

FCC C2PC Test Report

FCC ID : P27-XIONESCM2

Equipment : XiOne-SC (B)

Model No. : SCXIxxBEIxCO; SCXIxxBEI

(Refer to item 1.1.1 for more details.)

Brand Name : Comcast Xfinity; Cox; Shaw

(Refer to item 1.1.1 for more details.)

Applicant : Sercomm Corporation

Address : 8F, 3-1, YuanQu St., NanKang, Taipei, 11503,

Taiwan

Standard : 47 CFR FCC Part 15.247

Received Date : Sep. 07, 2021

Tested Date : Sep. 07 ~ Sep. 09, 2021

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen / Assistant Manager Gary Chang / Manager

Testing Laboratory

2/32

Report No.: FR161001-02AD Page: 1 of 19

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	8
1.3	Test Setup Chart	8
1.4	The Equipment List	
1.5	Test Standards	
1.6	Reference Guidance	9
1.7	Deviation from Test Standard and Measurement Procedure	9
1.8	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Facility	11
2.2	The Worst Test Modes and Channel Details	
3	TRANSMITTER TEST RESULTS	12
3.1	Unwanted Emissions into Restricted Frequency Bands	12
4	TEST LABORATORY INFORMATION	19

Release Record

Report No.	Version	Description	Issued Date
FR161001-02AD	Rev. 01	Initial issue	Sep. 23, 2021

Report No.: FR161001-02AD Page: 3 of 19

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)	Dadiated Emissions	[dBuV/m at 3m]: 421.26MHz	Door
15.209	Radiated Emissions	41.58 (Margin -4.42dB) - PK	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR161001-02AD Page: 4 of 19

1 General Description

1.1 Information

This is a Class II Permissive Change report (C2PC).

This report is issued as a supplementary report to original report no. FR161001AD. The modification is listed as follows:

Replacing Thermal shielding:

0	riginal Description	on		C2PC Description	1
Heat sink	Top shielding cover	Thermal pad	Heat sink	Top shielding cover	Thermal putty
945DMN00GN	941DMN00GN		P/N: 945DMN02GN	P/N: 941DMN01GN	

New sample had been verified worst case found in original report and only its data was presented in the following sections.

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description
Comcast Xfinity; Cox; Shaw	SCXIxxBEIxCO; SCXIxxBEI		Where "x" may be any alphanumeric for External Body Color.

- + All models are electrically identical, different model names are for marketing purpose.
- The above models, model SCXI11BEI was selected as a representative one for the final test and only its data was recorded in this report.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate			
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps			
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps			
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps			

Note 1: Bluetooth BR uses a GFSK.

Note 2: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

Report No.: FR161001-02AD Page : 5 of 19

1.1.3 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	Printing	No	3.85	

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	5.0Vdc from AC adapter
-------------------	------------------------

