

US Tech Test Report:	FCC Part 15/ RSS 247 Class 2 Permissive Change
FCC ID:	P2SR900M
IC:	4171B-R900M
Test Report Number:	18-0103
Issue Date:	June 29, 2018
Customer:	Neptune Technology Group Inc.
Model:	<u>R900M</u>

Maximum Public Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The following is MPE results for the module with Neptune Technology Group, Pit Antenna Model: R900 (13586-000)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, **S** as per the respective limits in Table 1 below, at a distance, **d**, of 20 cm (Mobile condition) from the EUT.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

Therefore, for:

MPE for 902 MHz – 928 MHz

Limit: 0.61 mW/cm²

Peak Power (Watts) = 0.998 W

Gain of Transmit Antenna = 1.2 dB_i = 1.3, numeric

d = Distance = 20 cm = 0.2 m

$$\begin{aligned}
 S &= (PG / 4\pi d^2) = EIRP/4A = 0.998(1.3)/4\pi(0.2)^2 \\
 &= 1.2974/0.5030 = 2.5793 \text{ W/m}^2 \\
 &= (2.5793 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2) \\
 &= 0.2579 \text{ mW/cm}^2
 \end{aligned}$$

which is << less than S = 0.61 mW/cm²

US Tech Test Report: FCC Part 15/ RSS 247 Class 2 Permissive Change
FCC ID: P2SR900M
IC: 4171B-R900M
Test Report Number: 18-0103
Issue Date: June 29, 2018
Customer: Neptune Technology Group Inc.
Model: R900M

RF Exposure Evaluation – IC

According to RSS-102, Table 4

At or above 300 MHz and below 6 GHz the Power Density (W/m^2) shall be less than $0.02619 \times f^{0.6834}$ (adjusted for tune up tolerance where applicable), where f = frequency in MHz

For 902-928 MHz Band:

$$\text{Limit} = 0.02619 \times 915^{0.6834} = 2.77 \text{ (W/m}^2\text{)}$$

Peak Power (Watts) = 0.998 W
Gain of Transmit Antenna = 1.2 dB_i = 1.3, numeric
d = Distance = 20 cm = 0.2 m

$$\begin{aligned} \mathbf{S} = (\mathbf{P}\mathbf{G}/ 4\pi\mathbf{d}^2) &= \text{EIRP}/4A = 0.998(1.3)/4*\pi*0.2*0.2 \\ &= 1.2974/0.5030 = 2.5793 \text{ W/m}^2 \end{aligned}$$

which is less than $S = 2.77 \text{ (W/m}^2\text{)}$