

FCC ID: OYGTSSRE4TB

EMI -- TEST REPORT

Test Report No. :	T30159-00-03XF	September 06, 2005
		Date of issue

Type / Model Name : Wheel Electronic / TSSRE4Tb

Product Description : Tire Safety System

Applicant : BERU AG

Address : Mörikestrasse 155

71636 Ludwigsburg

Manufacturer : BERU AG

Address : Mörikestrasse 155

71636 Ludwigsburg

Licence holder : BERU AG

Address : Mörikestrasse 155

71636 Ludwigsburg

Test Result according to the standards listed in clause 1 test standards:	Positive
--	-----------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

FCC ID: OYGTSSRE4TB

Contents

1 TEST STANDARDS	3
2 SUMMARY	4
3 EQUIPMENT UNDER TEST	5
3.1 PHOTO DOCUMENTATION OF THE EUT	5
3.2 POWER SUPPLY SYSTEM UTILISED	9
3.3 SHORT DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)	9
4 TEST ENVIRONMENT	10
4.1 ADDRESS OF THE TEST LABORATORY	10
4.2 ENVIRONMENTAL CONDITIONS	10
4.3 STATEMENT OF THE MEASUREMENT UNCERTAINTY	10
4.4 MEASUREMENT PROTOCOL FOR FCC, VCCI AND AUSTEL	10
5 TEST CONDITIONS AND RESULTS FOR 433 MHZ TRANSMITTER	12
5.1 CONDUCTED EMISSIONS	12
5.2 RADIATED POWER OF THE FUNDAMENTAL WAVE	13
5.3 RADIATED EMISSIONS (ELECTRIC FIELD) 30 MHz – 18 GHz	15
5.4 CORRECTION FOR PULSE OPERATION (DUTY CYCLE)	20
5.5 EMISSION BANDWIDTH	24
5.6 SIGNAL DEACTIVATION	26
6 TEST CONDITIONS AND RESULTS FOR 125 KHZ RECEIVER	28
6.1 CONDUCTED EMISSIONS	28
6.2 RADIATED EMISSIONS (ELECTRIC FIELD)	29
7 USED TEST EQUIPMENT AND ACCESSORIES	32

FCC ID: OYGTSSRE4TB

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart C - Intentional Radiators (October 01, 2004)

Part 15, Subpart C, Section 15.231	Periodic operation in the band 40.66-40.70 MHz and above 70 MHz §15.231(a) Signal deactivation §15.231(b) Radiated emissions, Fundamental & Harmonics §15.231(c) Emission Bandwidth
Part 15, Subpart C, Section 15.35(c)	Correction for Pulse Operation (Duty Cycle)
Part 15, Subpart C, Section 15.207(a)	AC Line conducted emissions
Part 15, Subpart C, Section 15.209(a)	Radiated emissions, general requirements

FCC Rules and Regulations Part 15 Subpart B - Unintentional Radiators (October 01, 2004)

Part 15, Subpart B, Section 15.107(a)	AC Line conducted emissions
Part 15, Subpart B, Section 15.109(a)	Radiated emissions, general requirements
Part 15, Subpart B, Section 15.111(a)	Antenna power conduction

FCC ID: OYGTSSRE4TB

2 SUMMARY

GENERAL REMARKS:

The Wheel electronic is one component of the Tire Safety System (TSS) which controls and monitors tire pressures. The system comprises the following components:

- 1 TSS control unit
- 4 sets of wheel electronics including valve
- 1 digital antenna
- 4 trigger transmitters

The Wheel electronic consists of a 125 kHz Receiver and a 433 MHz Transmitter therefore contains this test report the transmitter tests according to FCC Part 15, Subpart C, Section 15.231 and the receiver tests according to FCC Part 15, Subpart B. During all tests, the Eut have been operated in the complete Tire Safety System (TSS), where it was possible to set the different modes via suitable software.

FINAL ASSESSMENT:

The equipment under test **fulfills** the EMI requirements cited in clause 1 test standards.

Date of receipt of test sample : acc. to storage records

Testing commenced on : August 18, 2005

Testing concluded on : August 25, 2005

Checked by:

Tested by:

Klaus Gegenfurtner
Dipl. Ing.(FH)
Manager: Radio Group

Xaver Fischer

FCC ID: OYGTSSRE4TB

3.2 Power supply system utilised

Power supply voltage : 3,0 V / DC

3.3 Short description of the Equipment under Test (EuT)

The Wheel electronics measure the tire pressure and the air temperature in the tire and send these via a set radio route together with the residual battery life and the code (ID) to the digital antenna. For exactly description please refer to the technical documents.

