

Tantalus Systems Corp.

LM-142x

Report of Measurements

per

Industry Canada RSS-210 Issue 8

and

FCC CFR47 Part 15/B; FCC CFR47 Part 15/C – 15.247

Revision 3.0
June 18, 2013

Approval		
Reviewed By:	Lawrence Gibson, P.Eng	June 20, 2013 Date
Checked By:	Parm Singh, EMC Division Manager	June 18 2013 Date
Tested By:	Aman Jathaul, EMC Project Manager	June 18 2013 Date

Quality Auditing Institute
19473 Fraser Way, Pitt Meadows, BC, V3Y 2V4, Canada

Test Report Summary

FCC 15.247 / IC RSS-210

Frequency Hopping 902.17 – 927.83MHz communication Module

FCC ID: OZFDC142X **IC:** 3669A-DC142X

Organization Requesting Report: Tantalus Systems Corp.

Contact: Mark Fairburn, RF Design Engineer

Test Organization: Quality Auditing Institute Ltd.

Reviewed By: Lawrence Gibson, P. Eng

Checked By: Parm Singh, EMC Division Manager

Contact: Aman Jathaul, Project Manager

Index

List of Figures	5
List of Tables	6
Section 1: Information for Test Report of Measurements	7
Section II: IC RSS-210 Iss.8 & FCC CFR47 Part 15/B Report of Measurements	9
Section III: IC RSS-210 Issue 8 Emissions Testing	10
Part 1 – Radiated Emissions Testing	11
Part 2 – Conducted Emissions Testing	12
Part 3 – Radiated Emissions – Transmit Mode.....	13
Part 4 – Output Power and EIRP Emissions.....	15
Part 5: Out of Band Emissions	16
Section IV: FCC CFR47 Part 15/C Report of Measurements	17
Part 1 – Radiated Emission Testing.....	18
Part 2 – Antenna Requirement – 15.203.....	19
Part 3 – Conducted Emissions Tests – 15.207	20
Part 4 – Frequency Hopping Spread Spectrum Operation – 15.247	21
Part 5: Output Power and EIRP Emissions	23
Part 6: Restricted Bands Review – 15.205(b)	24
Appendix A: Test Plots LM-1421	25
Unintentional Radiated Emissions, Idle Mode.....	25
Intentional Radiated Emissions, Tx Mode.....	26
A.C. Mains Conducted Emissions.....	27
FHSS Compliance Tests.....	33
20 dB Bandwidth	33
Channel Separation.....	36

Number of Hopping Channels.....	37
Dwell Time and Time of Occupancy	43
Output Power	45
Channel Bandedge.....	48
Radiated Spurious Harmonics	50
Appendix B: Test Setup Photos.....	53

List of Figures

Figure 1: 120V AC Conducted Emissions - Line 1 and Line 2	31
Figure 2: 240V AC Conducted Emissions - Line 1 and Line 2	32
Figure 3: 20dB Bandwidth at LOW Frequency – 112.8kHz	33
Figure 4: 20dB Bandwidth at MID Frequency – 112.8kHz	34
Figure 5: 20dB Bandwidth at HIGH Frequency – 113.4kHz	35
Figure 6: Channel Separation = 257kHz (177kHz + 80kHz)	36
Figure 7: Number of Hopping Frequencies 902MHz to 908.5MHz - 12 Frequencies	37
Figure 8: Number of Hopping Frequencies 908.5MHz to 915MHz - 11 Frequencies	38
Figure 9: Number of Hopping Frequencies 915MHz to 921.5MHz - 17 Frequencies	39
Figure 10: Number of Hopping Frequencies 921.5MHz to 928MHz - 10 Frequencies	40
Figure 11: Dwell Time – 4.35mS	43
Figure 12: Time Occupancy Per Frequency – 1.73 Seconds	44
Figure 13: Output Power at LOW Frequency	45
Figure 14: Output Power at MID Frequency	46
Figure 15: Output Power at HIGH Frequency	47
Figure 16: Low Channel Bandedge	48
Figure 17: High Channel Bandedge	49
Figure 18: AC Conducted Test Setup	53
Figure 19: Emissions Test Setup – Intentional / Unintentional Radiated Emissions	54
Figure 20: Emissions Test Setup – Intentional / Unintentional Radiated Emissions	55
Figure 21: Emissions Test Setup – Intentional Harmonics	56

List of Tables

Table 1: FCC Class B Emissions, Idle Mode - 3m.....	25
Table 2: FCC Class B Emissions, Tx Mode - 3m	26
Table 3: AC Conducted Emissions, Line 1.....	27
Table 4: AC Conducted Emissions, Line 2.....	29
Table 5: Example of a Channel Vector of 50 frequencies	42
Table 6: Harmonics at Low Frequency.....	50
Table 7: Harmonics at Mid Frequency	51
Table 8: Harmonics at High Frequency	52

Section 1: Information for Test Report of Measurements

Testing Details

TESTED BY: Aman Jathaul

TEST CONDITIONS: Temperature and Humidity: 22°, 47%

TEST VOLTAGE: 240V A.C. – LM-1421
120V A.C. – LM-1421

Test Facilities

Testing Laboratory: Quality Auditing Institute

Address: 19473 Fraser Way, Pitt Meadows, BC, V3Y 2V4, Canada

Test Site Registration: FCC (OATS 10m and SAC-3m): 226383

Industry Canada (SAC-3m): 9543B-1

Industry Canada (OATS-10m): 9543C-1

Accreditations (ISO 17025): Standard Council of Canada: Accredited Laboratory No. 743
International Accreditation Service Inc: Accredited Laboratory: No. TL-239

Test Equipment List

Device	Model Number	Equipment Description	Serial No.	Next Cal
Antenna	Sunol Sciences JB3	Biconilog Antenna (30MHz-3GHz)	A042004	Mar 12, 2015
EMI Receiver	Rohde & Schwarz ESU40	EMI Receiver (20Hz-40GHz)	100011	June 26, 2015
LISN	COM-POWER LI-115	LISN (150kHz-30MHz)	241036	Mar 9, 2014
Horn Antenna	COM-POWER AHA-118	Horn Antenna with LNA (1-18Ghz)	711040	Mar 11, 2014
Turntable	ETS Lindgren 2165	00043677	N/A	N/A
Mast	ETS Lindgren 2165	00077487	N/A	N/A

Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	±1 x 10-5 MHz
Radiated Emissions	±3 dB
Temperature	±1°C
Humidity	±5 %
DC and low frequency voltages	±3 %

Company Tested

NAME: Tantalus Systems Corp.

ADDRESS: 301-3480 Gilmore Way
Burnaby, BC V5G 4Y1
Canada

CONTACT PERSON: Mr. Mark Fairburn

PHONE NUMBER: 1-604-299-0458 x:229

Equipment Under Test**THE TEST SYSTEM:**

The Tantalus Systems LM-142x is a demand response device that allows electrical utilities to remotely manage load requirements on their electricl grid. The LM-142x is comprised of a communication module that connects to the Tantalaus Utility Network (TUNet®) and upto 3 electrical relays that are used to connect/disconnect loads that are connected to these relays. The communication module can support a variety of data rates and multi-level FSK modulation formats to achieve data rates upto 640kbps.

Product ID: LM-1421
Manufacturer: Tantalus Systems Corp.
Part Numbers: 100-0127-I
Serial number: 0012D590A3

TEST SETUP:

This EUT is designed to communicate with other LAN devices in the Tantalus Utility Network (TUNet®) and employs a Frequency Hopping Spread Spectrum (FHSS) system operating on the 902-928 MHz band for LAN communication.

CABLING:

Cable	Pins	Connector	Load/Termination	Shielded	Ferrites
Power	3	Terminal	No	No	No

MODIFICATIONS:

No modifications were made for this unit to pass.

CONCLUSION:

The PP-1316 complies with the requirements of FCC CFR47 and the requirements of Industry Canada RSS-210.

Section II: IC RSS-210 Iss.8 & FCC CFR47 Part 15/B Report of Measurements

Markings

According to FCC Section 15.19 and ICES 003, a statement similar to the following must be included on an identification label, which also uniquely identifies the Manufactured date, either explicitly or through a Serial number etc.:

“This equipment complies with FCC Rules, Part 15 and Industry Canada’s ICES 003 for a Class B Digital Device. Operation is subject to two conditions:

- 1) This device may not cause harmful interference, and
- 2) This device must accept any interference that may cause any undesired operation”

Additionally, if the manufacturer markets product to Quebec, the following supplemental information should be added to the label:

“Cet Appareil numerique de la Classe B respecte toutes les exigences du Reglement sur le material broilleur due Canada.”

Labeling

According to FCC Section 15.105, and ICES 003, the following statement must be included in a prominent location in your User’s Manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

It is also required according to FCC Part B Section 15.21 that a caution is included such as:

Caution: Changes or modifications to this equipment, not expressly approved by the manufacturer could void the user’s authority to operate the equipment.

This product is License Exempt for FCC and IC. There is a requirement for this product to be submitted for certification and requires both an FCC ID and an IC ID number to be added to the labels in accordance with FCC CFR47 Part 2 Subpart J (2.901 to 2.956) as well as IC Self-Marking standards.

Section III: IC RSS-210 Issue 8 Emissions Testing

Test Results – Summary

Testing was performed pursuant to Industry Canada RSS-210 Issue 8.

Test	Standard	Description	Result
Radiated Emissions Idle Mode Subclause 8.2	RSS-210 2.2(b)	The radiated emissions are measured in the 0.009 - 9280MHz range	Complies
Conducted Emissions Idle Mode Subclause 8.3	EN55022 Class A Limits	The Conducted Emissions are measured on the phase and neutral power lines in the 0.15 – 30.0 MHz range	Complies
Radiated Emissions Transmit Mode	RSS-210 A8.5	The radiated emissions are measured in the 0.009 -9280MHz range	Complies
Output Power and EIRP Emissions	RSS-210 A8.4(1)	Output power will not exceed 1 Watt and the E.I.R.P. will not exceed 4 Watts	Complies

Part 1 – Radiated Emissions Testing

DATE April 03, 2013

TEST STANDARD: RSS-210 2.2(b)

TEST SETUP: The EUT was operated and tested at 240Vac and 120Vac 60Hz in its normal mode of operation. It was in receive mode for these tests.

MINIMUM STANDARD: Class B Limit:

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

METHOD OF MEASUREMENT: Measurements were made using a spectrum analyzer with a 9kHz RBW, Peak detector. Any emissions that are close to the limit are measured using a test receiver with a 9kHz bandwidth, CISPR Quasi-Peak detector as well as an averaging meter. The EUT was set up in a 3 meter semi-anechoic chamber, using the manufacturer's specified normal cabling configuration, with all cables over 1 meter in length bundled at 1 meter and retained from the floor. A typical application was tested.

Emissions in both horizontal and vertical polarization were measured while rotating the EUT on a turntable to maximize the emissions signal strength and the results recorded on the attached plots.

EMISSIONS DATA: See Appendix A for corresponding frequencies.

PERFORMANCE: Complies.

Part 2 – Conducted Emissions Testing

DATE: April 01, 2013

TEST STANDARD: EN55022

MINIMUM STANDARD: Class B Limit:

TEST SETUP: The EUT was connected to the conducted emissions LISN apparatus. The device was operated and tested at 240Vac and 120Vac 60Hz.

MINIMUM STANDARD: Class A Limit:

Frequency (MHz)	Conducted Limit (dB μ V)	
	Quasi-Peak	Average
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

METHOD OF MEASUREMENT: Measurements were made using a spectrum analyzer with a 9kHz RBW, Peak detector. Any emissions that are close to the limit are measured using a test receiver with a 9kHz bandwidth, CISPR Quasi-Peak detector as well as an averaging meter.

MEASUREMENT DATA: See Appendix A for Plots.

EMISSIONS DATA: See Table 3 to 4 and Figures 1-2 in Appendix A for corresponding frequencies.

PERFORMANCE: Complies.

Part 3 – Radiated Emissions – Transmit Mode

DATE: April 03, 2013

TEST STANDARD: RSS-210 Iss.8 Annex 8 Frequency Hopping Systems 902-928MHz Band.

MINIMUM STANDARD: **A8.1 – Frequency Hopping Systems (General Conditions)**

Frequency hopping systems are spread spectrum systems in which the carrier is modulated with coded information in a conventional manner causing a conventional spreading of the RF energy about the carrier frequency. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence. Frequency hopping systems are not required to employ all available hopping frequencies during each transmission. However the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream.

Incorporation of intelligence into a frequency hopping system that enables it to recognize other users of the band and to avoid occupied frequencies is permitted, provided that the frequency hopping system does it individually, and independently chooses or adapts its hopset. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

- (a)** The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system RF bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The hopset shall be such that the near-term distribution of frequencies appears random, with sequential hops randomly distributed in both direction and magnitude of change in the hopset while the long-term distribution appears evenly distributed.
- (b)** Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- (c)** For frequency hopping systems in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

A8.4 Transmitter Output Power and e.i.r.p. Requirements

- (1)** For frequency hopping systems operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W, if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W, if the hopset uses less than 50 hopping channels. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen).

A8.5 Out-of-band Emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB.

TEST SETUP:

The EUT was operated and tested at 240Vac and 120V 60Hz for the tests and the unit was transmitting at its maximum rate based on the energy that it could sustain in normal operation.

METHOD OF MEASUREMENT: Measurements were made using a spectrum analyzer. The EUT was set up in a 3 meter Semi-Anechoic test site, using the manufacturer's specified normal cabling configuration, with all cables over 1 meter in length bundled at 1 meter and retained from the floor.

Emissions in both horizontal and vertical polarization were measured while rotating the EUT on a turntable to maximize the emissions signal strength and the results recorded on the attached plots.

All frequencies 0.009 -1000MHz were tested at 3m and all frequencies 1GHz and up were tested at 1m in accordance with ANSI c63.4.

EMISSIONS DATA:

See Figures 3-12 and Tables 7-10 in Appendix A for corresponding data. A summary of the results as per the above requirements.

