

FCC EVALUATION REPORT FOR CERTIFICATION

Applicant: OHSUNG ELECTRONICS CO., LTD.

Date of Issue: Jun. 03, 2016

#181 Gongdan-dong, Gumi-si, Gyeongbuk

Order Number: GETEC-C1-16-250

Republic of Korea.

Test Report Number: GETEC-E3-16-027

Attn: Mr. Hak-Ki Kim / General Manager

Test Site: GUMI UNIVERSITY EMC CENTER

FCC Registration Number: 269701

FCC ID. : OZ5URCTKP7600

Applicant: OHSUNG ELECTRONICS CO.,LTD.

Rule Part(s)

: FCC Part 15 Subpart B

Equipment Class

: Class B computing device peripheral (JBP)

EUT Type

: Network Keypad

Type of Authority

: Certification

Model Name

: TKP-7600

Trade Name

: UNIVERSAL remote control

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4 (2009) / Canadian standard ICES-003

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by,

Sung-Min Moon, Engineer

GUMI UNIVERSITY EMC CENTER

Reviewed by,

Jae-Hoon Jeong, Technical Manager GUMI UNIVERSITY EMC CENTER

> GUMIUNIVERSITY EMC CENTER

CONTENTS

1. GENERAL INFORMATION	
2. INTRODUCTION	4
3. PRODUCT INFORMATION	5
3.1 DESCRIPTION OF EUT	5
3.2 SUPPORT EQUIPMENT / CABLES USED	6
3.3 MODIFICATION ITEM(S)	6
4. DESCRIPTION OF TESTS	7
4.1 TEST CONDITION	7
4.2 CONDUCTED EMISSION	8
4.3 RADIATED EMISSION	9
5. CONDUCTED EMISSION	10
5.1 OPERATING ENVIRONMENT	10
5.2 TEST SET-UP	10
5.3 MEASUREMENT UNCERTAINTY	10
5.4 LIMIT	11
5.5 TEST EQUIPMENT USED	
5.6 TEST DATA FOR CONDUCTED EMISSION	<mark></mark> 11
6. RADIATED EMISSION	
6.1 OPERATING ENVIRONMENT	
6.2 TEST SET-UP	13
6.3 MEASUREMENT UNCERTAINTY	
6.4 LIMIT	<mark>1</mark> 4
6.5 TEST EQUIPMENT USED	
6.6 TEST DATA FOR RADIATED EMISSION	
11. SAMPLE CALCULATIONS	
11.1 Example 1:	
11.2 EXAMPLE 2:	
12. RECOMMENDATION & CONCLUSION	<mark></mark> 19
APPENDIX A - ATESTSTATION STATEMENT	
APPENDIX B – ID SAMPLE LABEL & LOCATION	
APPENDIX C – BLOCK DIAGRAM	
APPENDIX D – TEST SET-UP PHOTOGRAPHS	
APPENDIX E – EXTERNAL PHOTOGRAPHS	

EUT Type: Network Keypad

APPENDIX F - INTERNAL PHOTOGRAPHS

APPENDIX G – USER'S MANUAL

FCC ID.: OZ5URCTKP7600

rt Number : GETEC-E3-15-038

: GETEC-C1-15-469

Scope: Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

1. General Information

Applicant: OHSUNG ELECTRONICS CO.,LTD.

Applicant Address: #181, Gongdan 1-dong, Gumi-si, Gyeongsangbuk-do, Republic of Korea

Manufacturer: OHSUNG ELECTRONICS CO.,LTD.

Manufacturer Address: #181, Gongdan 1-dong, Gumi-si, Gyeongsangbuk-do, Republic of Korea

Contact Person: Mr. Hak-Ki Kim / General Manager

_	ECCID	OFFID CELLDE COO
•	FCC ID	OZ5URCTKP7600

• EUT Type Network Keypad

• Equipment Class Class B computing device peripheral (JBP)

• Model Name TKP-7600

• Trade Name UNIVERSAL remote control

Serial Number
Prototype

• Rule Part(s) FCC Part 15 Subpart B

• Type of Authority Certification

• Test Procedure(s) ANSI C63.4 (2009)

• **Dates of Test** May. 26, 2016 ~ May. 30, 2016

GUMI UNIVERSITY EMC CENTER

• Place of Test (FCC Test Firm Registration Number: 269701)

37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Republic of Korea.

• Test Report Number GETEC-E3-16-027

• **Date of Issue** Jun. 03, 2016

: GETEC-E3-15-038

: GETEC-C1-15-469

2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2009) was used in determining radiated and conducted emissions emanating from **OHSUNG ELECTRONICS CO.,LTD. Network Keypad (Model Name: TKP-7600)**

These measurement tests were conducted at GUMI UNIVERSITY EMC CENTER

The site address is 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 730-711, Republic of Korea.

This test site is one of the highest point of Gumi UNIVERSITY at about 200 km away from Seoul city and 40 km away from Daegu city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of §2.948 according to ANSI C63.4 (2009)



Fig 1. The map above shows the Gumi UNIVERSITY in vicinity area.

: GETEC-C1-15-469 Test Report Number : GETEC-E3-15-038

3. Product Information

3.1 Description of EUT

The Equipment under Test (EUT) is the OHSUNG Electronics Co.,Ltd. Network Keypad (Model Name: TKP-7600) FCC ID.: OZ5URCTKP7600

Type of product	Network Keypad			
Model Name	TKP-7600			
Power	DC 48 V (Standard PoE Injector or PoE switch(Purchased separately))			
Microprocessor	Coretex-A9 dual 1 GHz			
Memory	4 GB eMMC, 1 GB RAM			
Devices	Supports up to 255 Devices			
Pages	Supports up to 255 Pages on each Device			
Macro Capability	Up to 255 steps			
Network	One 10/100 Ethernet port (PoE)			
LCD	7 inch (1280 x800)			
Weight	10.51 oz			
Size	7.91" x 5.04" x 1.03"			
Maximum Clock frequency	400 MHz			

: GETEC-C1-15-469

3.2 Support Equipment / Cables used

3.2.1 Used Support Equipment

Description	Manufacturer	Model Name	S/N & FCC ID.
Network Keypad	OHSUNG ELECTRONICS CO.,LTD.	TKP-7600	S/N: None FCC ID.: OZ5URCTKP7600
PoE Switching Hub	OHSUNG ELECTRONICS CO.,LTD.	MFSPOE-8	S/N: None FCC ID.: None

See "Appendix D - Test Setup Photographs" for actual system test set-up

3.2.2 System configuration

Description	Manufacturer	Model Name	S/N & FCC ID.
-	-	-	-

3.2.3 Used Cable(s)

Cable Name	Condition	1						Description
LAN cable	Connected	l to the	EUT ar	nd MFS	POE-8)		10.00 m shielded

1) MFSPOE-8: PoE Switching Hub

3.3 Modification Item(s)

- None

: GETEC-C1-15-469 Test Report Number : GETEC-E3-15-038

4. Description of tests

4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used. The measurements were carried out while varying operating modes and cable positions within typically arrangement to determine maximum emission level.

The test conditions of the noted test mode(s) in this test report are;

- Test Voltage / Frequency : AC 120 V / 60 Hz
- Test Mode(s)
 - -. Communication mode
- Operating test pattern
 - -. Conducted Emission: The EUT was communication via LAN port to MFSPOE-8
 - -. Radiated Emission: The EUT was communication via LAN port to MFSPOE-8

ber : GETEC-E3-15-038

: GETEC-C1-15-469

4.2 Conducted Emission

The Line conducted emission test facility is inside a 4 m × 8 m × 2.5 m shielded enclosure.

(FCC Test Film Registration No.: 269701)

The EUT was placed on a non-conducting 1.0 m by 1.5 m table, which is 0.4 m in height and 0.8 m away from the vertical wall of the shielded enclosure.

The EUT is powered from the Rohde & Schwarz LISN (ENV216) and the support equipment is powered from the Rohde & Schwarz LISN (ENV216). Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver (Rohde & Schwarz, ESCI).

Exploratory measurements were conducted to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Exploratory measurements were scanned using Peak mode of EMI Test receiver from 150 kHz to 30 MHz with 20 ms sweep time. The final measurements were measured with Quasi-Peak and Average mode.

The bandwidth of EMI Test Receiver was set to 9 kHz. Interface cables were connected to the available interface ports of the test unit. Excess cable lengths were bundled at center with 30 cm ~ 40 cm.

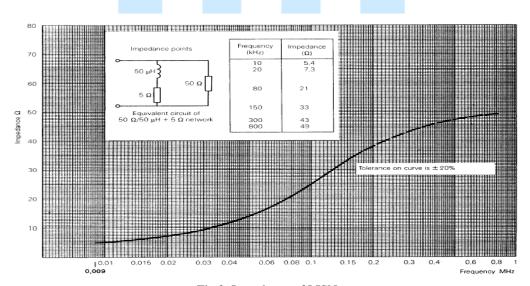


Fig 2. Impedance of LISN

4.3 Radiated Emission

Exploratory Radiated measurements were conducted at the 3 m or 10 m semi anechoic chamber in order to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Final measurements of below 1 GHz were made at 3 m or 10 m Chamber (FCC Test Firm Registration No.: 269701) or Open area test site (FCC Test Firm Registration No.: 269701) that complies with CISPR 16/ANSI C63.4. Above 1 GHz final measurements were conducted at the 3m Chamber (FCC Test Firm Registration No.: 269701) only.

For measurements above 1GHz, the bottom side of 3 m chamber was installed with absorbers in order to meet SVSWR Limit.

Exploratory measurements were scanned using Peak mode of EMI Test receiver and final measurements were measured with Quasi-Peak mode (Below 1 GHz) and Peak & Average mode (Above 1 GHz).

The measurements were performed by rotating the EUT 360° and adjusting the receive antenna height from 1.0 m to 4.0 m. All frequencies were investigated in both horizontal and vertical antenna polarity.

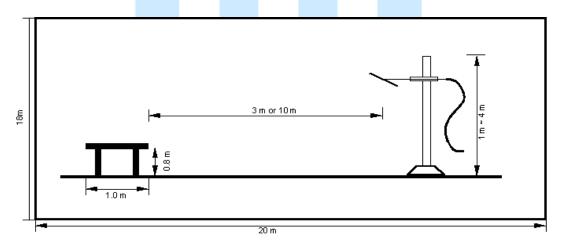


Fig 3. Dimensions of test site (Below 1 GHz)

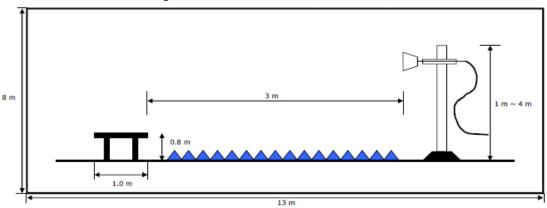



Fig 4. Dimensions of test site (Above 1 GHz)

5. Conducted Emission

5.1 Operating Environment

24.8 ℃ Temperature 47.3 % R.H. Relative Humidity :

5.2 Test Set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.4 m heights above the floor, 0.8 m from the reference ground plan e (GRP) wall and 0.8 m from AMN &ISN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines enter ing the shield room, were filtered.

5.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement."

The measurement uncertainty was given with a confidence of 95 %.

Test Items	Uncertainty	Remark
Conducted emission (9 kHz ~ 150 kHz)	3.94 dB	Confidence level of approximately 95 % $(k = 2)$
Conducted emission (150 kHz ~ 30 MHz)	3.43 dB	Confidence level of approximately 95 % $(k = 2)$

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

The listed uncertainties are the worst case uncertainty for the entire range of measurement, please note that the uncertainty values are provided for informational purposes only are not used in determining the PASS/FAIL results

5.4 Limit

or mint								
RFI Conducted	FCC Limit(dBμV) Class B							
Freq. Range	Quasi-Peak	Average						
150 kHz ~ 0.5 MHz	66 ~ 56*	56 ~ 46*						
0.5 MHz ~ 5 MHz	56	46						
5 MHz ~ 30 MHz	60	50						

^{*}Limits decreases linearly with the logarithm of frequency.

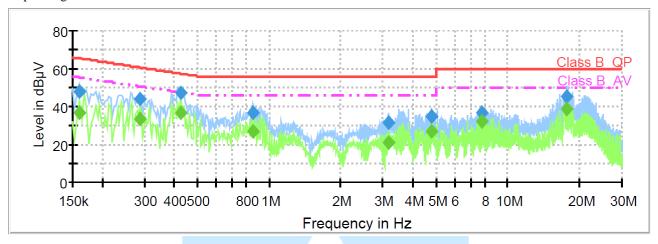
5.5 Test Equipment used

	Model Name	Manufacturer	Description	Serial Number	Due to Calibration
-	ESCI	Rohde & Schwarz	EMI Test Receiver	100237	Apr. 18, 2017
■ -	ENV216	Rohde & Schwarz	LISN	100173	Apr. 19, 2017
□-	ENV216	Rohde & Schwarz	LISN	100172	Apr. 19, 2017
□-	ENY81-CA6	Rohde & Schwarz	ISN	101573	Jul. 02, 2016
□-	ISN T8	TESEQ.GmbH	ISN	24568	Apr. 22, 2017
-	EMC 32	Rohde & Schwarz	Software	Ver.8.53	N/A

5.6 Test data for Conducted Emission

-. Test Date : May. 30, 2016

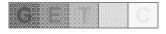
-. Resolution Bandwidth : 9 kHz


-. Frequency Range : 0.15 MHz ~ 30 MHz -. Line : L1: Live, N: Neutral

er : GETEC-E3-15-038

: GETEC-C1-15-469

• Operating condition: Communication mode


Final Result 1

	Filial Nesult 1									
	Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
	(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
	` '		(ms)	, ,			, ,	, ,	`	
	0.161194	47.8	100.0	9.000	Off	N	9.7	17.6	65.4	
	0.288056	43.8	100.0	9.000	Off	N	9.7	16.8	60.6	
	0.426113	47.3	100.0	9.000	Off	N	9.7	10.0	57.3	
	0.858938	36.9	100.0	9.000	Off	N	9.7	19.1	56.0	
	3.146194	31.4	100.0	9.000	Off	L1	9.8	24.6	56.0	
	4.769288	34.9	100.0	9.000	Off	N	9.8	21.1	56.0	
Ī	7.750556	36.4	100.0	9.000	Off	L1	9.9	23.6	60.0	
	17.757769	45.3	100.0	9.000	Off	L1	10.1	14.7	60.0	

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.161194	36.5	100.0	9.000	Off	N	9.7	18.9	55.4	
0.288056	33.6	100.0	9.000	Off	N	9.7	17.0	50.6	
0.426113	36.6	100.0	9.000	Off	N	9.7	10.7	47.3	
0.858938	26.7	100.0	9.000	Off	N	9.7	19.3	46.0	
3.146194	21.2	100.0	9.000	Off	L1	9.8	24.8	46.0	
4.769288	26.9	100.0	9.000	Off	N	9.8	19.1	46.0	
7.750556	31.9	100.0	9.000	Off	L1	9.9	18.1	50.0	
17.757769	38.9	100.0	9.000	Off	L1	10.1	11.1	50.0	

< Fig 5. Graph of continuous disturbance >

6. Radiated Emission

6.1 Operating Environment

Temperature : $21.0~^{\circ}\text{C}$ Relative Humidity : $43.6~^{\circ}\text{R.H.}$

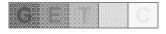
6.2 Test Set-up

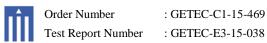
A preliminary and final measurement was at 3 m & 10 m anechoic chamber.

The EUT was placed on a non-conductive turntable approximately 1.0 m above the ground plane.

The turntable with EUT was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels.

This procedure was performed for both horizontal and vertical polarization of the receiving antenna.


6.3 Measurement Uncertainty


The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

Test Items(3 m Anechoic Chamber)	Uncertainty	Remark
Radiated emission (30 MHz ~ 300 MHz, 3 m, Vertical)	4.66 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (30 MHz ~ 300 MHz, 3 m, Horizontal)	4.65 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Vertical)	4.91 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Horizontal)	4.88 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (1 000 MHz ~ 6 000 MHz, 3 m)	5.32 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (1 000 MHz ~ 18 000 MHz, 3 m)	5.45 dB	Confidence level of approximately 95 % $(k = 2)$
Test Items(10 m Anechoic Chamber)	Uncertainty	Remark
Radiated emission (30 MHz ~ 300 MHz, 3 m, Vertical)	3.98 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (30 MHz ~ 300 MHz, 3 m, Horizontal)	3.49 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Vertical)	3.96 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Horizontal)	3.78 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (1 000 MHz ~ 6 000 MHz, 3 m)	5.46 dB	Confidence level of approximately 95 % $(k = 2)$

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

The listed uncertainties are the worst case uncertainty for the entire range of measurement. please note that the uncertainty values are provided for informational purposes only are not used in determining the PASS/FAIL results

Test Report Number : GETEC-E3-15-038

6.4 Limit

OIT EIIIII		
Frequency (MHz)	FCC Limit @ 3 m. $dB\mu V/m$	CISPR Limit @ 10 m. dBμV/m
30 ~ 88	40.0	30.0
88 ~ 216	43.5	30.0
216 ~ 230	46.0	30.0
230 ~ 960	46.0	37.0
960 ~ 1 000	54.0	37.0

Frequency (MHz)	FCC Class B Peak Limit @ 3 m dBμV/m	FCC Class B Average Limit@ 3 m dBμV/m
> 1 000	74.0	54.0

Frequency (MHz)	CISPR Class B Peak Limit @ 3 m dB μ V/m	CISPR Class B Average Limit@ 3 m $dB\mu V/m$			
> 1 000	70.0	50.0			

: GETEC-E3-15-038

6.5 Test Equipment us	ed				
Model Name	Manufacturer	Description	Serial Number	Due to Calibration	
□ - ESIB26	Rohde & Schwarz	EMI Test Receiver	830482/010	Apr. 18, 2017	
■ - ESR7	Rohde & Schwarz	EMI Test Receiver	101382	Apr. 18, 2017	
■ - VULB9160	Schwarzbeck	Broad Band Test	3193	Mar. 28, 2018	
		Antenna			
■ - BBHA9120D	Schwarzbeck	Horn ANT	207	Mar. 16, 2017	
□ - MCU066	maturo GmbH	Position Controller	1390306	N/A	
□ - TT2.5SI	maturo GmbH	Turntable	1390307	N/A	
□ - AM 4.0	maturo GmbH	Antenna Mast	1390308	N/A	
■ - CO3000	Innco system GmbI	H Position Controller	1390306	N/A	
■ - DT3000	Innco system GmbI	H Turntable	1390307	N/A	
■ - MA4000-EP	Innco system GmbI	H Antenna Mast	1390308	N/A	
■ - AFS 44 00101800-	25-10P-44 MITEQ	Preamplifier	1258943	Jan. 05,2017	
■ - 87405A	Agilent	Preamplifier	MY39500777	Jan. 05,2017	
■ - EMC 32	Rohde & Schwarz	Software	Ver.9.26.01	N/A	

6.6 Test data for Radiated Emission

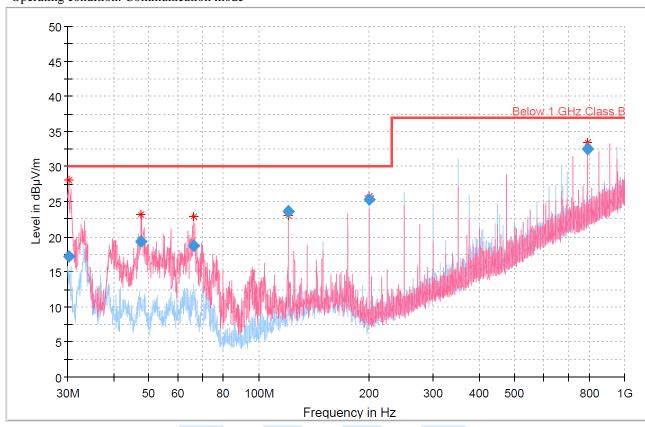
: Oct. 02 2015 -. Test Date -. Measurement Distance : 3 m, 10 m

: The highest frequency of the internal source of the EUT is between 108 MHz and -. Note

500 MHz(400 MHz). The measurement was made up to 2 000 MHz.

-. Measurement

Frequency range	30 MHz ~ 1 GHz	Above 1 GHz
Detector mode	Quasi peak	Peak / Average
Resolution bandwidth	120 kHz	1 MHz



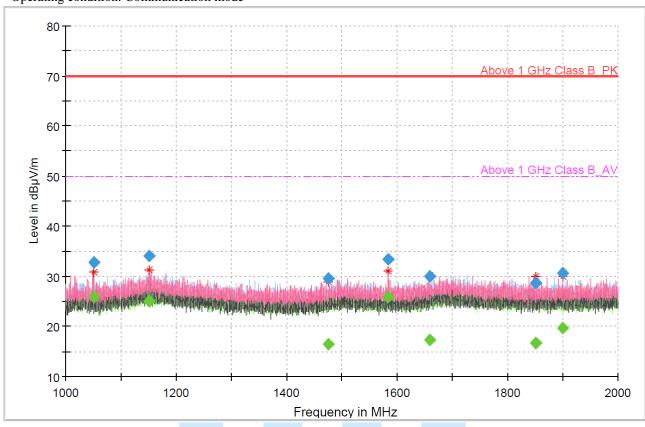
st Report Number : GETEC-E3-15-038

: GETEC-C1-15-469

-. $30 \text{ MHz} \sim 1 \text{ GHz}$

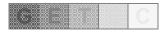
• Operating condition: Communication mode

