

FCC APPLICATION

for

A LOW POWER PART 15 TRANSMITTER

**Audiovox Specialized Applications, LLC
23319 Cooper Drive,
Elkart,
IN 46514
Model: WOS-500**

FCC ID: OZOWOS-500

January 19, 2000

REPORT PREPARED BY:

EMI Technician:	Daniel W. Baltzell
Administrative Writer:	Melissa Fleming

Rhein Tech Laboratories, Inc.

*Document Number: 990129
Reference Number: QRTL99-048*

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.

TABLE OF CONTENTS

1.0 GENERAL INFORMATION	1
1.1 PRODUCT DESCRIPTION.....	1
1.2 RELATED SUBMITTAL(S)/GRANT(S)	2
1.3 TEST SYSTEM DETAILS	3
1.4 CONFIGURATION OF TESTED SYSTEM	4
1.5 TEST METHODOLOGY	5
1.6 TEST FACILITY.....	5
2.0 PRODUCT LABELING	6
3.0 SYSTEM TEST CONFIGURATION.....	7
3.1 JUSTIFICATION.....	7
3.2 EUT EXERCISE SOFTWARE	7
3.3 SPECIAL ACCESSORIES.....	7
3.4 MODULATED BANDWIDTH	7
3.5 CONFORMANCE STATEMENT.....	8
5.0 CONDUCTED, FIELD STRENGTH CALCULATION, AND RADIATED TEST METHODOLOGY	9
5.1 FIELD STRENGTH CALCULATION.....	9
5.2 RADIATED MEASUREMENT.....	10
6.0 RADIATED EMISSION DATA	11
6.1 RADIATED MEASUREMENT PHOTOS	12
7.0 PHOTOS OF TESTED EUT	14

APPENDIX LISTING

APPENDIX A: EMISSIONS EQUIPMENT LIST	13
APPENDIX B: USER'S MANUAL	22
APPENDIX C: SCHEMATIC	23

FIGURE INDEX

FIGURE 1: FCC ID LABEL	6
FIGURE 2: LOCATION OF LABEL ON EUT.....	6

TABLE INDEX

TABLE 1: RADIATED EMISSIONS (TRANSMITTER)	11
TABLE 2: RADIATED EMISSIONS (RECEIVER).....	11

1.0 GENERAL INFORMATION

The following Class B application for a transmitter module is prepared on behalf of Audiovox Specialized Applications, LLC in accordance with Part 15.249 of the Federal Communications Commissions rules and regulations. The Equipment Under Test (EUT) was the Audiovox Specialized Applications, LLC, WOS500 Transmitter, FCC ID:OZOWOS-500. The test results reported in this document relate only to the item that was tested.

All measurements contained in this Application were conducted in accordance with ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Some accessories are used to increase sensitivity and prevent overloading of the measuring instrument. These are explained in the appendix of this report. Calibration checks are performed regularly on the instruments, and all accessories including the high pass filter, preamplifier and cables.

