

Excellence in Compliance Testing

Certification Test Report

Frequency Hopping Spread Spectrum Transmitter

**FCC ID: P2SNTGPRFV3
IC: 4171B-NTGRFV3**

**FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210**

ACS Report Number: 07-0360 - 15C

Manufacturer: Neptune Technology Group, Inc.
Model: R900v3

Test Begin Date: August 29, 2007
Test End Date: October 1, 2007

Report Issue Date: October 2, 2007

FOR THE SCOPE OF ACCREDITATION UNDER LAB Code 200612-0

This report is not be used to claim certification, approval, or endorsement by NVLAP, NIST or any government agency.

Prepared by: _____
J. Kirby Munroe
Manager Wireless Certifications
ACS, Inc.

Reviewed by: _____
R. Sam Wismer
Engineering Manager
ACS, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 24 pages

Table of Contents

1.0 General	3
1.1 Purpose	3
1.2 Product Description	3
1.2.1 General	3
1.2.2 Intended Use	3
1.3 Test Methodology and Considerations	3
2.0 Test Facilities	4
2.1 Location	4
2.2 Laboratory Accreditations/Recognitions/Certifications	4
2.3 Radiated Emissions Test Site Description	5
2.3.1 Semi-Anechoic Chamber Test Site	5
2.3.2 Open Area Tests Site (OATS)	6
2.4 Conducted Emissions Test Site Description	7
3.0 Applicable Standards and References	7
4.0 List of Test Equipment	8
5.0 Support Equipment	9
6.0 EUT Setup Block Diagram	9
7.0 Summary of Tests	10
7.1 Antenna Requirement	10
7.2 Power Line Conducted Emissions	10
7.2.1 Test Methodology	10
7.2.2 Test Results	10
7.3 Radiated Emissions (Unintentional Radiation)	10
7.3.1 Test Methodology	10
7.3.2 Test Results	10
7.4 Peak Output Power	11
7.4.1 Test Methodology	11
7.4.2 Test Results	11
7.5 Channel Usage	13
7.5.1 Carrier Frequency Separation	13
7.5.1.1 Test Methodology	13
7.5.1.2 Test Results	13
7.5.2 Number of Hopping Channels	14
7.5.3 Channel Dwell Time	14
7.5.3.1 Test Methodology	14
7.5.3.2 Test Results	14
7.5.4 20dB Bandwidth	15
7.5.4.1 Test Methodology	15
7.5.4.2 Test Results	15
7.6 Band-edge Compliance and Spurious Emissions	17
7.6.1 Band-edge Compliance of RF Conducted Emissions	17
7.6.1.1 Test Methodology	17
7.6.1.2 Test Results	17
7.6.2 RF Conducted Spurious Emissions	18
7.6.2.1 Test Methodology	18
7.6.2.2 Test Results	18
7.6.3 Radiated Spurious Emissions (Transmitter)	21
7.6.3.1 Test Methodology	21
7.6.3.2 Test Results	21
7.6.3.3 Sample Calculations	24
8.0 CONCLUSION	24

Additional Exhibits Included In Filing

Internal Photographs
External Photographs
Test Setup Photographs
Product Labeling
RF Exposure – MPE Calculations

Installation/Users Guide
Theory of Operation
BOM (Parts List)
System Block Diagram
Schematics

1.0 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15, Subpart C of the FCC's Code of Federal Regulations and Industry Canada's Radio Standards Specification RSS-210.

1.2 Product Description

1.2.1 General

The Model R900v3 is a compact electronic device that collects meter-usage data from an encoder register and transmits the data for collection by the meter reader. This report covers 2 variants of the product that are identified as the Wall Mounted Meter Interface Unit (MIU) and the Pit Mounted MIU. Both variants are electrically identical and differ only in their antennas and mounting scheme. The Wall mounted MIU can use an integrated folded loop or PCB antenna and is usually wall mounted. The PIT Mounted MIU is usually mounted in a pit underground and uses a durable external patch antenna that is flush mounted to the surface above the pit.

Manufacturer Information:

Neptune Technology Group Inc.
1600 Alabama Highway 229
Tallassee, AL 36078

Detailed photographs of the EUT are filed separately with this filing.

1.2.2 Intended Use

The Model R900v3 is a compact electronic device that collects meter-usage data from an encoder register and transmits the data for collection by the meter reader.

1.3 Test Methodology and Considerations

The Model R900v3 wall and pit mount variants differ in the antennas and installation therefore each variant was evaluated for all available antenna types and installation configurations. There can also be a variation in the microprocessor used for digital processing. Unintentional radiated emissions were performed on configurations utilizing both processors. The worst case data is presented in this report. Table 1.3 lists the test samples and associated test configurations.

Table 1.3: Test Samples and Configurations

Serial Number	Configuration	Antenna Type	Test Performed	Hardware Configuration
1440297818	Pit Mount	Patch	Transmitter Spurious Emissions	Processor Part #: MSP430F1121A
1440297818	Wall Mount	PCB	Transmitter Spurious Emissions	Processor Part #: MSP430F1121A
1440379268	Wall Mount	Integrated Loop	Transmitter Spurious Emissions	Processor Part #: MSP430F1121A
1440297818	N/A	N/A	RF Conducted	Processor Part #: MSP430F1121A
1440379270	Wall Mount	Integrated Loop	Unintentional Radiated Emissions	Processor Part #: MSP430F1121A
1462060070	Pit Mount	Patch	Unintentional Radiated Emissions	Processor Part #: MSP430F1121A
1462060070	Wall Mount	PCB	Unintentional Radiated Emissions	Processor Part #: MSP430F1121A
1440297802	Wall Mount	Integrated Loop	Unintentional Radiated Emissions	Processor Part #: MSP430F1132
1440297792	Pit Mount	Patch	Unintentional Radiated Emissions	Processor Part #: MSP430F1132
1440297792	Wall Mount	PCB	Unintentional Radiated Emissions	Processor Part #: MSP430F1132

2.0 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions
5015 B.U. Bowman Drive
Buford, GA 30518
Phone: (770) 831-8048
Fax: (770) 831-8598

2.2 Laboratory Accreditations/Recognitions/Certifications

The Semi-Anechoic Chamber Test Site, Open Area Test Site (OATS) and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC, Industry Canada and the Japanese Voluntary Control Council for Interference by information technology equipment. In addition, ACS is compliant to ISO 17025 as certified by the National Institute of Standards and Technology under their National Voluntary Laboratory Accreditation Program. The following certification numbers have been issued in recognition of these accreditations and certifications:

FCC Registration Number: 894540
Industry Canada Lab Code: IC 4175
VCCI Member Number: 1831
▪ VCCI OATS Registration Number R-1526
▪ VCCI Conducted Emissions Site Registration Number: C-1608
NVLAP Lab Code: 200612-0

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 150cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chases from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3-1 below:

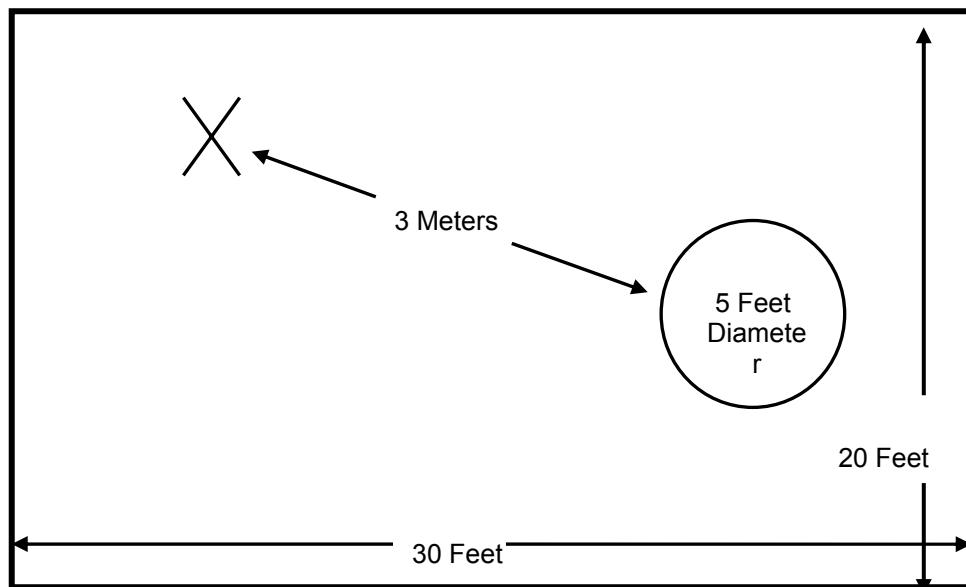


Figure 2.3-1: Semi-Anechoic Chamber Test Site

2.3.2 Open Area Tests Site (OATS)

The open area test site consists of a 40' x 66' concrete pad covered with a perforated electro-plated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8' copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5 - 4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style re-enforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.4.