Number of tested samples: 1
Serial number: Prototype

EuT operation mode:

The equipment under test was operated during the measurement under the following conditions:

- TX-mode at frequency 433 MHz

- RX-mode at frequency 125 kHz

Ext configurations

The following peripheral devices and interface cables were connected during the measurements:

- Notebook
-
-
-
-
-
-

Model : IBM

Model :

Model :

Model :

Model :

Model :

Model :

FCC ID: OYGTSSRE4TB

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

mikes-testingpartners gmbh
Ohmstrasse 2-4
94342 Strasskirchen
Germany

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 /11.2003 „Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements“ and is documented in the mikes-testingpartners gmbh quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

4.4 Measurement Protocol for FCC, VCCI and AUSTEL

4.4.1 GENERAL INFORMATION

4.4.1.1 Test Methodology

Conducted and radiated disturbance testing is performed according to the procedures in International Special Committee on Radio Interference (CISPR) Publication 22 (1997), European Standard EN 55022 and Australian Standard AS 3548 (which are based on CISPR 22).

The Japanese standard, "Voluntary Control Council for Interference (VCCI) by Data Processing Equipment and Electronic Office Machines, Technical Requirements" is technically equivalent to CISPR 22 (1997). For official compliance, a conformance report must be sent to and accepted by the VCCI.

In compliance with FCC Docket 92-152, "Harmonization of Rules for Digital Devices Incorporate International Standards", testing for FCC compliance may be done following the ANSI C63.4-2003 procedures and using the CISPR 22 Limits.

File No. **T30159-00-03XF**, page **10 of 32**

FCC ID: OYGTSSRE4TB

4.4.1.2 Measurement Error

The data and results referenced in this document are true and accurate. The reader is cautioned that there is some measurement variability due to the tolerances of the test equipment that can contribute to a nominal product measurement uncertainty. The measurement uncertainty was calculated for all measurements listed in this test report according to NIS 81/5.1994 "The treatment of uncertainty in EMC measurements" and is documented in the mikes-testingpartners gmbh quality system according to DIN EN ISO/IEC 17025. Furthermore, component differences and manufacturing process variability of production units similar to that tested may result in additional product uncertainty. If necessary, refer to the test lab for the actual measurement uncertainty for specific tests. The manufacturer has the sole responsibility of continued compliance of the device.

4.4.1.3 Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into its characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum disturbances from the unit.

4.4.2 DETAILS OF TEST PROCEDURES

General Standard Information

The test methods used comply with CISPR Publication 22 (1997), EN 55022 (2001) and AS 3548 (1992) - "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment" and with ANSI C63.4-2003 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

FCC ID: OYGTSSRE4TB

5 TEST CONDITIONS AND RESULTS FOR 433 MHZ Transmitter

5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location:

5.1.2 Photo documentation of the test set-up

5.1.3 Description of Measurement

The final level, expressed in dB μ V, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC Limit or to the CISPR limit, which is equivalent to the Australian AS 3548 limit.

To convert between dB μ V and μ V, the following conversions apply:

$$\text{dB}\mu\text{V} = 20(\log \mu\text{V})$$

$$\mu\text{V} = \text{Inverse log}(\text{dB}\mu\text{V}/20)$$

Conducted emissions on the DC power interface of the EuT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with $50\Omega/50 \mu\text{H}$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeter's above the floor and is positioned 40 centimeter's from the vertical ground plane (wall) of the screen room. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

Remarks: The measurement is not applicable because the EuT is not powered by the system, but it is separated powered by a 3,0 V batterie.

FCC ID: OYGTSSRE4TB

5.2 Radiated power of the fundamental wave

For test instruments and accessories used see section 6 Part **CPR 2**.

5.2.1 Description of the test location

Test location: OATS1

Test distance: 3 metres

5.2.2 Photo documentation of the test set-up

File No. **T30159-00-03XF**, page **13 of 32**

FCC ID: OYGTSSRE4TB

5.2.3 Description of Measurement

The radiated power of the fundamental wave from the EUT is measured in the frequency range of 30 to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The Interface cables that are closer than 40 centimetres to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

The final level, expressed in dB μ V/m, is arrived by taking the reading from the EMI receiver (Level dB μ V) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored. This result then has the FCC or CISPR limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets at page.

