIBRATION

### 5.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

### 5.2 MEASUREMENT EQUIPMENT USED

#### Equipment Used for Emissions Measurement

| RF Conducted Test Site        |              |           |               |                  |                 |
|-------------------------------|--------------|-----------|---------------|------------------|-----------------|
| Name of Equipment             | Manufacturer | Model     | Serial Number | Calibration Date | Calibration Due |
| EXA Signal Analyzer           | KEYSIGHT     | N9010B    | MY55460167    | 09/07/2021       | 09/06/2022      |
| Thermostatic/Humidity Chamber | TAICHY       | MHG-150LF | 930619        | 09/17/2021       | 09/16/2022      |
| Software                      | N/A          |           |               |                  |                 |

| 3M 966 Chamber Test Site (Below 30MHz) |                |                 |               |                  |                 |
|----------------------------------------|----------------|-----------------|---------------|------------------|-----------------|
| Name of Equipment                      | Manufacturer   | Model           | Serial Number | Calibration Date | Calibration Due |
| Bilog Antenna                          | Sunol Sciences | JB3             | A030105       | 07/19/2021       | 07/18/2022      |
| Coaxial Cable                          | HUBER SUHNER   | SUCOFLEX 104PEA | 20995         | 02/23/2022       | 02/22/2023      |
| Digital Thermo-Hygro Meter             | WISEWIND       | 1206            | D07           | 12/28/2021       | 12/27/2022      |
| Loop Ant                               | COM-POWER      | AL-130          | 121051        | 04/13/2022       | 04/12/2023      |
| Pre-Amplifier                          | EMEC           | EM330           | 060609        | 02/23/2022       | 02/22/2023      |
| PSA Series Spectrum Analyzer           | Agilent        | E4446A          | MY46180323    | 12/06/2021       | 12/05/2022      |
| Antenna Tower                          | CCS            | CC-A-1F         | N/A           | N.C.R            | N.C.R           |
| Controller                             | CCS            | CC-C-1F         | N/A           | N.C.R            | N.C.R           |
| Turn Table                             | CCS            | CC-T-1F         | N/A           | N.C.R            | N.C.R           |
| Software                               | e3 210616      |                 |               |                  |                 |

#### Remark:

1. Each piece of equipment is scheduled for calibration once a year.
2. N.C.R. = No Calibration Required.

### 5.3 MEASUREMENT UNCERTAINTY

| PARAMETER                       | UNCERTAINTY |
|---------------------------------|-------------|
| AC Powerline Conducted Emission | ± 2.1183    |
| Channel Bandwidth               | ± 2.1863    |
| Frequency Stability             | ± 2.0730    |
| Radiated Emission_9kHz-30MHz    | ± 3.814     |
| Radiated Emission_30MHz-200MHz  | ± 4.272     |
| Radiated Emission_200MHz-1GHz   | ± 4.619     |
| Radiated Emission_1GHz-6GHz     | ± 5.522     |
| Radiated Emission_6GHz-18GHz    | ± 5.228     |
| Radiated Emission_18GHz-26GHz   | ± 4.089     |
| Radiated Emission_26GHz-40GHz   | ± 4.019     |

**Remark:** This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

### 5.4 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at  
 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.)  
 CAB identifier: TW1309

| Test site          | Test Engineer     | Remark                                                                |
|--------------------|-------------------|-----------------------------------------------------------------------|
| AC Conduction Room | -                 | Not applicable, because EUT doesn't connect to AC Main Source direct. |
| Radiation          | Ray Li, Tony Chao | -                                                                     |
| RF Conducted       | David Li          | -                                                                     |

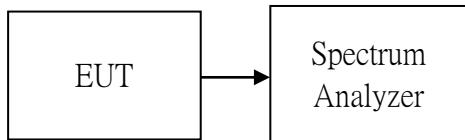
**Remark:** The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC public Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

## 6. SETUP OF EQUIPMENT UNDER TEST

### 6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix A for the actual connections between EUT and support equipment.

### 6.2 SUPPORT EQUIPMENT


| Support Equipment |                 |          |               |            |              |     |
|-------------------|-----------------|----------|---------------|------------|--------------|-----|
| No.               | Equipment       | Brand    | Model         | Series No. | FCC ID       | IC  |
| 1                 | NB(B)           | Toshiba  | PORTEGE R30-A | N/A        | PD97260H     | N/A |
| 2                 | DC Power Source | GWINSTEK | SPS-3610      | N/A        | N/A          | N/A |
| 3                 | NB(G)           | Lenovo   | IBM 1951      | R33B65     | CJ6UPA3489WL | N/A |

**Remark:**

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

## 7. FCC PART 15.225 REQUIREMENTS & RSS-210 REQUIREMENTS

### 7.1 OCCUPIED BANDWIDTH(99%) AND 20 DB BANDWIDTH TEST CONFIGURATION



### TEST PROCEDURE

1. Place the EUT on the table and set it in the transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as RBW & VBW. RBW shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth. VBW shall not be smaller than three times the RBW value.
4. Record the max. reading.

### TEST RESULTS

Compliance.

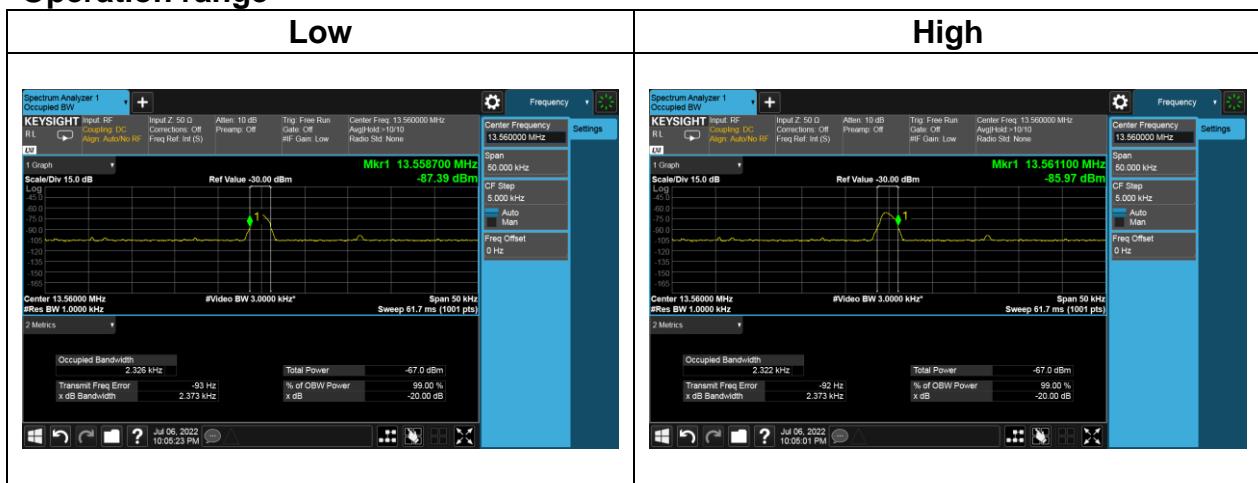
**Temperature:** 23.4°C

**Test Date:** July 6, 2022

**Humidity:** 49% RH


**Tested by:** David Li

| Test Condition | Frequency (MHz) | Occupied Bandwidth 99% (kHz) | 20 dB Bandwidth (kHz) |
|----------------|-----------------|------------------------------|-----------------------|
| NFC            | 13.56           | 2.302                        | 2.373                 |


| Operation range | Frequency (MHz) | Limit (MHz) |
|-----------------|-----------------|-------------|
| Low             | 13.558700       | >13.11      |
| High            | 13.561100       | <14.01      |

## Test Plot

### Occupied Bandwidth 99% & 20 dB Bandwidth



### Operation range



## 7.2 FUNDAMENTAL AND RADIATED EMISSIONS

### LIMIT

According to §15.225

- (a) The field strength of any emissions within the band 13.553 – 13.567 MHz shall not exceed 15,848 microvolts / meter at 30 meters.
- (b) Within the bands 13.410 – 13.553 MHz and 13.567 -13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts / meter at 30 meters.
- (c) Within the bands 13.110 – 13.410 MHz and 13.710 – 14.010 MHz the field strength of any emissions shall not exceed 106 microvolts / meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 – 14.010 MHz and shall not exceed the general radiated emission limits in §15.209.

According to §15.225, except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

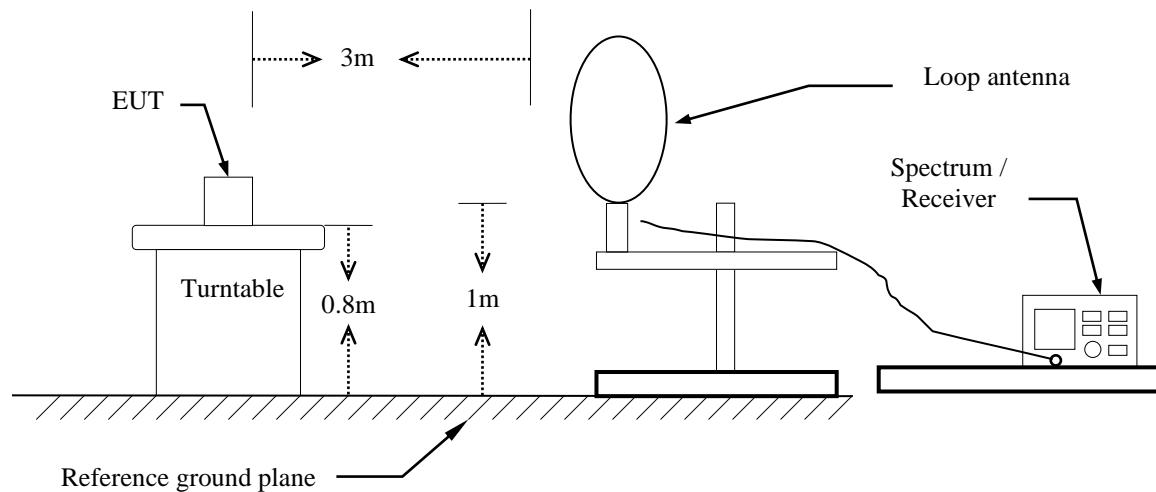
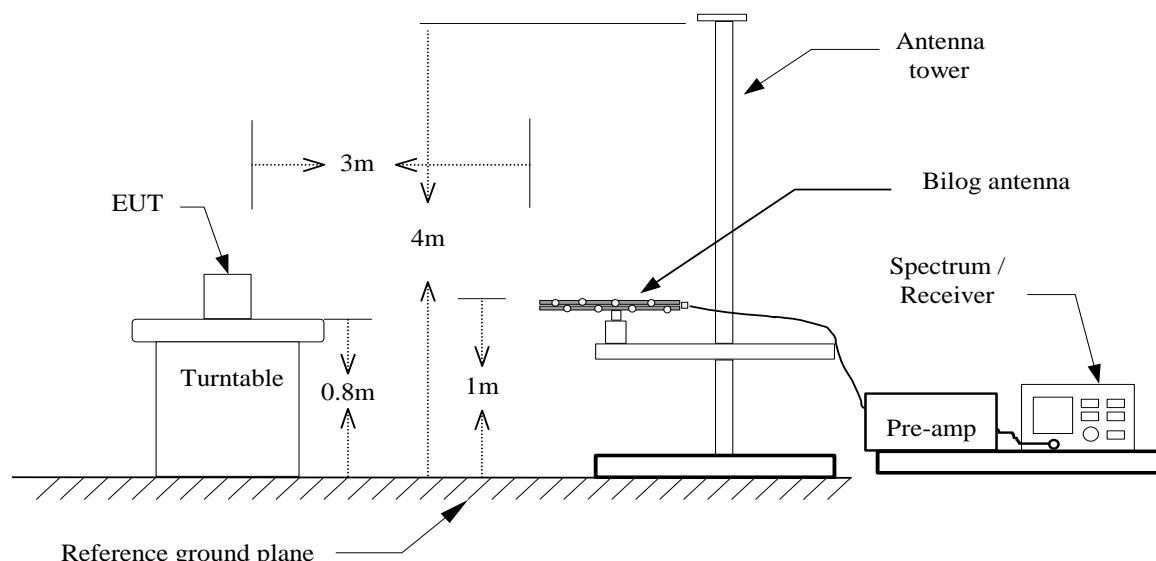
| Frequency (MHz) | Field Strength ( $\mu$ V/m at meter) | Measurement Distance (meter) |
|-----------------|--------------------------------------|------------------------------|
| 0.009 – 0.490   | 2400 / F (kHz)                       | 300                          |
| 0.490 – 1.705   | 24000 / F (kHz)                      | 30                           |
| 1.705 – 30.0    | 30                                   | 30                           |
| 30 - 88         | 100**                                | 3                            |
| 88-216          | 150**                                | 3                            |
| 216-960         | 200**                                | 3                            |
| Above 960       | 500                                  | 3                            |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to RSS 210 §B.6

