

US Tech Test Report:  
FCC ID:  
IC:  
Test Report Number:  
Issue Date:  
Model:

FCC Part 15 Certification/ RSS 247  
P2SMRXV4  
4171B-MRXV4  
22-0214  
July 28, 2022  
MRX920v4

## Maximum Public Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density S as per the respective limits at a distance of 20 cm from the EUT.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency range (MHz)                                          | Electric field strength (V/m) | Magnetic field strength (A/m) | Power density (mW/cm <sup>2</sup> ) | Averaging time (minutes) |
|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|--------------------------|
| <b>(B) Limits for General Population/Uncontrolled Exposure</b> |                               |                               |                                     |                          |
| 0.3-1.34                                                       | 614                           | 1.63                          | *100                                | 30                       |
| 1.34-30                                                        | 824/f                         | 2.19/f                        | *180/f <sup>2</sup>                 | 30                       |
| 30-300                                                         | 27.5                          | 0.073                         | 0.2                                 | 30                       |
| 300-1,500                                                      |                               |                               | f/1500                              | 30                       |
| 1,500-100,000                                                  |                               |                               | 1.0                                 | 30                       |

f = frequency in MHz \* = Plane-wave equivalent power density

MPE for 902 MHz – 928 MHz

$$\text{Limit} = f / 1500 \text{ mW/cm}^2 = 915/1500 = 0.61 \text{ mW/cm}^2$$

$$\text{Peak Power (dBm)} = 21.71$$

$$\text{Peak Power (watts)} = 0.148$$

$$\text{Gain of transmit Antenna (dBi)} = 5.1 = 3.24 \text{ (numeric)}$$

$$d = \text{Distance} = 20 \text{ cm} = 0.2 \text{ m}$$

$$\begin{aligned} S = (PG / 4\pi d^2) &= EIRP/4A = 0.148(3.240)/4\pi \cdot 0.2 \cdot 0.2 \\ &= 0.4795/0.5030 = 0.9533 \text{ W/m}^2 \\ &= (0.9533 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2) \\ &= 0.09533 \text{ mW/cm}^2 \end{aligned}$$

which is << less than 0.6100 mW/cm<sup>2</sup>

US Tech Test Report:  
FCC ID:  
IC:  
Test Report Number:  
Issue Date:  
Model:

FCC Part 15 Certification/ RSS 247  
P2SMRXV4  
4171B-MRXV4  
22-0214  
July 28, 2022  
MRX920v4

## MPE for 2.4 GHz Bluetooth

Limit = 1.0 mW/cm<sup>2</sup>

Peak Power (dBm) = 8.00 (BT FCC ID: SQGBL653U)

Peak Power (watts) = 0.006 W

Gain of transmit Antenna (dBi) = +2.0 = 1.58 (numeric)

d= Distance = 20 cm = 0.2 m

$$\begin{aligned} S = (PG / 4\pi d^2) &= EIRP/4A = 0.006 (1.580) / 4\pi \cdot 0.2 \cdot 0.2 \\ &= 0.009 / 0.5030 = 0.0188 \text{ W/m}^2 \\ &= (0.0188 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2) \\ &= 0.00188 \text{ mW/cm}^2 \end{aligned}$$

which is << less than 1.0 mW/cm<sup>2</sup>

Simultaneous MPE (900 MHz band +2.4 GHz band) Calculation:

Total MPE (%) = [(900 MHz MPE result/limit (f/1500))\*100] + [(2.4 GHz MPE result/limit (1.0))\*100] << 100%

$$= [(0.0953/0.61) * 100] + [(0.00188/1.0) * 100] = 15.81\% << 100\%$$

Calculation above shows device complies with the MPE requirement at distance of 20 cm.

US Tech Test Report:  
FCC ID:  
IC:  
Test Report Number:  
Issue Date:  
Model:

FCC Part 15 Certification/ RSS 247  
P2SMRXV4  
4171B-MRXV4  
22-0214  
July 28, 2022  
MRX920v4

### **RSS-102, 2.5.2 Compliance:**

At or above 300 MHz and below 6 GHz and the source based time averaged maximum e.i.r.p. of the device is equal to or less than  $1.31 \times 10^{-2} f^{0.6834}$  in Watts (adjusted for tune-up tolerance where applicable), where f = frequency in MHz.

For 902-928MHz band

$$1.31 \times 10^{-2} \times 915^{0.6834} = 1.39 \text{ W}$$

EUT max EIRP =  $21.71 \text{ dBm} + 2.95 \text{ dBd}$  (5.1 dBi-2.15) = 24.66 dBm or 0.292 Watts << 1.39 Watts

For 2.4 GHz band

$$1.31 \times 10^{-2} \times 2440^{0.6834} = 2.71 \text{ W}$$

EUT max EIRP =  $8.00 \text{ dBm} + 2.0 \text{ dBi}$  = 10.0 dBm or 0.010 Watts << 2.71 Watts

Simultaneous Evaluation percentage= [Max EIRP (BT)/ Limit in Watts \* 100] + [Max EIRP (900 MHz)/Limit in Watts \* 100] <<< 100%

$$[(0.010/2.71) * 100] + [(0.292/1.39) * 100] = 21.38 \% << 100 \%$$