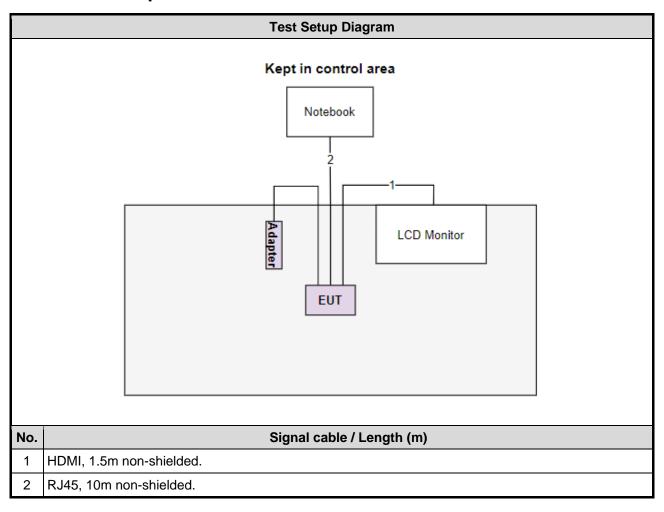
1.1.5 Accessories

	Accessories						
No.	Equipment	Description					
1	AC adapter	Brand: LEADER Model: ML08-7050150-A1 I/P: 100-120V~ 50/60Hz, 0.25A O/P: 5.0Vdc, 1.5A Power Line: 1.8m non-shielded without core					
2	AC adapter	Brand: NetBit Model: NBC08A050150HU I/P: 100-120V~ 50/60Hz, 0.2A O/P: 5.0Vdc, 1.5A Power Line: 1.81m non-shielded without core					
3	AC adapter	Brand: AcBel Model: WAK010 I/P: 100-120V~ 60Hz, 0.25A O/P: 5.0Vdc, 1.5A Power Line: 1.78m non-shielded without core					

Report No.: FR161001-02AD Page: 6 of 19

1.1.6 Channel List

	Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	20	2422	40	2442	60	2462	
1	2403	21	2423	41	2443	61	2463	
2	2404	22	2424	42	2444	62	2464	
3	2405	23	2425	43	2445	63	2465	
4	2406	24	2426	44	2446	64	2466	
5	2407	25	2427	45	2447	65	2467	
6	2408	26	2428	46	2448	66	2468	
7	2409	27	2429	47	2449	67	2469	
8	2410	28	2430	48	2450	68	2470	
9	2411	29	2431	49	2451	69	2471	
10	2412	30	2432	50	2452	70	2472	
11	2413	31	2433	51	2453	71	2473	
12	2414	32	2434	52	2454	72	2474	
13	2415	33	2435	53	2455	73	2475	
14	2416	34	2436	54	2456	74	2476	
15	2417	35	2437	55	2457	75	2477	
16	2418	36	2438	56	2458	76	2478	
17	2419	37	2439	57	2459	77	2479	
18	2420	38	2440	58	2460	78	2480	
19	2421	39	2441	59	2461			


Report No.: FR161001-02AD Page: 7 of 19

1.2 Local Support Equipment List

	Support Equipment List								
No.	Equipment	Brand	Model	FCC ID	Remarks				
1	Notebook	DELL	Latitude E5470	DoC					
2	LCD Monitor	ASUS	MX27UCS						

1.3 Test Setup Chart

Report No.: FR161001-02AD Page: 8 of 19

1.4 The Equipment List

Test Item	Radiated Emission be	Radiated Emission below 1GHz						
Test Site	966 chamber1 / (03Cl	H01-WS)						
Tested Date	Sep. 07 ~ Sep. 09, 20	21						
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until			
Receiver	R&S	ESR3	101657	Mar. 12, 2021	Mar. 11, 2022			
Spectrum Analyzer	R&S	FSV40	101498	Dec. 04, 2020	Dec. 03, 2021			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 17, 2020	Nov. 16, 2021			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jun. 30, 2021	Jun. 29, 2022			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2020	Dec. 10, 2021			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170508	Dec. 31, 2020	Dec. 30, 2021			
Preamplifier	EMC	EMC02325	980225	Jun. 29, 2021	Jun. 28, 2022			
Preamplifier	Agilent	83017A	MY39501308	Sep. 26, 2020	Sep. 25, 2021			
Preamplifier	EMC	EMC184045B	980192	Jul. 14, 2021	Jul. 13, 2022			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 06, 2020	Oct. 05, 2021			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 06, 2020	Oct. 05, 2021			
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 06, 2020	Oct. 05, 2021			
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 06, 2020	Oct. 05, 2021			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 06, 2020	Oct. 05, 2021			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 06, 2020	Oct. 05, 2021			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Inter	val of instruments liste	d above is one year.						

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

Report No.: FR161001-02AD Page: 9 of 19

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty				
Parameters	Uncertainty			
Radiated emission ≤ 1GHz	±3.41 dB			
Radiated emission > 1GHz	±4.59 dB			

Report No.: FR161001-02AD Page: 10 of 19

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	03CH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

♦ The tests reported herein were performed according to the original worst case conditions in original report no.FR161001AD.