The field strength of any emission shall not exceed the following limits:

- (a) 15.848 mV/m (84 dB $\mu$ V/m) at 30 m, within the band 13.553-13.567 MHz;
- (b) 334  $\mu$ V/m (50.5 dB $\mu$ V/m) at 30 m, within the bands 13.410-13.553 MHz and 13.567-13.710 MHz;
- (c) 106  $\mu$ V/m (40.5 dB $\mu$ V/m) at 30 m, within the bands 13.110-13.410 MHz and 13.710-14.010 MHz; and
- (d) RSS-Gen general field strength limits for frequencies outside the band 13.110-14.010 MHz.



### Below 30 MHz

| Frequency                   | Magnetic field strength (H-Field) ( $\mu$ A/m) | Measurement Distance (metres) |
|-----------------------------|------------------------------------------------|-------------------------------|
| 9-490 kHz <sup>Note 1</sup> | 6.37/F (F in kHz)                              | 300                           |
| 490-1,705 kHz               | 63.7/F (F in kHz)                              | 30                            |
| 1.705-30 MHz                | 0.08                                           | 30                            |

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

### Above 30 MHz

| Frequency | Field strength ( $\mu$ V/m at 3 m) |
|-----------|------------------------------------|
| 30-88     | 100                                |
| 88-216    | 150                                |
| 216-960   | 200                                |
| Above 960 | 500                                |

**Test Configuration****9kHz ~ 30MHz****30MHz ~ 1GHz**

## **TEST PROCEDURE**

### **For 9kHz ~ 30MHz**

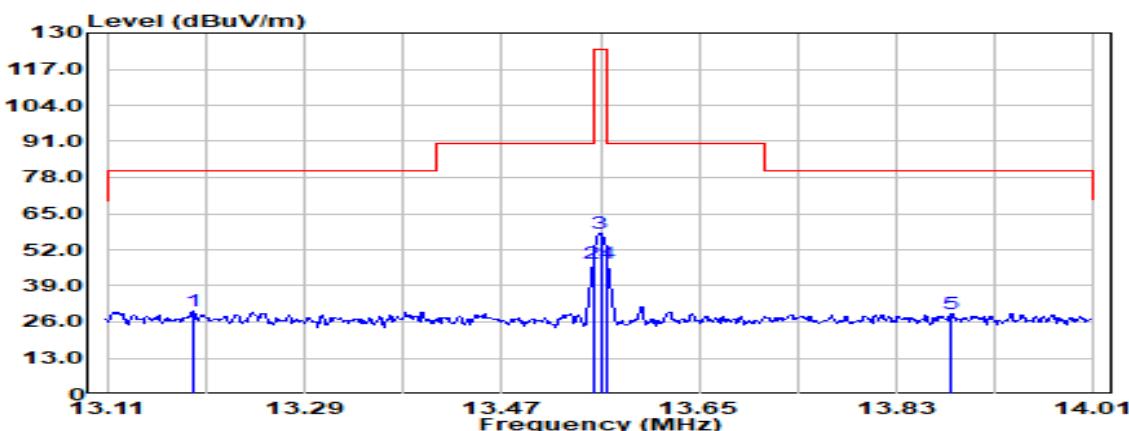
1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, The center of the loop shall be 1 m above the ground then to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. Set the spectrum analyzer in the following setting as:  
9KHz-490KHz : RBW=200Hz / VBW=1kHz / Sweep=AUTO  
490KHz-30MHz : RBW=10kHz / VBW=30kHz / Sweep=AUTO
6. Repeat above procedures until the measurements for all frequencies are complete.

### **For 30MHz ~ 1GHz**

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:  
RBW=100kHz / VBW=300kHz / Sweep=AUTO
7. Repeat above procedures until the measurements for all frequencies are complete.

### **Remark :**

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.