The resolution bandwidth during the measurement is as follows:

30 MHz – 1000 MHz: ResBW: 120 kHz

5.2.4 Test result

Frequency [MHz]	L: QP [dB μ V]	L: AV [dB μ V]	L: PK [dB μ V]	Bandwidth [kHz]	Correct. [dB]	L: QP [dB μ V/m]	L: AV [dB μ V/m]	L: PK [dB μ V/m]	Limit [dB μ V/m]	Delta [dB]
433,92	50,3	18,4	52,3	120	19,1	69,4	37,5	71,4	80,8	-11,4

Limit according to FCC Subpart 15.231(b)

Frequency (MHz)	Fieldstrength of fundamental		Fieldstrength of spurious emissions	
	(μ V/m)	dB (μ V/m)	(μ V/m)	dB (μ V/m)
40,66 – 40,70	2250	67	225	47
70 - 130	1250	62	125	42
130 - 174	1250 to 3750*	62 to 71,4*	125 to 375*	42 to 51,4*
174 - 260	3750	71,4	375	51,4
260 - 470	3750 to 12500*	71,4 to 81,9*	375 to 1250*	51,4 to 61,9*
Above 470	12500	81,9	1250	61,9

*Linear interpolations

The requirements are **FULFILLED**.

Remarks:

FCC ID: OYGTSSRE4TB

5.3 Radiated emissions (electric field) 30 MHz – 18 GHz

For test instruments and accessories used see section 6 Part **SER 2, SER 3**.

5.3.1 Description of the test location

Test location: OATS1
Anechoic Chamber A2

5.3.2 Photo documentation of the test set-up

FCC ID: OYGTSSRE4TB

File No. **T30159-00-03XF**, page **16 of 32**

FCC ID: OYGTSSRE4TB

5.3.3 Description of Measurement

Radiated spurious emissions from the EuT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003. The Interface cables that are closer than 40 centimetres to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

The final level, expressed in dB μ V/m, is arrived by taking the reading from the EMI receiver (Level dB μ V) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored. This result then has the FCC or CISPR limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets at page.

The radiated emissions from the EuT are measured in the frequency range of 1 GHz to maximum frequency as specified in section 15.33, using a tuned receiver (Spectrum Analyser) and appropriate linearly polarized antennas. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The Interface cables that are closer than 40 centimetres to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3 horizontally from the EuT.

Measurement are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 1 MHz. All tests are performed at a test-distance of 3 meters. Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration procedure the highest emission relative the limit and therefore shall be used for final testing. During the tests the EUT is rotated all around to find the maximum levels of emissions. The cables and equipment were placed and moved within the range of position likely to find their maximum emissions. When the EuT is larger than the beamwidth of the measuring antenna, the measurement antenna will be moved over the surfaces for the four sides or the test distance will be reduced to demonstrate that emissions were at maximum at the limit distance.

The resolution bandwidth during the measurement is as follows:

30 MHz – 1000 MHz: ResBW: 120 kHz
1000 MHz – 18000 MHz: ResBW: 1 MHz

5.3.4 Test result

Testresult in detail:(<1GHz)

Frequency [MHz]	L: QP [dB μ V]	L: AV [dB μ V]	L: PK [dB μ V]	Bandwidth [kHz]	Correct. [dB]	L: QP [dB μ V/m]	L: AV [dB μ V/m]	L: PK [dB μ V/m]	Limit [dB μ V/m]	Delta [dB]
867,84	17,8	2,5	22,5	120	27,0	44,8	29,5	49,5	60,8	-16,0

FCC ID: OYGTSSRE4TB

Testresult in detail:(>1GHz)

Frequency [MHz]	L: PK [dB μ V]	Corr. Duty Cycle [dB]	L: AV [dB μ V]	Band width [kHz]	Correct. [dB]	L: PK [dB μ V/m]	L: AV [dB μ V/m]	Limit AV [dB μ V/m]	Delta [dB]
1024	53,8	-19,74	34,06	1000	-14,5	39,3	19,56	54,0	-34,4
1372	55,3	-19,74	35,56	1000	-14,7	40,6	20,86	54,0	-33,1
2104	57,5	-19,74	37,76	1000	-11,0	46,5	26,76	60,8	-34,0
2170	62,3	-19,74	42,56	1000	-10,7	51,6	31,86	60,8	-28,9
2602	77,0	-19,74	57,26	1000	-9,6	67,4	47,66	60,8	-13,1
3040	69,9	-19,74	50,16	1000	-8,3	61,6	41,86	60,8	-18,9
3472	65,9	-19,74	46,16	1000	-8,3	57,6	37,86	60,8	-22,9
3910	65,5	-19,74	45,76	1000	-8,1	57,4	37,66	54,0	-16,3
4340	59,4	-19,74	39,66	1000	0,6	60,0	40,26	54,0	-13,74

Limit according to FCC Subpart 15.231(b) Subpart 15.209(a) / Subpart 15.205(a)

Frequency (MHz)	Fieldstrength of fundamental		Fieldstrength of spurious emissions	
	(μ V/m)	dB (μ V/m)	(μ V/m)	dB (μ V/m)
40,66 – 40,70	2250	67	225	47
70 - 130	1250	62	125	42
130 - 174	1250 to 3750*	62 to 71,4*	125 to 375*	42 to 51,4*
174 - 260	3750	71,4	375	51,4
260 - 470	3750 to 12500*	71,4 to 81,9*	375 to 1250*	51,4 to 61,9*
Above 470	12500	81,9	1250	61,9

*Linear interpolations

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in the table above or to the general limits shown in the table below according to § 15.209, whichever limit permits a higher field strength.