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Radiated Emissions ≤ 1GHz	GFSK	2480	1Mbps	
Radiated Emissions > 1GHz	GFSK	2480	1Mbps	

NOTE:

Report No.: FR161001-02AD Page: 11 of 19

Three adapters (LEADER, NetBit & AcBel) had been covered during the pretest and found that LEADER adapter
was the worst case and was selected for final testing.

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Report No.: FR161001-02AD Page: 12 of 19

3.1.2 Test Procedures

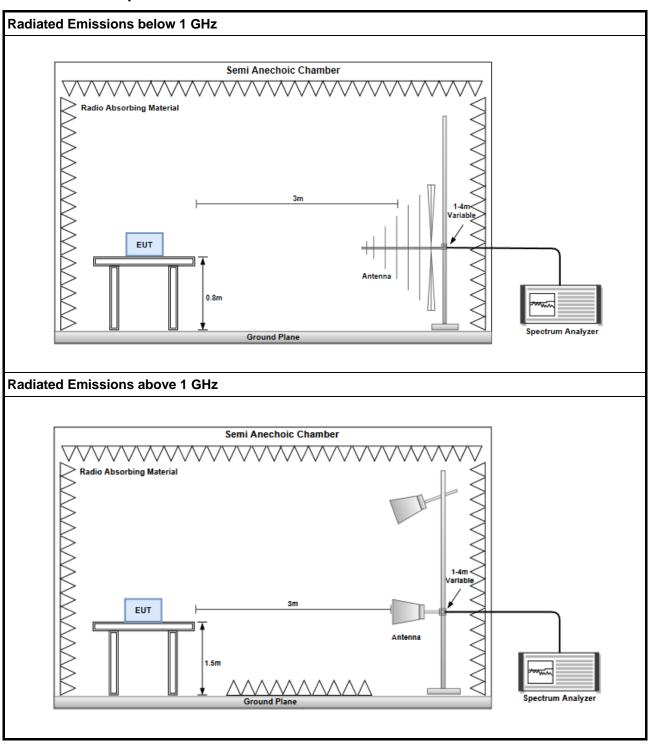
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

3.

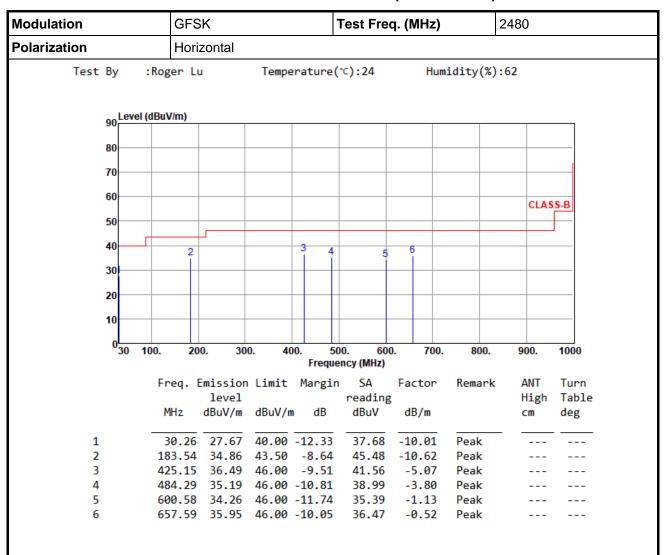
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics
The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


20log (Duty cycle) = 20log $\frac{1s / 1600 * 5}{100 \text{ ms}}$ = -30.1dB

4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz, VBW=1/T and Peak detector