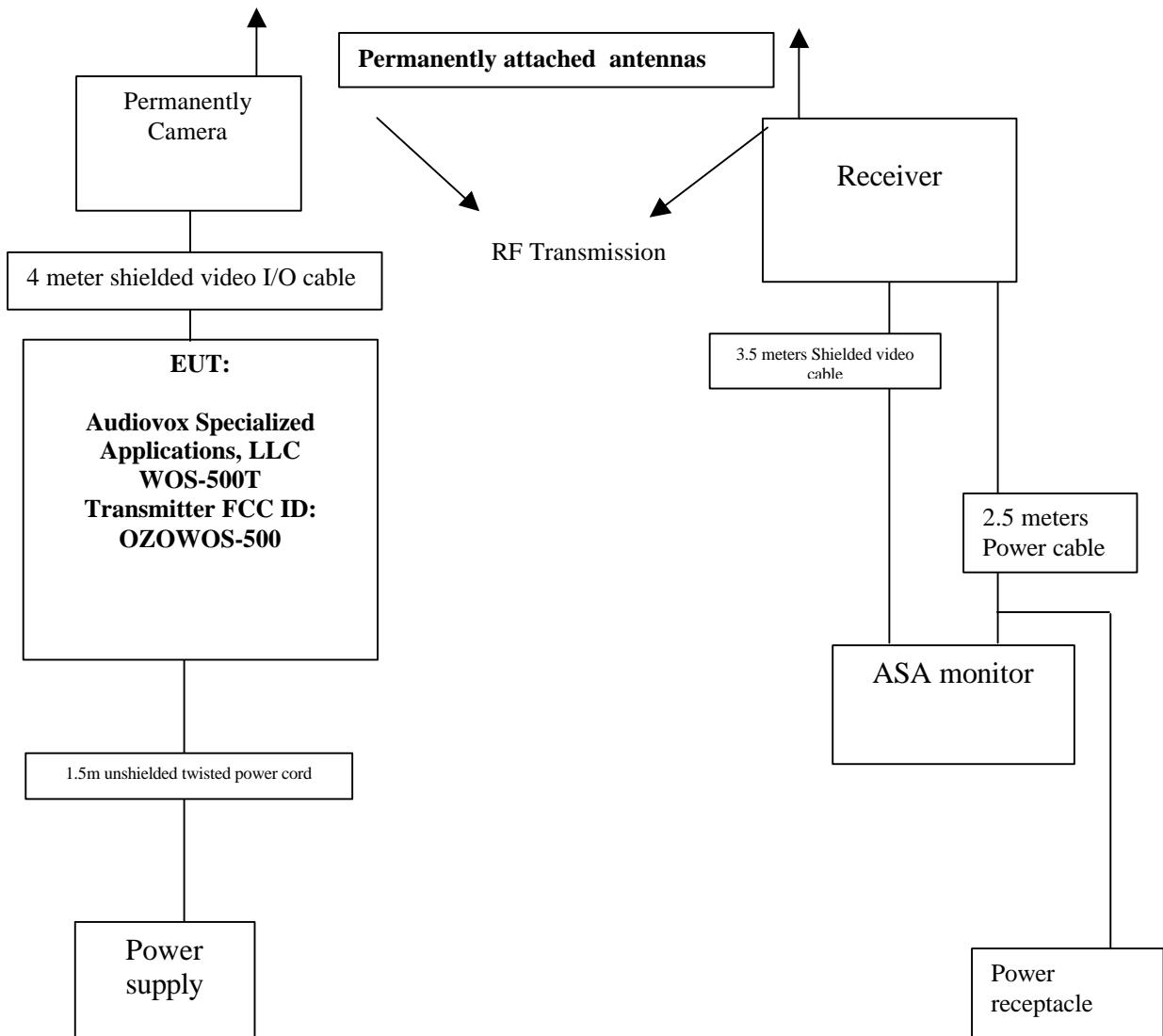
All radiated and conducted emissions measurement were performed manually at Rhein Tech, Incorporated. The radiated emissions measurements required by the rules were performed on the three meter, open field, test range maintained by Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. Complete description and site attenuation measurement data have been placed on file with the Federal Communications Commission. The power line conducted emission measurements were performed in a shielded enclosure also located at the Herndon, Virginia facility. Rhein Tech, Labs, Inc. is on the FCC accepted lab list as a Facility available to do measurement work for others on a contract basis.

1.1 PRODUCT DESCRIPTION

The EUT was developed to transmit NTSC video at 2.410 GHz. Permanently attached to the transmitter is a 2 meter shielded cable with a video camera. The EUT is powered via a receptacle with a 5 feet unshielded twisted wire. EUT use a patch antenna that is permanently attached to the transmitter. A collocated separate receiver module is used to receive video from the transmitter at 2.410 GHz. See schematic and manual for further information.

1.2 RELATED SUBMITTAL(S)/GRANT(S)

This is a new application.