Frequency [MHz]	15.209 Limits [μ V/m]	15.209 Limits [dB μ V/m]
30-88	100	40
88-216	150	43,5
216-960	200	46
Above 960	500	54

Besides is a limit according to §15.35(b) on the radio frequency emissions, as measured with a peak detector, corresponding to 20 dB above the maximum permitted average limits.

FCC ID: OYGTSSRE4TB

Restricted bands of operation:

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209

MHz	MHz	GHz
25.5 – 25.67	960 – 1240	4.5 – 5.15
37.5 – 38.25	1300 – 1427	5.35 – 5.46
73 – 74.6	1435 – 1626.5	7.25 – 7.75
74.8 – 75.2	1645.5 – 1646.5	8.025 – 8.5
108 – 121.94	1660 – 1710	9.0 – 9.2
123 – 138	1718.8 – 1722.2	9.3 – 9.5
149.9 – 150.05	2200 – 2300	10.6 – 12.7
156.52475 – 156.52525	2310 – 2390	13.25 – 13.4
156.7 – 156.9	2483.5 – 2500	14.47 – 14.5
162.0125 – 167.17	2655 – 2900	15.35 – 16.2
167.72 – 173.2	3260 – 3267	17.7 – 21.4
240 – 285	3332 – 3339	22.01 – 23.12
322 – 335.4	3345.8 – 3358	23.6 – 24.0
399.9 – 410	3600 – 4400	31.2 – 31.8
608 – 614		36.43 – 36.5

The requirements are **FULFILLED**.

Remarks: During the test, the Eut was set into continuous transmitting mode.

The measurement was performed up to the 10th harmonic (4330 MHz).

FCC ID: OYGTSSRE4TB

5.4 Correction for Pulse Operation (Duty Cycle)

For test instruments and accessories used see section 6 Part DC.