Test	Standard	Results
Spread Spectrum Method of Modulation	RSS-210 A8.1	This product meets the requirements of a Frequency Hopping Spread Spectrum (FHSS) system operating in the 902-928MHz band
Channel Bandwidth	RSS-210 A8.1(a)	See Figures 3 - 5 in Appendix A. The 20dB bandwidth was measured to be 113.4 kHz.
Channel Separation	RSS-210 A8.1(c)	See Figure 6 in Appendix A. The Channel separation was measured to be 257.0 kHz.
Number of Hopping Channels	RSS-210 A8.1(c)	See Figures 7 - 10 in Appendix A. The number of channels is 50 channels.
Hopping Channels Time of Occupancy	RSS-210 A8.1(c)	See Figures 11 and 12 in Appendix A; the time of occupancy is 4.35 milliseconds at an interval of 1.73 seconds. This is equal to an average time "ON" of 50.3 mSecs within a 20 second period.
Output Power and EIRP	RSS-210 A8.4(1)	See the Measurement Data section in Part 4 of this Section. The output EIRP is a maximum of 2.04W. The conducted output power is 791mW.
Out of Band Emissions	RSS-210 A8.5	See Tables 6 - 8 in Appendix A. All radiated emissions were within the RSS-210 A8.5 limit.

PERFORMANCE:

Complies.

Part 4 – Output Power and EIRP Emissions

DATE: April 05, 2013

TEST STANDARD: RSS-210 Iss.8 A8.4 – Frequency Hopping Spread Spectrum Systems 902-928MHz

MINIMUM STANDARD: For frequency hopping systems operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W, if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W, if the hopset uses less than 50 hopping channels.

TEST SETUP: Refer to setup in Part 3 above.

METHOD OF MEASUREMENT: The Antenna has a connection at the bulkhead of the internal housing, the conducted output power was measured at this point. A 30dB attenuator was used to protect the instrumentation. See Figures 13-15.

EIRP was measured at the 3m distance and the measurement was adjusted to account for cable loss and Antenna factor.

EIRP measurements

Freq(MHz)	Corrected Field at 3m (dB μ V/m)	3m EIRP (dBm)
902.17	127.6	32.38
915	128.3	33.1
927.83	126.8	31.59

Conducted Output Power measurements

Freq(MHz)	Meas. Output Power (dBm)	Correction Factor* (dB)	Output Power (dBm)
902.17	-1.72	30.7	28.98
915	-1.70	30.5	28.8
927.83	-1.71	30.6	28.89

* Correction Factor accounts for a 30dB attenuator and 0.5dB cable loss.

PERFORMANCE: Complies.

Part 5: Out of Band Emissions

DATE:	April 05, 2013
TEST STANDARD:	RSS-210 A8.5
MINIMUM STANDARD:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB.
TEST SETUP:	Refer to the setup in Part 3 above.
METHOD OF MEASUREMENT:	Measurements were made using a horn antenna connected directly into a spectrum analyzer. The EUT was set up in a 1 meter open field test site, using the manufacturer's specified normal cabling configuration, with all cables over 1 meter in length bundled at 1 meter and retained from the floor. An application which transmitted a constant CW at the highest output power was used. Emissions in the horizontal and vertical polarization were measured while rotating the EUT on a turntable to maximize the emissions signal strength and the results recorded on the attached plots. Due to the presence of high ambient noise making it impossible to measure an emission at the required distance, the measurement was performed at 1 meter distance and the limit is adjusted per EN61000-6-3:2001
	The following formula was used to convert the maximum field strength (FS) in volts/meter to calculate the EUT output power (TP) in Watts:
	$TP = ((FS \times D) \times 2) / (30 \times G)$
	Where D is the distance in meters between the two antennas and G is the EUT antenna numerical gain referenced to isotropic gain.
MEASUREMENT DATA:	See Tables 6 to 8 in Appendix A.
PERFORMANCE:	Complies.

Section IV: FCC CFR47 Part 15/C Report of Measurements

General

Tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15 – Subpart C - Intentional Radiators. The Testing was performed pursuant to ANSI 63.4, 2003.

Additionally, the specific section used for compliance is 15.247 – Operation within the bands 902-928MHz – limited to frequency hopping intentional radiator. This includes the use of the FCC Public Notice DA 00-705 (Filing and Measurement Guidelines for Frequency hopping Spread Spectrum Systems) that was used as a guide to the tests that were performed.

Labeling Requirements

Please refer to labeling requirements as outlined above in Section 1.

Test Results - Summary

Testing was performed pursuant to ANSI 63.4, 2003.

Test	Standard	Description	Result
Radiated Emissions Idle Mode	FCC Part 15 Subpart B Class B Limits	The radiated emissions are measured in the 0.009 - 9280MHz range	Complies
Conducted Emissions Idle Mode	FCC Part 15 Subpart B Class B Limits	The conducted emissions are measured on the phase and neutral power lines in the 0.15 – 30.0 MHz range.	Complies
Antenna Requirement	FCC Part 15 Subpart 15.203	Proper Antenna is specified and used	Complies
Radiated Emissions Transmit Mode – Frequency Hopping Spread Spectrum Operation	FCC Part 15 Subpart C 15.247	Radiated emission characteristics for Spread Spectrum devices operating in the range 902-928 MHz that use the Spread Spectrum Modulation technique. Emissions are measured in the 0.009 - 9280MHz range.	Complies

Part 1 – Radiated Emission Testing

DATE: April 02, 2013

TEST STANDARD: FCC CFR47, Part 15, Subpart B Class B and Subpart C-Section 15.247

TEST VOLTAGE: 240Vac 60Hz

TEST SETUP: The equipment was set up in a 3-meter semi-anechoic chamber. Emissions in both horizontal and vertical polarization's were measured while rotating the EUT on a turntable to maximize the emissions signal strength and the results recorded on the attached plots. In cases where the presence of high ambient noise makes it impossible to measure an emission at the required distance, the measurement is performed at a closer distance and the limit is adjusted 20dB per Decade using the formula

$$20 \cdot \log(d_1/d_2)$$

Where d1 is the required distance and d2 is the new distance.

MINIMUM STANDARD: When the EUT is operating in Receive mode FCC Part 15 Subpart B Unintentional Radiators Limits for a Class B product.:

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test information in the Section 1 above, for EUT Descriptions.

CABLING DETAILS: The EUT was set up using the manufacturer's specified normal cabling configuration.

CABLING:

Cable	Pins	Connector	Load/Termination	Shielded	Ferites
Power	3	Terminal	No	No	No

MODIFICATIONS: No modifications were required for the devices to pass the test.

MEASUREMENT DATA: See Appendix A for Plots.

EMISSIONS DATA: See Table 1 in Appendix A for corresponding frequencies. Emissions that were attenuated by more than 20dB from the permissible value are not reported in accordance with 15.31(o). The device was tested to 10MHz since it uses clock circuitry at this frequency.

PERFORMANCE: Complies.

Part 2 – Antenna Requirement – 15.203

2.1 APPLICABLE REGULATIONS:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

2.2 RESULTS:

The Part 15 device inside the EUT is comprised of a proprietary design antenna that is soldered to the PCB by means of a coaxial cable. The entire module is underneath a clear plastic cover that is sealed at installation by the utility company and cannot be accessed.

PERFORMANCE:

Complies.

Part 3 – Conducted Emissions Tests – 15.207

3.1 Applicable Regulations

15.207 - (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (db μ V)	
	Quasi-Peak	Average
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

3.2 RESULT

MEASUREMENT DATA: See Appendix A for Plots.

EMISSIONS DATA: See Tables 3 - 4 and Figures 1 – 2 in Appendix A for corresponding data.

PERFORMANCE: Complies.

Part 4 – Frequency Hopping Spread Spectrum Operation – 15.247

4.1 APPLICABLE REGULATIONS:

15.247(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

4.2 TEST PROCEDURES:

TEST STANDARD: FCC CFR47, Part 15, Subpart C 15.247

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section, above, for EUT Descriptions.

TEST SETUP: Frequency Range Measured 30MHz – 10000MHz

Test Distance 1m and 3m

Test Instrumentation Resolution 120kHz (30MHz to 1000MHz)

1MHz (1000MHz to 10000MHz)

Receive Antenna Scan Height 1m – 4m

Receive Antenna Polarization Vertical and Horizontal

CABLING DETAILS:

Cable	Pins	Connector	Load/Termination	Shielded	Ferrites
Power	3	Terminal	No	No	No

4.3 RESULTS:

A sequence of 50 frequencies out of a possible 201 frequencies is generated where the seed for the generator is factory preset and is a function of the customer and network configuration. The payload/packet is equally divided into the 50 frequencies. In order to receive the packet successfully the receiver must hop in synchronization with the transmitter. This design inherently meets the FCC requirements of a frequency hopping system, since each frequency is used to receive the packet and therefore all frequencies are used equally.

MODIFICATIONS

No modifications were required for the devices to pass the test.

MEASUREMENT DATA:

See Figures 3-12, 16, 17 and Table 5 in Appendix A.

PERFORMANCE:

Complies.

Part 5: Output Power and EIRP Emissions

DATE: April 08, 2013

TEST STANDARD: FCC 15.247(b)(2) – Hopping Frequency Systems 902-928MHz

MINIMUM STANDARD: **15.247(b)(2)** – For the band 902-928MHz, the transmitter output power shall not exceed 1.0 watt and the E.I.R.P shall not exceed 4W for systems employing at least 50 Hopping Channels.

TEST SETUP: Refer to setup in Part 1 above.

METHOD OF MEASUREMENT: The Antenna has a connection at the bulkhead of the internal housing, the conducted output power was measured at this point. A 30dB attenuator was used to protect the instrumentation. See Figures 13 - 15.

EIRP was measured at the 3m distance and the measurement was adjusted to account for cable loss and Antenna factor.

MEASUREMENT DATA:

EIRP measurements

Freq(MHz)	Corrected Field at 3m (dB μ V/m)	3m EIRP (dBm)
902.17	127.6	32.38
915	128.3	33.1
927.83	126.8	31.59

Conducted Output Power measurements

Freq(MHz)	Meas. Output Power (dBm)	Correction Factor* (dB)	Output Power (dBm)
902.17	-1.72	30.7	28.98
915	-1.70	30.5	28.8
927.83	-1.71	30.6	28.89

* Correction Factor accounts for a 30dB attenuator and 0.5dB cable loss.

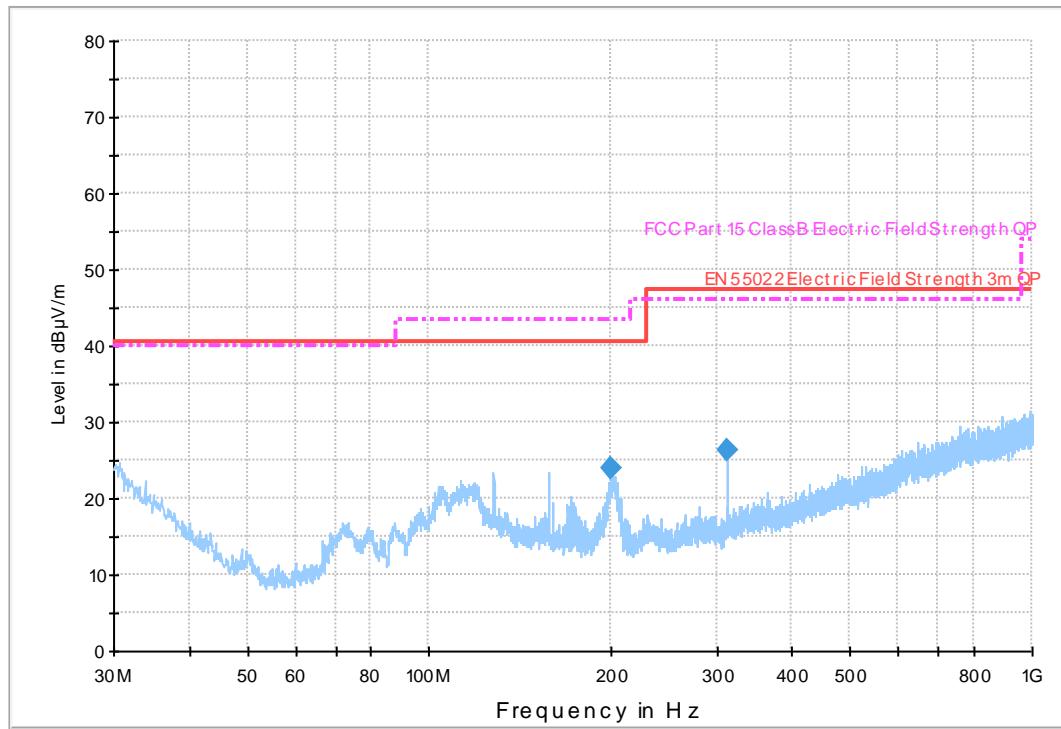
PERFORMANCE: Complies.

Part 6: Restricted Bands Review – 15.205(b)

6.1 APPLICABLE REGULATIONS:

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

6.2 RESULTS


All of the measurements for the Part 15 device were made when the EUT was set into transmitting mode to allow measurements of spurious emissions. The spurious frequencies that have been identified to fall into restricted bands are the various harmonics generated from 902 to 928 MHz. The restricted bands affected are 2655-2900MHz, 3600-4400MHz, 4500-5150MHz, 5350- 5460MHz, 7250-7750MHz, 8025-8500MHz and 9000-9200MHz.

EMISSIONS DATA:

See Tables 6 -8 in Appendix A for corresponding data.

Appendix A: Test Plots LM-1421

Unintentional Radiated Emissions, Idle Mode

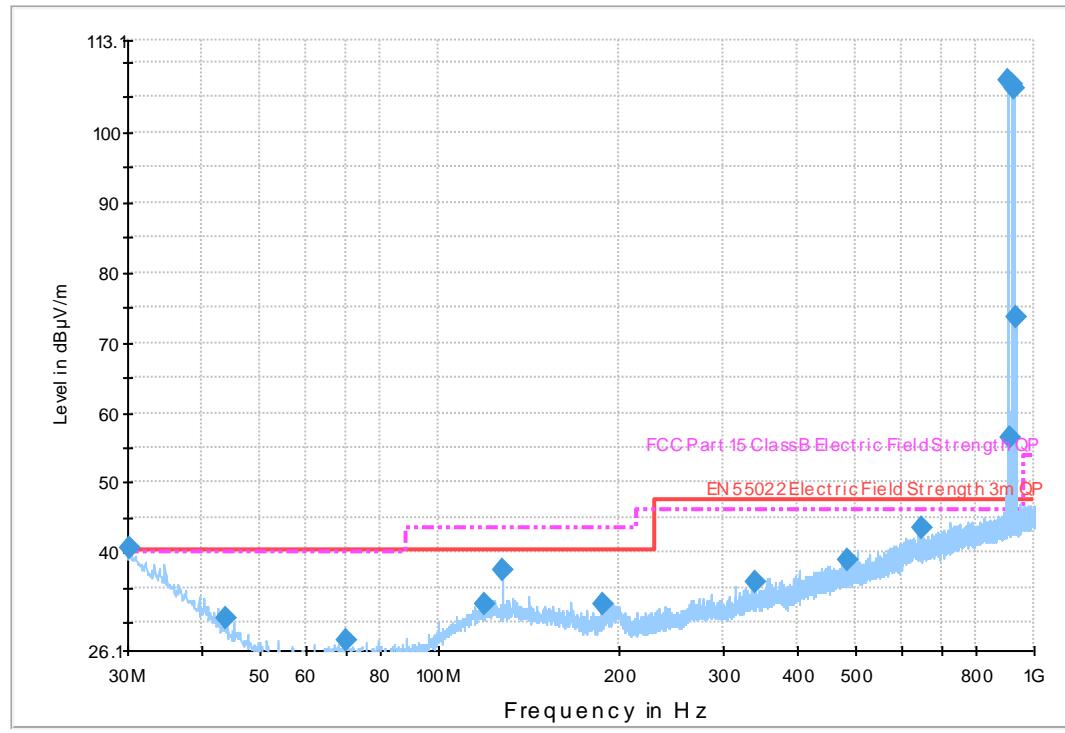


Table 1: FCC Class B Emissions, Idle Mode - 3m*

Frequency (MHz)	QuasiPeak (dB μ V/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Margin (dB)	Limit (dB μ V/m)
200.041000	24.1	1000.000	120.000	120.0	V	90.0	15.9	40.0
311.979000	26.3	1000.000	120.000	120.0	H	180.0	19.7	46.0

* Unintentional emissions were measured from 0.009Mhz -1000MHz. In accordance with 15.31(o) emissions that are 20dB below the permissible value have not been reported.