**Operation Mode:** Mask

**Polarity:** Ver.

**Temperature:** 22.4°C

**Test Date:** July 12, 2022

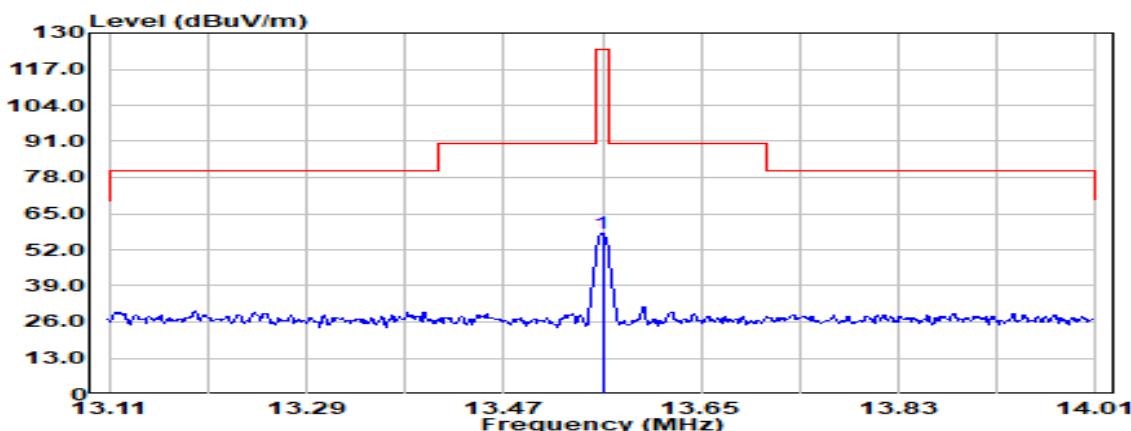
**Humidity:** 60% RH

**Tested by:** Tony Chao


| Freq.<br>(MHz) | Detector<br>Mode<br>(PK/QP/AV) | Spectrum<br>Reading Level<br>(dB $\mu$ V) | Factor<br>(dB) | Actual<br>FS<br>(dB $\mu$ V/m) | Limit<br>@3m<br>(dB $\mu$ V/m) | Margin<br>(dB) |
|----------------|--------------------------------|-------------------------------------------|----------------|--------------------------------|--------------------------------|----------------|
| 13.188         | Peak                           | 14.60                                     | 15.14          | 29.74                          | 80.51                          | -50.77         |
| 13.553         | Peak                           | 32.18                                     | 15.15          | 47.33                          | 90.47                          | -43.14         |
| 13.560         | Peak                           | 42.83                                     | 15.15          | 57.98                          | 124.00                         | -66.02         |
| 13.567         | Peak                           | 32.03                                     | 15.15          | 47.18                          | 90.47                          | -43.29         |
| 13.880         | Peak                           | 13.96                                     | 15.16          | 29.12                          | 80.51                          | -51.39         |

**Remark:**

1. Radiated emissions measured were made with an instrument using peak/quasi-peak/average detector mode.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Margin (dB) = Result (dB $\mu$ V/m) – Limit (dB $\mu$ V/m).
4. 9k-490kHz, limit @3m =  $2400 / F(\text{kHz}) + 40 \log^*(300/3m)$   
 490k – 1.705MHz, limit @3m =  $24000 / F(\text{kHz}) + 40 \log^*(30/3m)$   
 1.705MHz - 30MHz, limit @3m =  $30 + 40^*\log(30/3m)$


**Operation Mode:** Main

**Polarity:** Ver.

**Temperature:** 22.4°C

**Test Date:** July 12, 2022

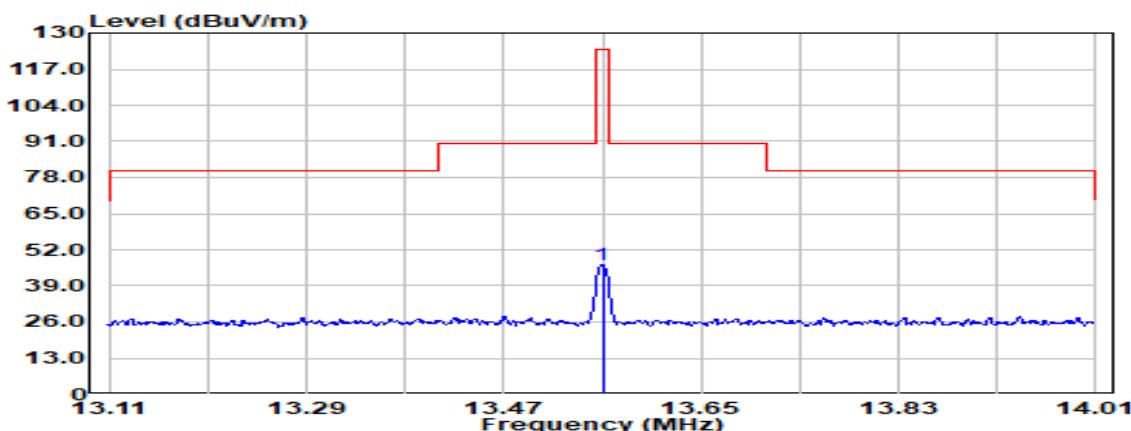
**Humidity:** 60% RH

**Tested by:** Tony Chao


| Freq.<br>(MHz) | Detector<br>Mode<br>(PK/QP/AV) | Spectrum<br>Reading Level<br>(dB $\mu$ V) | Factor<br>(dB) | Actual<br>FS<br>(dB $\mu$ V/m) | Limit<br>@3m<br>(dB $\mu$ V/m) | Margin<br>(dB) |
|----------------|--------------------------------|-------------------------------------------|----------------|--------------------------------|--------------------------------|----------------|
| 13.560         | Peak                           | 42.83                                     | 15.15          | 57.98                          | 124.00                         | -66.02         |