5.4.1 Description of the test location

Test location: AREA4

5.4.2 Photo documentation of the test set-up

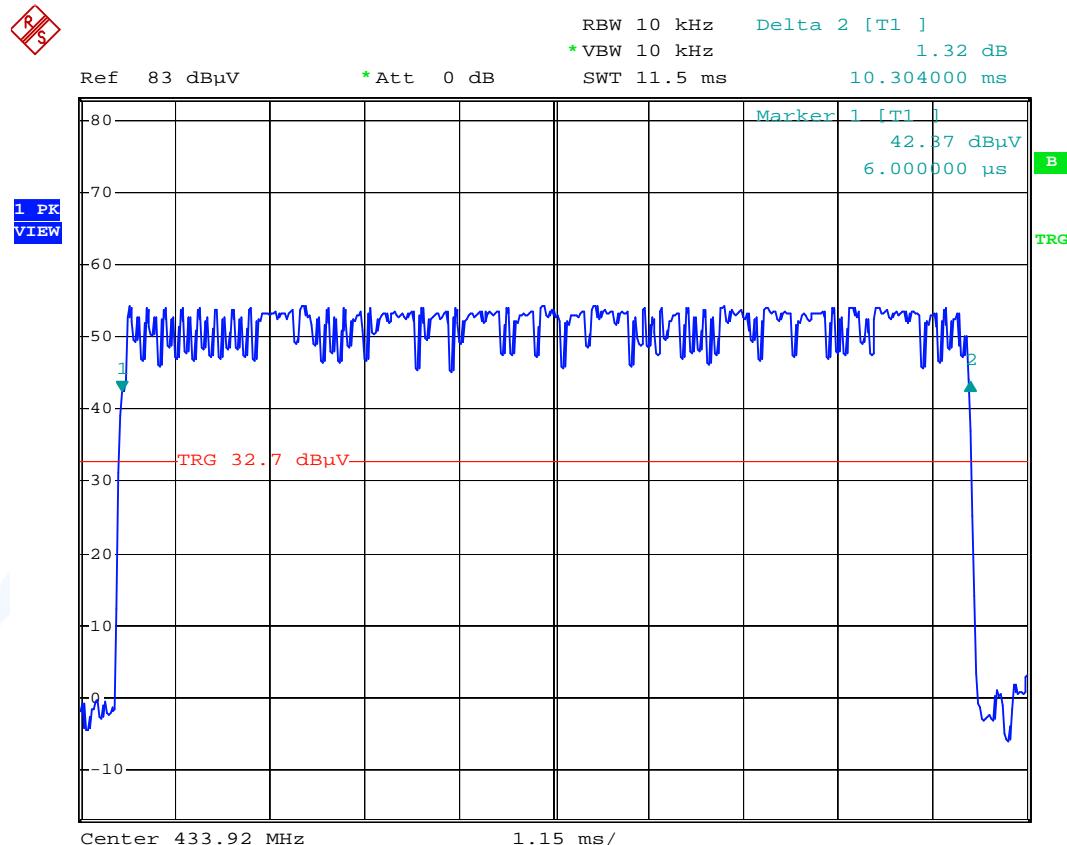
5.4.3 Description of Measurement

The Duty cycle factor, expressed in dB, is arrived by taking the following formula:

$$KE = 20 \log [(t_{IB} * p) / T_w]$$

KE: pulse operation correction factor [dB]
t_w: pulse duration for one complete pulse track [msec]
t_{IB}: pulse duration for one pulse [μ sec]
T_w: a period of the pulse track [msec]
p: number of pulses in one train

FCC ID: OYGTSSRE4TB**5.4.4 Test result**

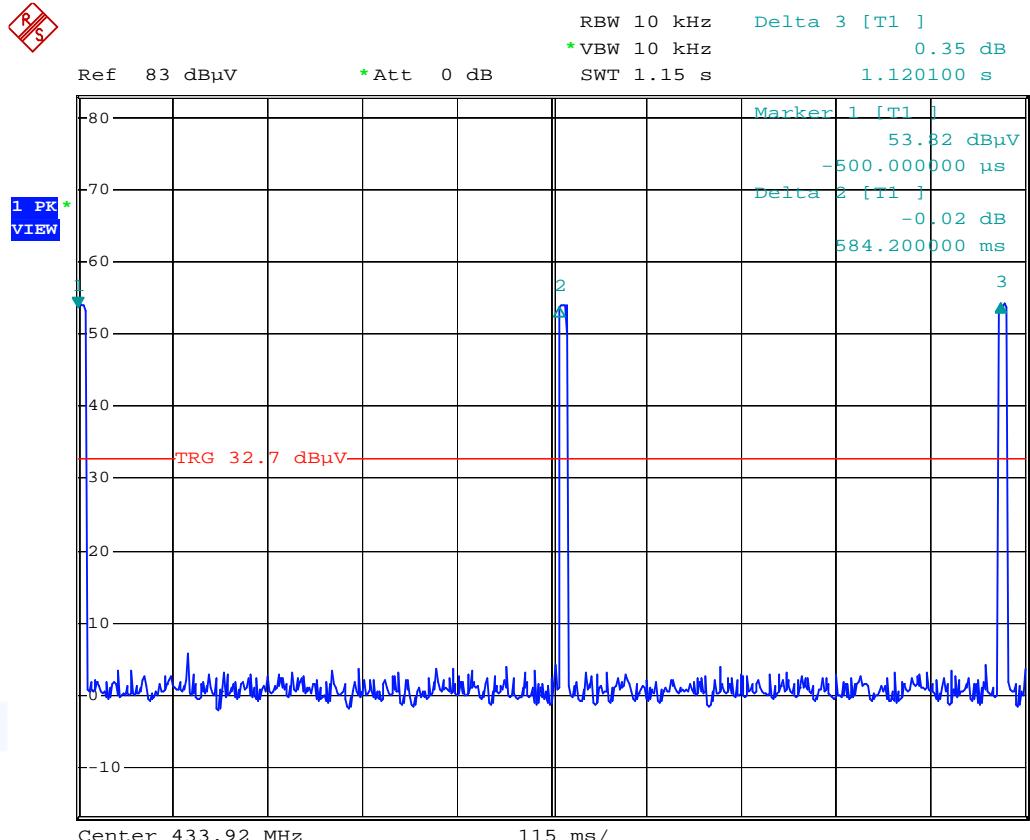

Duty cycle	t_{iw} [msec]	T_w [msec]	t_{iB} [msec]	p	K_E [dB / %]
Real Duty cycle					
Within 100 msec		100	10,3	1	-19,74 / 10,3

Remarks: The pulse train [T_w] exceeds 100 ms, therefore the duty cycle have been calculated by averaging the sum of the pulselwidths over the 100 ms width with the highest average value.
For detailed results, please see the test protocol below.