Intentional Radiated Emissions, Tx Mode

Note: The limit lines on the above plot are not representative. A 15dB attenuator was placed in the circuit to prevent the receiver from compressing due to the fundamental power and the correction factor applied by the EMC software was removed causing an incorrect limit line to be displayed. The plot is included only for a relative comparison to the unintentional emissions plot in idle mode. **The results shown in the table below have all the appropriate correction applied.**

Frequency signals above the limit lines are fundamental frequencies between 902-928MHz

Table 2: FCC Class B Emissions, Tx Mode - 3m

Frequency (MHz)	Max Peak (dB μ V/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Correction (dB)	Comments
30.291000	40.8	1000.000	120.000	120.0	V	0	22.5	Noise Floor
127.970000	37.6	1000.000	120.000	120.0	H	45	15.2	Ambient

A.C. Mains Conducted Emissions

FCC/CE Class A - Emissions

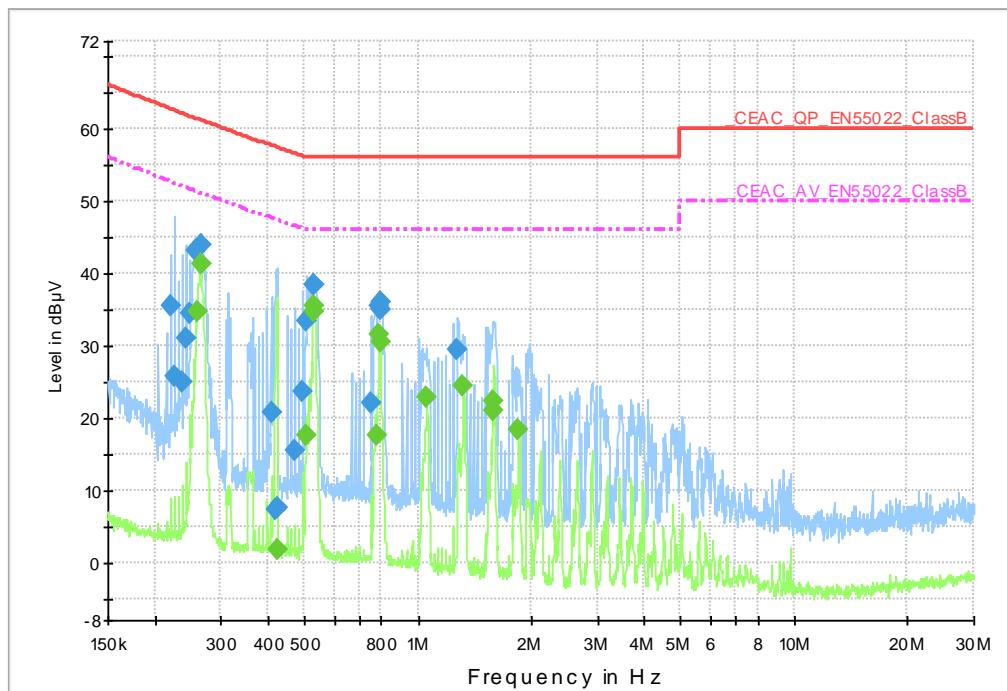
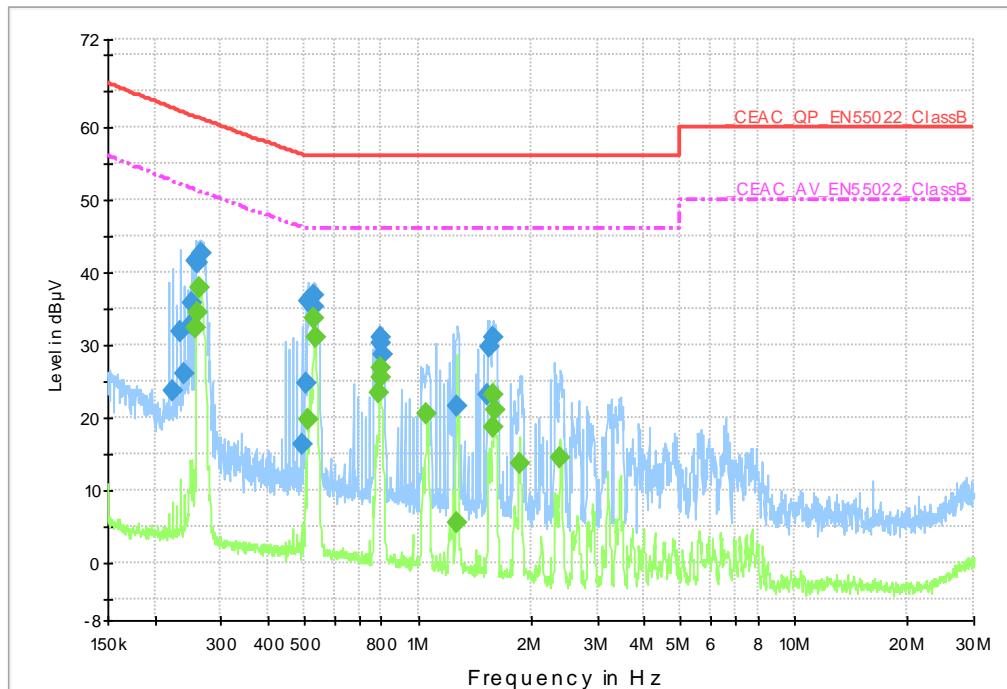
Table 3: AC Conducted Emissions, Line 1

120VAC 60Hz

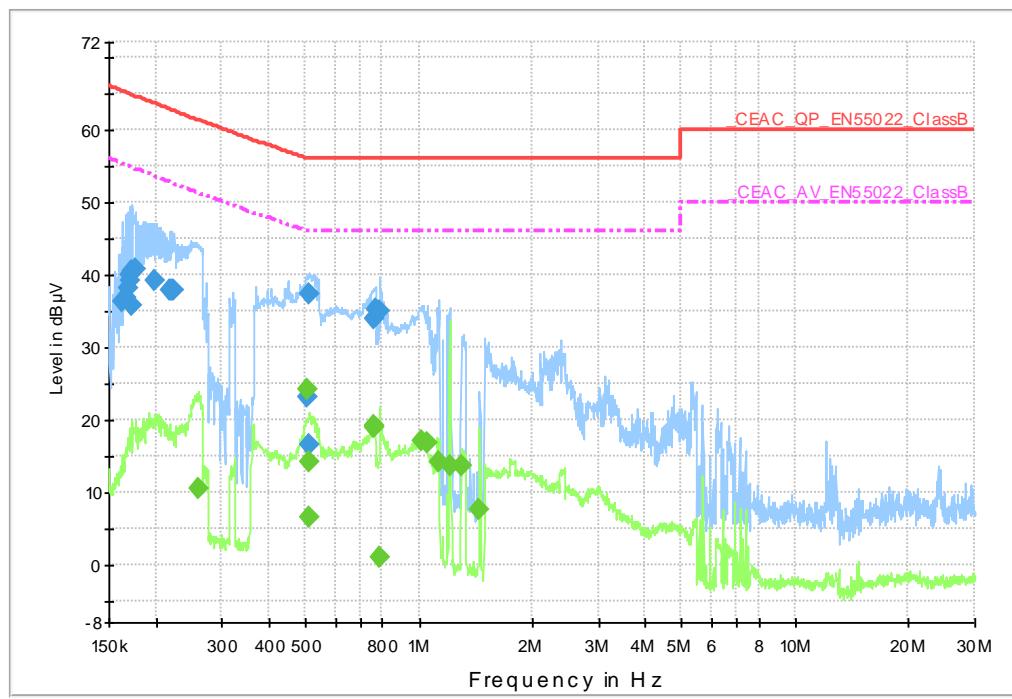
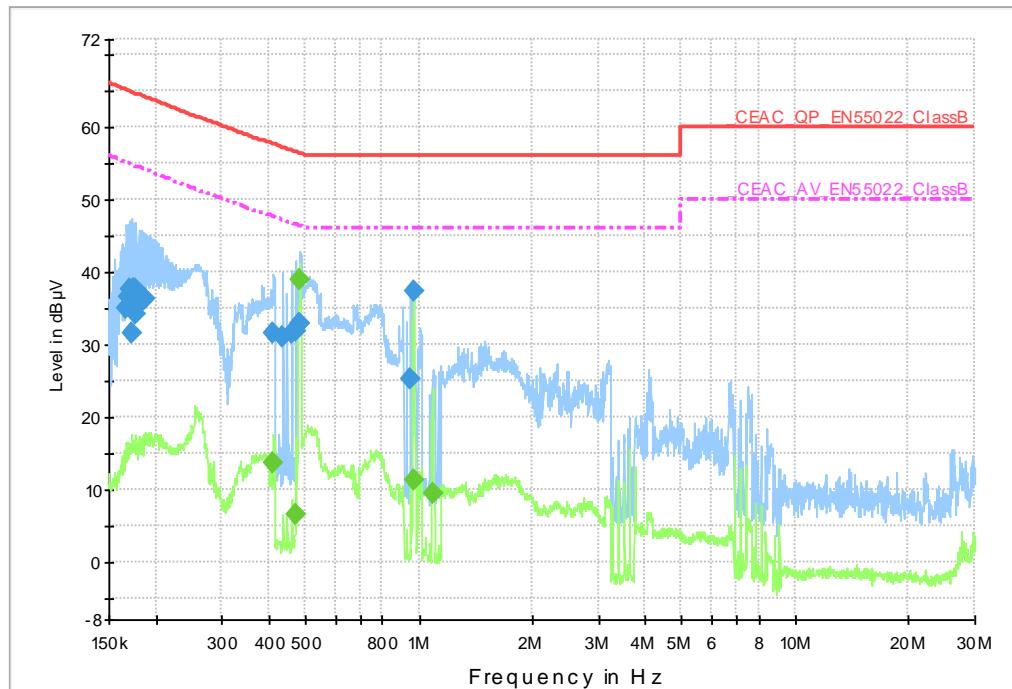
Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.257777	32.2	1000.000	9.000	On	L1	0.4	19.1	51.3
0.259327	34.3	1000.000	9.000	On	L1	0.4	16.9	51.2
0.264032	37.8	1000.000	9.000	On	L1	0.4	13.3	51.1
0.511531	19.7	1000.000	9.000	On	L1	0.4	26.3	46.0
0.531323	33.6	1000.000	9.000	On	L1	0.4	12.4	46.0
0.533451	31.0	1000.000	9.000	On	L1	0.4	15.0	46.0
0.790743	23.2	1000.000	9.000	On	L1	0.5	22.8	46.0
0.793910	26.8	1000.000	9.000	On	L1	0.5	19.2	46.0
0.797088	25.3	1000.000	9.000	On	L1	0.5	20.7	46.0
1.056465	20.4	1000.000	9.000	On	L1	0.5	25.6	46.0
1.269655	5.4	1000.000	9.000	On	L1	0.5	40.6	46.0
1.584903	23.1	1000.000	9.000	On	L1	0.5	22.9	46.0
1.591249	18.7	1000.000	9.000	On	L1	0.5	27.3	46.0
1.597620	20.9	1000.000	9.000	On	L1	0.5	25.1	46.0
1.863323	13.6	1000.000	9.000	On	L1	0.5	32.4	46.0
2.396741	14.4	1000.000	9.000	On	L1	0.5	31.6	46.0

240VAC 60Hz

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.411425	13.5	1000.000	9.000	On	L1	0.4	34.0	47.5
0.469419	6.5	1000.000	9.000	On	L1	0.4	40.0	46.5
0.483700	38.8	1000.000	9.000	On	L1	0.4	7.4	46.2
0.967555	11.2	1000.000	9.000	On	L1	0.5	34.8	46.0
1.088607	9.4	1000.000	9.000	On	L1	0.5	36.6	46.0



Table 4: AC Conducted Emissions, Line 2

120VAC 60Hz



Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.259327	34.7	1000.000	9.000	On	L2	0.4	16.5	51.2
0.264560	41.1	1000.000	9.000	On	L2	0.4	9.9	51.0
0.422251	1.7	1000.000	9.000	On	L2	0.4	45.6	47.3
0.507460	17.5	1000.000	9.000	On	L2	0.4	28.5	46.0
0.528148	35.3	1000.000	9.000	On	L2	0.4	10.7	46.0
0.530263	34.7	1000.000	9.000	On	L2	0.4	11.3	46.0
0.773554	17.6	1000.000	9.000	On	L2	0.5	28.4	46.0
0.790743	31.4	1000.000	9.000	On	L2	0.5	14.6	46.0
0.793910	30.3	1000.000	9.000	On	L2	0.5	15.7	46.0
1.054356	22.9	1000.000	9.000	On	L2	0.5	23.1	46.0
1.321417	24.3	1000.000	9.000	On	L2	0.5	21.7	46.0
1.575431	22.4	1000.000	9.000	On	L2	0.5	23.6	46.0
1.591249	21.0	1000.000	9.000	On	L2	0.5	25.0	46.0
1.852187	18.2	1000.000	9.000	On	L2	0.5	27.8	46.0