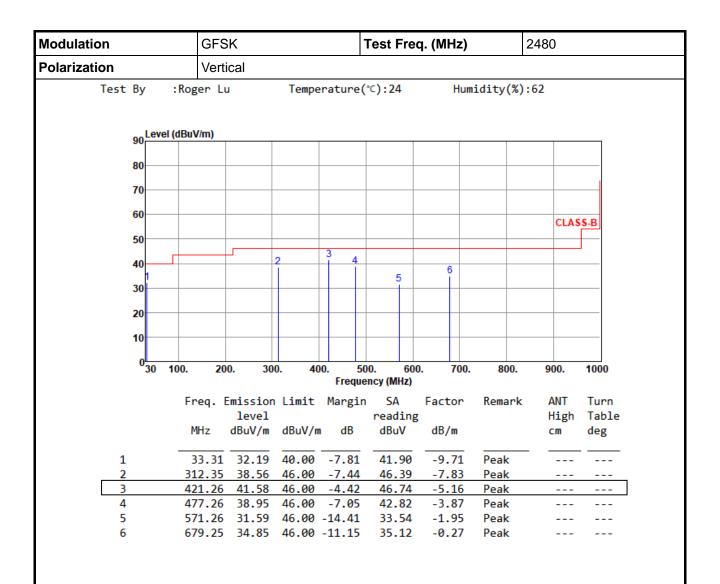
Report No.: FR161001-02AD Page: 13 of 19


3.1.3 Test Setup

Report No.: FR161001-02AD Page: 14 of 19

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)


*Factor includes antenna factor, cable loss and amplifier gain

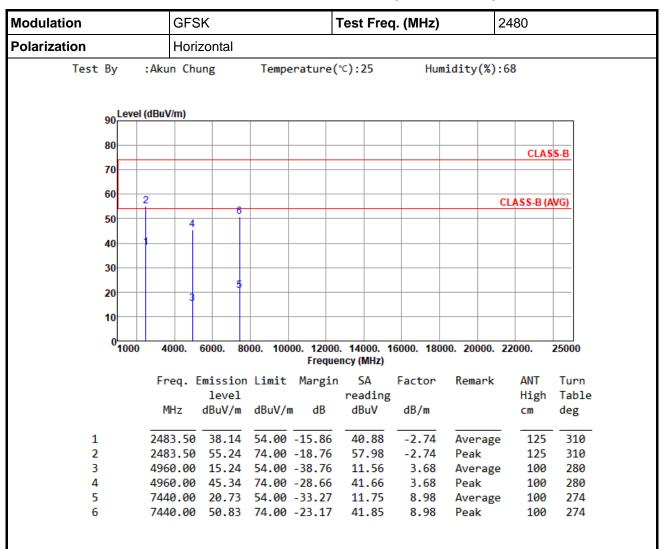
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR161001-02AD Page: 15 of 19

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

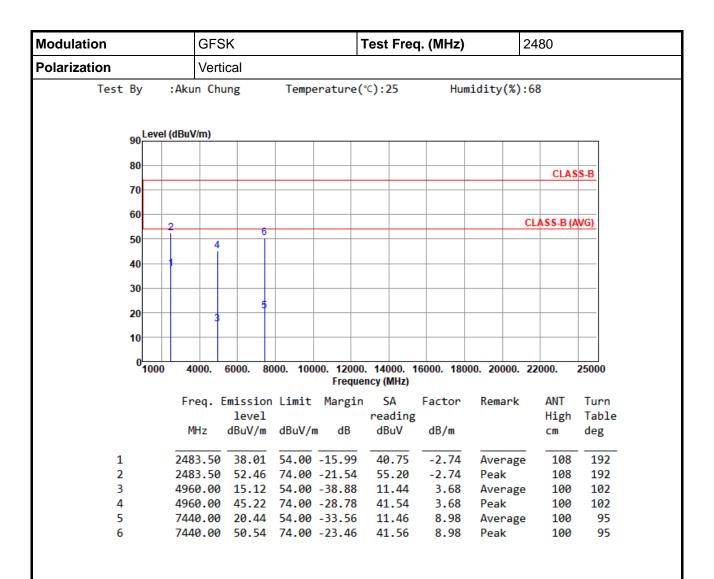
*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR161001-02AD Page: 16 of 19

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR161001-02AD Page: 17 of 19

^{*}Factor includes antenna factor, cable loss and amplifier gain

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR161001-02AD Page: 18 of 19

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666
No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)
No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC Service@icertifi.com.tw

==END==

Report No.: FR161001-02AD Page: 19 of 19