

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 44-852 KOREA, REPUBLIC OF

TEL:+82 31 330 1700 FAX:+82 31 330 2332

FCC EVALUATION REPORT FOR CERTIFICATION

Applicant :

Samsung Display Co., Ltd
95, Samsung2-ro, Giheung-gu, Yong-in-si,
Gyeonggi-do, Korea,
(Post code : 443-742)

Dates of Issue : August 27, 2012

Test Report No. : NK-12-R-131

Test Site : Nemko Korea Co., Ltd.

Attn. : Mr. IL-GOO, YOUN

FCC ID

P2U3DG001SDC

Brand Name

SAMSUNG

Contact Person

**95, Samsung2-ro, Giheung-gu, Yong-in-si,
Gyeonggi-do, Korea, 442-742.
Mr. IL-GOO, YOUN
Telephone No. : +82-31-8000-8565**

Applied Standard:

FCC 47 CFR Part 15C

Classification:

FCC Part 15 Spread Spectrum Transmitter (DSS)

EUT Type:

3D Active Glasses

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Aug. 21, 2012

Tested By : Jin-Ha, Ko
Engineer

Aug. 21, 2012

Reviewed By : Deokha Ryu
Technical Manager

TABLE OF CONTENTS

1. Scope	4
2. Introduction (Site Description)	5
2.1 Test facility	5
2.2 Accreditation and listing	6
3. Test Conditions & EUT Information	7
3.1 Operation During Test	7
3.2 Support Equipment	7
3.3 Setup Drawing	7
3.4 EUT Information	8
3.5 Description of change	8
4. Summary of Test Results	9
5. Recommendation / Conclusion	10
6. Antenna Requirements	10
7. Description of Test	11
7.1 Conducted Emissions	11
7.2 Radiated Emissions	12
7.3 20 dB Bandwidth and Carrier Frequency Separation	13
7.4 Transmitter Average Time of Occupancy	13
7.5 Number of Hopping Channels	14
7.6 Maximum Peak Output Power	14
7.7 Conducted Spurious Emissions	15
8. Test Data	16
8.1 Radiated Emissions	16
8.2 20 dB Modulated Bandwidth	17
8.3 Carrier Frequency Separation	20
8.4 Transmitter Average Time of Occupancy	22

8.5 Number of Hopping Channels	23
8.6 Peak Power Output	25
8.7 Conducted Spurious Emissions	28
8.8 Radiated Spurious Emissions	34
9. Test Equipment	39
10 Accuracy of Measurement	40
Appendix A: Labeling Requirement	42
Appendix B: Photographs of Test Set-up	43
Appendix C: EUT Photographs	44

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Responsible Party :	Samsung Display Co., Ltd
Contact Person :	Mr. IL-GOO, YOUN
Manufacturer :	Samsung Display Co., Ltd 95, Samsung2-ro, Giheung-gu, Yong-in-si, Gyeonggi-do, Korea

- FCC ID: P2U3DG001SDC
- Model: 3DG-001-SDC
- Brand Name: SAMSUNG
- EUT Type: 3D Active Glasses
- Classification: FCC Class B
- Applied Standard: FCC 47 CFR Part 15 subpart C
- Test Procedure(s): ANSI C63.4-2003 and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filling and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems"
- Dates of Test: July 26, 2012 ~ August 20, 2012
- Place of Tests: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2003) was used in determining radiated and conducted emissions emanating from **Samsung Display Co., Ltd** FCC ID : **P2U3DG001SDC**.

These measurement tests were conducted at **Nemko Korea Co., Ltd. EMC Laboratory**. The site address is 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 449-852 KOREA, REPUBLIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilo-meters (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 2003.

Nemko Korea Co., Ltd.
EMC Lab.
155&159, Osan-Ro, Mohyeon-
Myeon, Cheoin-Gu, Yongin-Si,
Gyeonggi-Do 449-852
KOREA, REPUBLIC OF
Tel)+82-31-330-1700
Fax)+82-31-322-2332

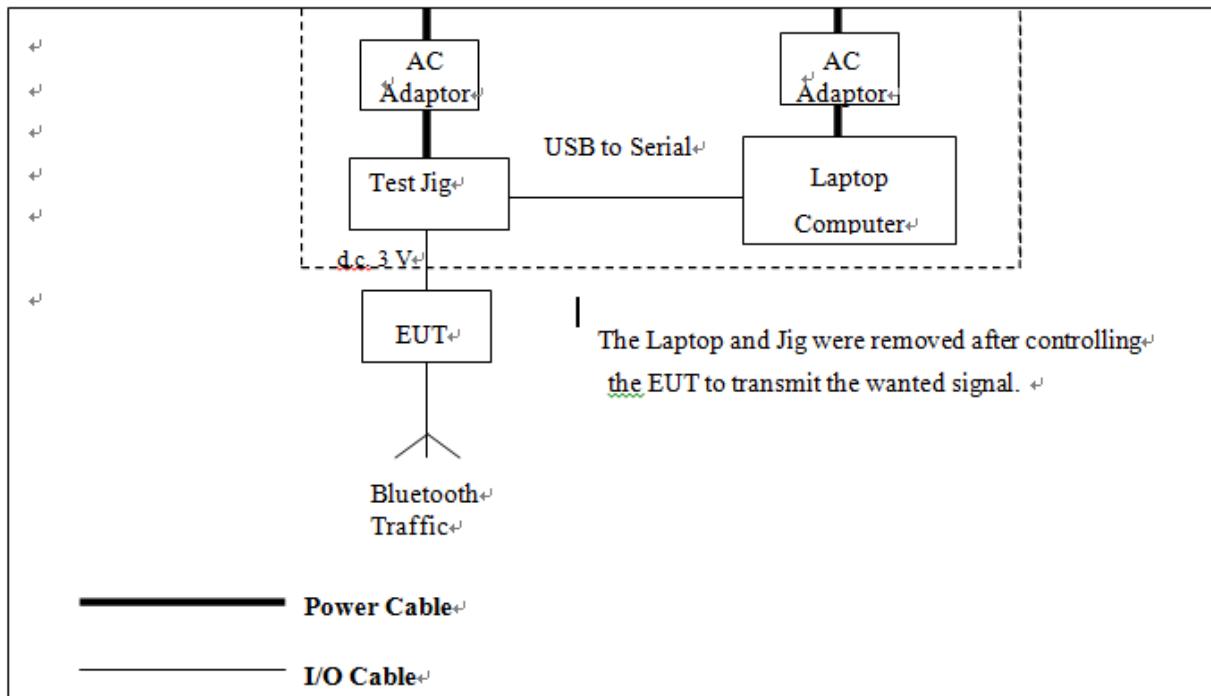
Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

2.2 Accreditation and listing

Accreditation type	Accreditation number	
	FCC part 15/18 Filing site	Registration No. 97992
	CAB Accreditation for DOC	Designation No. KR0026
	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. 155
Industry Canada	Canada IC Registered site	Site No. 2040E
	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118
	EMC CBTL	-
	KCC(RRL)Designated Lab.	Registration No. KR0026
	SASO registered Lab and Certification Body	Registration No. 2008-15

3. TEST CONDITIONS & EUT INFORMATION


3.1 Operation During Test

The Laptop and Test Jig were used to control the EUT to transmit the wanted TX channel by the Bluetoool testing program which manufacturer supported. The Laptop was removed after controlling the EUT to transmit the wanted signal. The EUT was measured at three X, Y, Z-Axis in Bluetooth Traffic mode with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

3.2 Support Equipment

EUT	Samsung Display Co., Ltd Model: 3DG-001-SDC FCC ID : P2U3DG001SDC	S/N: N/A
Laptop Computer	HP Model : G62-355TU 1.0 m shielded USB cable	FCC DOC S/N: CNF0489WDT
AC/DC Adaptor	LITE-ON TECHNOLOGY (CHANGZHOU)CO.,LTD. Model : SeriesPPP09L-E 0.9 m unshielded power cable	FCC DOC S/N: 0Y29613102

3.3 Setup Drawing

3.4 EUT Information

The EUT is the **Samsung 3D Active Glasses** FCC ID: **P2U3DG001SDC**.

Specifications:

EUT Type	Active 3D glasses
Model Name	3DG-001-SDC
Brand Name	SAMSUNG
RF Frequency	2402 ~ 2480 MHz
Peak Power Output (Conducted)	-3.22 dBm
FCC Classification	FCC Part 15 Spread Spectrum Transmitter (DSS)
Method/System	Frequency Hopping Spread Spectrum (FHSS)
Channel Number	79
Modulation	GFSK
Antenna Gain (Peak)	2.61 dBi
Power	3 Vdc (Lithium Battery)
Size	145 mm x 150 mm x 40 mm
Weight	33 g

3.5 Description of change

- No comment

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	FCC Paragraph No.	Result	Remark
Conducted Emission	15.207	N/A	
Radiated Emission	15.209	Complies	
20dB Bandwidth and	15.247(a)(1)(iii)	Complies	
Carrier Frequency Separation	15.247(a)(1)	Complies	
Transmitter Average Time of Occupancy	15.247(a)(1)(iii)	Complies	
Peak Power Output	15.247(b)(1)	Complies	
Conducted Spurious Emission	15.247(d)	Complies	
Radiated Spurious Emission	15.247(d)	Complies	
Number of Hopping channels	15.247(a)(1)(iii)	Complies	

5. RECOMMENDATION/CONCLUSION

The data collected shows that the **Samsung 3D Active Glasses FCC ID: P2U3DG001SDC** is in compliance with Part 15 Subpart C 15.247 of the FCC Rules.

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the **Samsung 3D Active Glasses FCC ID: P2U3DG001SDC** is attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

7. DESCRIPTION OF TESTS

7.1 Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 meter shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH3-Z5) and (ESH2-Z5) of the 50 ohm/50 μ H Line Impedance Stabilization Network (LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz LISN (ESH3-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH2-Z5). Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ".