240VAC 60Hz

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.259845	10.4	1000.000	9.000	On	L2	0.4	40.8	51.2
0.505436	24.0	1000.000	9.000	On	L2	0.4	22.0	46.0
0.509491	6.4	1000.000	9.000	On	L2	0.4	39.6	46.0
0.512554	14.0	1000.000	9.000	On	L2	0.4	32.0	46.0
0.756738	18.8	1000.000	9.000	On	L2	0.5	27.2	46.0
0.762810	19.2	1000.000	9.000	On	L2	0.5	26.8	46.0
0.789165	0.9	1000.000	9.000	On	L2	0.5	45.1	46.0
1.015081	17.1	1000.000	9.000	On	L2	0.5	28.9	46.0
1.050152	16.8	1000.000	9.000	On	L2	0.5	29.2	46.0
1.132988	14.0	1000.000	9.000	On	L2	0.5	32.0	46.0
1.207793	13.5	1000.000	9.000	On	L2	0.5	32.5	46.0
1.303065	13.6	1000.000	9.000	On	L2	0.5	32.4	46.0
1.448622	7.6	1000.000	9.000	On	L2	0.5	38.4	46.0

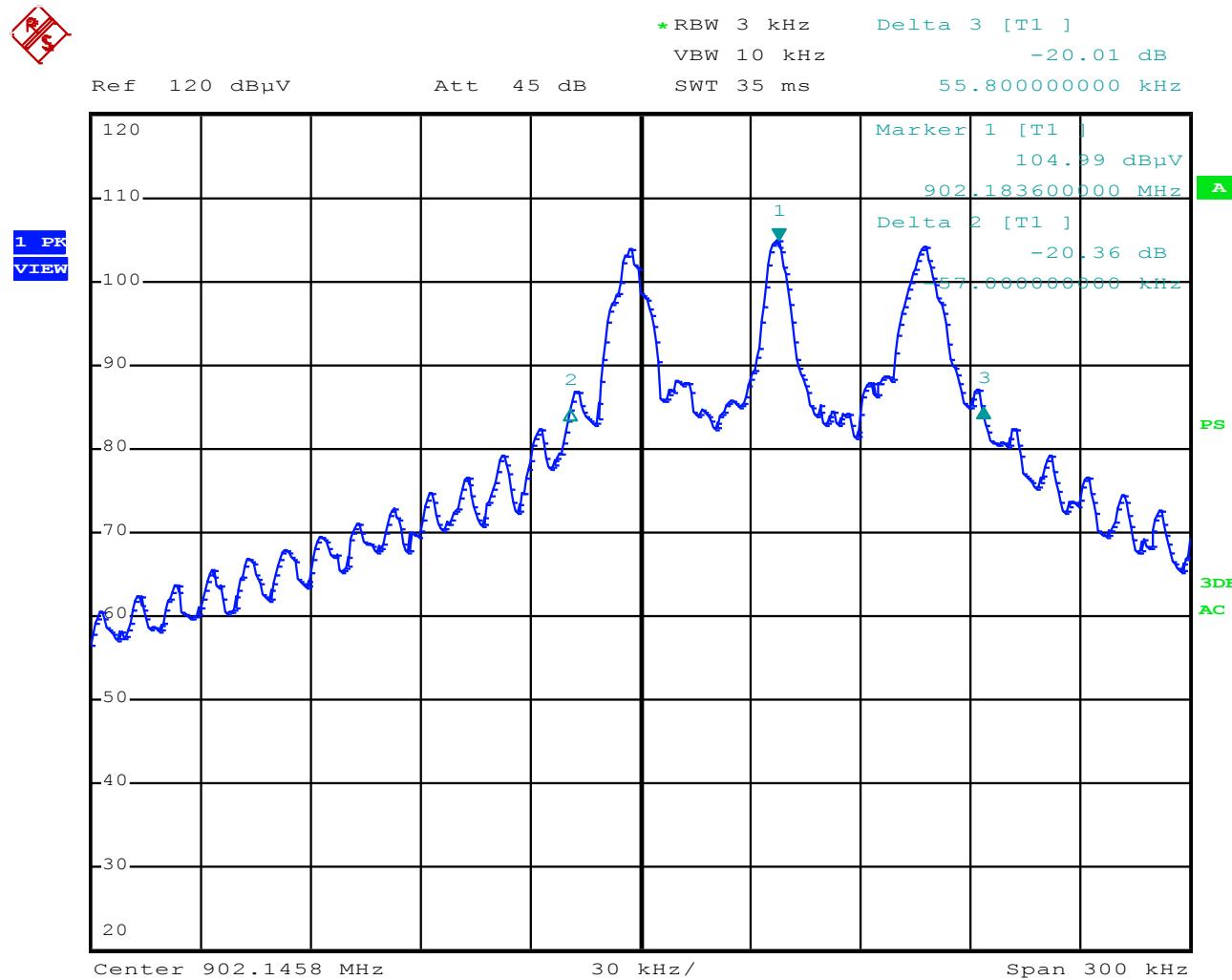
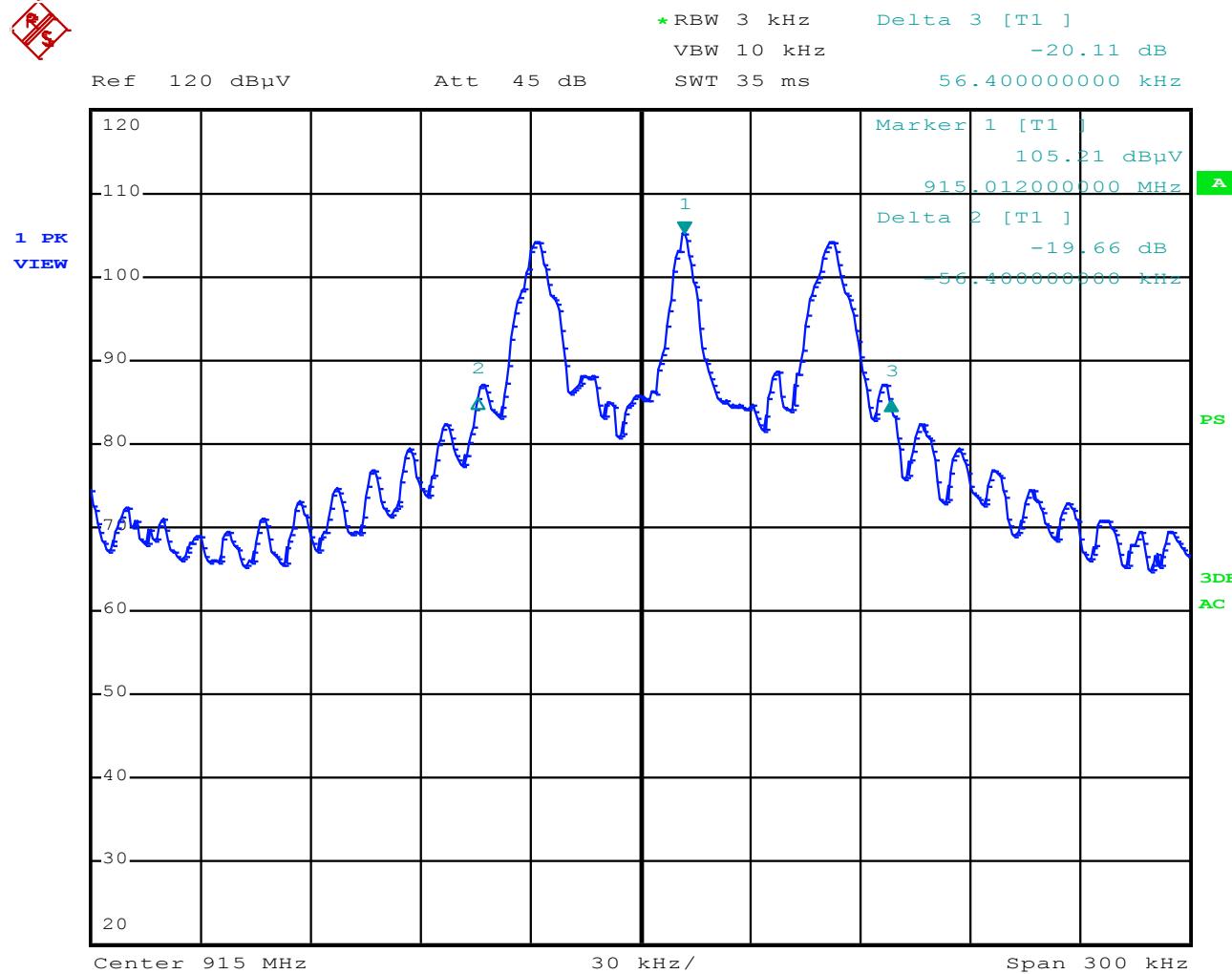
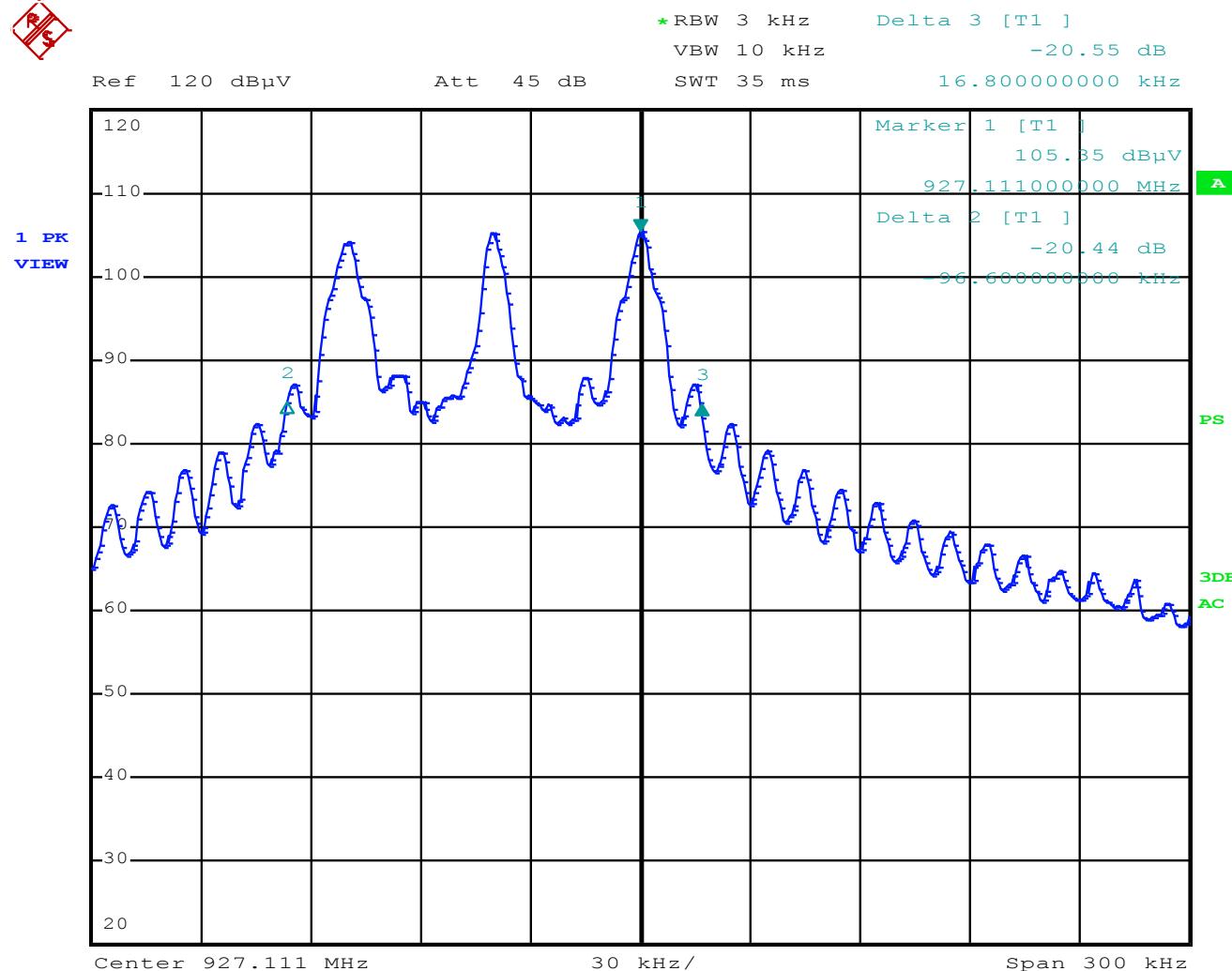

