

Tantalus Systems Corp.
200-3555 Gilmore Way, Burnaby, BC Canada V5G 0B3
Tel. 604.299.0458 · Fax 604.451.4111
www.tantalus.com

September 3, 2021

To Whom It May Concern:

To investigate the RF exposure of the Tantalus Systems Corp. PP-1320 network interface card for a polyphase electricity meter (FCC ID: OZFDC1320, IC ID: 3669A-DC1320) the FCC KDB publication 447498 and the Health Canada Safety Code 6 (as specified in RSS-102) have been used as guidelines to determine compliance with the FCC and IC RF exposure limit.

Analysis per Health Canada Safety Code 6 guidelines:

As per Health Canada Safety Code 6 guidelines:

The EUT is classed to meet the RF exposure that it subjects to the “General Population/Uncontrolled Environment”. Under this class the limit is calculated by:

$$S = f/1500$$

Where S is the Power Density in mW/cm^2 .

F is the frequency of operation in MHz.

The EUT operates in the 902 to 928 MHz band, the lower exposure limit would be obtained by using a frequency at the lower edge of the band, therefore:

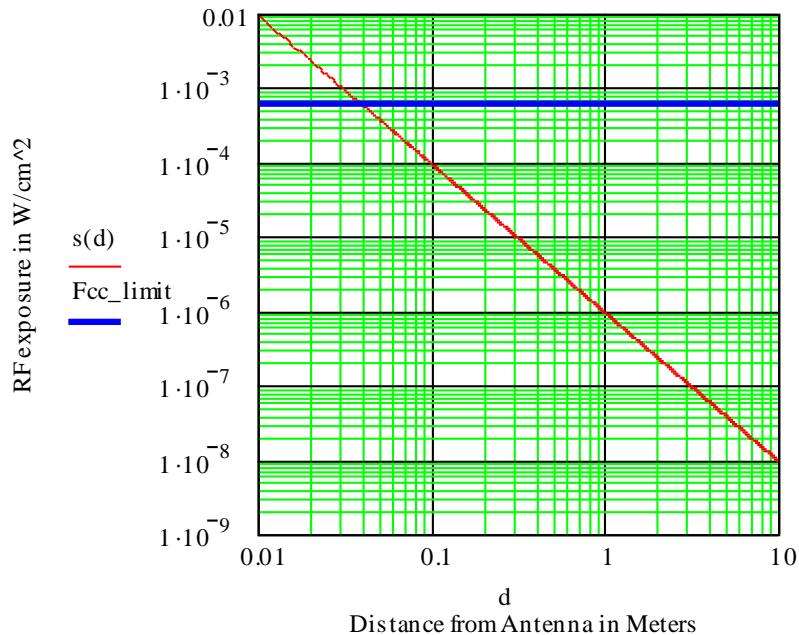
$$S = 902 / 1500 = 0.601 \text{ mW/cm}^2$$

The highest EIRP measured was 0.585W

However the maximum total transmit bandwidth available on a time averaged basis is only 19.4% of this number (this number is based on the worst case time of occupancy of 0.0778 seconds for a maximum of 0.4 seconds for the low data rate mode).

The average EIRP is therefore:

$$\text{EIRP}_{\text{average}} = \text{EIRP}_{\text{continuous}} * \text{duty cycle}$$


$$\text{EIRP}_{\text{average}} = 0.585\text{W} * 0.194 = 113.5 \text{ mW}$$

The predicted power density at a distance d , in the same horizontal plane as the elevation of the antenna is calculated and graphed below:

$$\text{Eirp} := 0.585 \quad \text{Duty_cycle} := 0.194 \quad \text{Eirp_avg} := \text{Eirp} \cdot \text{Duty_cycle} \quad \text{Freq_Mhz} := 902$$

$$d := 0.01, 0.011..10 \quad (\text{Distance in meters}) \quad \text{Fcc_limit} := \frac{\text{Freq_Mhz}}{15001000} \quad (\text{Fcc Limit in W/cm}^2)$$

$$s(d) := \frac{\text{Eirp_avg}}{4 \cdot \pi \cdot (d \cdot 100)^2} \quad (\text{Power in W/cm}^2)$$

From the graph, it can be observed that the distance at which the RF exposure would exceed the limit would be approx. 4cm. The far field distance for a small antenna is given by any distance greater than $\lambda/2\pi$; this equates to a minimum distance of 5.3cm, therefore this calculation is valid and so the minimum distance must be 6.5cm.

Analysis as per the FCC KDB publication 447498:

As per the FCC KDB publication 447498 D06 General RF Exposure Guidance, 4.3.1(b) states that SAR tests are not required if the RF power does not exceed the following formula:-

The maximum time averaged power (mW) must not exceed:-

$$\text{Max. Power (mW) Allowed at 50mm}^* + (\text{test separation distance} - 50 \text{ mm}) \times F_{(\text{MHz})} / 150$$

*Where $\text{Max. Power (mW) Allowed at 50mm} = 3 \times 50 / \sqrt{F_{(\text{GHz})}} = 155 \text{ mW}$

From the equation above, the distance at which the output power does not exceed 113.5mW is when the distance is greater than 43mm.

Result:

SAR tests are not required for this product. The RF power emitted by the module is considered not to be dangerous for the general public as long as a distance of at least 43mm is maintained during normal operation. However, since this product is for fixed applications a minimum distance of 20cm from the general public must be observed during normal operation.

Mark Fairburn
Sr. RF Design Engineer
Tantalus Systems Corp.