A diagram of the Open Area Test Site is shown in Figure 2.3-2 below:

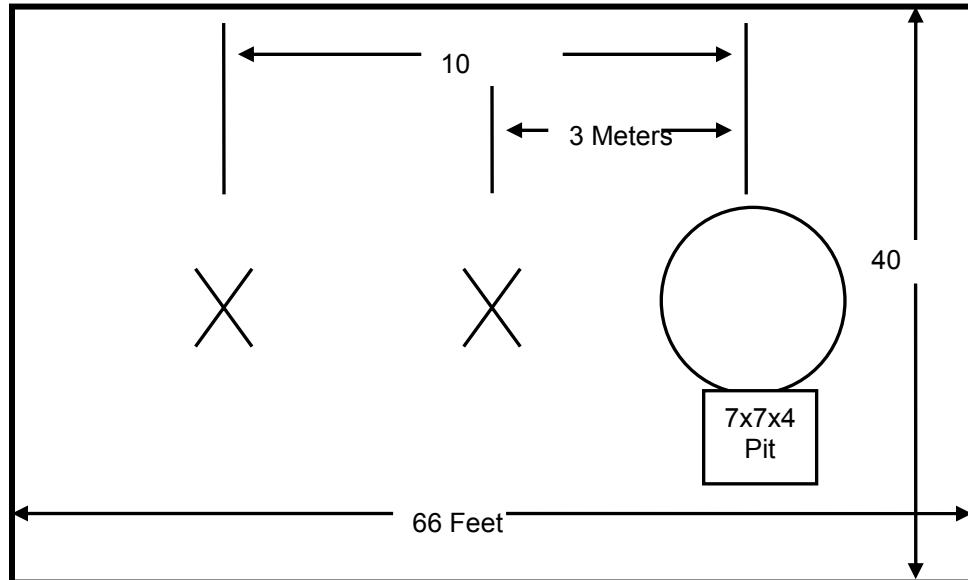


Figure 2.3-2: Open Area Test Site

2.4 Conducted Emissions Test Site Description

The AC mains conducted EMI site is located in the main EMC lab. It consists of an 8' x 8' solid aluminum horizontal group reference plane (GRP) bonded every 3" to an 8' X 8' vertical ground plane.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.4.

A diagram of the room is shown below in figure 4.1.3-1:

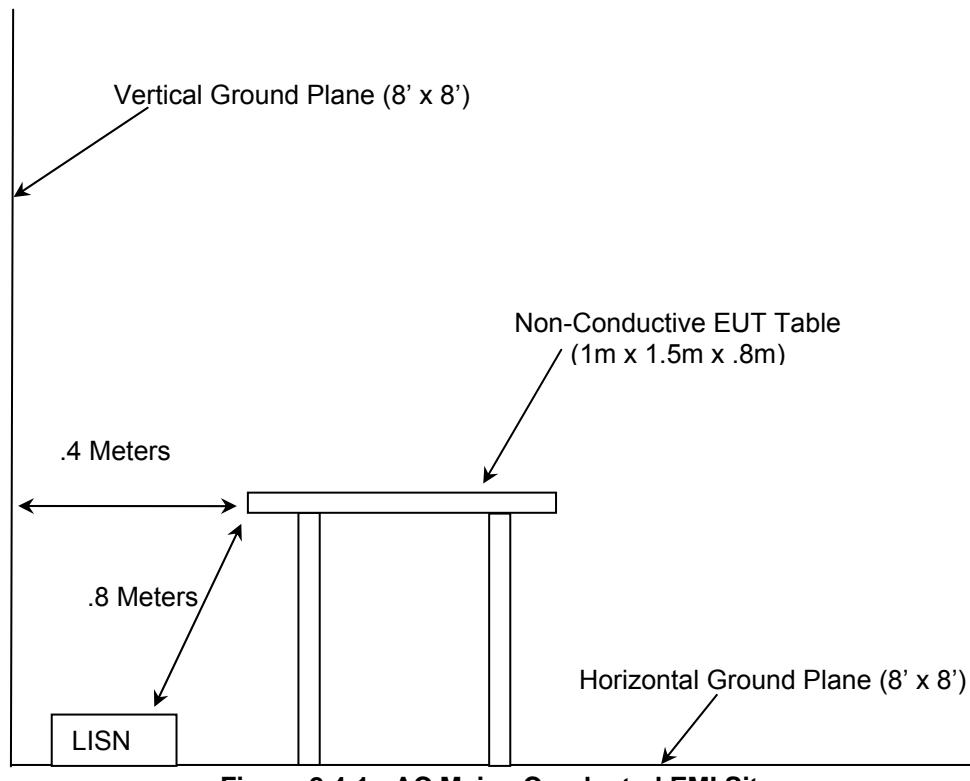


Figure 2.4-1: AC Mains Conducted EMI Site

3.0 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2006
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2006
- ❖ FCC OET Bulletin 65 Appendix C - Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, 2001
- ❖ FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems, March 30, 2000
- ❖ Industry Canada Radio Standards Specification: RSS-210 - Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 7, June 2007

4.0 LIST OF TEST EQUIPMENT

All test equipment used for regulatory testing is calibrated yearly or according to manufacturer's specifications.

Table 4.0-1: Test Equipment

Equipment Calibration Information					
Asset ID	Manufacturer	Model Number	Serial Number	Equipment Type	Cal Due
22	Agilent	8449B	3008A00526	Amplifiers	04/10/08
338	Hewlett Packard	8449B	3008A01111	Amplifiers	09/20/08
25	Chase	CBL6111	1043	Antennas	06/06/08
30	Spectrum Technologies	DRH-0118	970102	Antennas	05/10/08
344	Florida RF Cables	SMS-290AW-480.0-SMR	N/A	Cables	12/21/07
343	Florida RF Cables	SMRE-200W-12.0-SMRE	N/A	Cables	12/21/07
290	Florida RF Cables	SMSE-200-72.0-SMRE	None	Cables	05/15/08
291	Florida RF Cables	SMRE-200W-12.0-SMRE	None	Cables	05/15/08
292	Florida RF Cables	SMR-290AW-480.0-SMR	None	Cables	05/24/08
337	Microwave Circuits	H1G513G1	282706	Filters	10/03/07
153	EMCO	3825/2	9411-2268	LISN	11/16/07
152	EMCO	3825/2	9111-1905	LISN	02/20/08
283	Rohde & Schwarz	FSP40	1000033	Spectrum Analyzers	11/09/08
2	Rohde & Schwarz	ESMI-Receiver	839587/003	Spectrum Analyzers	03/05/08
1	Rohde & Schwarz	ESMI - Display	833771/007	Spectrum Analyzers	03/05/08
73	Agilent	8447D	2727A05624	Amplifiers	05/09/08
16	ACS	Cable	16	Cables	05/21/08

5.0 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Equipment Type	Manufacturer	Model Number	Serial Number	FCC ID
R900 Test Mode Programmer	Neptune	ECOMPAT	N/A	N/A
Meter Register	Neptune	3026	N/A	N/A

6.0 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

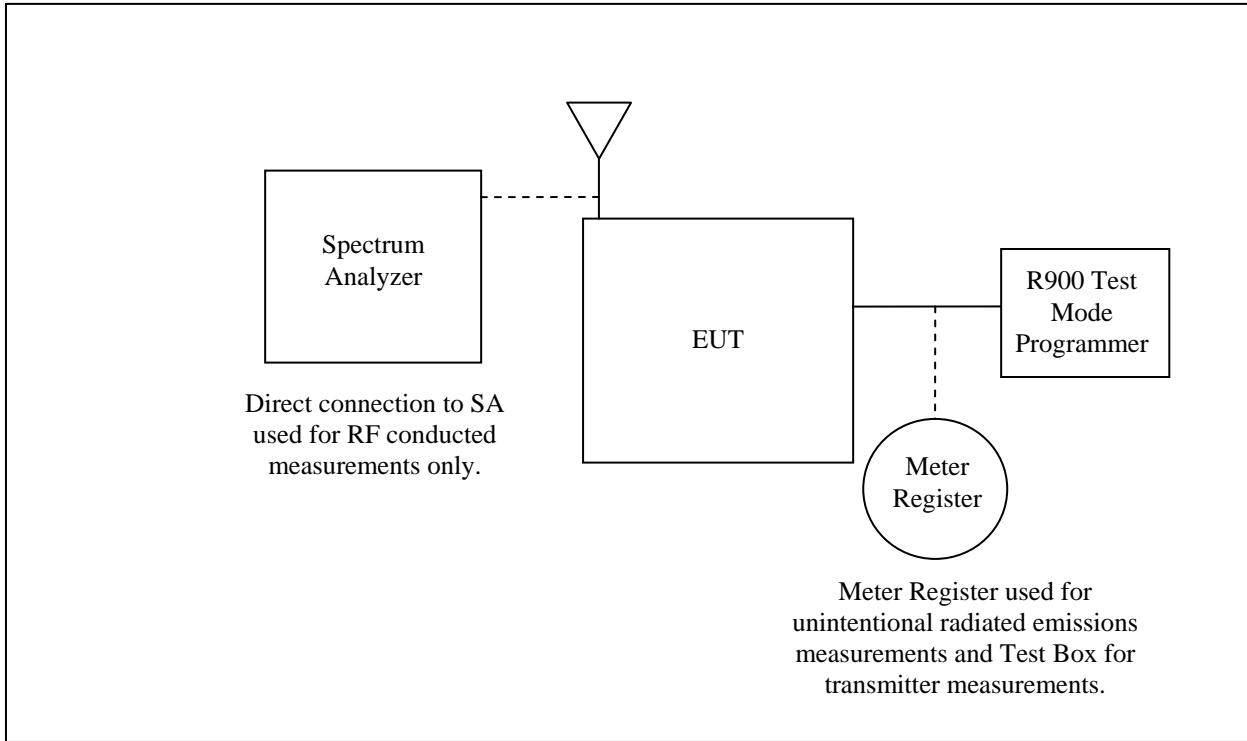


Figure 6-1: EUT Test Setup

*See Test Setup photographs for additional detail.

7.0 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – Part 15.203

The R900v3 is professionally installed therefore ensuring no antenna other than that furnished by the responsible party shall be used with the device.

7.2 Power Line Conducted Emissions

7.2.1 Test Methodology

The R900v3 is battery powered therefore Power Line Conducted Emissions were not performed.

7.3 Radiated Emissions (Unintentional Radiation)

7.3.1 Test Methodology

Radiated emission tests were performed over the frequency range of 30MHz to 5 GHz. Measurements of the radiated field strength were made at a distance of 3m from the boundary of the equipment under test (EUT) and the receiving antenna. The antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies from 30MHz to 1000MHz, radiated measurements were made with a Quasi-peak detector and the spectrum analyzer's resolution bandwidth set to 120 KHz. For measurements above 1000MHz, peak measurements were made with the RBW and VBW set to 1MHz and 3MHz respectively and average measurements with the RBW and VBW set to 1MHz and 10 Hz respectively.

All variations in available microprocessors, antennas, and installation configurations were evaluated with the worst case data presented below.

7.3.2 Test Results

Results of the test are given in Table 7.3-1 below:

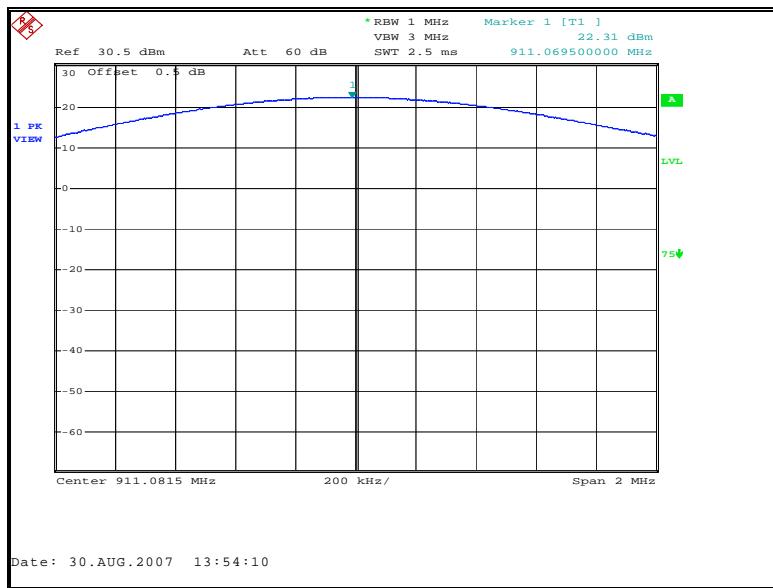
Table 7.3-1: Radiated Emissions Tabulated Data

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
30	-----	27.77	H	-6.70	-----	21.07	-----	40.0	-----	18.93
83.88	-----	34.63	V	-17.27	-----	17.36	-----	40.0	-----	22.64
87.7	-----	50.33	V	-16.57	-----	33.76	-----	40.0	-----	6.24
294.05	-----	39.66	H	-10.98	-----	28.68	-----	46.0	-----	17.32
381.35	-----	37.93	H	-8.35	-----	29.58	-----	46.0	-----	16.42
591.52	-----	39.94	V	-3.68	-----	36.26	-----	46.0	-----	9.74
595.83	-----	37.55	H	-3.64	-----	33.91	-----	46.0	-----	12.09

* Note: All emissions above 595.83 MHz were attenuated below the permissible limit.

7.4 Peak Output Power

7.4.1 Test Methodology (Conducted Method)


The 20dB bandwidth of the EUT was within the resolution bandwidth of spectrum analyzer, therefore the power measurement was made using the spectrum analyzer method. The resolution and video bandwidth were set to > 20 dB bandwidth of the emission measured. The device employs >50 channels therefore the power is limited to 1 Watt.

7.4.2 Test Results

Results are shown in table 7.4-1 and the worst case was plotted and shown in figure 7.4-1 to 7.4-3 below:

Table 7.4-1: RF Output Power

Frequency [MHz]	Level [dBm]
911.0815	22.31
915.9311	22.19
919.0769	22.14

Figure 7.4-1: Output power – Low Channel

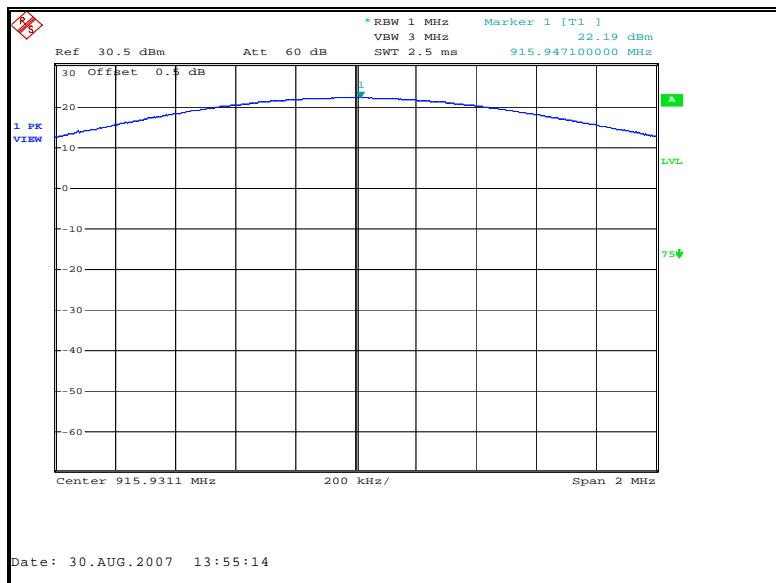


Figure 7.4-2: Output power – Mid Channel

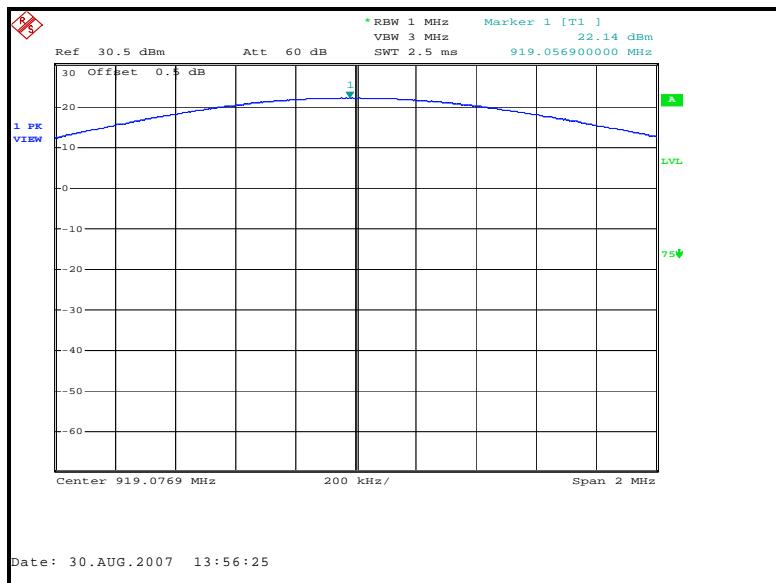


Figure 7.4-3: Output power – High Channel

7.5 Channel Usage Requirements

FCC 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

FCC 15.247(a) (1) (i): For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

7.5.1 Carrier Frequency Separation

7.5.1.1 Test Methodology

The span of the spectrum analyzer was set wide enough to capture two adjacent peaks and the RBW and VBW were set to $\geq 1\%$ of the span.

7.5.1.2 Test Results

The maximum 20dB bandwidth of the hopping channel was measured to be 124kHz (See figure 7.5.4-1 to 7.5.4-3 below). The adjacent channel separation was measured to be 130kHz. Results are shown in figure 7.5.1-1 below:

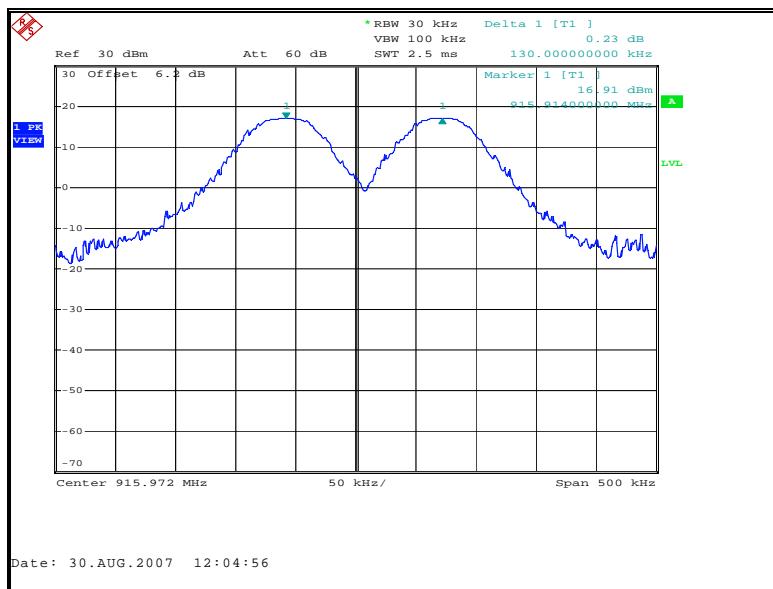


Figure 7.5.1-1: Carrier Frequency Separation

7.5.2 Number of Hopping Channels

The 20dB bandwidth of the device is less than 250 kHz and the device employs 50 hopping channels as required. The plot of the hopping channels is shown in Figure 7.5.2-1 below:

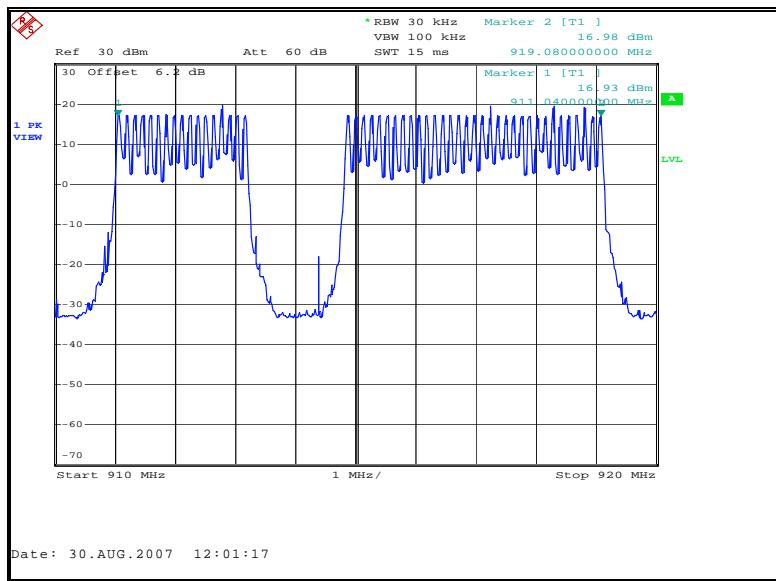


Figure 7.5.2-1: Number of Hopping Channels

7.5.3 Channel Dwell Time

7.5.3.1 Test Methodology

The emission measured centered on the analyzer and the span set to 0 Hz. The RBW was set to 1 MHz and the VBW to 3 MHz. Sweep time was set to 20 ms to capture the burst duration of the emission. The marker -delta function of the analyzer was employed to measure the burst duration.

7.5.3.2 Test Results

The duration of the RF transmission is 7.0 ms. There is a minimum 13 second rest period in which the device hops to another channel according to the pseudorandom frequency table before transmitting another 7.0ms burst. Therefore the average time of occupancy on any channel in a 20 second period is 7.0ms. A single transmission is shown in figure 7.5.3-1 below:

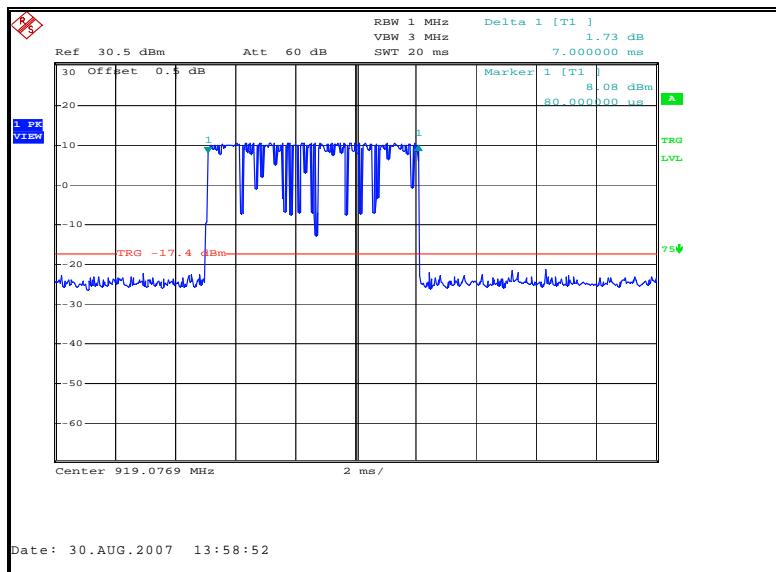


Figure 7.5.3-1: Channel Dwell Time

7.5.4 20dB Bandwidth

7.5.4.1 Test Methodology

The spectrum analyzer span was set to 2 to 3 times the estimated 20 dB bandwidth of the emission. The RBW was to $\geq 1\%$ of the estimated 20 dB bandwidth. The trace was set to max hold with a peak detector active. The Delta function of the analyzer was utilized to determine the 20 dB bandwidth of the emission. The span and RBW were examined and re-adjusted if necessary to meet the requirements of 2 to 3 times the 20 bandwidth for the span and $\geq 1\%$ of the 20 dB bandwidth for the RBW.