Figure 1: 120V AC Conducted Emissions - Line 1 and Line 2

Figure 2: 240V AC Conducted Emissions - Line 1 and Line 2

FHSS Compliance Tests


20 dB Bandwidth

Date: 8.APR.2013 19:13:57


Figure 3: 20dB Bandwidth at LOW Frequency – 112.8kHz

RS

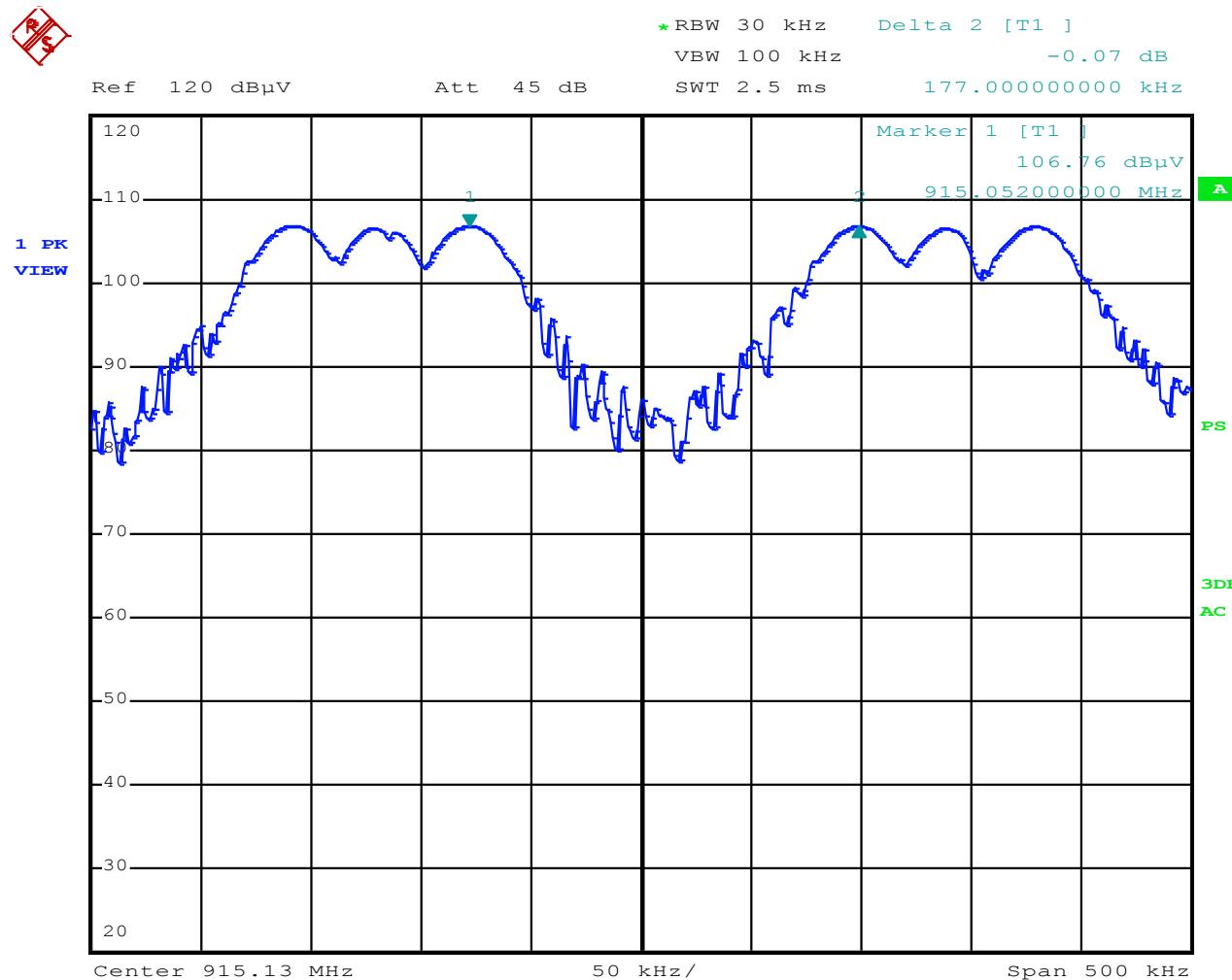
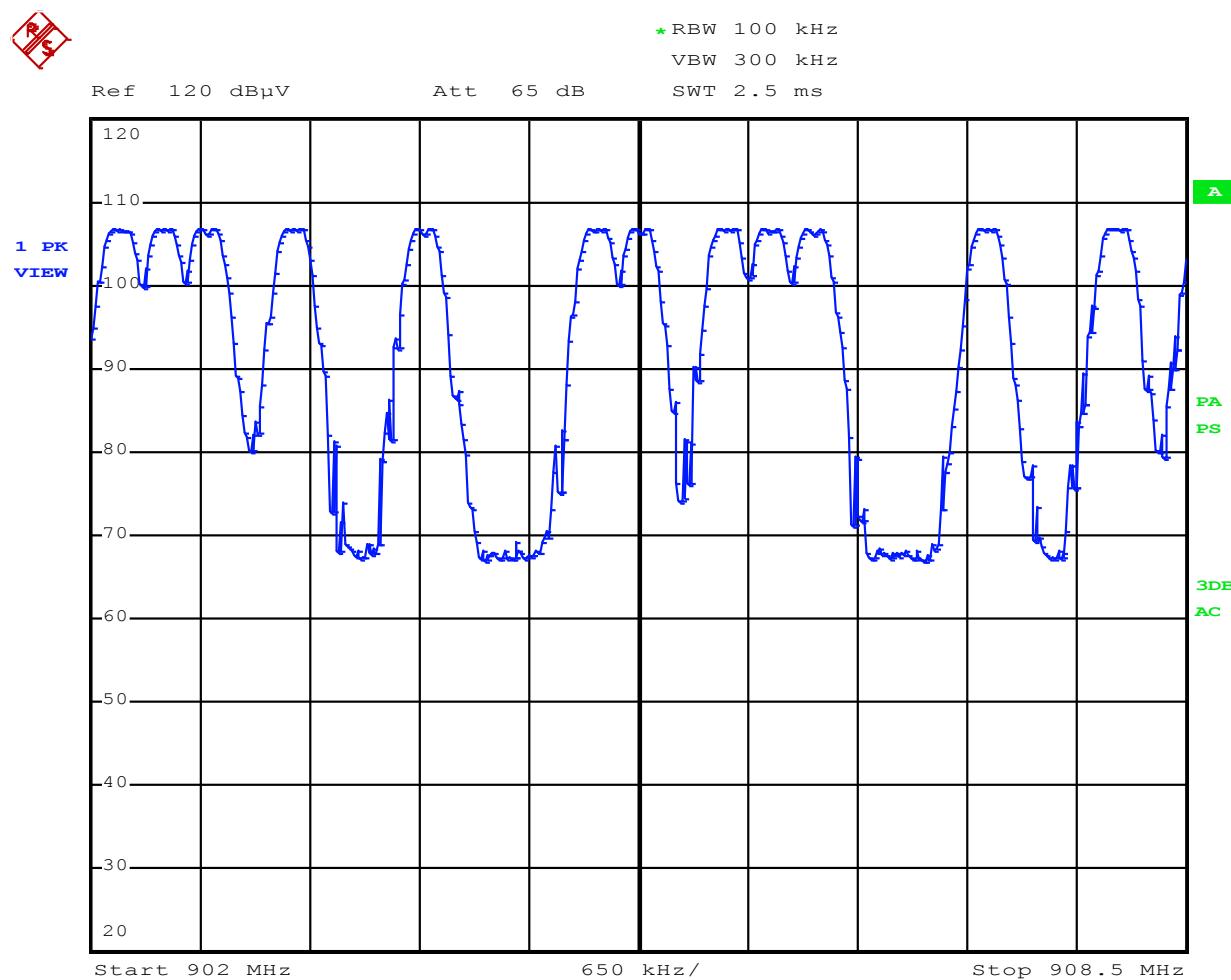

Date: 8.APR.2013 18:25:37

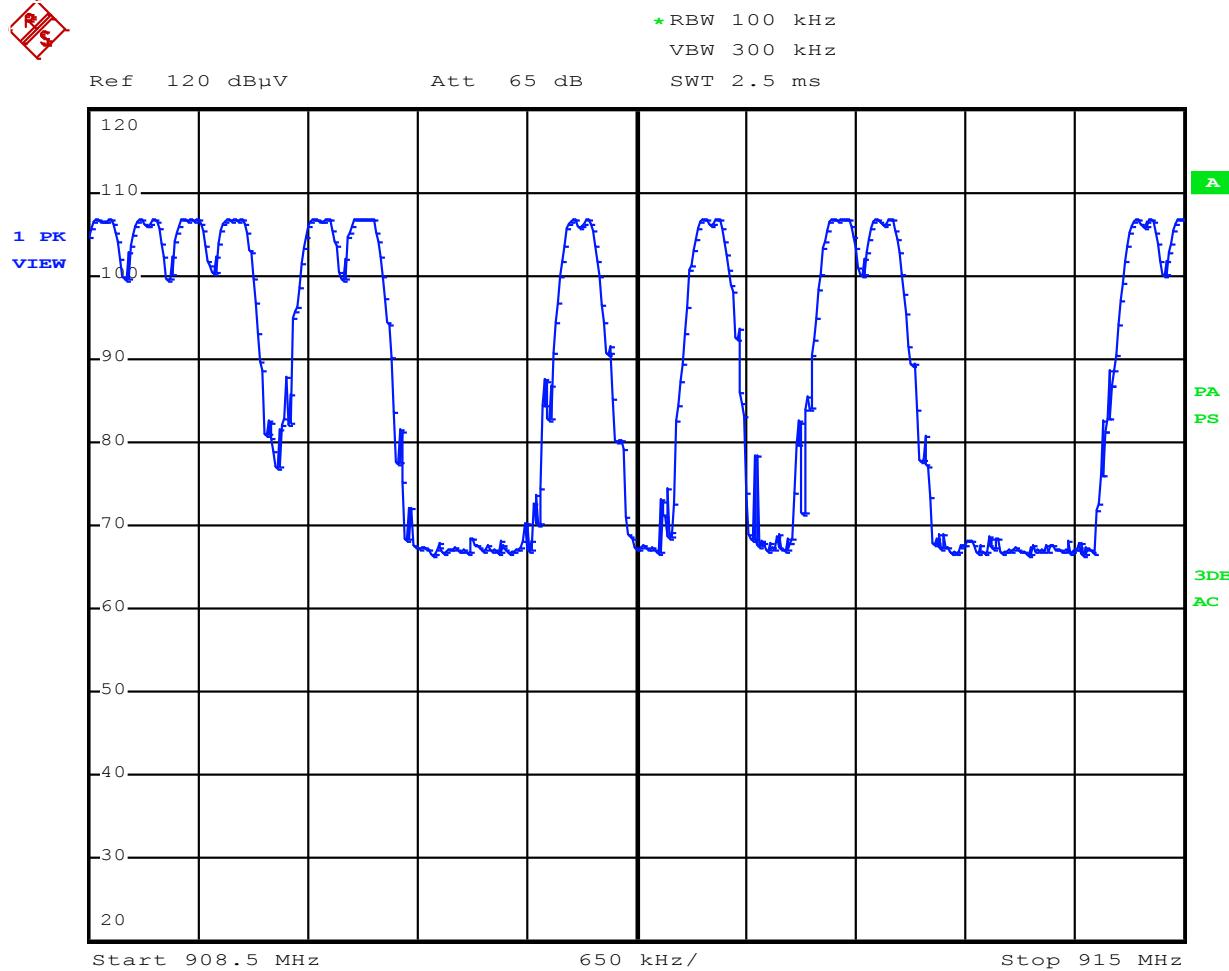
Figure 4: 20dB Bandwidth at MID Frequency – 112.8kHz

Date: 8.APR.2013 17:53:13


Figure 5: 20dB Bandwidth at HIGH Frequency – 113.4kHz

Channel Separation

Date: 8.APR.2013 20:12:23


Figure 6: Channel Separation = 257kHz (177kHz + 80kHz)

Number of Hopping Channels

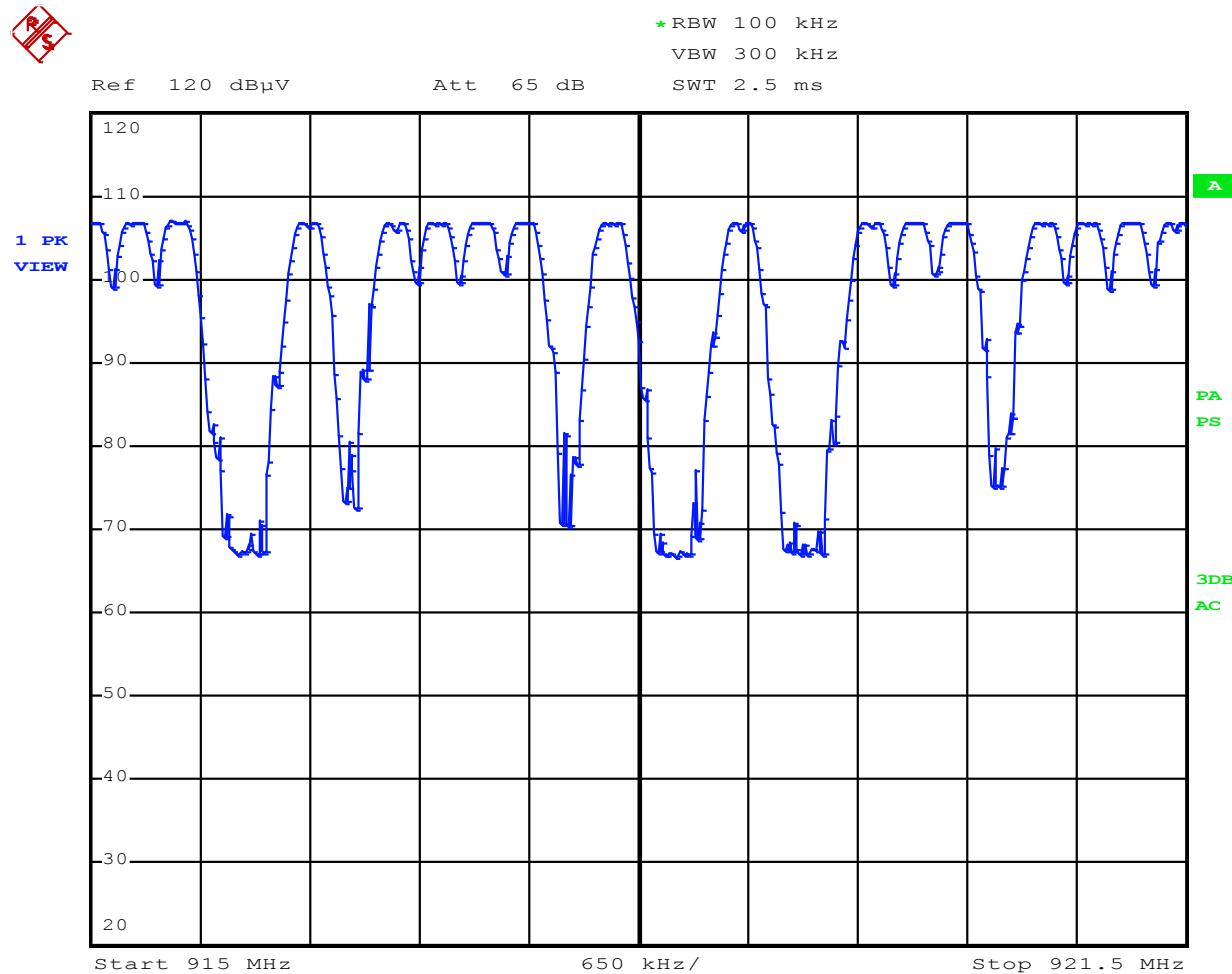

Date: 8.APR.2013 16:13:16

Figure 7: Number of Hopping Frequencies 902MHz to 908.5MHz - 12 Frequencies

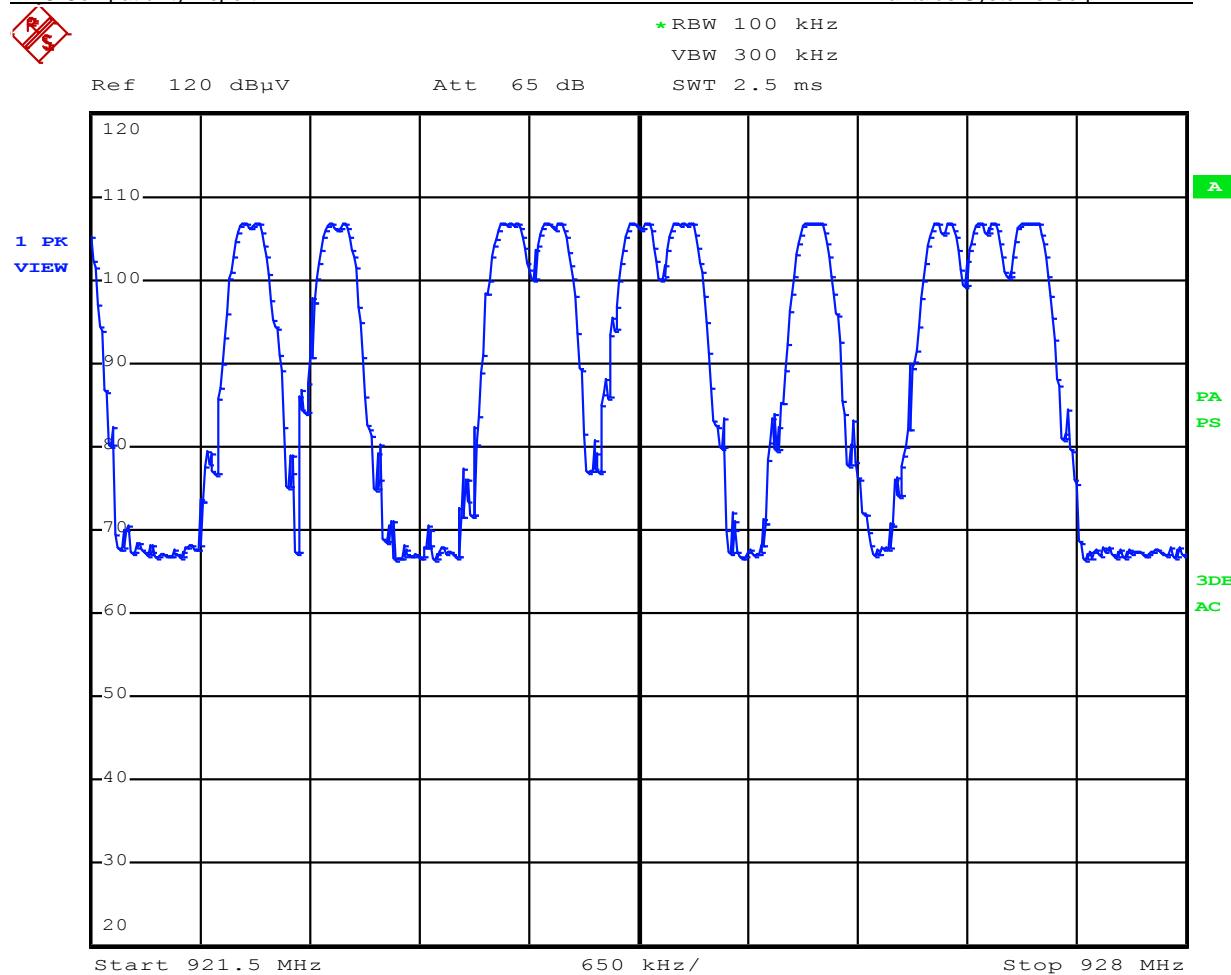
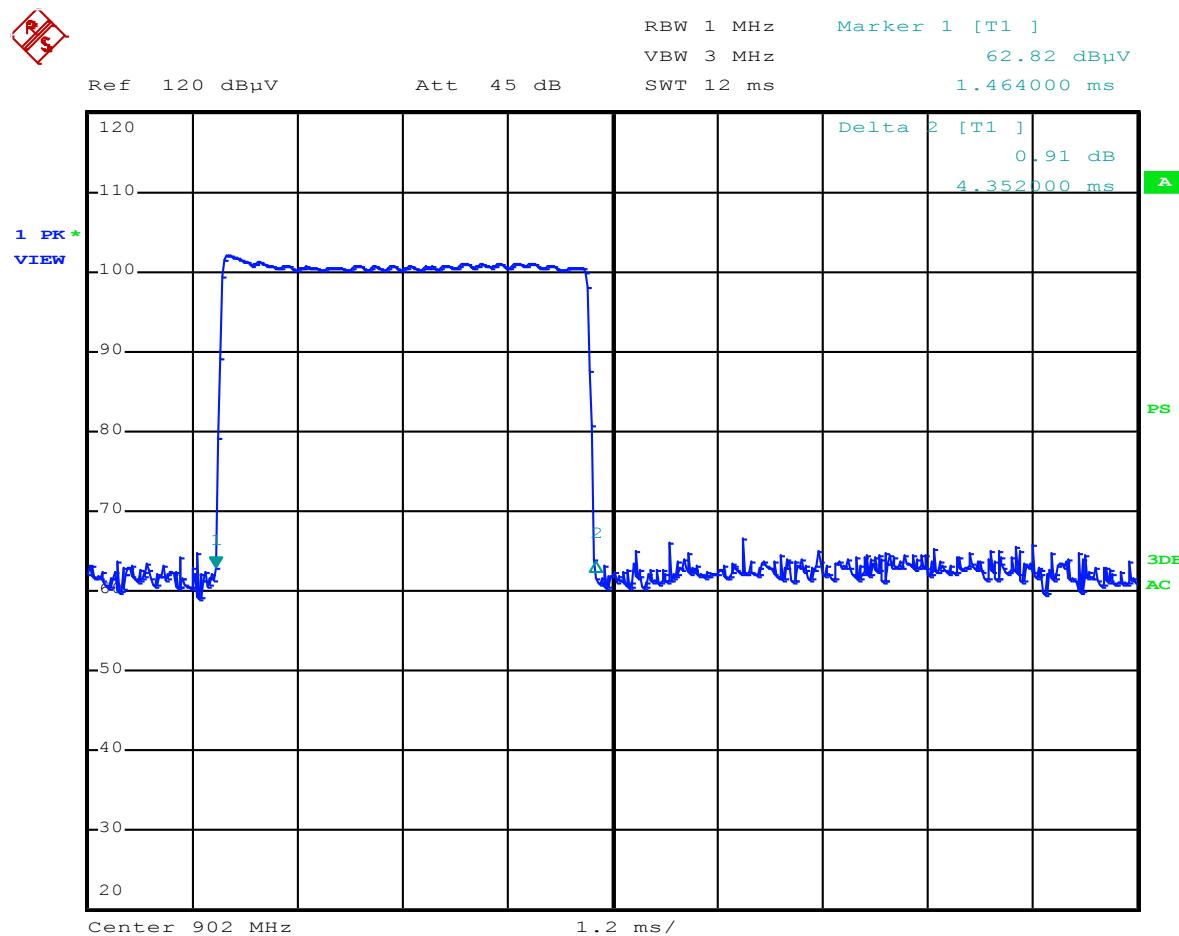

Date: 8.APR.2013 16:17:33

Figure 8: Number of Hopping Frequencies 908.5MHz to 915MHz - 11 Frequencies

Date: 8.APR.2013 16:20:48

Figure 9: Number of Hopping Frequencies 915MHz to 921.5MHz - 17 Frequencies

Date: 8.APR.2013 16:24:00


Figure 10: Number of Hopping Frequencies 921.5MHz to 928MHz - 10 Frequencies

Frequency Hop Number	Frequency (MHz)
0	916.7
1	923.1
2	904.6
3	909.2
4	919.6
5	923.5
6	918.6
7	908.9
8	905.0
9	908.7
10	922.5
11	905.6
12	907.4
13	914.8
14	920.3
15	907.3
16	917.5
17	915.9
18	914.2
19	904.0
20	916.4
21	927.6
22	920.0
23	922.7
24	916.2
25	915.0
26	915.8
27	915.5
28	907.6
29	913.7
30	907.1
31	906.5
32	926.9
33	923.7

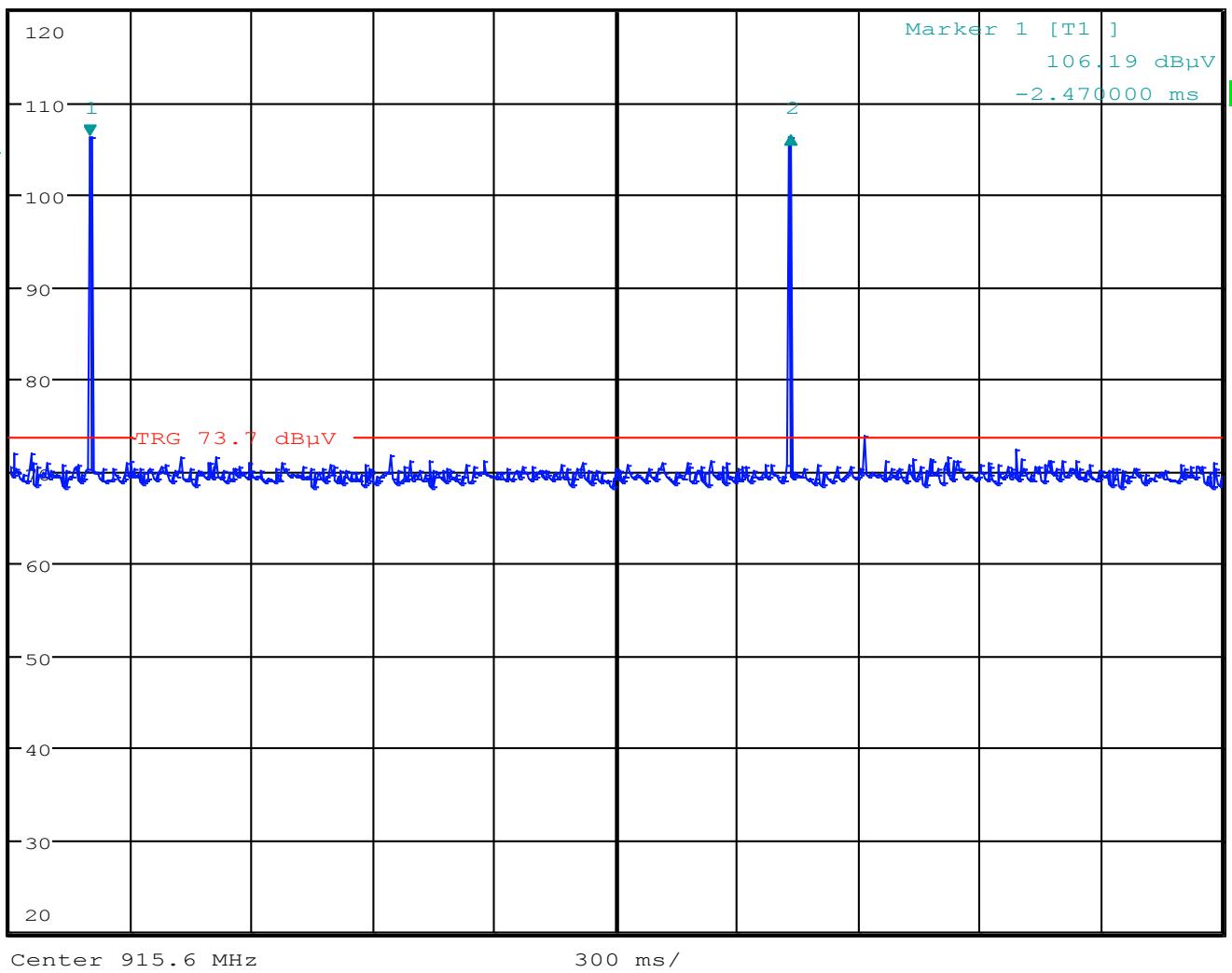
34	915.7
35	923.6
36	920.9
37	927.5
38	920.4
39	905.3
40	916.3
41	922.4
42	916.0
43	918.5
44	903.2
45	926.7
46	921.8
47	922.2
48	919.1
49	915.3