1.3 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

External Components

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
TRANSMITTER MODULE (EUT)	AUDIOVOX SPECIALIZED APPLICATIONS, LLC	WOS-500T	N/A	OZOWOS-500	2.5 METER SHIELDED VIDEO CABLE 1.5 UNSHIELDED TWISTED POWER	11257
TELEVISION	AUDIOVOX SPECIALIZED APPLICATIONS, LLC	AOM-70	811M0102AA	N/A	SHIELDED I/O, UNSHIELDED POWER	900470
RECEIVER	AUDIOVOX SPECIALIZED APPLICATIONS, LLC	WOS-500R	N/A	N/A	3.5 METER SHIELDED VIDEO I/O CABLE, 2 METER UNSHIELDED TWISTED POWER, CABLE	11258
CAMERA	AUDIOVOX SPECIALIZED APPLICATIONS, LLC	AOC-75	903C0916	N/A	1 METER SHIELDED VIDEO I/O CABLE	

1.4 CONFIGURATION OF TESTED SYSTEM

1.5 TEST METHODOLOGY

Radiated testing were performed according to the procedures in ANSI C63.4 1992. Radiated testing was performed at an antenna to EUT distance of 3 meters. Emissions above 1 GHz were video averaged. The transmitter was tested up to the 10th harmonic. The receiver was tested from 30 MHz up to the 2nd harmonic of the highest Local Oscillator i.e. 3.8 GHz.

1.6 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report dated March 3, 1994, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

APPENDIX A: Emissions Equipment List

DESCRIPTION	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. LAB
AMPLIFIER	HEWLETT PACKARD	11975A	2304A00348	TEST EQUITY
AMPLIFIER (S/A 1)	RHEIN TECH	PR-1040	00001	RTL
AMPLIFIER (S/A 2)	RHEIN TECH	RTL2	900723	RTL
AMPLIFIER (S/A 3)	RHEIN TECH	8447F	2944A03783	RTL
AMPLIFIER (S/A 4)	RHEIN TECH	8447D	2727A05397	RTL
BICONICAL/LOG ANTENNA 1	ANTENNA RESEARCH	LPB-2520	1037	LIBERTY LABS
BICONICAL/LOG ANTENNA 2	ANTENNA RESEARCH	LPB-2520	1036	LIBERTY LABS
FIELD SITE SOURCE	EMCO	4610	9604-1313	RTL
FILTER (ROOM 1)	SOLAR	8130	947305	RTL
FILTER (ROOM 2)	SOLAR	8130	947306	RTL
HARMONIC MIXER 1	HEWLETT PACKARD	11970K	2332A00563	TELOGY
HARMONIC MIXER 2	HEWLETT PACKARD	11970A	2332A01199	TELOGY
HORN ANTENNA 1	EMCO	3160-10	9606-1033	EMCO
HORN ANTENNA 2	EMCO	3160-9	9605-1051	EMCO
HORN ANTENNA 3	EMCO	3160-7	9605-1054	EMCO
HORN ANTENNA 4	EMCO	3160-8	9605-1044	EMCO
HORN ANTENNA 5	EMCO	3160-03	9508-1024	EMCO
LISN (ROOM 1/L1)	SOLAR	7225-1	900727	ACUCAL
LISN (ROOM 1/L2)	SOLAR	7225-1	900726	ACUCAL
LISN (ROOM 2/L1)	SOLAR	7225-1	900078	ACUCAL
LISN (ROOM 2/L2)	SOLAR	7225-1	900077	ACUCAL
PRE-AMPLIFIER	HEWLETT PACKARD	8449B OPT	3008A00505	TELOGY
QUASI-PEAK ADAPTER (S/A 1)	HEWLETT PACKARD	85650A	3145A01599	ACUCAL
QUASI-PEAK ADAPTER (S/A 2)	HEWLETT PACKARD	85650A	2811A01276	ACUCAL
QUASI-PEAK ADAPTER (S/A 3)	HEWLETT PACKARD	85650A	2521A00473	ACUCAL
QUASI-PEAK ADAPTER (S/A 4)	HEWLETT PACKARD	85650A	2521A01032	ACUCAL
RF PRESELECTOR (S/A 1)	HEWLETT PACKARD	85685A	3146A01309	ACUCAL
SIGNAL GENERATOR (HP)	HEWLETT PACKARD	8660C	1947A02956	ACUCAL
SIGNAL GENERATOR (WAVETEK)	WAVETEK	3510B	4952044	ACUCAL
SPECTRUM ANALYZER 1	HEWLETT PACKARD	8566B	3138A07771	ACUCAL
SPECTRUM ANALYZER 2	HEWLETT PACKARD	8567A	2841A00614	ACUCAL
SPECTRUM ANALYZER 4	HEWLETT PACKARD	8567A	2727A00535	ACUCAL
TUNABLE DIPOLE	EMCO	3121	274	LIBERTY LABS
ANTENNA	ATM	WR08	08443-6	ATM
MIXER	OLESON	M08HW	F80814-1	OLESON
MIXER	OLESON	M05HW	G80814-1	OLESON
DIPLEXER	OLESON	M05HW	G80814-1	OLESON
MIXER	HEWLETT PACKARD	11970U	2332A01110	ACUCAL
MIXER	HEWLETT PACKARD	11970V	2521A00512	TELOGY
MIXER	HEWLETT PACKARD	11970W	2521A00710	TELOGY
ANTENNA	ATM	WR15	15-443-6	ATM
ANTENNA	ATM	WR10	10-443-6	ATM
ANTENNA	ATM	WR05	05-443-6	ATM
SWEEP GENERATOR	HEWLETT PACKARD	83752A	3610A00866	HEWLETT PACKARD