FCC ID: OYGTSSRE4TB

5.4.5 Test protocol

Correction for Pulse Operation (Duty Cycle)
FCC Part 15 Subpart 15.35(c)



Date: 25.AUG.2005 14:04:49

File No. T30159-00-03XF, page 22 of 32

FCC ID: OYGTSSRE4TB

RS

B

TRG

Date: 25.AUG.2005 14:07:01

File No. T30159-00-03XF, page 23 of 32

FCC ID: OYGTSSRE4TB

5.5 Emission Bandwidth

For test instruments and accessories used see section 6 Part **MB**.

5.5.1 Description of the test location

Test location: AREA4

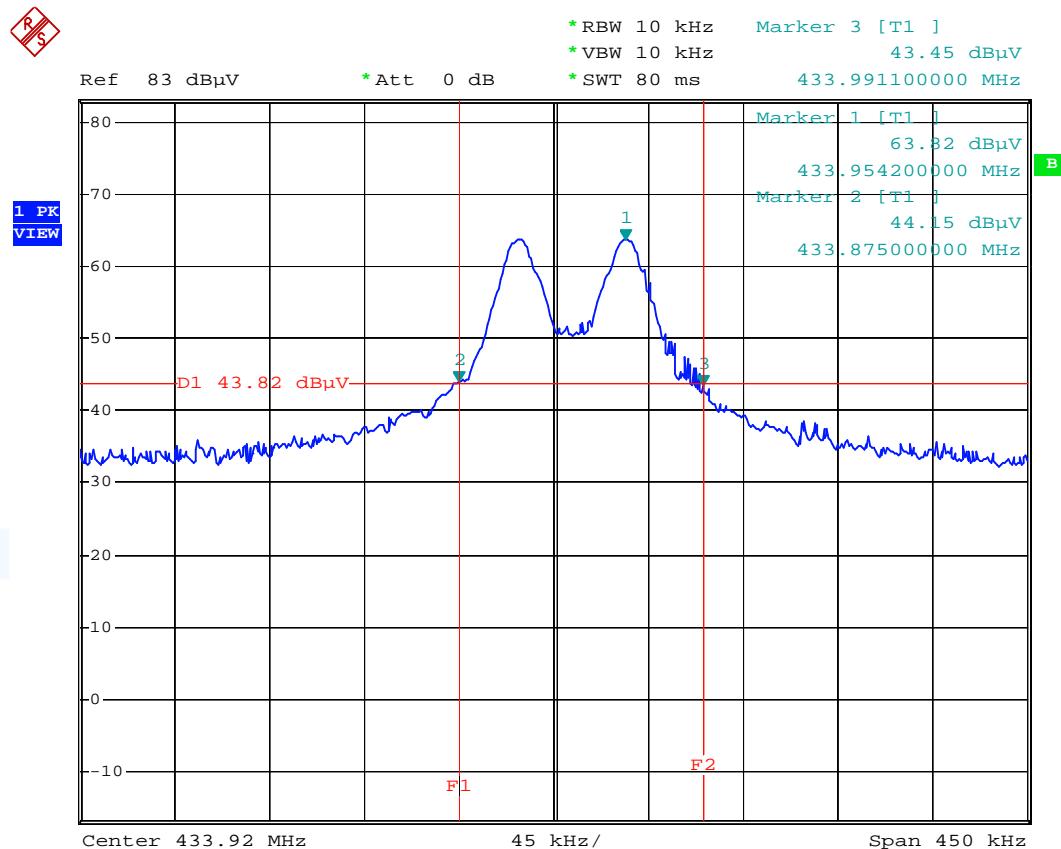
5.5.2 Photo documentation of the test set-up

5.5.3 Test result

Fundamental [MHz]	20dB Bandwidth F1 [MHz]	20dB Bandwidth F2 [MHz]	Measured Bandwidth [kHz]	LIMIT Fundamental $f^*0,0025$ [kHz]
433,92	433,8750	433,9911	116,1	1084,8

Limit according to FCC Part 15 Subpart 15.231(c):

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.


The requirements are

Remarks: For detailed results, please see the test protocol below.

FCC ID: OYGTSSRE4TB

5.5.4 Test protocol

Emission Bandwidth
FCC Part 15 Subpart 15.231(c)

Date: 25.AUG.2005 11:13:53

File No. T30159-00-03XF, page 25 of 32

FCC ID: OYGTSSRE4TB

5.6 Signal deactivation

For test instruments and accessories used see section 6 Part **MB**.