Table 5: Example of a Channel Vector of 50 frequencies

Dwell Time and Time of Occupancy

Date: 8.APR.2013 20:44:31

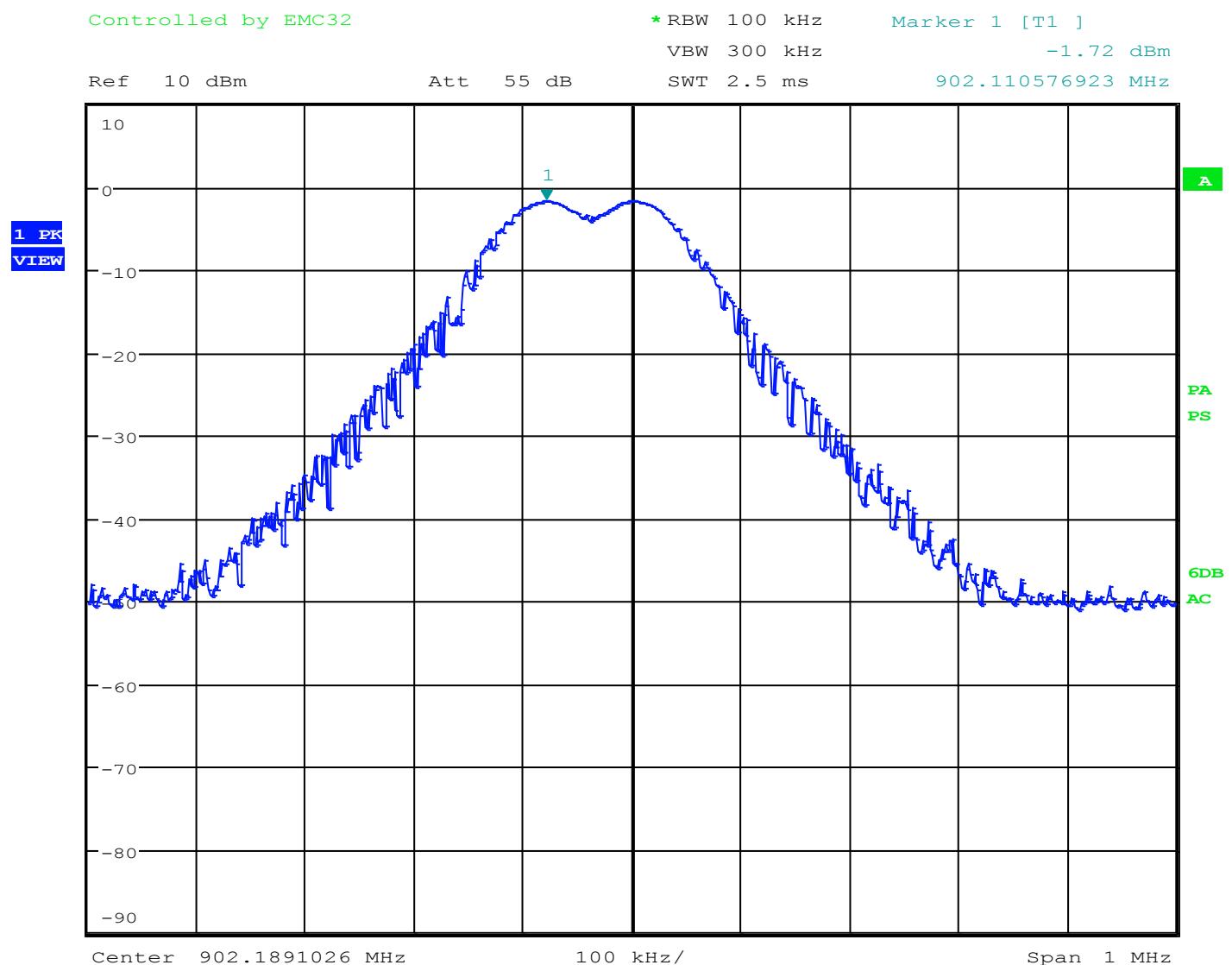
Figure 11: Dwell Time – 4.35mS


RBW 100 kHz Delta 2 [T1]
 VBW 300 kHz -0.03 dB
 SWT 3 s 1.735162 s

Ref 120 dB μ V

* Att 60 dB

1 PK *
 CLRWR


Marker 1 [T1]
 106.19 dB μ V
 -2.470000 ms

TTTTTT

Date: 22.APR.2013 18:33:53

Figure 12: Time Occupancy Per Frequency – 1.73 Seconds

Output Power

TTTTTT

Date: 5.APR.2013 19:20:37

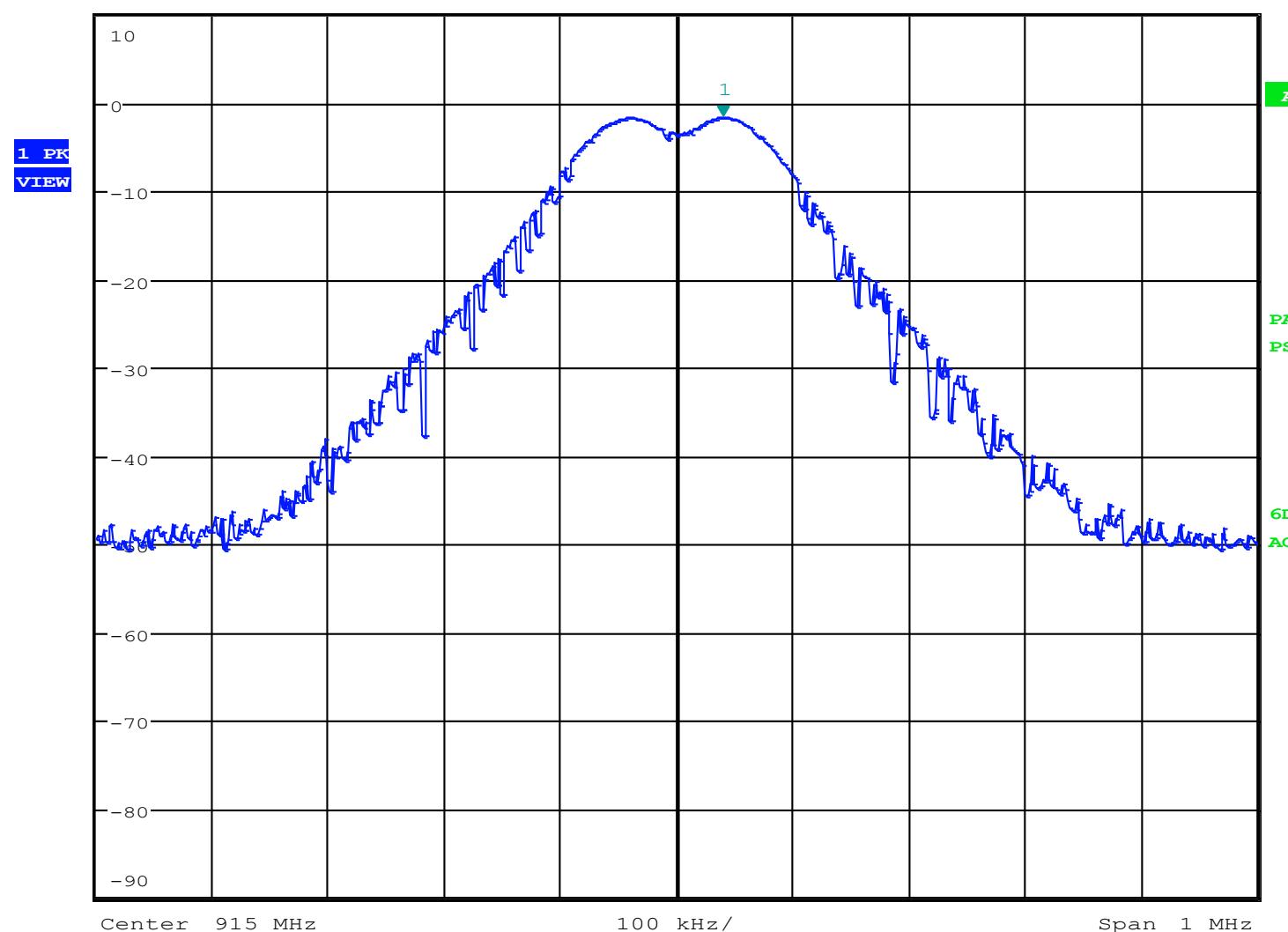
Figure 13: Output Power at LOW Frequency

Controlled by EMC32

★ RBW 100 kHz

Marker 1 [T1]

VBW 300 kHz


-1.70 dBm

Ref 10 dBm

Att 55 dB

SWT 2.5 ms

915.040064103 MHz

TTTTTT

Date: 5.APR.2013 19:16:42

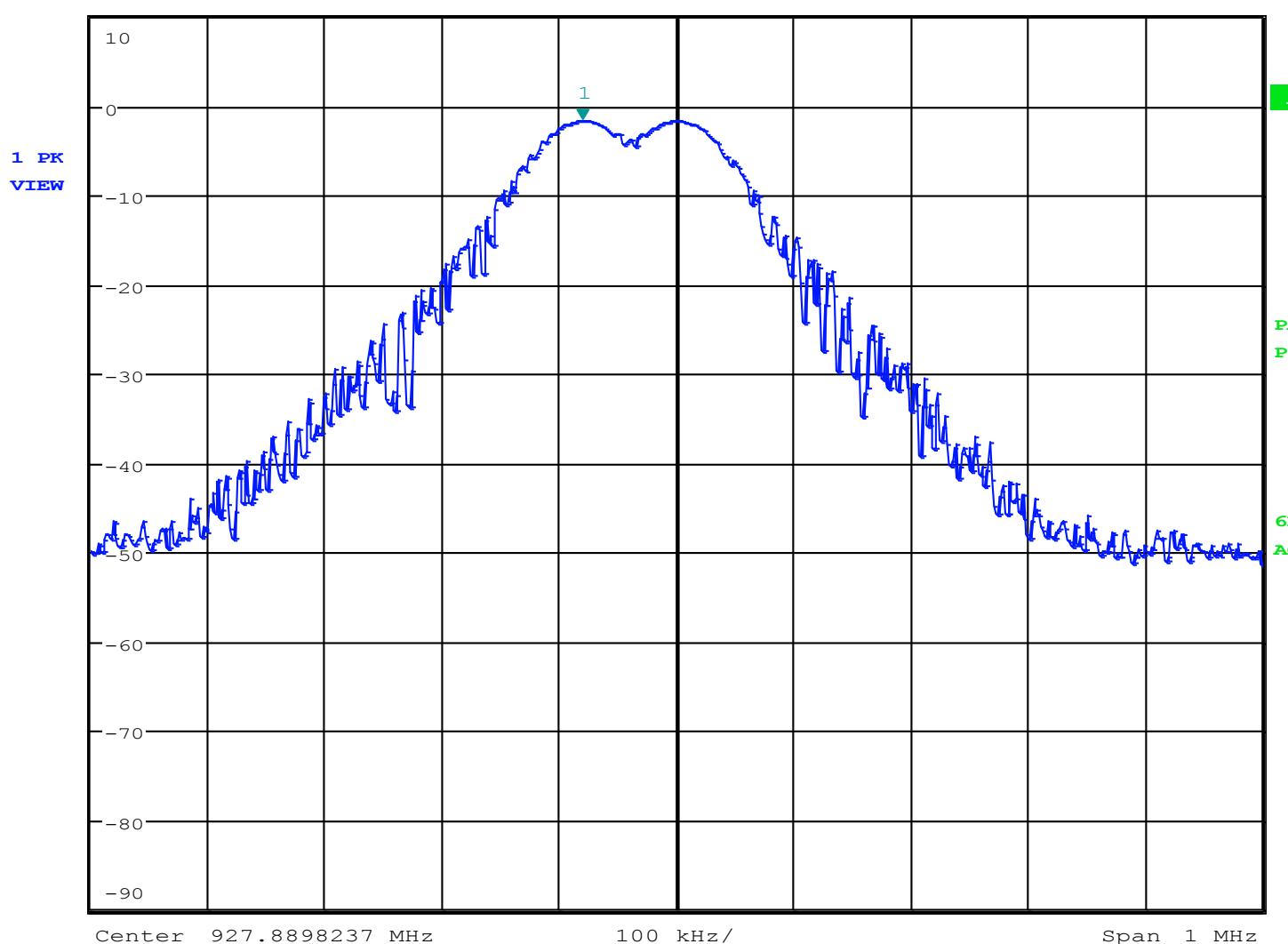
Figure 14: Output Power at MID Frequency

Controlled by EMC32

★ RBW 100 kHz

Marker 1 [T1]

VBW 300 kHz

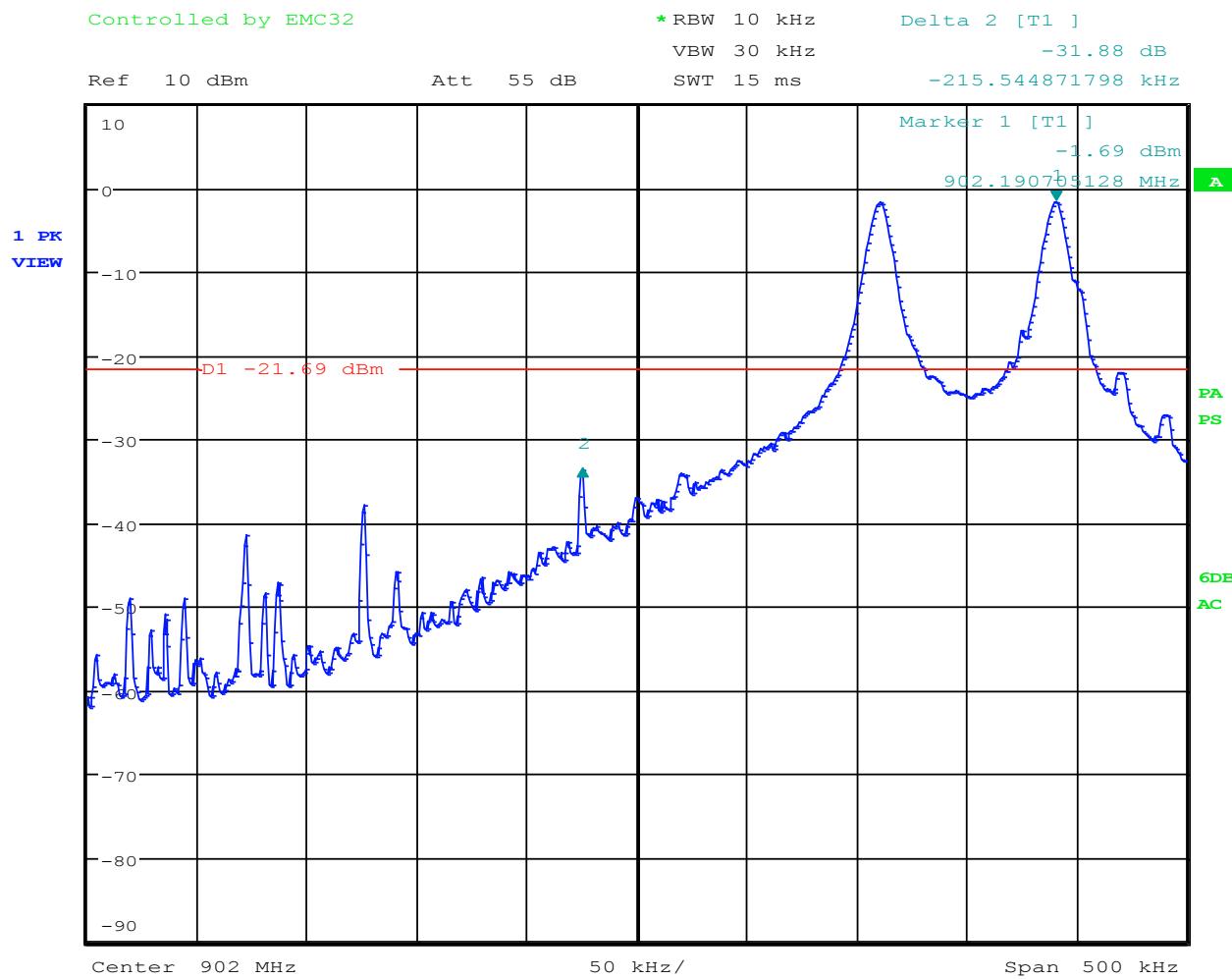

-1.71 dBm

Ref 10 dBm

Att 55 dB

SWT 2.5 ms

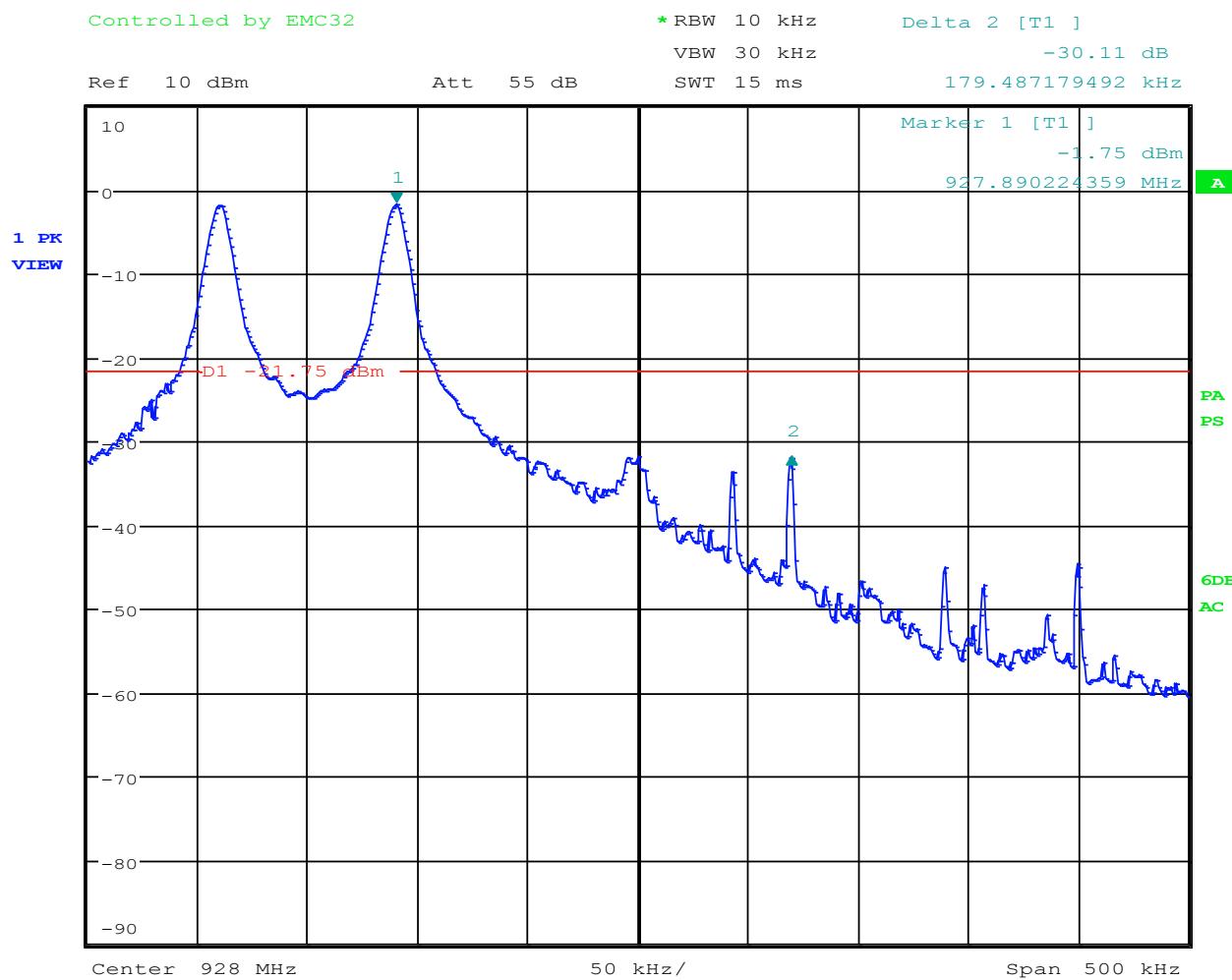
927.809695513 MHz



TTTTTT

Date: 5.APR.2013 19:13:09

Figure 15: Output Power at HIGH Frequency


Channel Bandedge

TTTTTT

Date: 5.APR.2013 18:52:59

Figure 16: Low Channel Bandedge

TTTTTT

Date: 5.APR.2013 19:04:42

Figure 17: High Channel Bandedge

Radiated Spurious Harmonics

Measurement Date: April 04, 2013

Setup:

Correction factor includes antenna, cables.

NOTE: The EUT worst case "ON" time was measured to be 4.35 ms per 100ms. This equates to a duty cycle correction factor of -27.2dB that has been applied to the measured average values in accordance with 15.35(c). In accordance with 15.31(o) emissions that are 20dB below the permissible value have not been reported.

Frequency	Pol.	Corrected Value	Average Limit at 3m	Duty Cycle Correction	Delta Lim-Avg	Peak Limit at 3m	Delta Lim-Peak
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	(dB)	dB(uV/m)	(dB)
2706.4	H	72.2	54	27.2	9	74	1.8
2706.4	V	72.9	54	27.2	8.3	74	1.1
3608.7	H	73.6	54	27.2	7.6	74	0.4
3608.7	V	72.3	54	27.2	8.9	74	1.7
4510.6	H	69.2	54	27.2	12	74	4.8
4510.6	V	71.1	54	27.2	10.1	74	2.9
5413.1	V	73.5	54	27.2	7.7	74	0.5
5413.1	H	73.8	54	27.2	7.4	74	0.2
8118.9	H	72.9	54	27.2	8.3	74	1.1
8118.9	V	71.1	54	27.2	10.1	74	2.9
9021.8	H	69.1	54	27.2	12.1	74	4.9
9021.8	V	68.5	54	27.2	12.7	74	5.5

Table 6: Harmonics at Low Frequency

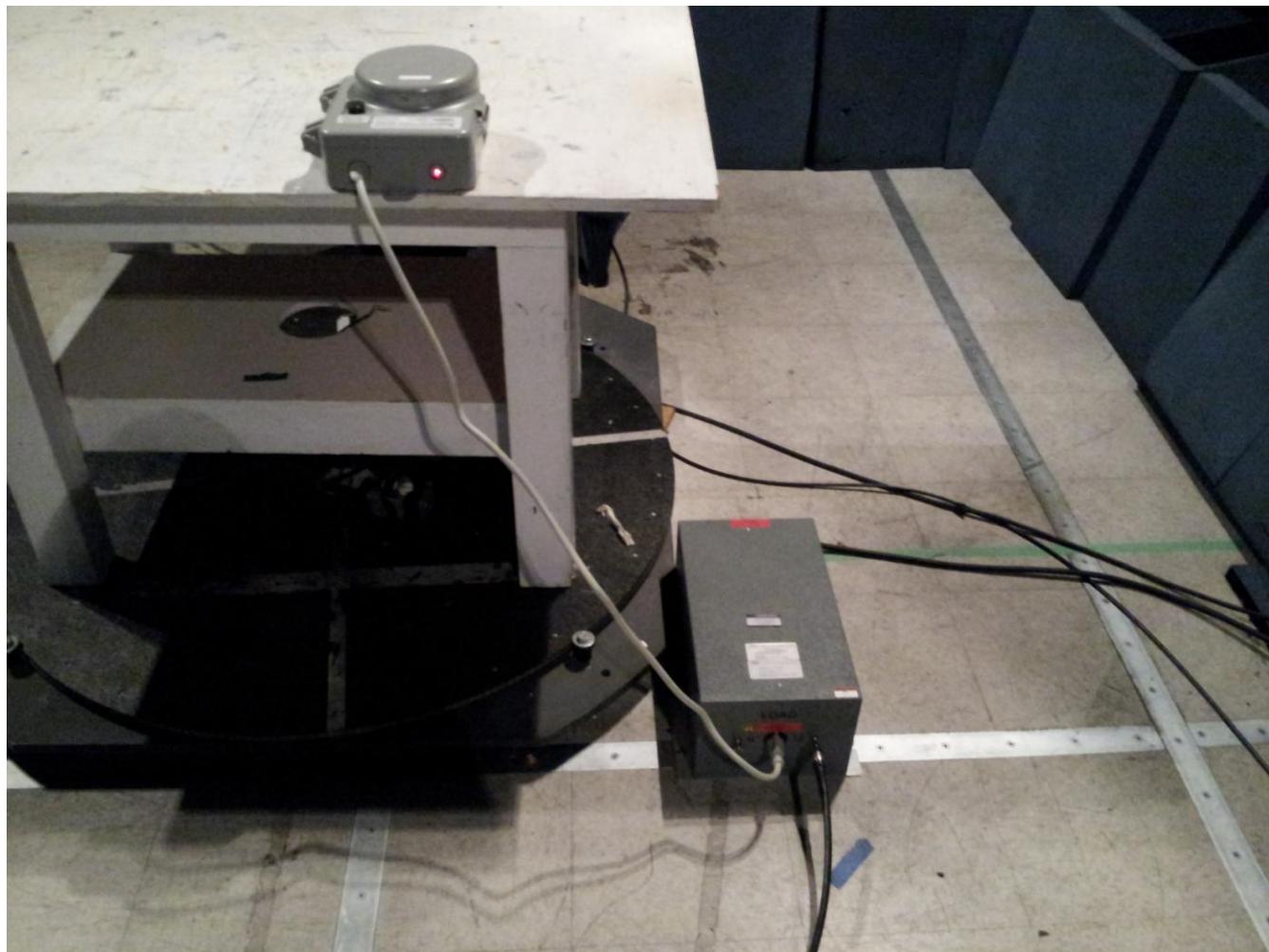

Frequency	Pol.	Corrected Value	Average Limit at 3m	Duty Cycle Correction	Delta Lim-Avg	Peak Limit at 3m	Delta Lim-Peak
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	(dB)	dB(uV/m)	(dB)
2744.9	H	71.4	54	27.2	9.8	74	2.6
2744.9	V	69.9	54	27.2	11.4	74	4.2
3659.8	H	73.7	54	27.2	7.5	74	0.3
3659.8	V	68.4	54	27.2	12.8	74	5.6
4575.1	H	66.3	54	27.2	14.9	74	7.7
4575.1	V	67.4	54	27.2	13.8	74	6.6
7320.3	H	71.1	54	27.2	10.1	74	2.9
7320.3	V	67.3	54	27.2	13.9	74	6.7
8235.5	V	63.3	54	27.2	17.9	74	10.7
8235.5	H	65.2	54	27.2	16.0	74	8.8
9149.6	H	72.6	54	27.2	8.6	74	1.4
9149.6	V	72.3	54	27.2	8.9	74	1.7

Table 7: Harmonics at Mid Frequency

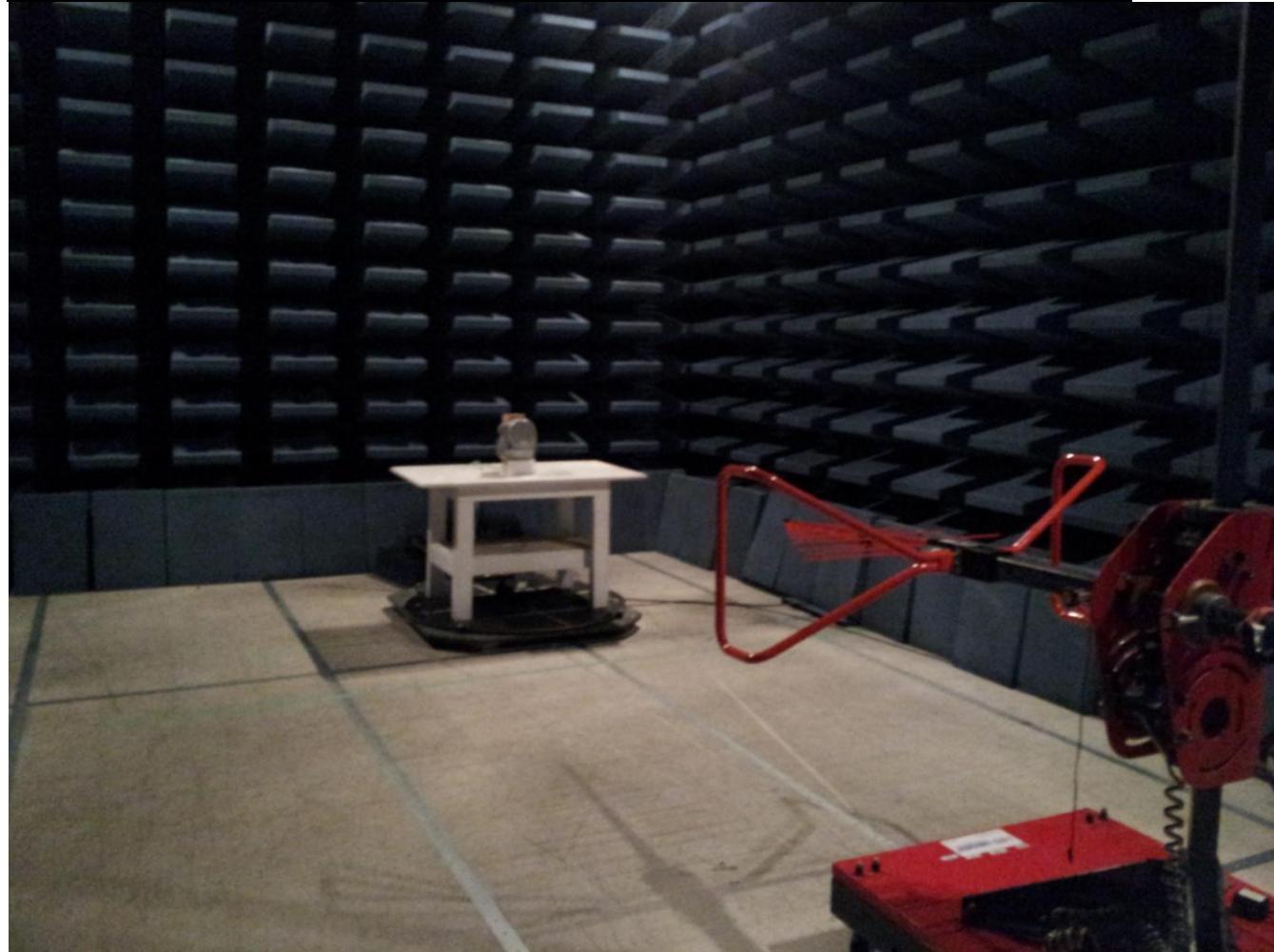

Frequency	Pol.	Corrected Value	Average Limit at 3m	Duty Cycle Correction	Delta Lim-Avg	Peak Limit at 3m	Delta Lim-Peak
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	(dB)	dB(uV/m)	(dB)
2783.4	H	69.5	54	27.2	11.7	74	4.5
2783.4	V	67.0	54	27.2	14.2	74	7.0
3711.5	H	71.4	54	27.2	9.8	74	2.6
3711.5	V	67.1	54	27.2	14.1	74	6.9
4639.4	H	64.6	54	27.2	16.6	74	9.4
4639.4	V	66.6	54	27.2	14.6	74	7.4
7423.1	H	73.2	54	27.2	8.0	74	0.8
7423.1	V	67.9	54	27.2	13.3	74	6.1
8350.9	H	69.5	54	27.2	11.7	74	4.5
8350.9	V	67.0	54	27.2	14.2	74	7.0

Table 8: Harmonics at High Frequency

Appendix B: Test Setup Photos

Figure 18: AC Conducted Test Setup

Intentional / Unintentional Radiated Emission 30 – 1000 MHz setup.

Figure 19: Emissions Test Setup – Intentional / Unintentional Radiated Emissions

Intentional / Unintentional Radiated Emission 0.009 – 30 MHz setup.

Figure 20: Emissions Test Setup – Intentional / Unintentional Radiated Emissions

Intentional Radiated Emissions 1000 – 10000 MHz setup.

Figure 21: Emissions Test Setup – Intentional Harmonics