If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 meter were shortened by non inductive bundling (serpentinefashion) to a 1 meter length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.

The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30).

The detector functions were set to CISPR quasi-peak mode & average mode.

The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

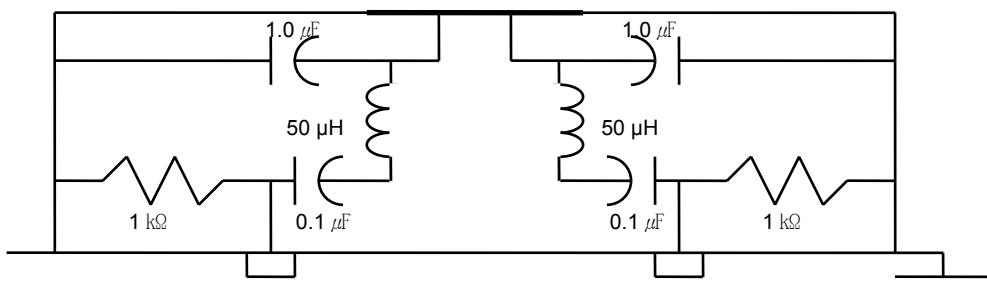


Fig. 2. LISN Schematic Diagram

7.2 Radiated Emissions

Preliminary measurements were made indoors at 3 meter using broad band antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found. The spectrum was scanned from 9 kHz to 30 MHz using Loop Antenne(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Bi-conical log Antenna(ARA, LPB-2520/A). Above 1 GHz, Horn antenna (Schwarzbeck BBHA 9120D: up to 18 GHz, Q-par Angus QSH20S20 : 18 to 26.5 GHz, QSH22K20: up to 40 GHz) was used. Final Measurements were made outdoors at 3 or 10 m test range using Loop Antenne(Rohde&Schwarz, HFH2-Z2) and Logicon Super Antenna (Schwarzbeck, VULB9168) or Horn antenna.(Schwarzbeck BBHA 9120D: up to 18 GHz , Q-par Angus QSH20S20 : 18 to 26.5 GHz, QSH22K20: up to 40 GHz).

The test equipment was placed on a wooden table. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

Each frequency found during pre-scan measurements was reexamined and investigated using EMI test receiver (ESCS30) & (FSP40). The detector function was set to CISPR peak mode or quasi-peak mode or average mode and the band-width of the receiver was set to 120 kHz or 1 MHz depending on the frequency or type of signal. The half wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT support equipment and interconnecting cables were re configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 x 1.5 meter table. The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turn table containing the Technology was rotated; the antenna height was varied 1 to 4 meter and stopped at the azimuth or height producing the maximum emission Each emission was maximized by : switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R/S signal generator.

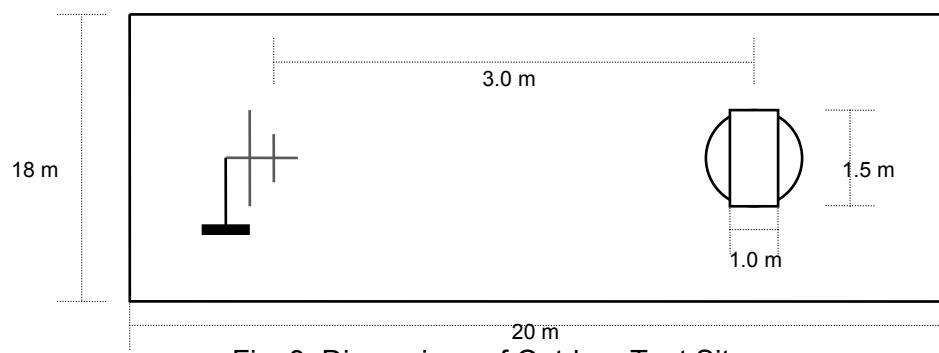
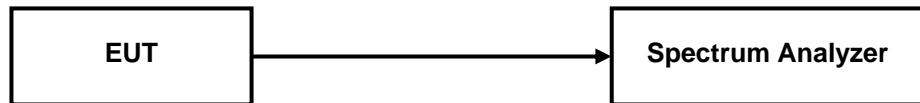
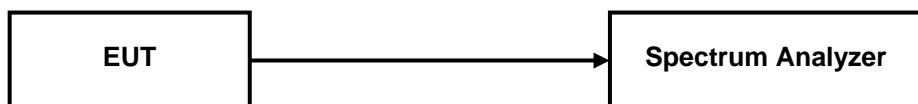



Fig. 3. Dimensions of Outdoor Test Site

7.3 20 dB Bandwidth and Carrier Frequency Separation

Test Setup

Test Procedure


The transmitter is set to the Low, Middle, High channels is connected to the spectrum analyzer. The RBW of spectrum analyzer is set to 15 kHz and VBW is set to the 30 kHz. The sweep time is coupled.

The spectrum analyzer is set for peak detected and Max hold scan mode.

When Carrier Frequency separation is tested, Frequency hopping is set.

7.4 Transmitter Average Time of Occupancy

Test Setup

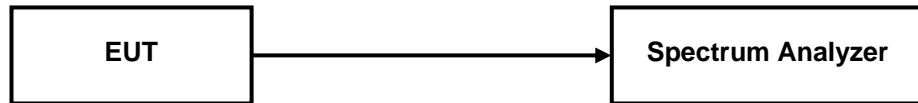
Test Procedure

The transmitter output is connected to a spectrum analyzer. The following spectrum analyzer setting is used.

Span = Zero span, centered on a hopping channel

RBW = 1 MHz, VBW \geq RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

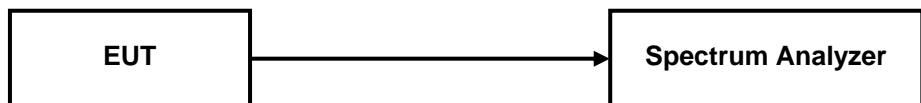

Detector function = Peak

Trace = Single sweep

Use the marker-delta function to determine the width of pulse

7.5 Number of Hopping Channels

Test Setup

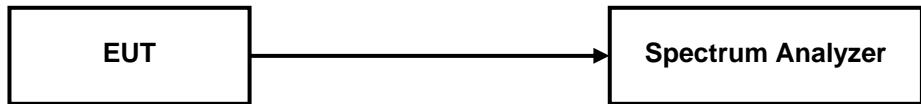

Test Procedure

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, In either a single sweep or in multiple continuous sweeps. The RBW is set to 1 % of the span.

The spectrum analyzer is set to Max Hold.

7.6 Maximum Peak Output Power

Test Setup



Test Procedure

The transmitter is set to the Low, Middle, High channels is connected to the spectrum analyzer. The RBW of spectrum analyzer is set to 3 MHz and VBW is set to the 3 MHz. The sweep time is coupled.

7.7 Conducted Spurious Emission

Test Setup

Test Procedure

The transmitter is connected to the spectrum analyzer.

The RBW of spectrum analyzer is set to 100 kHz and VBW is set to the 100 kHz.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the Lowest, middle and highest channels.

8. TEST DATA

8.1 Radiated Emissions

FCC §15.209

Frequency (MHz)	Reading (dB μ V/m)	Pol* (H/V)	Antenna Heights (cm)	Turntable Angles (°)	AF+CL+Amp (dB)**	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
166.27	49.6	V	106	172	-21.1	28.5	43.5	15.0
232.34	57.3	H	131	321	-23.9	33.4	46.0	12.6
298.72	49.6	H	161	196	-21.3	28.3	46.0	17.7
366.55	47.7	H	105	300	-19.6	28.1	46.0	17.9
764.47	44.1	H	105	273	-9.9	34.2	46.0	11.8
969.28	46.2	H	105	293	-7.8	38.4	54.0	15.6

Radiated Measurements at 3 meters

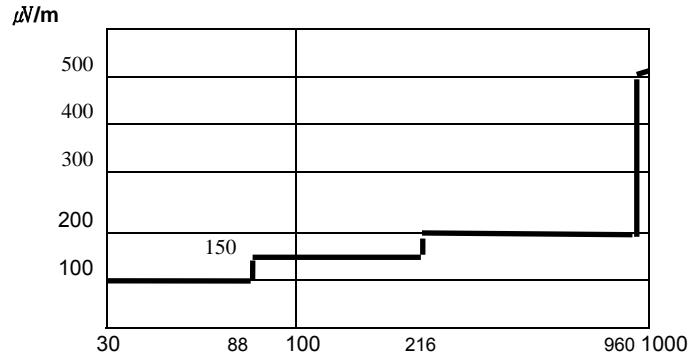


Fig. 4. Limits at 3 meters

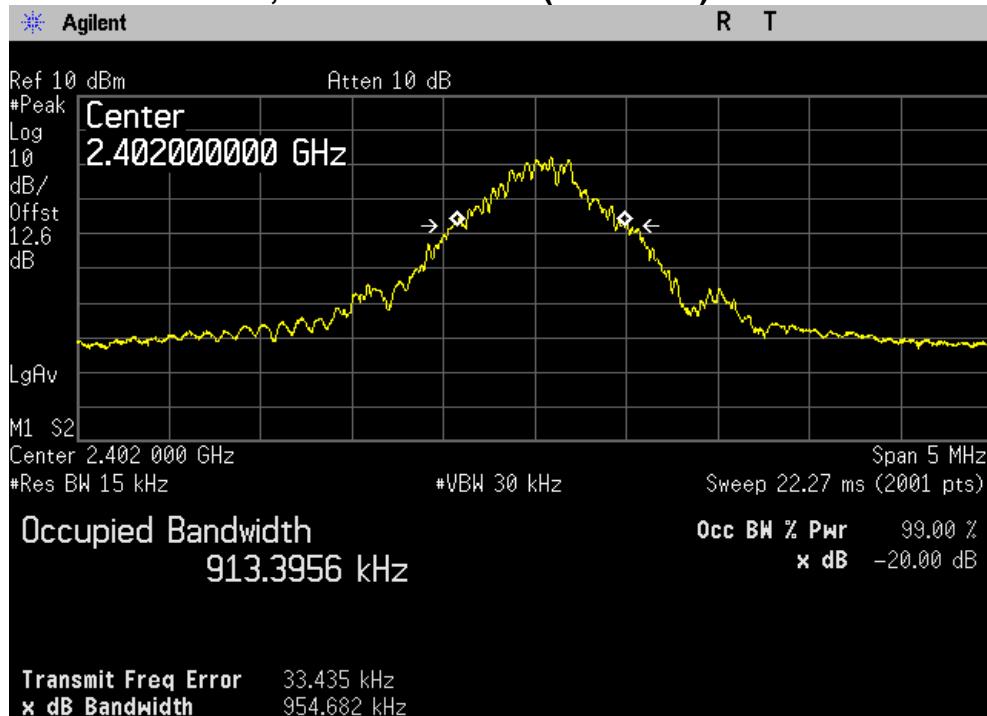
NOTES:

1. All modes were measured and the worst-case emission was reported.
- 2 The radiated limits are shown on Figure 4.
- Above 1 GHz the limit is 500 μ V/m.

NOTES:

1. *Pol. H = Horizontal V = Vertical
2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
3. Measurements using CISPR quasi-peak mode below 1 GHz.
4. The radiated emissions testing were made by rotating through three orthogonal axes. The worst date was recorded.
5. The limit is on the FCC Part section 15.209(a).

TEST DATA


8.2 20 dB Modulated Bandwidth

FCC §15.247(a)(1)(iii)

Test mode : Set to Lowest channel, Middle channel and Highest channel

Result:

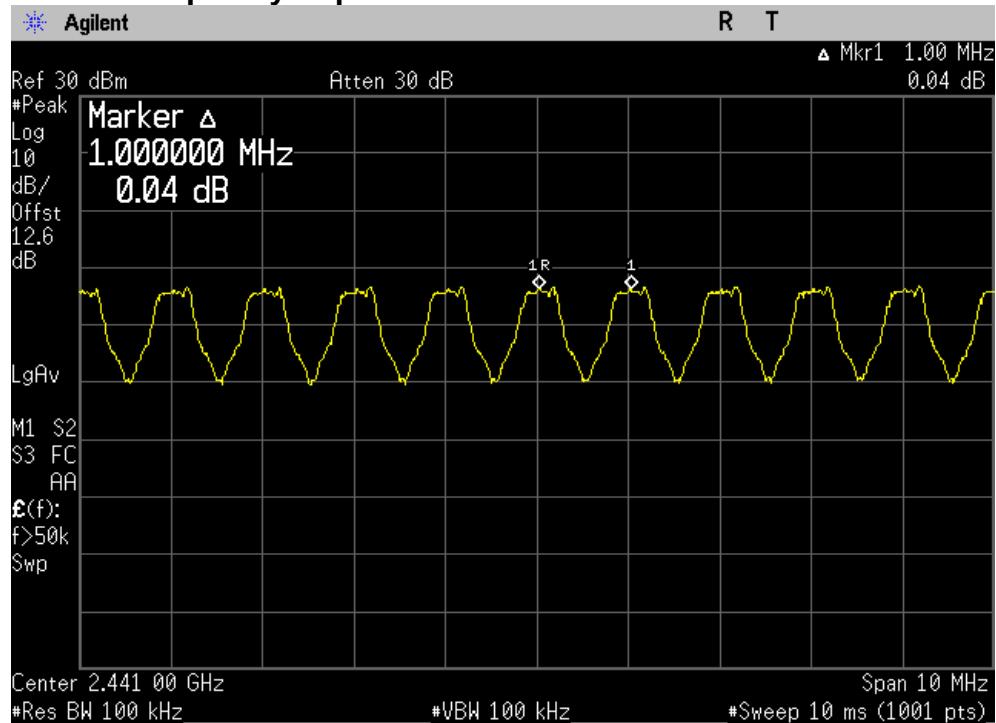
Modulation Mode	Frequency(MHz)	Result(kHz)	Limit(kHz)
GFSK	2402	955	Non specified
GFSK	2441	974	Non specified
GFSK	2480	922	Non specified

PLOTS OF EMISSIONS**20 dB Bandwidth, Lowest Channel (2402 MHz)****20 dB Bandwidth, Middle Channel (2441 MHz)**

PLOTS OF EMISSIONS

20 dB Bandwidth, Highest Channel (2480 MHz)

TEST DATA


8.3 Carrier Frequency Separation

FCC §15.247(a)(1)

Test mode : Set to Hopping mode

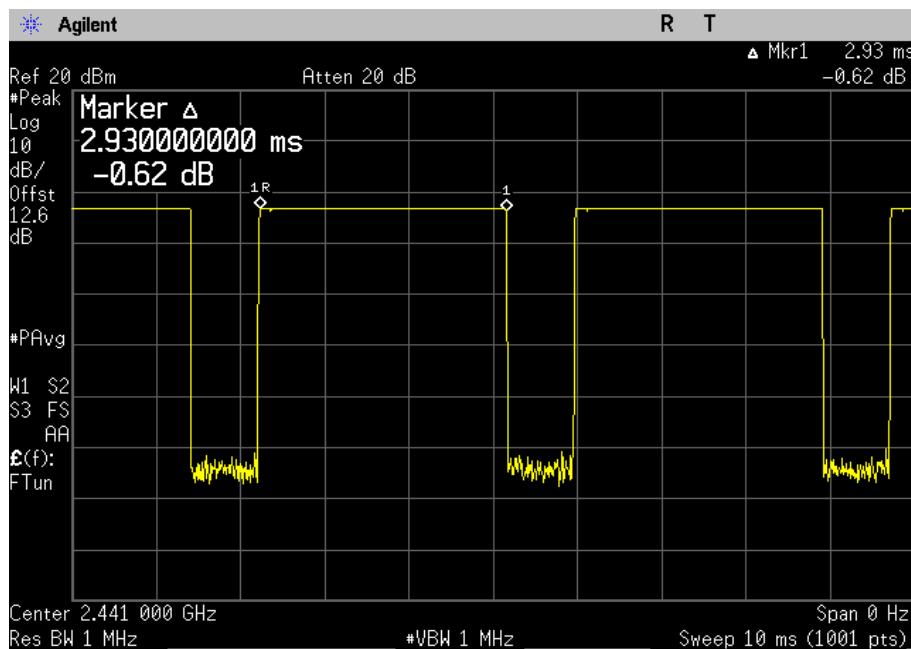
Result:

Modulation Mode	Carrier Frequency Separation (kHz)	Limit (2/3 of 20dB Bandwidth) (kHz)	Margin (kHz)
GFSK	1000	649	351

PLOTS OF EMISSIONS**Carrier Frequency Separation**

TEST DATA

8.4 Transmitter Average Time of Occupancy


FCC §15.247(a)(1)(iii)

Test mode : Set to Hopping mode

Result:

The average time of occupancy in the specified 31.6 second period (79 channels x 0.4 s) is equal to pulse width x (1600 / 6) / 79 x 31.6 second.

Pulse width (ms)	^{*)} Numbers of slots in 31.6 sec	^{**) Average time of Occupancy(ms)}	Limit (ms)	Margin (ms)
2.93	106.7	312.63	≤ 400	87.37

Notes:

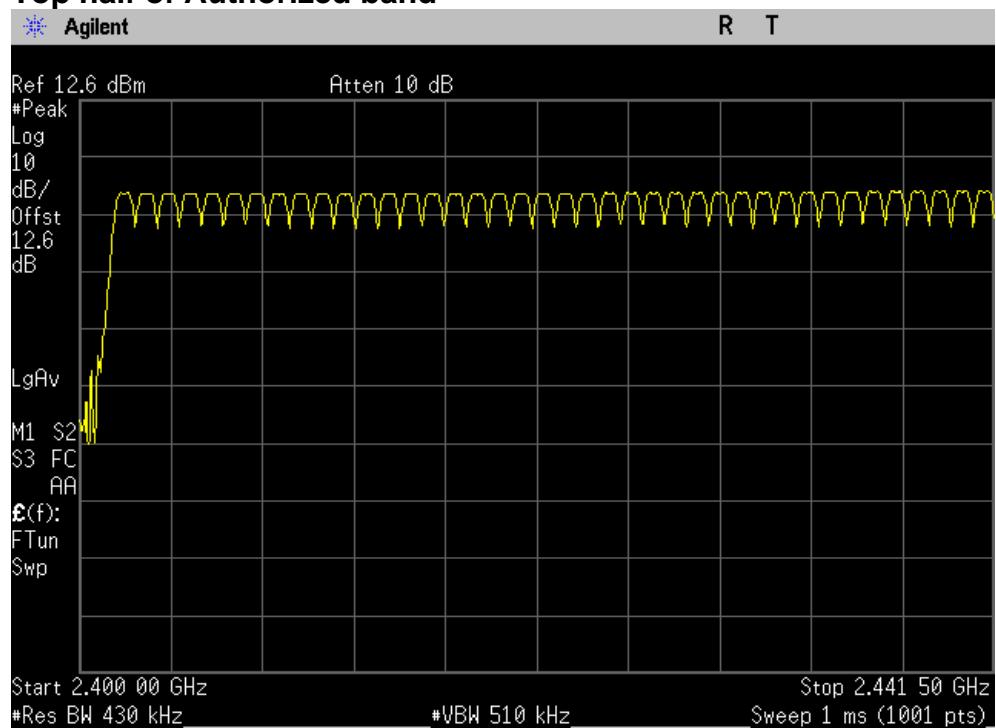
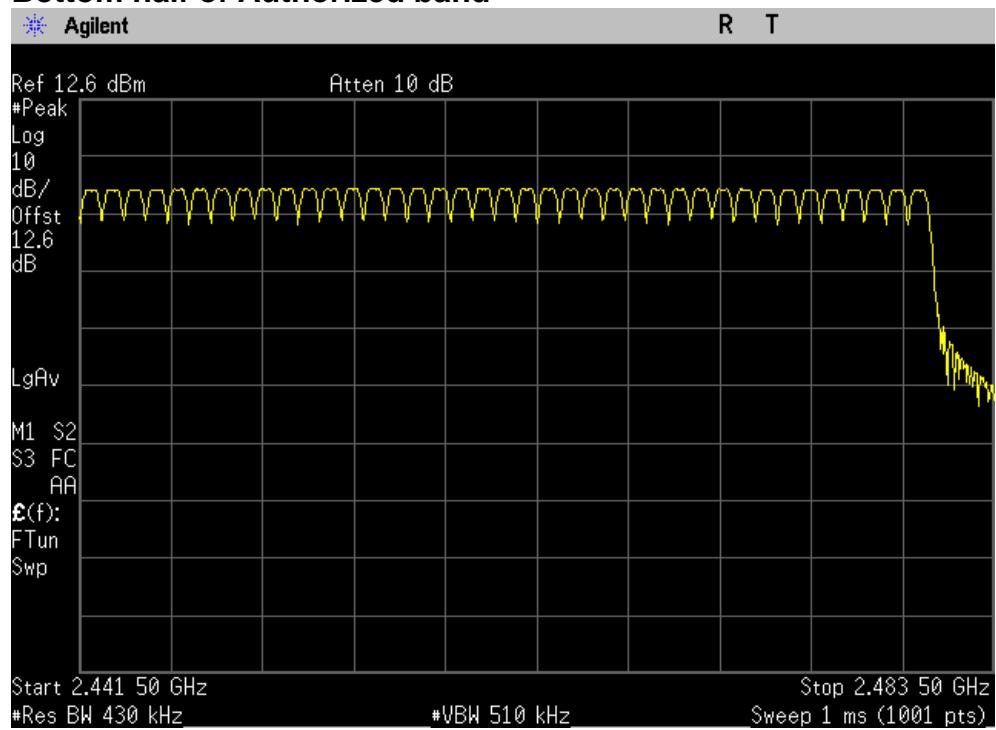
The result was measured at DH5 mode in GFSK modulation, which has longest time in one transmission burst.

^{*)}Numbers of slots in 31.6 sec = (1600 / 6) / 79 x 31.6

^{**) Average time of Occupancy = pulse width x Numbers of slots in 31.6 sec}

TEST DATA

8.5 Number of Hopping Channels



FCC §15.247(a)(1)(iii)

Test mode : Set to Hopping mode

Result:

Total Hopping Channels = 40 + 39 = 79

The EUT meets the specifications of Section 15.247(a)(1)(iii) for Number of Hopping Channels.

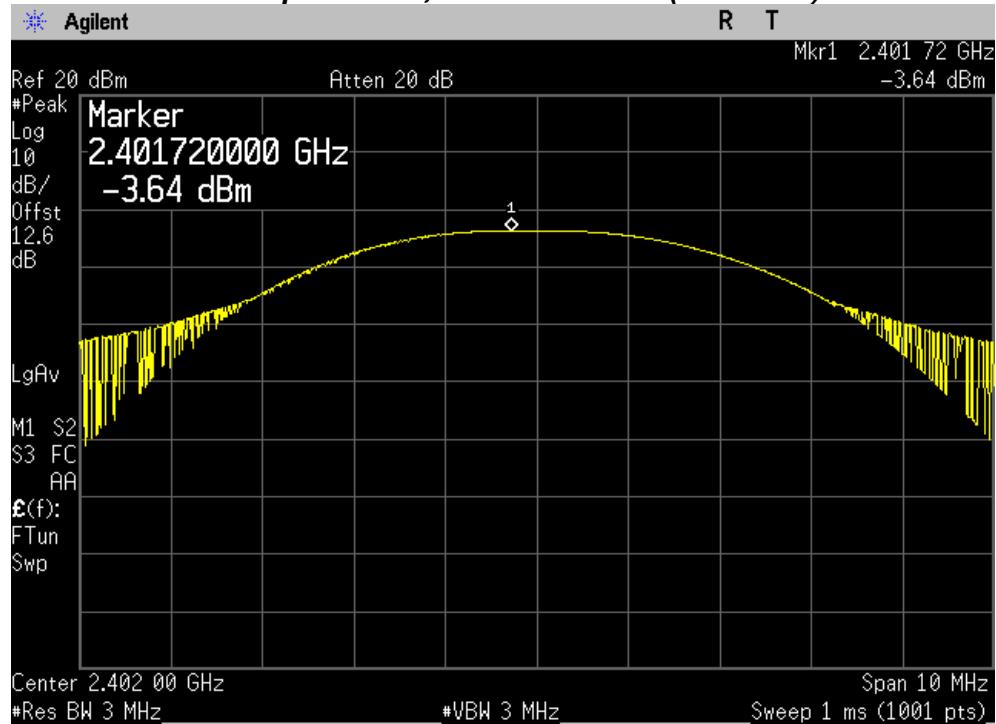
PLOT OF TEST DATA**Top half of Authorized band****Bottom half of Authorized band**

TEST DATA

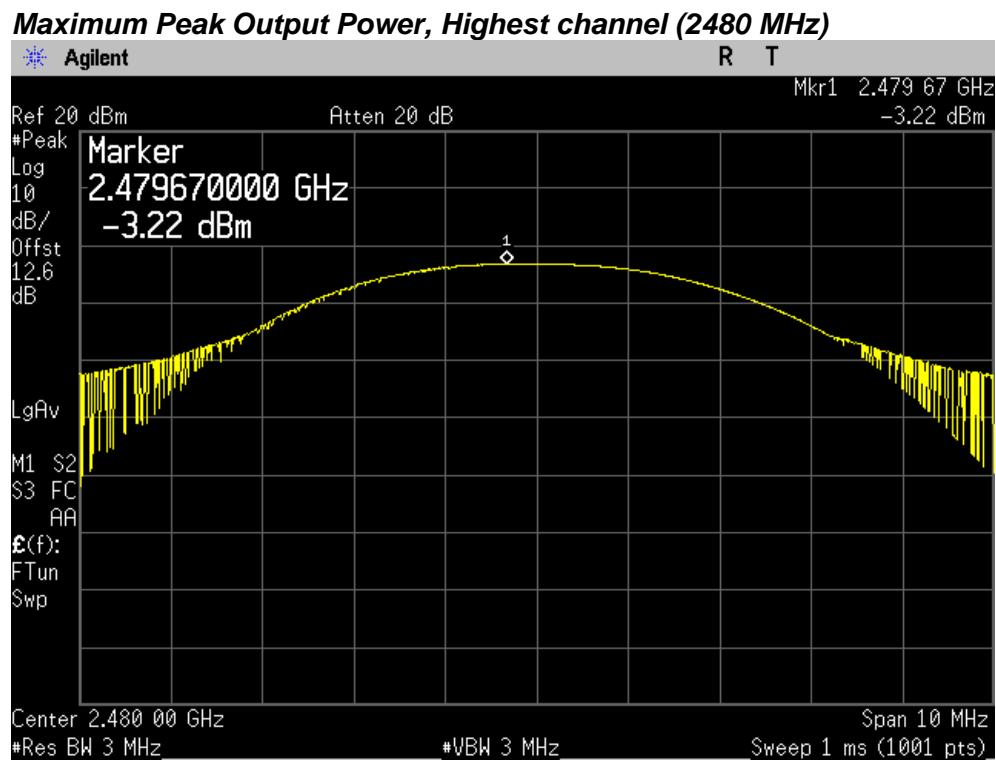
8.6 Maximum Peak Power Output

FCC §15.247(b)(1)

Test mode : Set to Lowest channel, Middle channel and Highest channel



Result:


Modulation	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
GFSK	2402	-3.64	30.00	33.64
GFSK	2441	-3.29	30.00	33.29
GFSK	2480	-3.22	30.00	33.22

Note:

The following formular was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

PLOT OF TEST DATA**Maximum Peak Output Power, Lowest channel (2402 MHz)****Maximum Peak Output Power, Middle channel (2441 MHz)**

PLOT OF TEST DATA

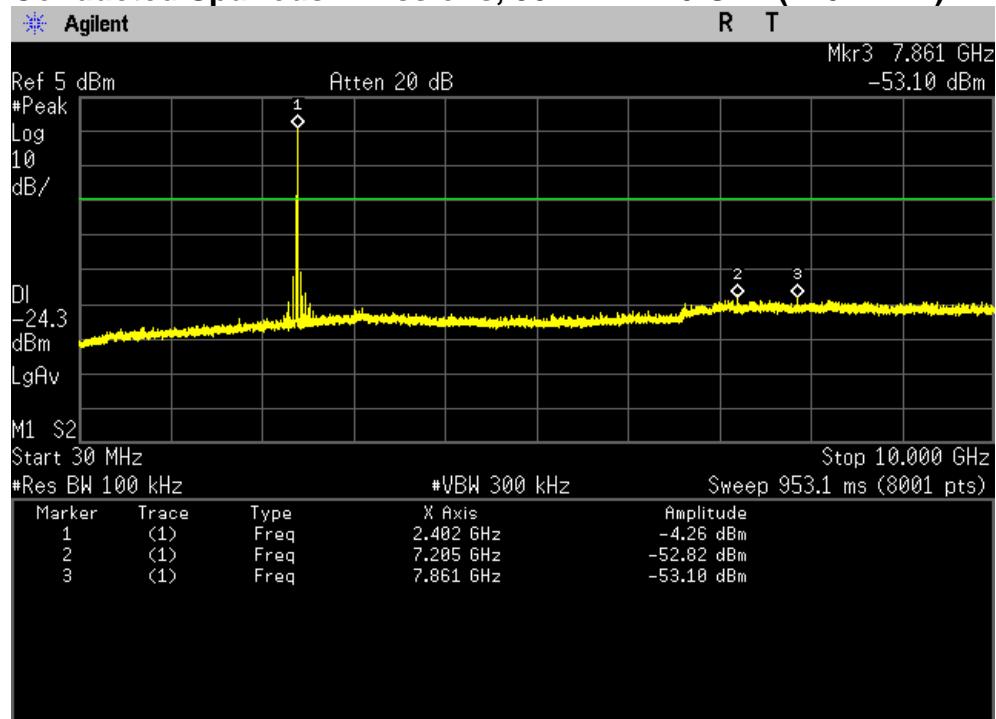
TEST DATA

8.7 Conducted Spurious Emission

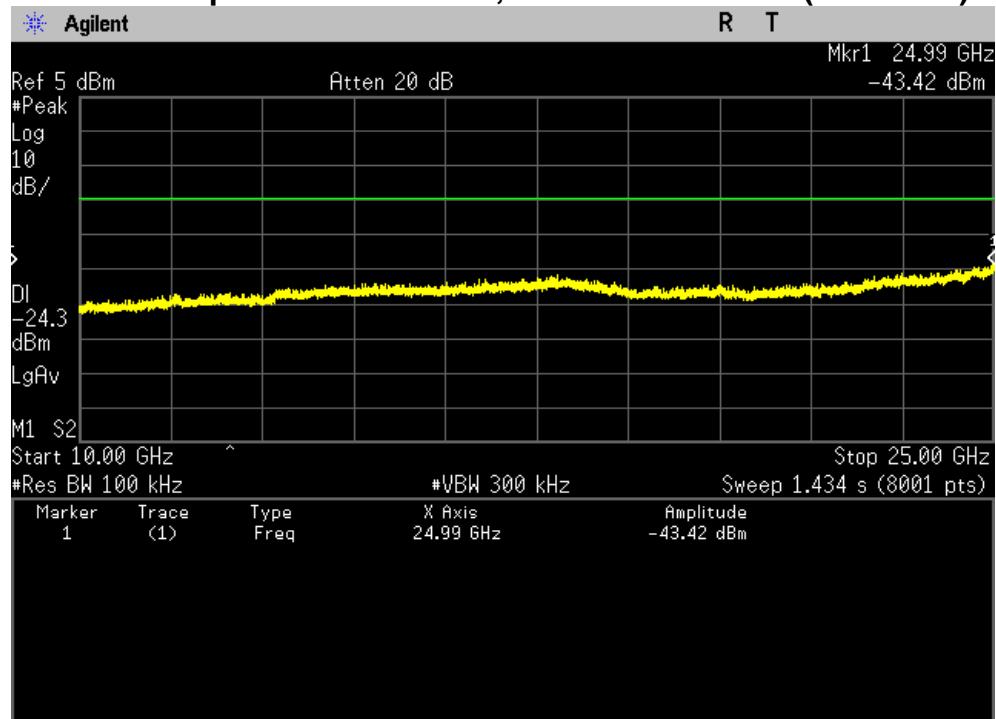
FCC §15.247(d)

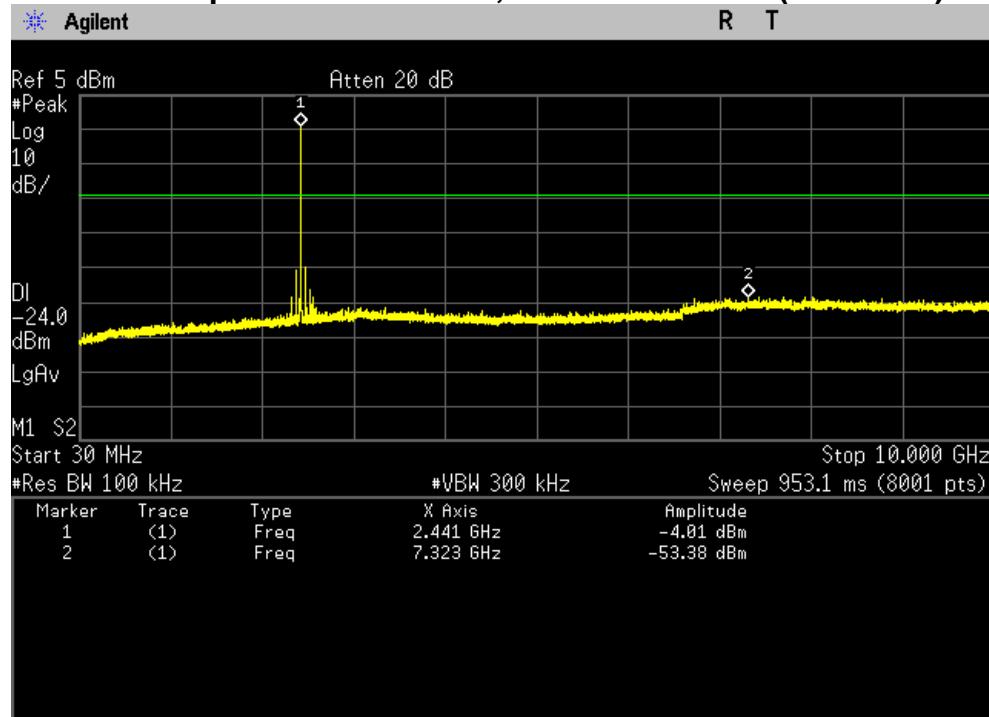
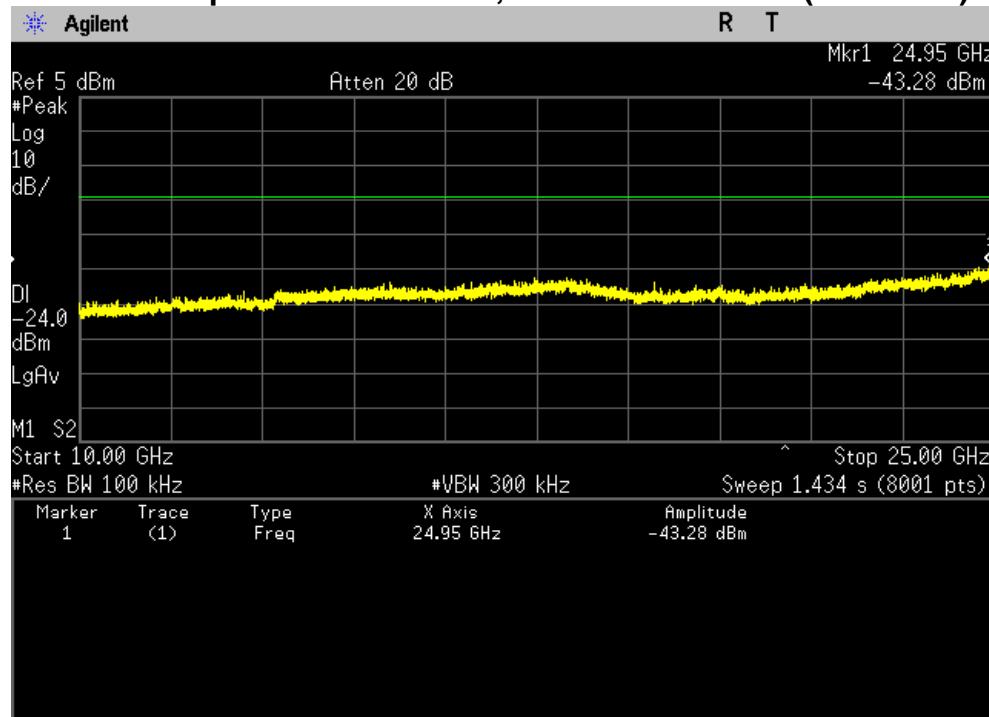
Test mode : Set to Lowest channel, Middle channel and Highest channel

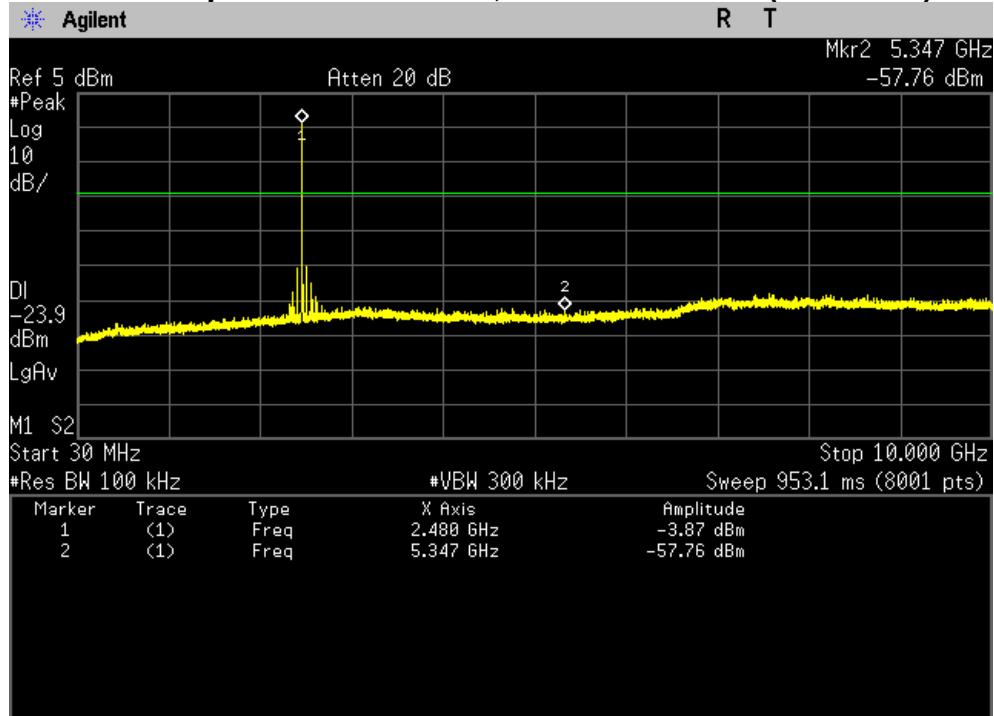
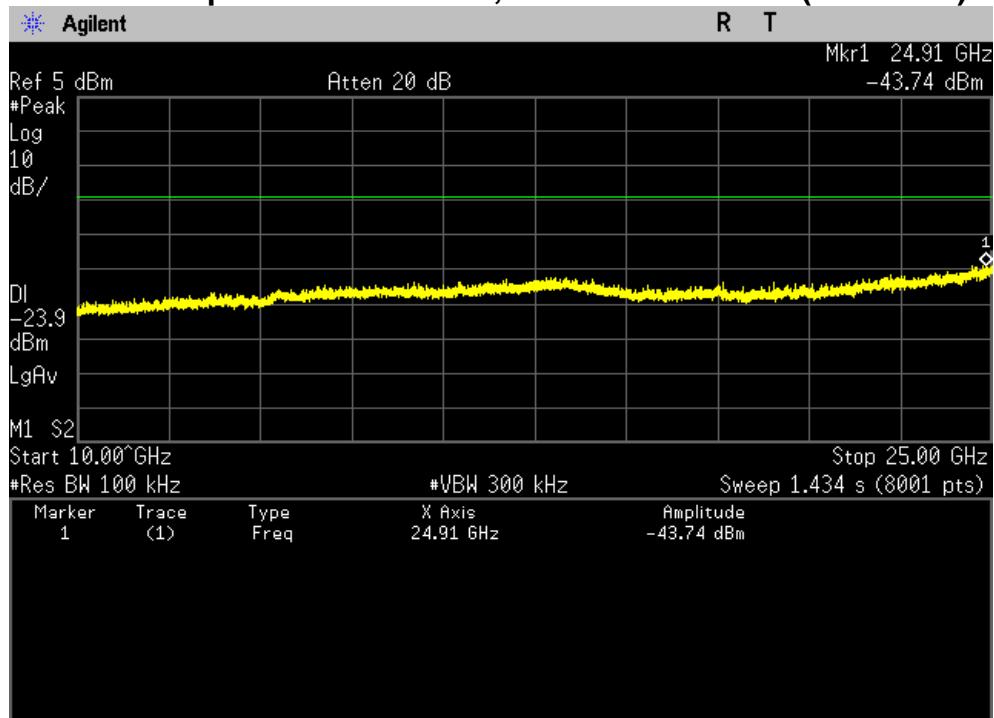
Result:


Modulation Mode	Frequency (MHz)	Spurious Emission (dBc)	Limit (dBc)
GFSK	2402	More than 30 dBc	20
GFSK	2441	More than 30 dBc	20
GFSK	2480	More than 30 dBc	20

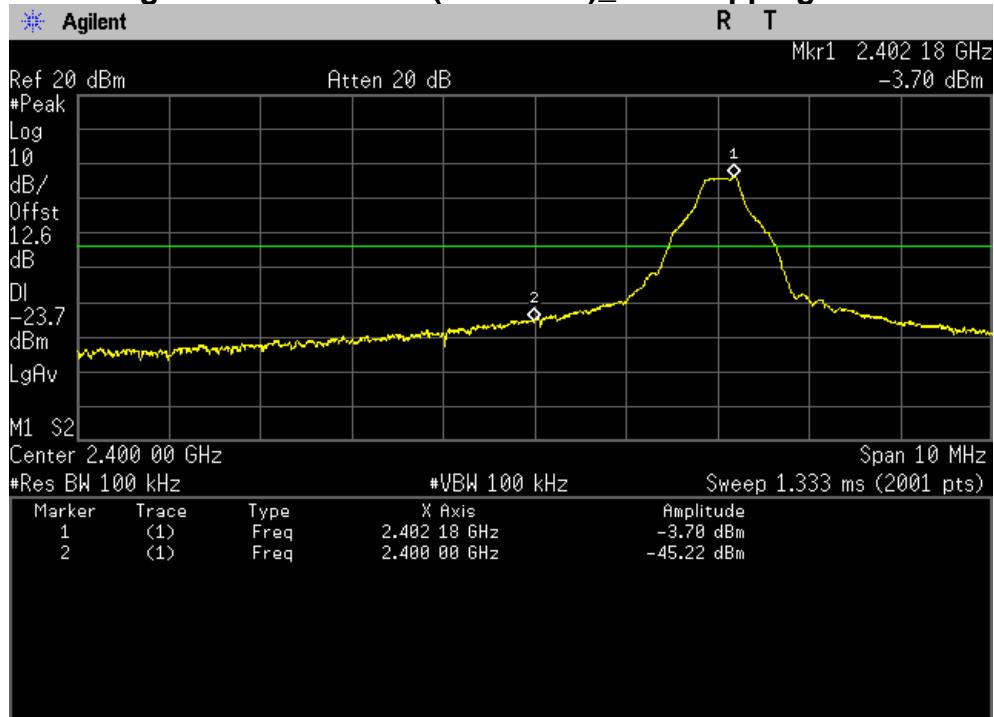
Note:


The cable and attenuator loss from 30 MHz to 25 GHz was reflected in spectrum analyzer with correction factor for the spurious emissions test.

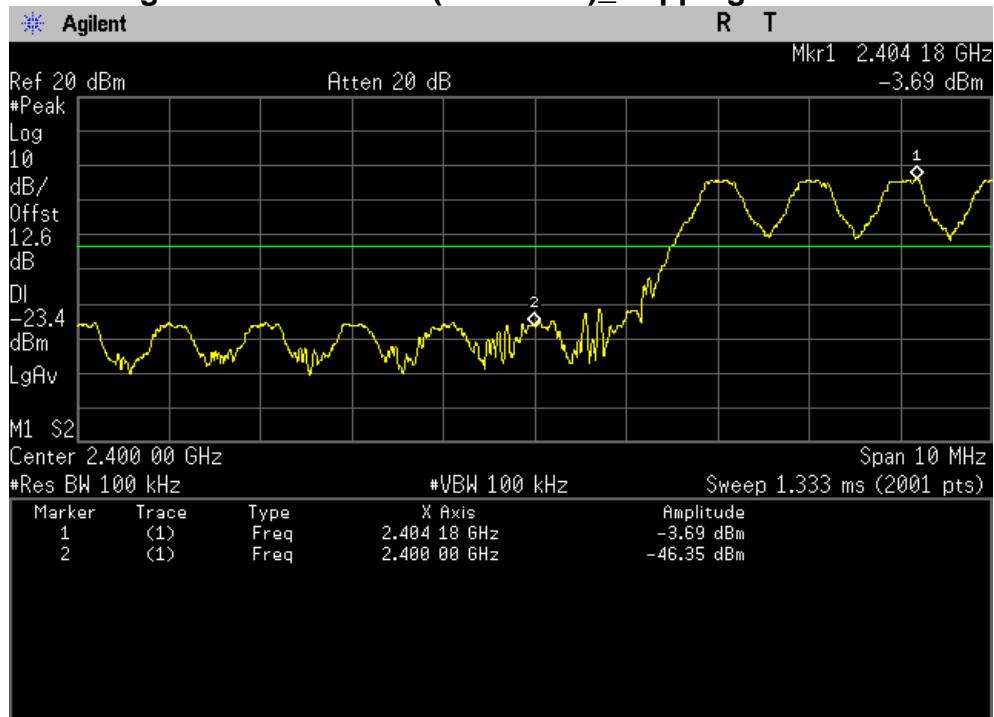


PLOT OF TEST DATA



Conducted Spurious Emissions, 30 MHz ~ 10 GHz (2402 MHz)

Conducted Spurious Emissions, 10 GHz ~ 26.5 GHz (2402 MHz)



PLOT OF TEST DATA**Conducted Spurious Emissions, 30 MHz ~ 10 GHz (2441 MHz)****Conducted Spurious Emissions, 10 GHz ~ 26.5 GHz (2441 MHz)**


PLOT OF TEST DATA**Conducted Spurious Emissions, 30 MHz ~ 10 GHz(2480 MHz)****Conducted Spurious Emissions, 10 GHz ~ 26.5 GHz (2480 MHz)**

PLOT OF TEST DATA

Band Edge Lowest Channel(2402 MHz)_Non-hopping mode

Band Edge Lowest Channel(2402 MHz)_Hopping mode

PLOT OF TEST DATA

Band Edge Lowest Channel(2480 MHz)_Non-hopping mode

Band Edge Lowest Channel(2480 MHz)_Hopping mode

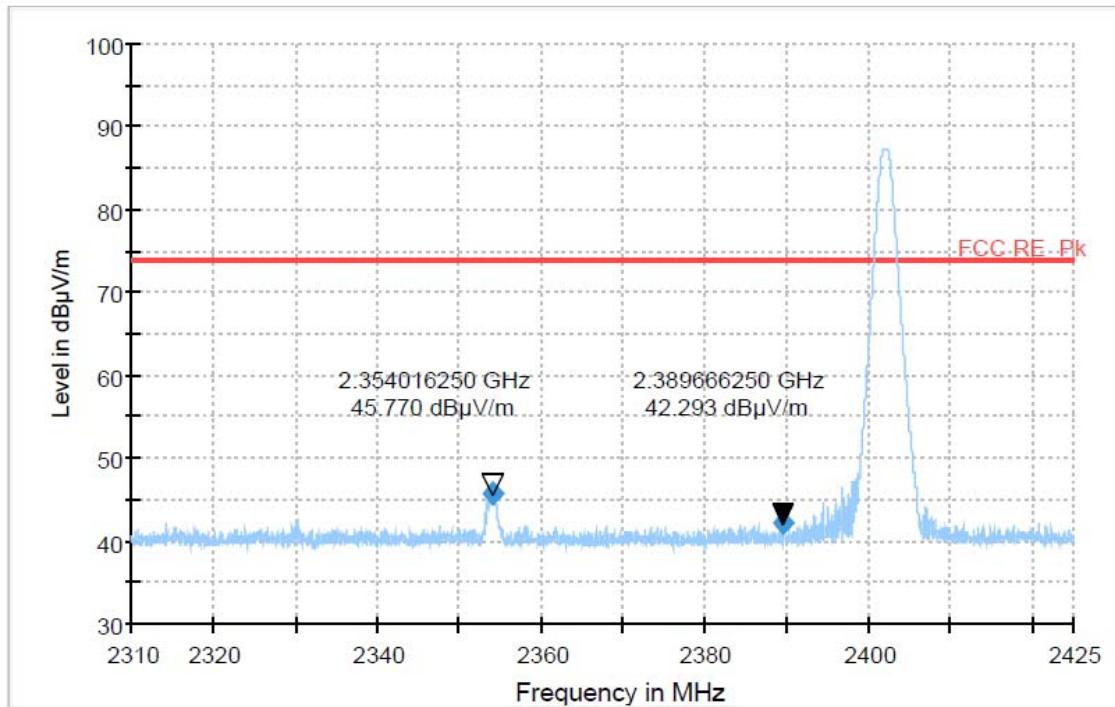
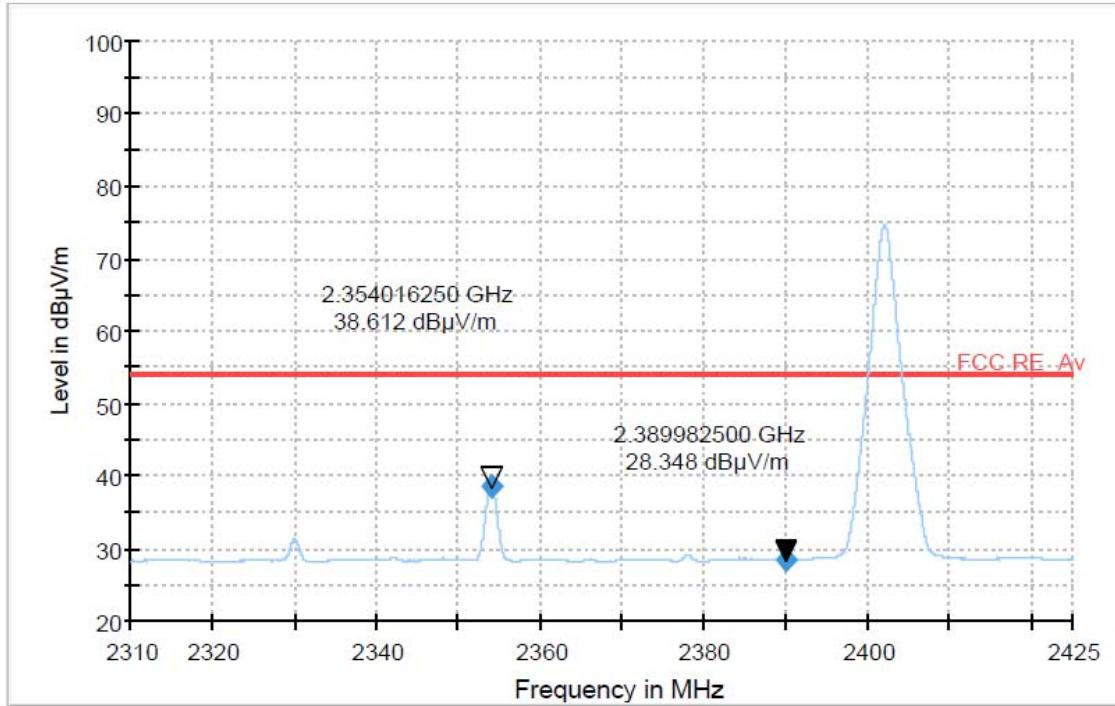
TEST DATA**8.8 Radiated Spurious Emission****FCC §15.247(d)****Test mode : Set to Lowest channel, Middle channel and Highest channel****Result:****Lowest Channel**

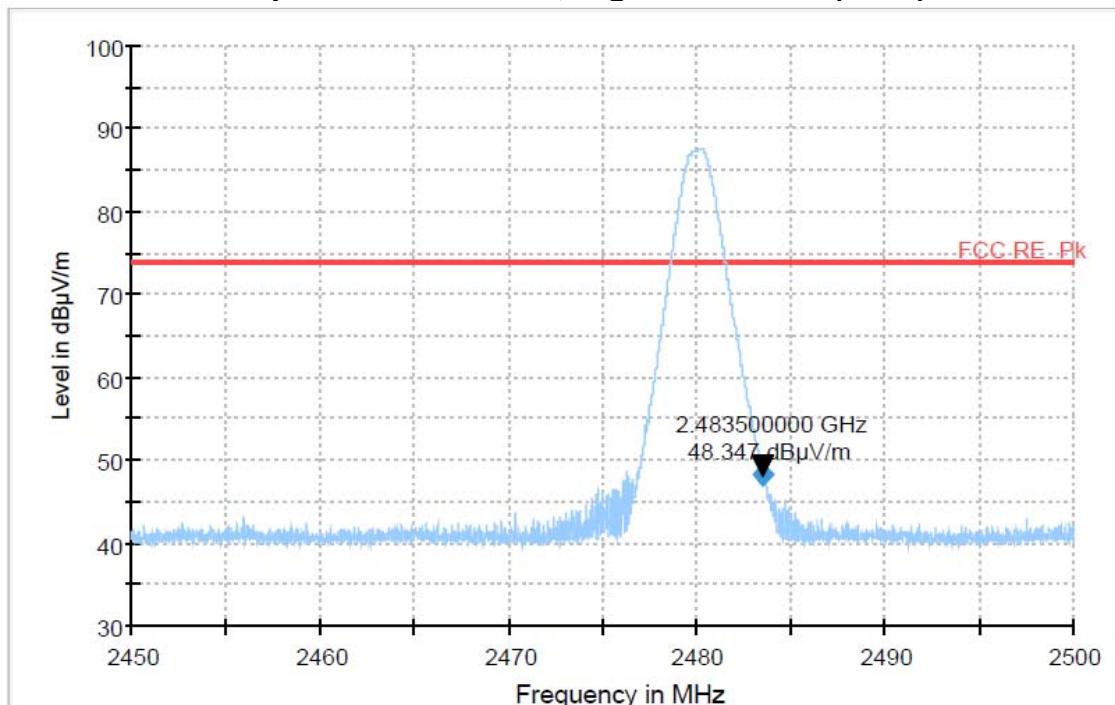
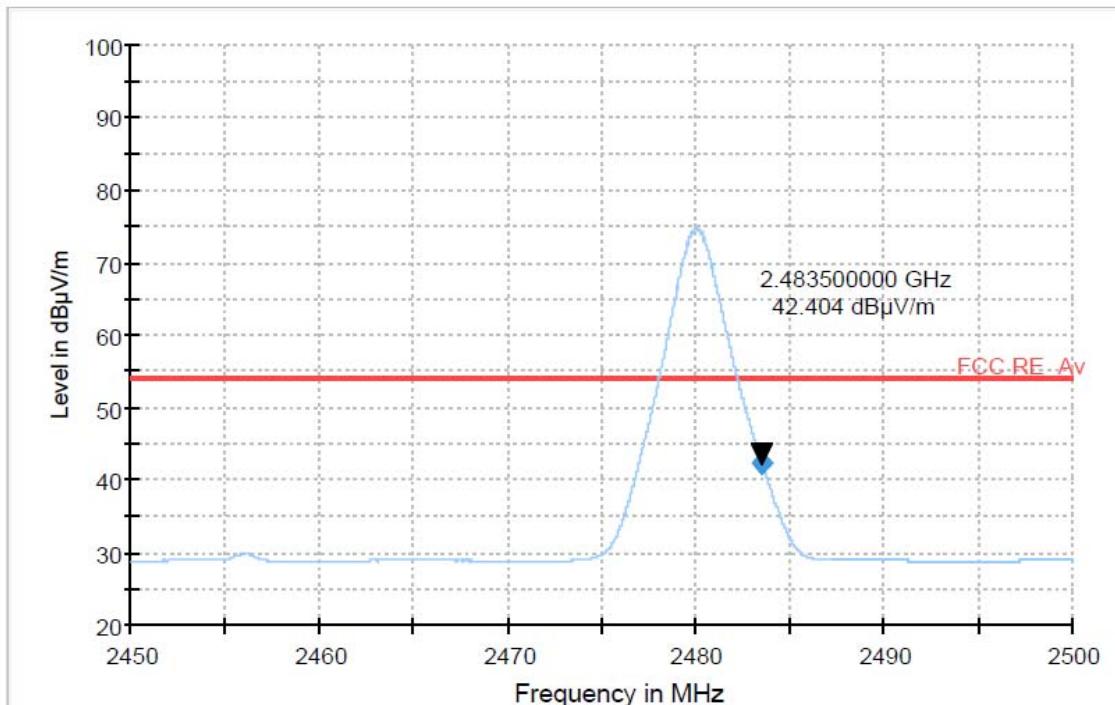
Frequency (MHz)	Reading (dB μ N)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
1407.00	42.70	V	peak	-3.70	39.00	74.0	35.00
1407.00	35.40	V	average	-3.70	31.70	54.0	22.30
1535.50	46.90	H	peak	-3.40	43.50	74.0	30.50
1535.50	43.30	H	average	-3.40	39.90	54.0	14.10
1598.50	48.80	V	peak	-3.20	45.60	74.0	28.40
1598.50	39.20	V	average	-3.20	36.00	54.0	18.00
1615.50	50.50	V	peak	-3.10	47.40	74.0	26.60
1615.50	36.70	V	average	-3.10	33.60	54.0	20.40
1645.00	46.90	V	peak	-3.00	43.90	74.0	30.10
1645.00	34.60	V	average	-3.00	31.60	54.0	22.40
4804.00	39.30	H	peak	9.00	48.30	74.0	25.70
4804.00	30.60	H	average	9.00	39.60	54.0	14.40

TEST DATA**Middle Channel**

Frequency (MHz)	Reading (dB μ V)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1454.00	46.10	H	peak	-3.70	42.40	74.0	31.60
1454.00	36.30	H	average	-3.70	32.60	54.0	21.40
1535.50	48.30	H	peak	-3.40	44.90	74.0	29.10
1535.50	43.50	H	average	-3.40	40.10	54.0	13.90
1661.00	47.00	V	peak	-2.90	44.10	74.0	29.90
1661.00	36.10	V	average	-2.90	33.20	54.0	20.80
2285.50	46.30	V	peak	-1.20	45.10	74.0	28.90
2285.50	36.40	V	average	-1.20	35.20	54.0	18.80
4882.00	38.50	H	peak	9.20	47.70	74.0	26.30
4882.00	29.40	H	average	9.20	38.60	54.0	15.40
7323.00	40.00	V	peak	15.70	55.70	74.0	18.30
7323.00	32.80	V	average	15.70	48.50	54.0	5.50

TEST DATA



Highest Channel

Frequency (MHz)	Reading (dB μ N)	Pol* (H/V)	mode	AF+CL+Amp (dB)**	Result (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
1106.50	43.40	V	peak	-4.60	38.80	74.0	35.20
1106.50	33.70	V	average	-4.60	29.10	54.0	24.90
1451.00	43.60	V	peak	-3.70	39.90	74.0	34.10
1451.00	33.50	V	average	-3.70	29.80	54.0	24.20
1536.00	47.30	H	peak	-3.40	43.90	74.0	30.10
1536.00	43.60	H	average	-3.40	40.20	54.0	13.80
1604.00	44.90	V	peak	-3.20	41.70	74.0	32.30
1604.00	33.20	V	average	-3.20	30.00	54.0	24.00
4960.00	39.00	H	peak	9.40	48.40	74.0	25.60
4960.00	29.20	H	average	9.40	38.60	54.0	15.40
7440.00	41.00	V	peak	15.80	56.80	74.0	17.20
7440.00	34.70	V	average	15.80	50.50	54.0	3.50

Note:

1. *Pol. H = Horizontal V = Vertical
2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
3. Other spurious are under 20 dB below Fundamental.
4. The radiated emissions testing were made by rotating through three orthogonal axes.
The worst date was recorded.
5. For measurements the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.
6. The spectrum is measured from 9 kHz to 10th harmonic and the worst-case emissions are reported. No significant emissions were found beyond the fifth harmonic for this device.

PLOT OF TEST DATA**Restricted Band Spurious Emissions, Lowest channel (Peak)****Restricted Band Spurious Emissions, Lowest channel (Average)**

PLOT OF TEST DATA**Restricted Band Spurious Emissions, Highest channel (Peak)****Restricted Band Spurious Emissions, Highest channel (Average)**

Note: For the radiated emission field strength measurements at the band edges, the resolution bandwidth was set to 1 MHz, and then the video bandwidth was set to 1 MHz for peak measurements and 10 Hz for average measurements.

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R & S	ESCS 30	833364/020	Jan. 12 2012	1 year
2	Test Receiver	R & S	ESCS 30	100302	Oct. 12 2011	1 year
3	*Amplifier	HP	8447F	2805A03427	Jul. 16 2012	1 year
4	*Amplifier	Sonoma Instrument	310N	291916	Jul. 16 2012	1 year
5	*Amplifier	R & S	SCU26	10011	Jun. 01 2012	1 year
6	*Pre Amplifier	HP	8449B	3008A00107	Jan. 13 2012	1 year
7	*Pre Amplifier	HP	8447F	2805A03351	Jul. 17 2012	1 year
8	*Spectrum Analyzer	Agilent	E4440A	MY44303257	Jul. 17 2012	1 year
9	*Spectrum Analyzer	Agilent	E4440A	MY44022567	Apr. 05 2012	1 year
10	*Spectrum Analyzer	R & S	FSP40	100361	Jul. 17 2012	1 year
11	*Loop Antenna	R & S	HFH2-Z2	100279	Aug. 31 2011	2 year
12	Wideband Power Sensor	R & S	NRP-Z81	100634	Apr. 05 2012	1 year
13	Peak Power Sensor	R & S	NRV-Z32	836019/028	Oct. 25 2011	1 year
14	*Biconical Log Antenna	ARA	LPB-2520/A	1180	Apr. 26 2012	2 year
15	*Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-508	Dec. 24 2010	2 year
16	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-474	Aug. 13 2012	2 year
17	*Horn Antenna	Q-par Angus	QSH20S20	8179	Mar. 28 2011	2 year
18	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	9168-257	Apr. 14 2012	2 year
19	*LISN	R & S	ESH3-Z5	833874/006	Oct. 12 2011	1 year
20	*LISN	R & S	ESH2-Z5	100227	Apr. 04 2012	1 year
21	*Position Controller	DAEIL EMC	N/A	N/A	N/A	N/A
22	*Turn Table	DAEIL EMC	N/A	N/A	N/A	N/A
23	*Antenna Mast	DAEIL EMC	N/A	N/A	N/A	N/A
24	*Anechoic Chamber	EM Eng.	N/A	N/A	N/A	N/A
25	*Shielded Room	EM Eng.	N/A	N/A	N/A	N/A
26	*Position Controller	Seo-Young EMC	N/A	N/A	N/A	N/A
27	*Turn Table	Seo-Young EMC	N/A	N/A	N/A	N/A
28	*Antenna Mast	Seo-Young EMC	N/A	N/A	N/A	N/A
29	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
30	*Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A

*) Test equipment used during the test

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

1. Conducted Uncertainty Calculation

Source of Uncertainty	Xi	Uncertainty of Xi		Coverage factor k	$u(Xi)$ (dB)	Ci	$Ci u(Xi)$ (dB)
		Value (dB)	Probability Distribution				
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	$LAMN$	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	$dVSW$	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	$dVPA$	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	$dVPR$	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	$dVNF$	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dZ	± 1.80	triangular	2.449	0.73	1	0.73
ⓐ Mismatch	M	$+ 0.70$	U-Shaped	1.414	0.49	1	0.49
ⓑ Mismatch	M	$- 0.80$	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	①: AMN-Receiver Mismatch : + ②: AMN-Receiver Mismatch : -						
Combined Standard Uncertainty	Normal			± 1.88			
Expended Uncertainty U	Normal ($k = 2$)			± 3.76			

2. Radiation Uncertainty Calculation

Source of Uncertainty	Xi	Uncertainty of Xi		Coverage factor <i>k</i>	u(Xi) (dB)	Ci	Ci u(Xi) (dB)
		Value (dB)	Probability Distribution				
Receiver reading	<i>RI</i>	± 0.10	normal 1	1.000	0.10	1	0.10
Sine wave voltage	<i>dVsw</i>	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	<i>dVpa</i>	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	<i>dVpr</i>	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	<i>dVnf</i>	± 0.50	normal 2	2.000	0.25	1	0.25
Antenna Factor Calibration	<i>AF</i>	± 1.50	normal 2	2.000	0.75	1	0.75
Attenuation Antenna-receiver	<i>CL</i>	± 0.52	normal 2	2.000	0.26	1	0.26
Antenna Directivity	<i>AD</i>	± 1.00	rectangular	1.732	0.58	1	0.58
Antenna Factor Height Dependence	<i>AH</i>	± 0.50	rectangular	1.732	0.29	1	0.29
Antenna Phase Centre Variation	<i>AP</i>	± 0.30	rectangular	1.732	0.17	1	0.17
Antenna Factor Frequency Interpolation	<i>AI</i>	± 0.30	rectangular	1.732	0.17	1	0.17
Site Imperfections	<i>SI</i>	± 4.00	triangular	2.449	1.63	1	1.63
Measurement Distance Variation	<i>DV</i>	± 0.10	rectangular	1.732	0.06	1	0.06
Antenna Balance	<i>Dbal</i>	± 0.90	rectangular	1.732	0.52	1	0.52
Cross Polarisation	<i>DCross</i>	± 0.90	rectangular	1.732	0.52	1	0.52
④ Mismatch	<i>M</i>	+ 0.25	U-Shaped	1.414	0.18	1	0.18
⑤ Mismatch	<i>M</i>	- 0.26	U-Shaped	1.414	- 0.18	1	- 0.18
⑥ Mismatch	<i>M</i>	+ 0.98	U-Shaped	1.414	0.69	1	0.69
⑦ Mismatch	<i>M</i>	- 1.11	U-Shaped	1.414	- 0.79	1	- 0.79
Measurement System Repeatability	<i>RS</i>	0.09	normal 1	1.000	0.09	1	0.09
Remark	④: Biconical Antenna-receiver Mismatch : + (< 200 MHz) ⑤: Biconical Antenna-receiver Mismatch : - (< 200 MHz) ⑥: Log Periodic Antenna-receiver Mismatch : + (\geq 200 MHz) ⑦: Log Periodic Antenna-receiver Mismatch : - (\geq 200 MHz)						
Combined Standard Uncertainty	Normal			± 2.63 (< 200 MHz) ± 2.74 (\geq 200 MHz)			
Expended Uncertainty U	Normal (<i>k</i> = 2)			± 5.26 (< 200 MHz) ± 5.48 (\geq 200 MHz)			