**Remark:**

1. Radiated emissions measured were made with an instrument using peak/quasi-peak/average detector mode.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Margin (dB) = Result (dBuV/m) – Limit (dBuV/m).
4. 9k-490kHz, limit @3m =  $2400 / F(\text{kHz}) + 40 \log^*(300/3m)$   
 490k – 1.705MHz, limit @3m =  $24000 / F(\text{kHz}) + 40 \log^*(30/3m)$   
 1.705MHz - 30MHz, limit @3m =  $30 + 40^*\log(30/3m)$


**Operation Mode:** Main

**Polarity:** Horizontal

**Temperature:** 22.4°C

**Test Date:** July 12, 2022

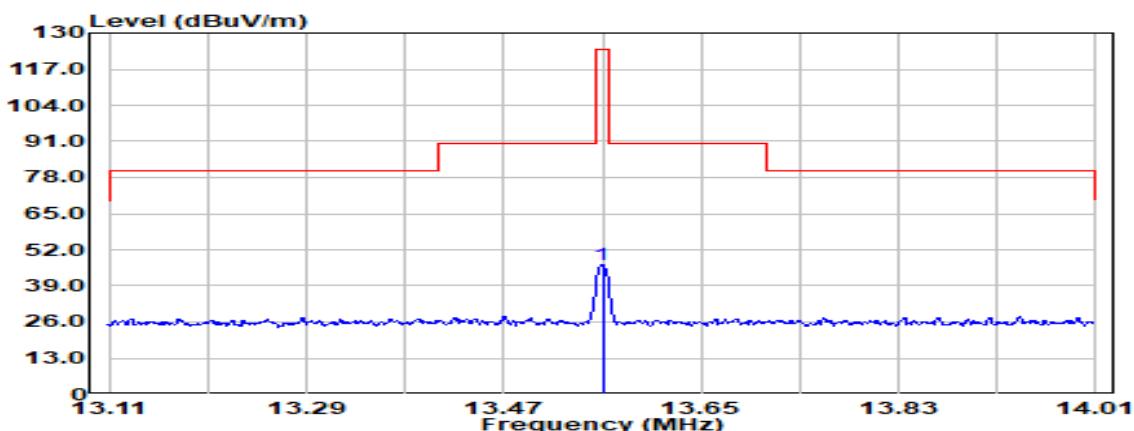
**Humidity:** 60% RH

**Tested by:** Tony Chao


| Freq.<br>(MHz) | Detector<br>Mode<br>(PK/QP/AV) | Spectrum<br>Reading Level<br>(dB $\mu$ V) | Factor<br>(dB) | Actual<br>FS<br>(dB $\mu$ V/m) | Limit<br>@3m<br>(dB $\mu$ V/m) | Margin<br>(dB) |
|----------------|--------------------------------|-------------------------------------------|----------------|--------------------------------|--------------------------------|----------------|
| 13.560         | Peak                           | 41.33                                     | 15.15          | 56.48                          | 124.00                         | -67.52         |

**Remark:**

1. Radiated emissions measured were made with an instrument using peak/quasi-peak/average detector mode.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Margin (dB) = Result (dBuV/m) – Limit (dBuV/m).
4. 9k-490kHz, limit @3m =  $2400 / F(\text{kHz}) + 40 \log^*(300/3m)$   
490k – 1.705MHz, limit @3m =  $24000 / F(\text{kHz}) + 40 \log^*(30/3m)$   
1.705MHz - 30MHz, limit @3m =  $30 + 40 \log(30/3m)$


**Operation Mode:** Main

**Polarity:** Ground

**Temperature:** 22.4°C

**Test Date:** July 12, 2022

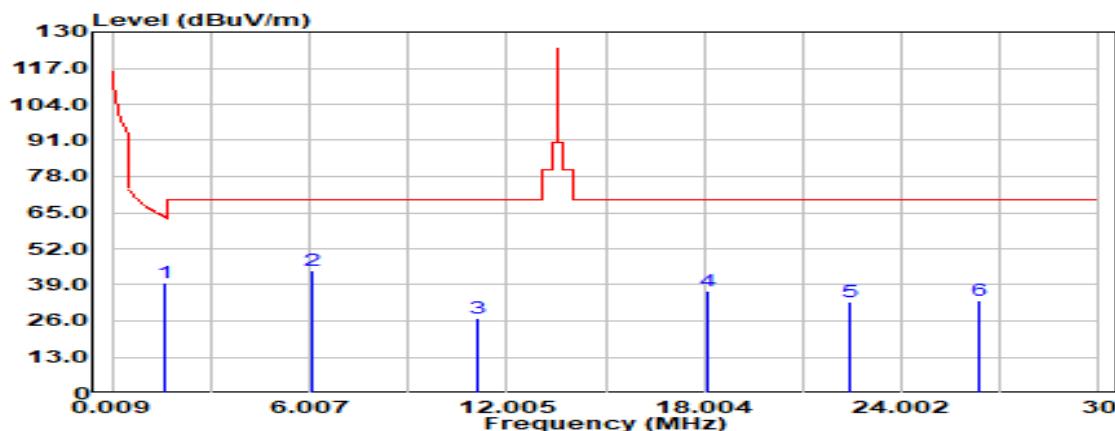
**Humidity:** 60% RH

**Tested by:** Tony Chao


| Freq.<br>(MHz) | Detector<br>Mode<br>(PK/QP/AV) | Spectrum<br>Reading Level<br>(dB $\mu$ V) | Factor<br>(dB) | Actual<br>FS<br>(dB $\mu$ V/m) | Limit<br>@3m<br>(dB $\mu$ V/m) | Margin<br>(dB) |
|----------------|--------------------------------|-------------------------------------------|----------------|--------------------------------|--------------------------------|----------------|
| 13.560         | Peak                           | 31.68                                     | 15.15          | 46.83                          | 124.00                         | -77.17         |