Final Result


Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(dB)
30.176	17.20	30.00	12.80	100.0	120.000	104.8	V	-13.4
47.489	19.30	30.00	10.70	100.0	120.000	99.9	V	-11.6
66.404	18.72	30.00	11.28	100.0	120.000	193.8	V	-12.5
120.023	23.55	30.00	6.45	100.0	120.000	111.7	V	-11.6
200.001	25.25	30.00	4.75	100.0	120.000	373.0	Н	-12.6
792.004	32.46	37.00	4.54	100.0	120.000	194.8	V	2.3

< Fig 6. Radiated emission result (30 MHz \sim 1 000 MHz) >

-. 1 GHz ~ 2 GHz


• Operating condition: Communication mode

Final Result

<u> </u>										
Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
1050.000	32.84		70.00	37.16	100.0	1000.000	215.2	V	7.0	-12.4
1050.000		25.83	50.00	24.17	100.0	1000.000	215.2	V	7.0	-12.4
1150.000	33.95		70.00	36.05	100.0	1000.000	224.9	Н	140.0	-12.0
1150.000		24.94	50.00	25.06	100.0	1000.000	224.9	Н	140.0	-12.0
1475.500	29.58		70.00	40.42	100.0	1000.000	125.0	V	235.0	-10.9
1475.500		16.46	50.00	33.54	100.0	1000.000	125.0	V	235.0	-10.9
1583.900		25.78	50.00	24.22	100.0	1000.000	175.0	Н	164.0	-10.4
1583.900	33.41		70.00	36.59	100.0	1000.000	175.0	Н	164.0	-10.4
1660.000		17.22	50.00	32.78	100.0	1000.000	125.0	Н	267.0	-10.0
1660.000	29.91		70.00	40.09	100.0	1000.000	125.0	Н	267.0	-10.0
1850.200		16.68	50.00	33.32	100.0	1000.000	130.2	V	204.0	-9.0
1850.200	28.66		70.00	41.34	100.0	1000.000	130.2	V	204.0	-9.0
1900.900	30.59		70.00	39.41	100.0	1000.000	121.9	Н	164.0	-8.7
1900.900		19.70	50.00	30.30	100.0	1000.000	121.9	Н	164.0	-8.7

< Fig 7. Radiated emission result (1 000 MHz \sim 2 000 MHz) >

11. Sample Calculations

$$\begin{split} dB\mu V &= 20\ Log\ _{10}(\mu V/m)\\ dB\mu V &= \ dBm\ +\ 107\\ \mu V &= \ 10\ ^{(dB\mu V/20)} \end{split}$$

11.1 Example 1:

■ 20.3 MHz

Class B Limit $= 250 \mu V = 48 dB\mu V$

Reading = $39.2 dB\mu V$

 $10^{(39.2dB\mu V/20)} = 91.2 \mu V$

Margin = $48 dB\mu V - 39.2 dB\mu V$

= 8.8 dB

11.2 Example 2:

■ 66.7 MHz

Class B Limit = $100 \mu V/m = 40.0 dB\mu V/m$

Reading = $31.0 \text{ dB}\mu\text{V}$

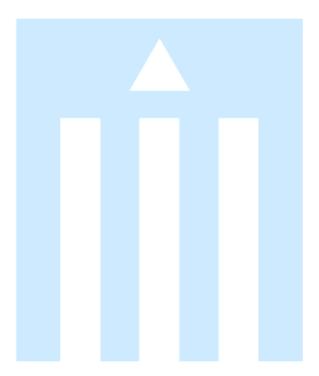
Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 \text{ dB}\mu\text{V/m}$

Margin = $40.0 \text{ dB}\mu\text{V/m} - 36.8 \text{ dB}\mu\text{V/m}$

= 3.2 dB

: GETEC-C1-15-469


Page 19 / 19

12. Recommendation & Conclusion

The data collected shows that the **OHSUNG ELECTRONICS CO.,LTD.**

Network Keypad (Model Name: TKP-7600) was complies with \$15.107, 15.109 of the FCC Rules.

- The end -

EUT Type: Network Keypad

FCC ID.: OZ5URCTKP7600