Calibration Certification available upon request.

3.0 SYSTEM TEST CONFIGURATION

3.1 JUSTIFICATION

To complete the test configuration required by the FCC, the transmitter was connected to an AC/DC Power supply. No other peripherals were attached to the device since the EUT is a complete video transmitter with a camera attached. The receiver and an NTSC monitor was used outside the test range to monitor the EUT. The transmitter was also set up with the receiver in a collocated arrangement when measurement was made for the receiver portion of the device. Conducted emission was not performed since the device is battery operated. The test configuration in this report represents the collocated setup. Emissions above 1 GHz were video averaged. The transmitter was tested up to the 10th harmonic. The receiver was tested from 30 MHz up to the 2nd harmonic of the highest Local Oscillator i.e. 3.8 GHz. A Class A Verification report has been prepared for the receiver portion of the device.

3.2 EUT EXERCISE SOFTWARE

The transmitter was powered on so that it was continuously transmitting Audio/video of the surrounding background. The receiver with an attached NTSC monitor was used to monitor the transmitted audio/video from inside the building. The system was tested in all three orthogonal planes. Worst case emissions are recorded in the data tables.

3.3 SPECIAL ACCESSORIES

All interface cable s are provided by the manufacturer. See peripheral sheet.

3.4 COMPLIANCE WITH THE BANDEdge AT 2.4GHZ

The frequency band edge at 2.4GHz was also investigated and checked for compliance with the restricted band emission limit. The device has a very low fundamental carrier amplitude. The EUT was found to be compliant with the 2.4GHz band edge.

3.5 CONFORMANCE STATEMENT

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made during testing to the equipment in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the ANSI C63.4 test methodology.

Typed/Printed Name: Desmond A. Fraser

Date: January 19, 2000

Signature:

Position: President, (NVLAP Signatory)

NVLAP Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 20061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

5.0 Conducted Field Strength Calculation, and Radiated Test Methodology

5.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FI(\text{dBuV/m}) = SAR(\text{dBuV}) + SCF(\text{dB/m})$$

FI = Field Intensity

SAR = Spectrum Analyzer Reading

SCF = Site Correction Factor

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

$$SCF(\text{dB/m}) = - PG(\text{dB}) + AF(\text{dB/m}) + CL(\text{dB})$$

SCF = Site Correction Factor

PG = Pre-amplifier Gain

AF = Antenna Factor

CL = Cable Loss

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(\text{uV/m}) = 10^{FI(\text{dBuV/m})/20}$$