**Remark:**

1. Radiated emissions measured were made with an instrument using peak/quasi-peak/average detector mode.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Margin (dB) = Result (dBuV/m) – Limit (dBuV/m).
4. 9k-490kHz, limit @3m =  $2400 / F(\text{kHz}) + 40 \log^*(300/3m)$   
 490k – 1.705MHz, limit @3m =  $24000 / F(\text{kHz}) + 40 \log^*(30/3m)$   
 1.705MHz - 30MHz, limit @3m =  $30 + 40^*\log(30/3m)$


**9kHz ~ 30MHz**
**Operation Mode:** TX mode

**Polarity:** Vertical

**Temperature:** 22.4°C

**Test Date:** July 12, 2022

**Humidity:** 60% RH

**Tested by:** Tony Chao

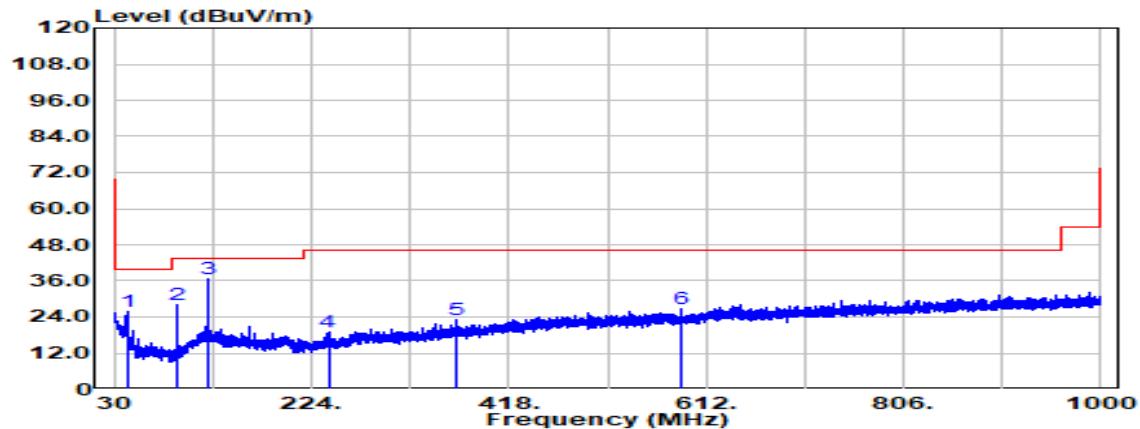
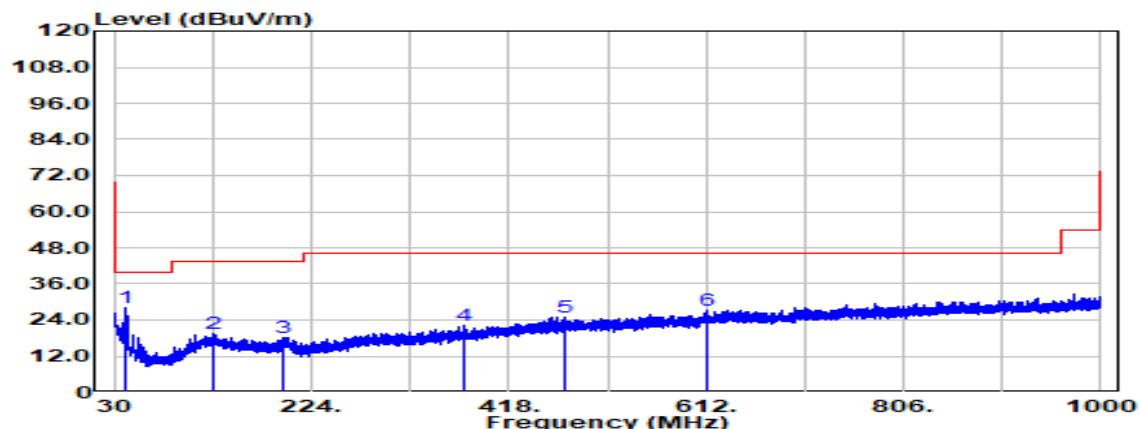

| Freq.<br>(MHz) | Detector<br>Mode<br>(PK/QP/AV) | Spectrum<br>Reading Level<br>(dB $\mu$ V) | Factor<br>(dB) | Actual<br>FS<br>(dB $\mu$ V/m) | Limit<br>@3m<br>(dB $\mu$ V/m) | Margin<br>(dB) |
|----------------|--------------------------------|-------------------------------------------|----------------|--------------------------------|--------------------------------|----------------|
| 1.607          | Peak                           | 26.20                                     | 13.68          | 39.88                          | 63.49                          | -23.61         |
| 6.078          | Peak                           | 29.58                                     | 14.36          | 43.94                          | 69.54                          | -25.60         |
| 11.129         | Peak                           | 11.66                                     | 15.10          | 26.76                          | 69.54                          | -42.78         |
| 18.120         | Peak                           | 21.47                                     | 15.26          | 36.73                          | 69.54                          | -32.81         |
| 22.466         | Peak                           | 18.00                                     | 14.87          | 32.87                          | 69.54                          | -36.67         |
| 26.388         | Peak                           | 19.07                                     | 14.17          | 33.24                          | 69.54                          | -36.30         |