5.6.1 Description of the test location

Test location: AREA4

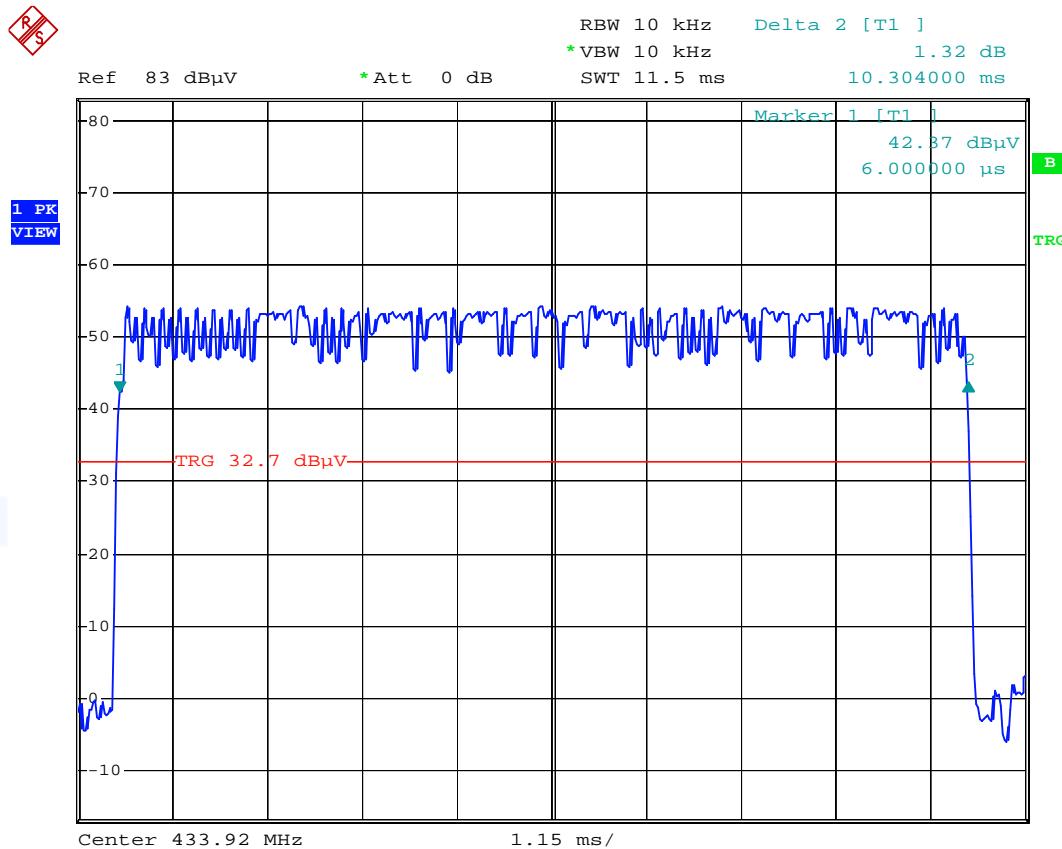
5.6.2 Photo documentation of the test set-up

5.6.3 Test result

The duration of the transmission is 10,00 milliseconds each time which meets the requirement of ceasing transmission automatically within 5 seconds after activation.

Limit according to FCC Part 15 Subpart 15.231(a):

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released and a transmitter activated automatically shall cease transmission within 5 seconds after activation.


The requirements are **FULFILLED**.

Remarks: For detailed test result, please see the test protocol below.

FCC ID: OYGTSSRE4TB

5.6.4 Test protocol

Signal deactivation FCC Part 15 Subpart 15.231(a)

Date: 25.AUG.2005 14:04:49

File No. T30159-00-03XF, page 27 of 32

FCC ID: OYGTSSRE4TB

6 TEST CONDITIONS AND RESULTS FOR 125 KHz Receiver

6.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

6.1.1 Description of the test location

Test location:

6.1.2 Photo documentation of the test set-up

6.1.3 Description of Measurement

The final level, expressed in dB μ V, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC Limit or to the CISPR limit, which is equivalent to the Australian AS 3548 limit.

To convert between dB μ V and μ V, the following conversions apply:

$$\text{dB}\mu\text{V} = 20(\log \mu\text{V})$$

$$\mu\text{V} = \text{Inverse log}(\text{dB}\mu\text{V}/20)$$

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EuT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with $50\Omega/50 \mu\text{H}$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeter's above the floor and is positioned 40 centimeter's from the vertical ground plane (wall) of the screen room. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

Remarks: The measurement is not applicable because the EuT is not powered by the system, but it is separated powered by a 3,0 V batterie.

FCC ID: OYGTSSRE4TB

6.2 Radiated emissions (electric field)

For test instruments and accessories used see section 6 Part **SER 2**.

6.2.1 Description of the test location

Test location: OATS1

6.2.2 Photo documentation of the test set-up

FCC ID: OYGTSSRE4TB

6.2.3 Description of Measurement

Radiated emissions from the EuT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The Interface cables that are closer than 40 centimetres to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

The final level, expressed in dB μ V/m, is arrived by taking the reading from the EMI receiver (Level dB μ V) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored. This result then has the FCC or CISPR limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets at page.