7.5.4.2 Test Results

The maximum 20dB bandwidth was found to be approximately 124kHz. Results are shown below in Table 7.5.4-1 and Figures 7.5.4-1 through 7.5.4-3.

Table 7.5.4-1

Frequency (MHz)	20dB Bandwidth (kHz)
911.0815	120
915.9311	121
919.0769	124

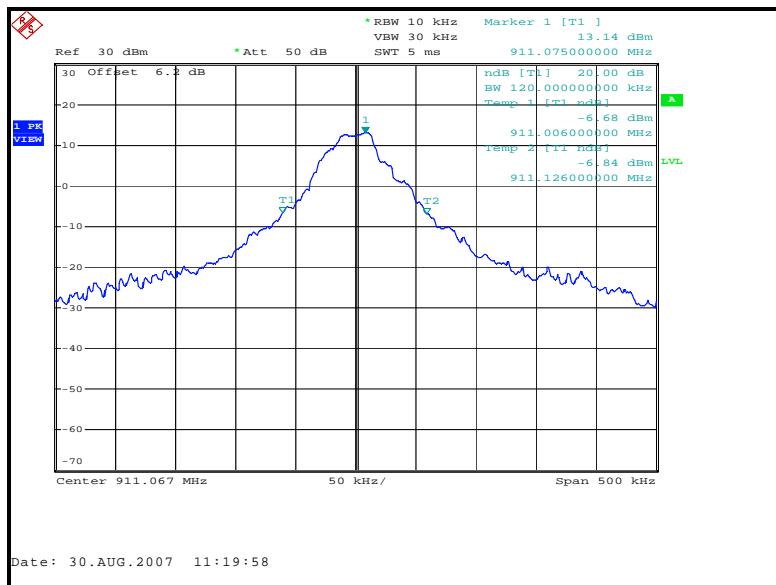


Figure 7.5.4-1: 20dB Bandwidth Low Channel

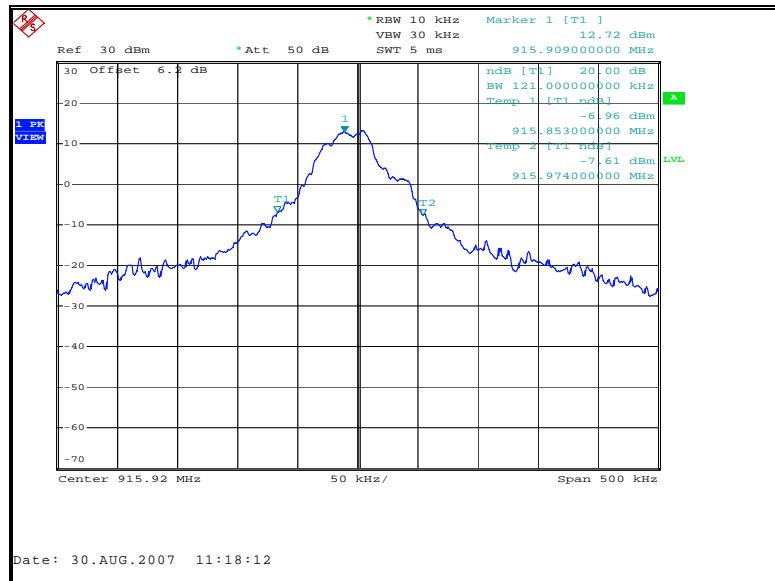


Figure 7.5.4-2: 20dB Bandwidth Mid Channel

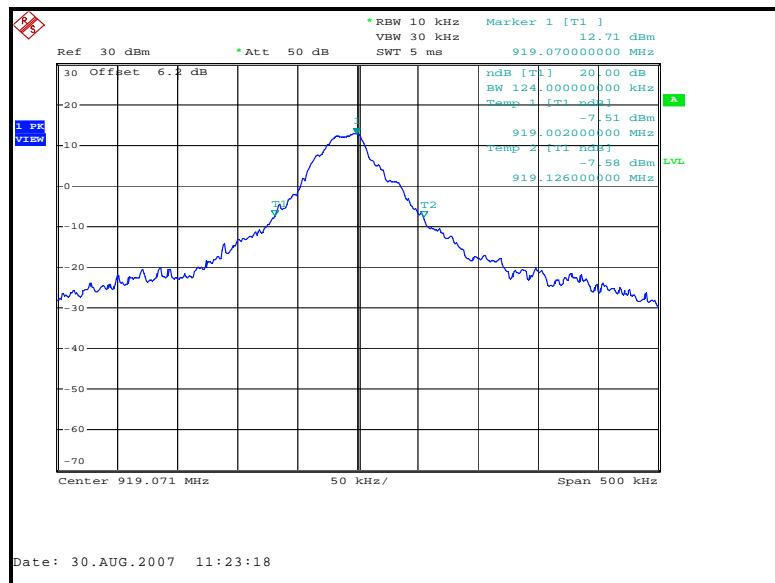


Figure 7.5.4-3: 20dB Bandwidth High Channel

7.6 Band-Edge Compliance and Spurious Emissions

7.6.1 Band-Edge Compliance of RF Conducted Emissions

7.6.1.1 Test Methodology

The EUT was investigated at the lowest and highest channel available to determine band-edge compliance. For each measurement the spectrum analyzer's RBW was set to 100 kHz, which is $\geq 1\%$ of the span, and the VBW was set to 300 kHz.

7.6.1.2 Test Results

In a 100 kHz bandwidth at the lower and upper band-edge, the radio frequency power that was produced by the EUT is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. Band-edge compliance is displayed in Figures 7.6.1-1 and 7.6.2-2.

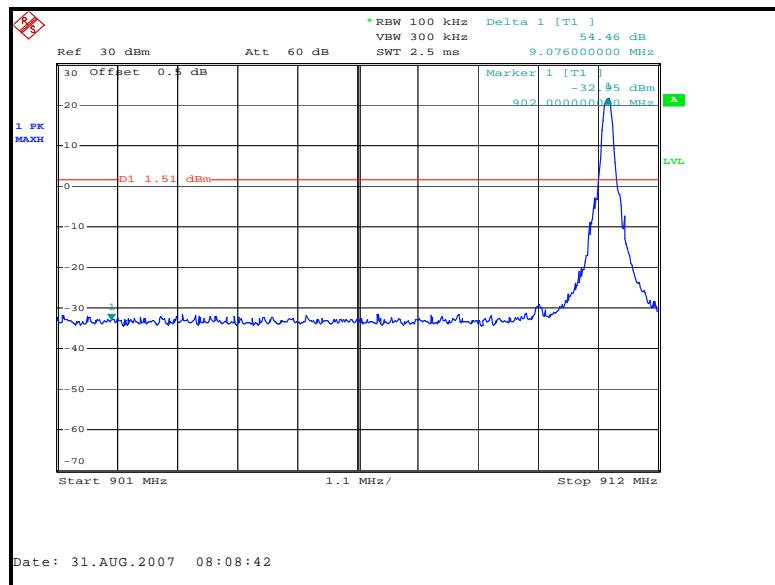


Figure 7.6.1-1: Lower Band-edge

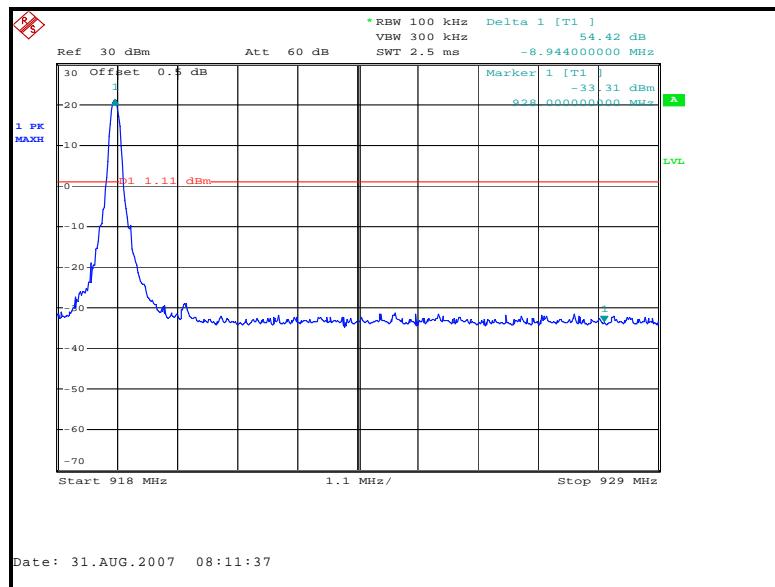


Figure 7.6.1-2: Upper Band-edge

7.6.2 RF Conducted Spurious Emissions

7.6.2.1 Test Methodology

The EUT was investigated for conducted spurious emissions from 30MHz to 10GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100kHz. A peak detector function was used with the trace set to max hold.

7.6.2.1 Test Results

All emission found were greater than 20dB down from the fundamental carrier. Results are shown below in Figure 7.6.2-1 through 7.6.2-6.

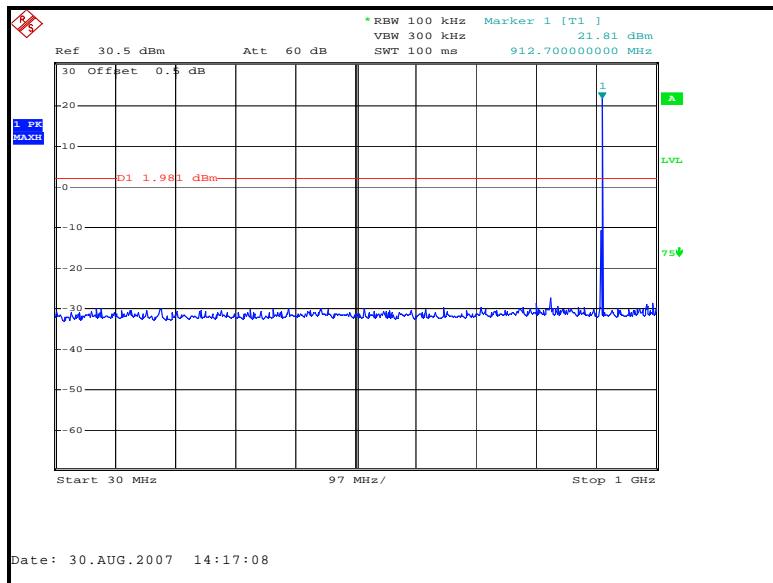


Figure 7.6.2-1 RF Conducted Spurious Emissions – Low Channel

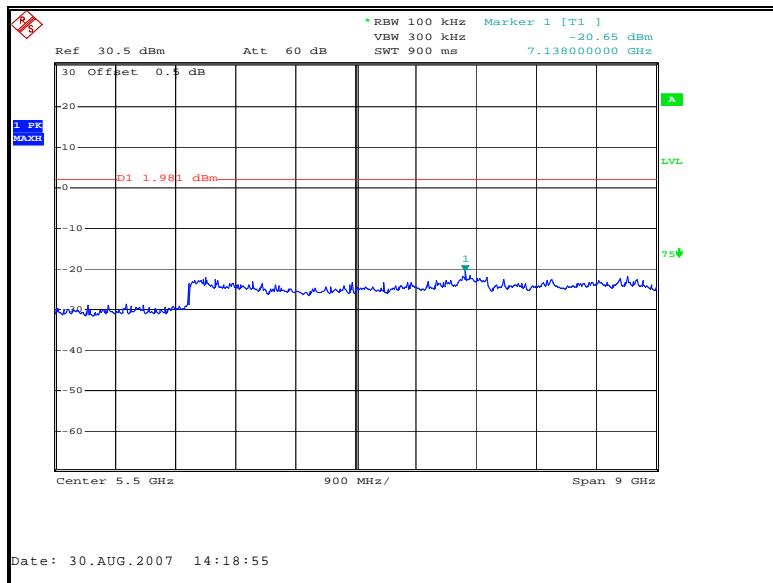


Figure 7.6.2-2 RF Conducted Spurious Emissions – Low Channel

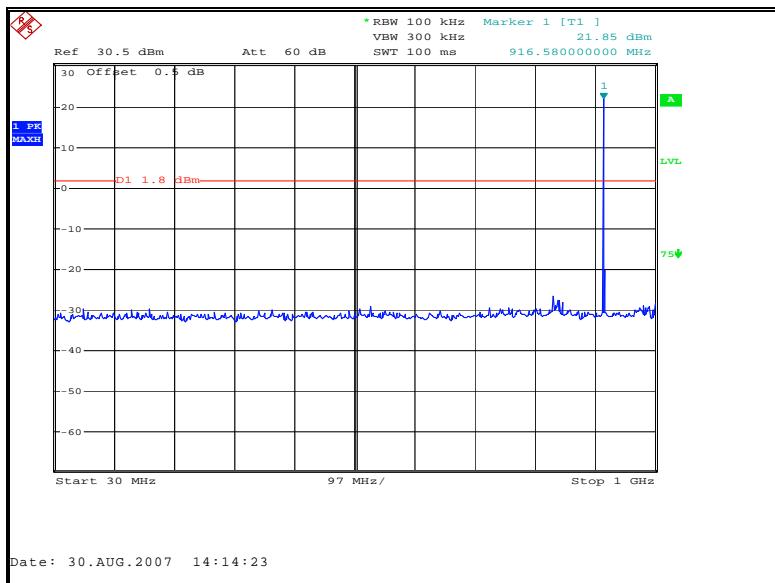


Figure 7.6.2-3 RF Conducted Spurious Emissions – Mid Channel

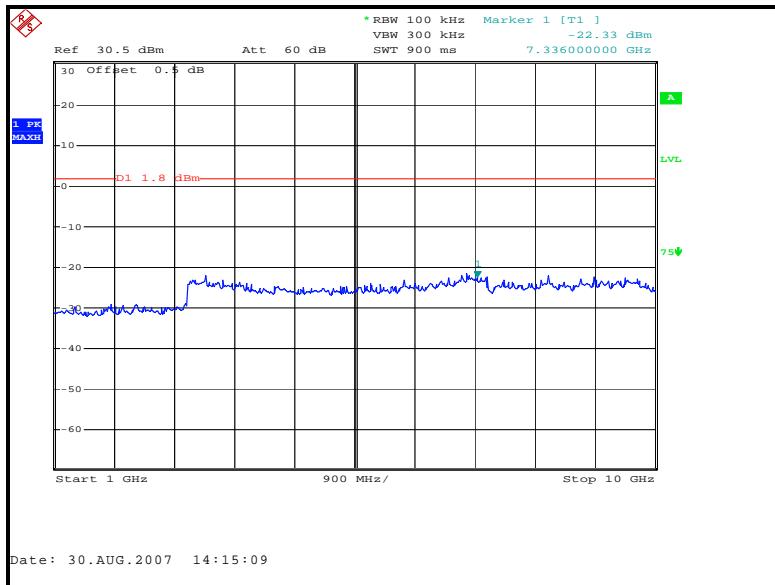


Figure 7.6.2-4 RF Conducted Spurious Emissions – Mid Channel

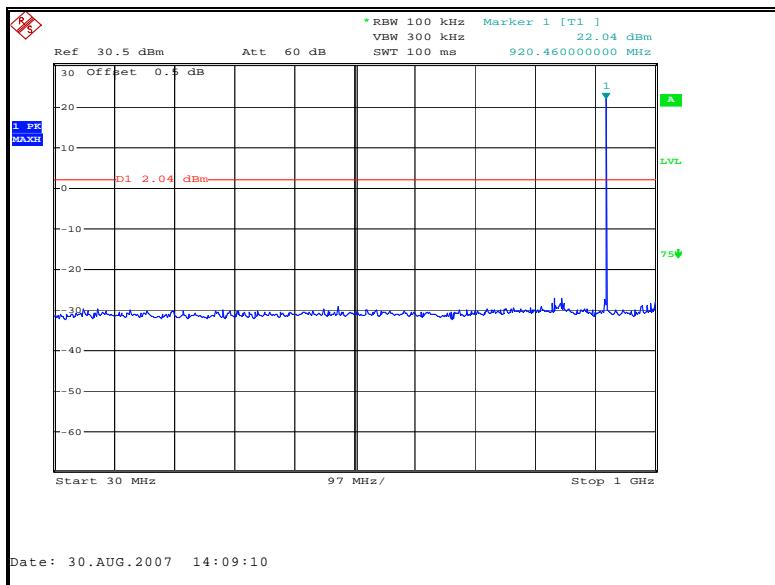


Figure 7.6.2-5 RF Conducted Spurious Emissions – High Channel

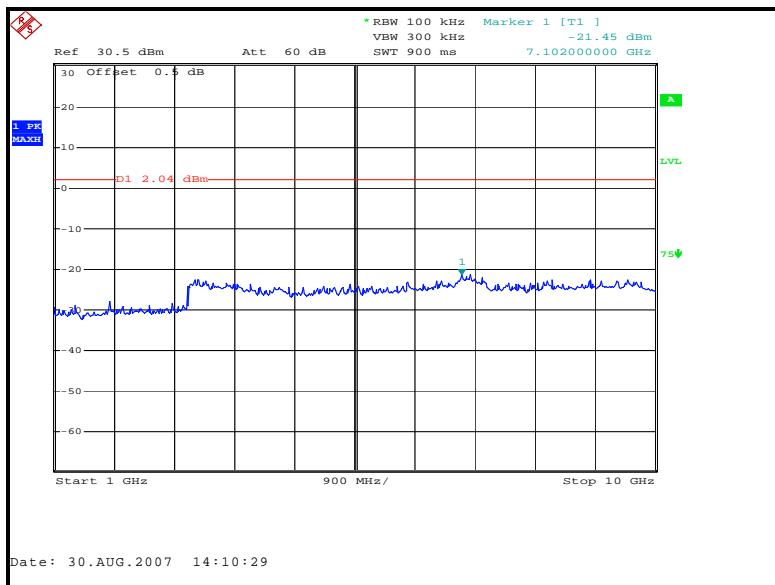


Figure 7.6.2-6 RF Conducted Spurious Emissions – High Channel

7.6.3 Radiated Spurious Emissions (Transmitter)

7.6.3.1 Test Methodology

Radiated emissions tests were made over the frequency range of 30MHz to 10GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth (RBW) of 120 kHz and a video bandwidth (VBW) of 300 kHz. For frequencies above 1000MHz, average measurements were made using an RBW of 1 MHz and a VBW of 10 Hz and peak measurements were made with RBW of 1 MHz and a VBW of 1 MHz.

The EUT was caused to generate a continuous carrier signal on the hopping channel.

7.6.3.2 Test Results

Radiated spurious emissions found in the band of 30MHz to 10GHz are reported in Table 7.6.3-1. through 7.6.3-3. Each emission found to be in a restricted band as defined by section 15.205, was compared to the radiated emission limits as defined in section 15.209.

Table 7.6.3-1: Radiated Spurious Emissions – Pit Mount - Patch Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
<i>Spurious Emissions - Low Channel</i>										
2733.24	61.28	56.55	H	0.63	61.91	34.09	74.0	54.0	12.09	19.91
2733.24	61.38	56.07	H	0.63	62.01	33.61	74.0	54.0	11.99	20.39
3644.32	50.18	37.56	H	3.61	53.79	18.07	74.0	54.0	20.21	35.93
3644.32	51.80	41.62	V	3.64	55.44	22.16	74.0	54.0	18.56	31.84
4555.4	46.24	35.96	H	5.88	52.12	18.75	74.0	54.0	21.88	35.25
4555.4	45.79	34.99	V	5.81	51.60	17.70	74.0	54.0	22.40	36.30
7288.64	54.95	41.09	H	12.39	67.34	30.38	74.0	54.0	6.66	23.62
7288.64	52.85	39.56	V	12.45	65.30	28.91	74.0	54.0	8.70	25.09
8199.72	49.19	35.37	H	12.55	61.74	24.82	74.0	54.0	12.26	29.18
8199.72	48.84	35.22	V	12.61	61.45	24.73	74.0	54.0	12.55	29.27
<i>Spurious Emissions - Mid Channel</i>										
2747.79	61.66	55.64	H	0.68	62.34	33.23	74.0	54.0	11.66	20.77
2747.79	60.77	56.96	V	0.43	61.20	34.30	74.0	54.0	12.80	19.70
3663.72	48.55	33.93	H	3.69	52.24	14.53	74.0	54.0	21.76	39.47
3663.72	51.42	41.04	V	3.73	55.15	21.67	74.0	54.0	18.85	32.33
4579.65	47.79	36.95	H	5.94	53.73	19.79	74.0	54.0	20.27	34.21
4579.65	46.75	35.88	V	5.87	52.62	18.65	74.0	54.0	21.38	35.35
7327.44	56.43	41.72	H	12.42	68.85	31.05	74.0	54.0	5.15	22.95
7327.44	55.97	41.42	V	12.49	68.46	30.81	74.0	54.0	5.54	23.19
8243.37	49.98	34.94	H	12.60	62.58	24.45	74.0	54.0	11.42	29.55
8243.37	50.08	35.86	V	12.66	62.74	25.42	74.0	54.0	11.26	28.58
<i>Spurious Emissions - High Channel</i>										
2757.24	60.82	56.91	H	0.72	61.54	34.53	74.0	54.0	12.46	19.47
2757.24	61.83	58.33	V	0.47	62.30	35.70	74.0	54.0	11.70	18.30
3676.32	49.82	35.37	H	3.75	53.57	16.02	74.0	54.0	20.43	37.98
3676.32	48.20	35.04	V	3.79	51.99	15.73	74.0	54.0	22.01	38.27
4595.4	46.04	37.63	H	5.98	52.02	20.51	74.0	54.0	21.98	33.49
4595.4	45.56	37.38	V	5.91	51.47	20.20	74.0	54.0	22.53	33.80
7352.64	55.64	40.96	H	12.45	68.09	30.31	74.0	54.0	5.91	23.69
7352.64	56.25	41.14	V	12.52	68.77	30.56	74.0	54.0	5.23	23.44
8271.72	51.09	36.44	H	12.64	63.73	25.98	74.0	54.0	10.27	28.02
8271.72	49.24	34.79	V	12.69	61.93	24.38	74.0	54.0	12.07	29.62

* The magnitude of all emissions not reported were below the noise floor of the measurement system.