**Remark:**

1. 9k-490kHz, limit @3m =  $2400 / F(\text{kHz}) + 40 \log^*(300/3m)$
- 490k – 1.705MHz, limit @3m =  $24000 / F(\text{kHz}) + 40 \log^* (30/3m)$
- 1.705MHz - 30MHz, limit @3m =  $30 + 40 \log (30/3m)$

**30MHz ~ 1GHz**
**Operation Mode:** TX mode

**Polarity:** Ver. / Hor.



**Temperature:** 22.4°C

**Test Date:** July 12, 2022

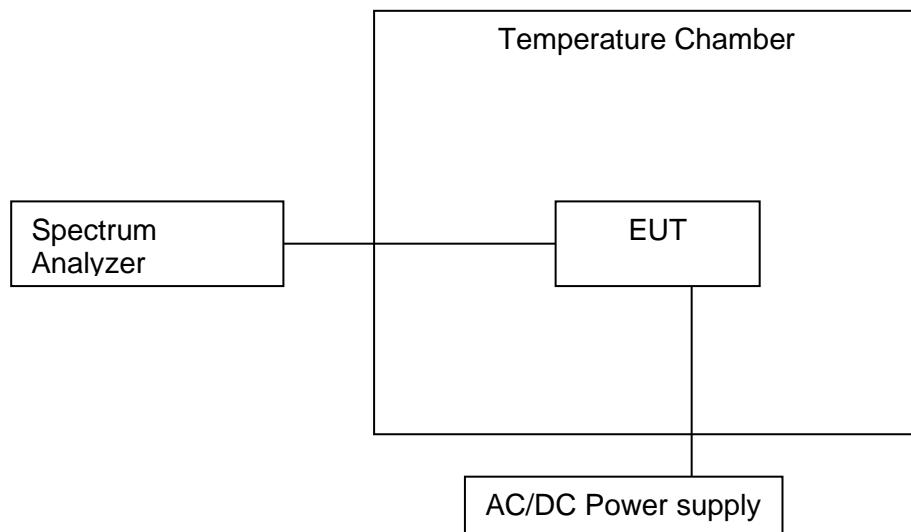
**Humidity:** 60% RH

**Tested by:** Tony Chao

| Freq.<br>(MHz) | Detector<br>Mode<br>(PK/QP/AV) | Spectrum<br>Reading Level<br>(dB $\mu$ V) | Factor<br>(dB) | Actual<br>FS<br>(dB $\mu$ V/m) | Limit<br>@3m<br>(dB $\mu$ V/m) | Margin<br>(dB) | Polarity<br>(V/H) |
|----------------|--------------------------------|-------------------------------------------|----------------|--------------------------------|--------------------------------|----------------|-------------------|
| 42.489         | Peak                           | 37.41                                     | -11.67         | 25.75                          | 40.00                          | -14.25         | V                 |
| 91.959         | Peak                           | 43.52                                     | -15.33         | 28.19                          | 43.50                          | -15.31         | V                 |
| 122.271        | Peak                           | 46.11                                     | -9.31          | 36.80                          | 43.50                          | -6.70          | V                 |
| 240.611        | Peak                           | 30.21                                     | -10.98         | 19.23                          | 46.00                          | -26.77         | V                 |
| 365.863        | Peak                           | 30.40                                     | -7.44          | 22.96                          | 46.00                          | -23.04         | V                 |
| 586.538        | Peak                           | 29.46                                     | -2.73          | 26.73                          | 46.00                          | -19.27         | V                 |
| 42.004         | Peak                           | 39.58                                     | -11.38         | 28.20                          | 40.00                          | -11.80         | H                 |
| 128.334        | Peak                           | 28.72                                     | -9.39          | 19.33                          | 43.50                          | -24.17         | H                 |
| 197.083        | Peak                           | 28.72                                     | -10.42         | 18.30                          | 43.50                          | -25.20         | H                 |
| 373.259        | Peak                           | 29.37                                     | -7.30          | 22.07                          | 46.00                          | -23.93         | H                 |
| 472.320        | Peak                           | 29.04                                     | -4.06          | 24.98                          | 46.00                          | -21.02         | H                 |
| 613.091        | Peak                           | 29.27                                     | -2.02          | 27.24                          | 46.00                          | -18.76         | H                 |

**Vertical****Horizontal**

## 7.3 FREQUENCY STABILITY


### LIMIT

According to §15.225(e) and RSS-210, B.6,

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

### Test Configuration

#### Temperature and Voltage Measurement (under normal and extreme test conditions)



## TEST PROCEDURE

1. Turn the EUT off, and place it inside the environmental temperature chamber.
2. Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
3. Set the spectrum analyzer as RBW=1kHz, VBW = RBW, Span = 200kHz, Sweep = auto.
4. Turn the EUT on and record the operating frequency at startup and two, five, and ten minutes after the EUT is energized.
5. Switch off the EUT and Lower the chamber temperature by not more than 10 °C and allow the temperature inside the chamber to stabilize.
6. Mark the peak frequency and measure the frequency tolerance using frequency counter function.
7. Repeat step 4 through step 6 down to the lowest specified temperature.

## **TEST RESULTS**

Compliance.