The radiated emissions from the EuT are measured in the frequency range of 1 GHz to maximum frequency as specified in section 15.33, using a tuned receiver (Spectrum Analyser) and appropriate linearly polarized antennas. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The Interface cables that are closer than 40 centimetres to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3m horizontally from the EuT.

Measurement are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 1 MHz. All tests are performed at a test-distance of 3 meters. Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration procedure the highest emission relative the limit and therefore shall be used for final testing. During the tests the EUT is rotated all around to find the maximum levels of emissions. The cables and equipment were placed and moved within the range of position likely to find their maximum emissions. When the EuT is larger than the beamwidth of the measuring antenna, the measurement antenna will be moved over the surfaces for the four sides or the test distance will be reduced to demonstrate that emissions were at maximum at the limit distance.

The resolution bandwidth during the measurement is as follows:

0,009 MHz – 30 MHz	ResBW: 10 kHz
30 MHz – 1000 MHz:	ResBW: 120 kHz
Above 1000 MHz	ResBW: 1 MHz

6.2.4 Test result

Testresult in detail:(<1GHz)

Frequency [MHz]	L: QP [dB μ V]	L: AV [dB μ V]	Bandwidth [kHz]	Correct. [dB]	L: QP [dB μ V/m]	L: AV [dB μ V/m]	Limit [dB μ V/m]	Delta [dB]
0,009-30			0,2 - 10		< 30			
			.					

FCC ID: OYGTSSRE4TB

Limit according to FCC Subpart 15.109(a)

Frequency [MHz]	15.109 Limits [μV/m]	15.109 Limits [dBμV/m]
30-88	100	40
88-216	150	43,5
216-960	200	46
Above 960	500	54

The requirements are

Remarks: According to FCC Part 15.33(b), the measurement was performed up to 30 MHz.

FCC ID: OYGTSSRE4TB

7 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

The calibration intervals and the calibration history will be given out on request.

Test ID	Model / Type	Kind of Equipment	Manufacturer	Equipment No.
CPR 2	ESVS 30	Test Receiver	Rohde & Schwarz München	02-02/03-05-006
	VULB 9168	Trilog-Broadband Antenna	Schwarzbeck Mess-Elektronik	02-02/24-05-005
	S10162-B / +11N-50-10-5 /	+RF Cable 33 m	Huber + Suhner	02-02/50-05-031
	KK-EF393-21N-16	RF Cable 20 m	Huber + Suhner	02-02/50-05-033
	NW-2000-NB	RF Cable	Huber + Suhner	02-02/50-05-113
DC	DU22/160/40	Klimaschrank	Weiss Umwelttechnik GmbH	01-04/45-04-004
	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	THS730A	Handheld Scope	Tektronix GmbH	02-02/13-05-001
	HM-8142	Power Supply	A.H.-Systems Inc.	02-02/50-05-047
MB	DU22/160/40	Klimaschrank	Weiss Umwelttechnik GmbH	01-04/45-04-004
	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	THS730A	Handheld Scope	Tektronix GmbH	02-02/13-05-001
	HM-8142	Power Supply	A.H.-Systems Inc.	02-02/50-05-047
SER 1	FMBZ 1516	Antenna 9kHz - 30 MHz	Schwarzbeck Mess-Elektronik	01-02/24-01-018
	ESHS 30	Test Receiver	Rohde & Schwarz München	02-02/03-05-002
SER 2	ESVS 30	Test Receiver	Rohde & Schwarz München	02-02/03-05-006
	VULB 9168	Trilog-Broadband Antenna	Schwarzbeck Mess-Elektronik	02-02/24-05-005
	S10162-B / +11N-50-10-5 /	+RF Cable 33 m	Huber + Suhner	02-02/50-05-031
	KK-EF393-21N-16	RF Cable 20 m	Huber + Suhner	02-02/50-05-033
	NW-2000-NB	RF Cable	Huber + Suhner	02-02/50-05-113
SER 3	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	AFS4-01000400-10-10P-4	RF Amplifier 1-4 GHz	PARZICH GMBH	02-02/17-05-003
	AMF-4F-04001200-15-10P	RF Amplifier 4-12 GHz	PARZICH GMBH	02-02/17-05-004
	AFS5-12001800-18-10P-6	RF Amplifier 12-18 GHz	PARZICH GMBH	02-02/17-05-005
	3117	Horn Antenna 1-18 GHz	EMCO Elektronik GmbH	02-02/24-05-009
	Sucoflex N-1600-SMA	RF Cable	novotronik Signalverarbeitung	02-02/50-05-073
	Sucoflex N-2000-SMA	RF Cable	novotronik Signalverarbeitung	02-02/50-05-075