Table 7.6.3-2: Radiated Spurious Emissions – Wall Mount – Integral Closed Loop Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Spurious Emissions - Low Channel										
2733.24	57.97	48.15	H	0.63	58.60	25.69	74.0	54.0	15.40	28.31
2733.24	51.94	46.09	V	0.38	52.32	23.37	74.0	54.0	21.68	30.63
3644.32	63.92	56.82	H	3.61	67.53	37.33	74.0	54.0	6.47	16.67
3644.32	53.89	43.97	V	3.64	57.53	24.51	74.0	54.0	16.47	29.49
4555.4	48.66	38.54	H	5.88	54.54	21.33	74.0	54.0	19.46	32.67
4555.4	47.66	37.18	V	5.81	53.47	19.89	74.0	54.0	20.53	34.11
7288.64	51.78	39.76	H	12.39	64.17	29.05	74.0	54.0	9.83	24.95
7288.64	52.52	40.52	V	12.45	64.97	29.87	74.0	54.0	9.03	24.13
8199.72	49.65	35.16	H	12.55	62.20	24.61	74.0	54.0	11.80	29.39
8199.72	50.31	36.23	V	12.61	62.92	25.74	74.0	54.0	11.08	28.26
9110.8	51.43	37.06	H	13.07	64.50	27.03	74.0	54.0	9.50	26.97
9110.8	51.80	38.20	V	13.22	65.02	28.32	74.0	54.0	8.98	25.68
Spurious Emissions - Mid Channel										
2747.82	57.52	46.41	H	0.68	58.20	24.00	74.0	54.0	15.80	30.00
2747.82	53.06	47.35	V	0.43	53.49	24.69	74.0	54.0	20.51	29.31
3663.76	65.58	56.08	H	3.70	69.28	36.68	74.0	54.0	4.72	17.32
3663.76	54.09	44.10	V	3.73	57.82	24.73	74.0	54.0	16.18	29.27
4579.7	48.17	36.96	H	5.94	54.11	19.80	74.0	54.0	19.89	34.20
4579.7	48.49	39.72	V	5.87	54.36	22.49	74.0	54.0	19.64	31.51
7327.52	51.59	40.79	H	12.42	64.01	30.12	74.0	54.0	9.99	23.88
7327.52	52.17	41.25	V	12.49	64.66	30.64	74.0	54.0	9.34	23.36
8243.46	48.56	36.27	H	12.60	61.16	25.78	74.0	54.0	12.84	28.22
8243.46	49.90	38.66	V	12.66	62.56	28.22	74.0	54.0	11.44	25.78
9159.4	50.30	36.69	H	13.13	63.43	26.72	74.0	54.0	10.57	27.28
9159.4	51.18	37.91	V	13.26	64.44	28.07	74.0	54.0	9.56	25.93
Spurious Emissions - High Channel										
2757.21	57.63	50.48	H	0.72	58.35	28.10	74.0	54.0	15.65	25.90
2757.21	50.45	46.55	V	0.47	50.92	23.92	74.0	54.0	23.08	30.08
3676.28	67.01	57.78	H	3.75	70.76	38.43	74.0	54.0	3.24	15.57
3676.28	55.54	45.00	V	3.79	59.33	25.69	74.0	54.0	14.67	28.31
4595.35	48.05	36.84	H	5.98	54.03	19.72	74.0	54.0	19.97	34.28
4595.35	48.80	39.38	V	5.91	54.71	22.20	74.0	54.0	19.29	31.80
7352.56	52.76	41.66	H	12.45	65.21	31.01	74.0	54.0	8.79	22.99
7352.56	53.23	41.31	V	12.52	65.75	30.73	74.0	54.0	8.25	23.27
8271.63	48.58	36.26	H	12.64	61.22	25.80	74.0	54.0	12.78	28.20
8271.63	50.32	37.82	V	12.69	63.01	27.41	74.0	54.0	10.99	26.59
9190.7	49.63	36.06	H	13.16	62.79	26.13	74.0	54.0	11.21	27.87
9190.7	50.85	36.97	V	13.29	64.14	27.16	74.0	54.0	9.86	26.84

*The magnitude of all emissions not reported were below the noise floor of the measurement system.

Table 7.6.3-3: Radiated Spurious Emissions – Wall Mount – PCB Antenna

Frequency (MHz)	Level (dBuV)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Spurious Emissions - Low Channel										
2733.24	64.78	57.18	H	0.63	65.41	34.72	74.0	54.0	8.59	19.28
2733.24	56.50	50.43	V	0.38	56.88	27.71	74.0	54.0	17.12	26.29
3644.32	51.45	43.07	H	3.61	55.06	23.58	74.0	54.0	18.94	30.42
3644.32	49.34	36.38	V	3.64	52.98	16.92	74.0	54.0	21.02	37.08
4555.4	51.09	44.53	H	5.88	56.97	27.32	74.0	54.0	17.03	26.68
4555.4	50.48	43.72	V	5.81	56.29	26.43	74.0	54.0	17.71	27.57
7288.64	51.88	38.85	H	12.39	64.27	28.14	74.0	54.0	9.73	25.86
7288.64	53.64	41.01	V	12.45	66.09	30.36	74.0	54.0	7.91	23.64
8199.72	47.91	34.64	H	12.55	60.46	24.09	74.0	54.0	13.54	29.91
9110.8	47.93	33.89	H	13.07	61.00	23.86	74.0	54.0	13.00	30.14
9110.8	48.04	33.83	V	13.22	61.26	23.95	74.0	54.0	12.74	30.05
Spurious Emissions - Mid Channel										
2747.79	65.30	59.80	H	0.68	65.98	37.39	74.0	54.0	8.02	16.61
2747.79	56.54	53.07	V	0.43	56.97	30.41	74.0	54.0	17.03	23.59
3663.72	51.19	43.10	H	3.69	54.88	23.70	74.0	54.0	19.12	30.30
3663.72	50.35	37.42	V	3.73	54.08	18.05	74.0	54.0	19.92	35.95
4579.65	47.37	36.66	H	5.94	53.31	19.50	74.0	54.0	20.69	34.50
4579.65	50.18	44.89	V	5.87	56.05	27.66	74.0	54.0	17.95	26.34
7327.44	54.77	42.56	H	12.42	67.19	31.89	74.0	54.0	6.81	22.11
7327.44	55.65	42.01	V	12.49	68.14	31.40	74.0	54.0	5.86	22.60
8243.37	49.62	37.13	H	12.60	62.22	26.64	74.0	54.0	11.78	27.36
8243.37	49.29	37.12	V	12.66	61.95	26.68	74.0	54.0	12.05	27.32
9159.3	46.87	33.15	H	13.13	60.00	23.18	74.0	54.0	14.00	30.82
9159.3	48.32	34.26	V	13.26	61.58	24.42	74.0	54.0	12.42	29.58
Spurious Emissions - High Channel										
2757.21	65.15	60.75	H	0.72	65.87	38.37	74.0	54.0	8.13	15.63
2757.21	58.46	54.57	V	0.47	58.93	31.94	74.0	54.0	15.07	22.06
3676.28	52.64	44.06	H	3.75	56.39	24.71	74.0	54.0	17.61	29.29
3676.28	49.48	36.76	V	3.79	53.27	17.45	74.0	54.0	20.73	36.55
4595.35	51.02	44.00	H	5.98	57.00	26.88	74.0	54.0	17.00	27.12
4595.35	50.32	44.38	V	5.91	56.23	27.20	74.0	54.0	17.77	26.80
7352.56	54.08	40.50	H	12.45	66.53	29.85	74.0	54.0	7.47	24.15
7352.56	55.06	41.21	V	12.52	67.58	30.63	74.0	54.0	6.42	23.37
8271.63	50.34	37.21	H	12.64	62.98	26.75	74.0	54.0	11.02	27.25
8271.63	50.71	37.85	V	12.69	63.40	27.44	74.0	54.0	10.60	26.56

* The magnitude of all emissions not reported were below the noise floor of the measurement system.

7.6.3.3 Sample Calculation:

$$R_C = R_U + CF_T$$

Where:

CF _T	=	Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
R _U	=	Uncorrected Reading
R _C	=	Corrected Level
AF	=	Antenna Factor
CA	=	Cable Attenuation
AG	=	Amplifier Gain
DC	=	Duty Cycle Correction Factor

Example Calculation

PEAK:

Corrected Level: 61.28 + 0.63 = 61.9dBuV

Margin: 74dBuV – 61.9dBuV = 12.1dB

AVERAGE:

Corrected Level: 56.55 + 0.63 = 34.1dBuV

Margin: 54dBuV – 34.1dBuV = 19.9dB

8.0 CONCLUSION

In the opinion of ACS, Inc. the R900v3, manufactured by Neptune Technology Group, Inc. meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-210.

END REPORT