**Temperature:** 23.4°C

**Test Date:** July 6, 2022

**Humidity:** 49% RH

**Tested by:** David Li

## **TEST DATA**

| Startup                     |                  |            |             |             |
|-----------------------------|------------------|------------|-------------|-------------|
| A. Temperature Variation    |                  |            |             |             |
| Power Supply                | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
| Vdc                         | Temperature (°C) | (MHz)      |             |             |
| 12                          | -20              | 13.5599983 | -0.00170    | +/- 1.356   |
| 12                          | -10              | 13.5600025 | 0.00250     | +/- 1.356   |
| 12                          | 0                | 13.5599999 | -0.00010    | +/- 1.356   |
| 12                          | 10               | 13.5599987 | -0.00130    | +/- 1.356   |
| 12                          | 20               | 13.5600077 | 0.00770     | +/- 1.356   |
| 12                          | 30               | 13.5600088 | 0.00880     | +/- 1.356   |
| 12                          | 40               | 13.5599946 | -0.00540    | +/- 1.356   |
| 12                          | 50               | 13.5600002 | 0.00020     | +/- 1.356   |
| B. Supply Voltage Variation |                  |            |             |             |
| Power Supply                | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
| Vdc                         | Temperature (°C) | (MHz)      |             |             |
| 13.8                        | 20               | 13.5600093 | 0.00930     | +/- 1.356   |
| 12                          | 20               | 13.5600077 | 0.00770     | +/- 1.356   |
| 10.2                        | 20               | 13.5599986 | -0.00140    | +/- 1.356   |

**2 minutes****A. Temperature Variation**

| Power Supply | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
|--------------|------------------|------------|-------------|-------------|
| Vdc          | Temperature (°C) | (MHz)      |             |             |
| 12           | -20              | 13.5599918 | -0.00820    | +/- 1.356   |
| 12           | -10              | 13.5599914 | -0.00860    | +/- 1.356   |
| 12           | 0                | 13.5599922 | -0.00780    | +/- 1.356   |
| 12           | 10               | 13.5599915 | -0.00850    | +/- 1.356   |
| 12           | 20               | 13.5599900 | -0.01000    | +/- 1.356   |
| 12           | 30               | 13.5600063 | 0.00630     | +/- 1.356   |
| 12           | 40               | 13.5600034 | 0.00340     | +/- 1.356   |
| 12           | 50               | 13.5600062 | 0.00620     | +/- 1.356   |

**B. Supply Voltage Variation**

| Power Supply | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
|--------------|------------------|------------|-------------|-------------|
| Vdc          | Temperature (°C) | (MHz)      |             |             |
| 13.8         | 20               | 13.559995  | -0.00500    | +/- 1.356   |
| 12           | 20               | 13.5599900 | -0.01000    | +/- 1.356   |
| 10.2         | 20               | 13.5599964 | -0.00360    | +/- 1.356   |

**5 minutes****A. Temperature Variation**

| Power Supply | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
|--------------|------------------|------------|-------------|-------------|
| Vdc          | Temperature (°C) | (MHz)      |             |             |
| 12           | -20              | 13.5600016 | 0.00160     | +/- 1.356   |
| 12           | -10              | 13.5600063 | 0.00630     | +/- 1.356   |
| 12           | 0                | 13.5600026 | 0.00260     | +/- 1.356   |
| 12           | 10               | 13.5599916 | -0.00840    | +/- 1.356   |
| 12           | 20               | 13.5600043 | 0.00430     | +/- 1.356   |
| 12           | 30               | 13.5600088 | 0.00880     | +/- 1.356   |
| 12           | 40               | 13.5599927 | -0.00730    | +/- 1.356   |
| 12           | 50               | 13.5600003 | 0.00030     | +/- 1.356   |

**B. Supply Voltage Variation**

| Power Supply | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
|--------------|------------------|------------|-------------|-------------|
| Vdc          | Temperature (°C) | (MHz)      |             |             |
| 13.8         | 20               | 13.5600055 | 0.00550     | +/- 1.356   |
| 12           | 20               | 13.5600043 | 0.00430     | +/- 1.356   |
| 10.2         | 20               | 13.5599952 | -0.00480    | +/- 1.356   |

| 10 minutes                      |                  |            |             |             |
|---------------------------------|------------------|------------|-------------|-------------|
| <b>A. Temperature Variation</b> |                  |            |             |             |
| Power Supply                    | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
| Vdc                             | Temperature (°C) | (MHz)      |             |             |
| 12                              | -20              | 13.5599943 | -0.00570    | +/- 1.356   |
| 12                              | -10              | 13.5600083 | 0.00830     | +/- 1.356   |
| 12                              | 0                | 13.5600073 | 0.00730     | +/- 1.356   |
| 12                              | 10               | 13.5599926 | -0.00740    | +/- 1.356   |
| 12                              | 20               | 13.5599908 | -0.00920    | +/- 1.356   |
| 12                              | 30               | 13.5599976 | -0.00240    | +/- 1.356   |
| 12                              | 40               | 13.5600091 | 0.00910     | +/- 1.356   |
| 12                              | 50               | 13.5599905 | -0.00950    | +/- 1.356   |

| <b>B. Supply Voltage Variation</b> |                  |            |             |             |
|------------------------------------|------------------|------------|-------------|-------------|
| Power Supply                       | Environment      | Frequency  | Delta (kHz) | Limit (kHz) |
| Vdc                                | Temperature (°C) | (MHz)      |             |             |
| 13.8                               | 20               | 13.5599938 | -0.00620    | +/- 1.356   |
| 12                                 | 20               | 13.5599908 | -0.00920    | +/- 1.356   |
| 10.2                               | 20               | 13.5600002 | 0.00020     | +/- 1.356   |

## 7.4 POWERLINE CONDUCTED EMISSIONS

### LIMIT

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Frequency Range<br>(MHz) | Limits<br>(dB $\mu$ V) |           |
|--------------------------|------------------------|-----------|
|                          | Quasi-peak             | Average   |
| 0.15 to 0.50             | 66 to 56*              | 56 to 46* |
| 0.50 to 5                | 56                     | 46        |
| 5 to 30                  | 60                     | 50        |

\* Decreases with the logarithm of the frequency.

### TEST PROCEDURE

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.

### TEST RESULTS

Not applicable, because EUT doesn't connect to AC Main Source direct.

- End of Test Report -