For example, assume a signal at a frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

$$49.3 \text{ dBuV} - 11.5 \text{ dB/m} = 37.8 \text{ dBuV/m}$$

$$10^{37.8/20} = 10^{1.89} = 77.6 \text{ uV/m}$$

5.2 Radiated measurement

Before final measurements of radiated emissions were made on the open-field three meter range, the EUT was scanned indoors at one meter and three meter distances if necessary in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to 24GHz (10th harmonic of carrier frequency) using a Hewlett Packard 8566B spectrum analyzer, a Hewlett Packard 85650A quasi-peak adapter, HP11790 mixers, and EMCO log periodic, EMCO horn antennas and biconical antenna. In order to gain sensitivity, a cougar preamplifier (from 30 to 2GHZ), and an HP preamplifier (from 1GHz to 26.5 GHz) was connected in series between the antenna and the input of the spectrum analyzer.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations. The spectrum analyzer's 6 dB resolution bandwidth was set to 120 kHz for measurements below 1GHz, and 1MHz for measurements above 1GHz. The analyzer was operated in peak detection mode below 1GHz and in the peak mode with 10Hz video averaging above 1 GHz. No video filter less than 10 times the resolution bandwidth was used when measuring below 1GHz. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as daily calibration methods, technician training, and emphasis to employees on avoiding error.

6.0 RADIATED EMISSION DATA

The following data lists the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, plus the limit. Explanation of the Correction Factor is given in paragraph 6.3.

TABLE 1: RADIATED EMISSIONS (TRANSMITTER)

Freq. GHz	Ant. Pol	Azimuth	Hgt	Em. Level	SCF	Emi level/m	Limit	Margin
2.4105	V	0	1	68.8	8.6	77.4		
4.8207	H	185	1	36.5	16.3	52.8	54	-1.2
7.2316	V	275	1	32.5	18.6	51.1	54	-2.9
9.6398	V	250	1	25.8	24.6	50.4	54	-3.6
12.0495	H	350	1	13.9	21.8	35.7	54	-18.3
14.4600	H	180	1	12.9	24.1	37	54	-17
16.8700	H	180	1	12.3	16.9	29.2	54	-24.8
19.2800	H	180	1	16.1	11.8	27.9	54	-26.1
21.6900	H	180	1	17.8	11.8	29.6	54	-24.4
24.1000	H	180	1	18.8	11.8	30.6	54	-23.4

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: December 16, 2000

Signature:


TABLE 2: RADIATED EMISSIONS (RECEIVER)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV/m)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
85.796	Qp	V	90	1.0	66.5	-21.4	45.1	49.5	-4.4
85.814	Qp	H	0	2.3	64.8	-20.5	44.3	49.5	-5.2
123.960	Qp	H	1	1.0	54.7	-15.8	38.9	54.0	-15.1
133.473	Qp	V	90	1.0	49.7	-15.5	34.2	54.0	-19.8
163.030	Qp	V	320	1.0	35.3	-17.3	18.0	54.0	-36.0
181.168	Qp	V	0	1.0	63.0	-17.9	45.1	54.0	-8.9
190.698	Qp	V	0	1.0	54.6	-18.1	36.5	54.0	-17.5
200.248	Qp	V	0	1.0	50.9	-17.8	33.1	54.0	-20.9
200.750	Qp	V	180	1.0	35.1	-17.8	17.3	54.0	-36.7
238.373	Qp	V	1	1.0	57.0	-15.8	41.2	56.9	-15.7
266.995	Qp	V	0	1.0	54.6	-14.4	40.2	56.9	-16.7
267.500	Qp	V	145	1.0	37.0	-14.4	22.6	56.9	-34.3
276.515	Qp	V	180	1.0	54.3	-14.6	39.7	56.9	-17.2
305.115	Qp	V	145	1.0	60.1	-13.8	46.3	56.9	-10.6
371.851	Qp	H	1	1.0	62.5	-11.2	51.3	56.9	-5.6
381.393	Qp	V	1	1.0	56.2	-11.2	45.0	56.9	-11.9

TEST PERSONNEL:

Typed/Printed Name: K. Franck Schuppius

Date: December 3, 2000

Signature: