

EMI - TEST REPORT

- FCC Part 15.231 -

Test Report No. : T36049-01-04HU 28. January 2013

Date of issue

Type / Model Name : Wheel Electronic / TSSRE4Nd

Product Description : Tire Safety System

Applicant: Huf Electronics Bretten GmbH

Address : Gewerbestr. 40

75015 Bretten Germany

Manufacturer : Huf Electronics Bretten GmbH

Address : Gewerbestr. 40

75015 Bretten Germany

Licence holder : Huf Electronics Bretten GmbH

Address : Gewerbestr. 40

75015 Bretten Germany

Test Result according to the standards listed in clause 1 test	POSITIVE
standards:	

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

FCC ID: OYGTSSRE4ND Contents

1	TEST STANDARDS	3
2	SUMMARY	4
3	EQUIPMENT UNDER TEST	6
3.1	Photo documentation of the EUT – See Attachment A	6
3.2	Power supply system utilised	6
3.3	Short description of the Equipment under Test (EUT)	6
4	TEST ENVIRONMENT	7
		_
4.1	Address of the test laboratory	7
4.2	Environmental conditions	7
4.3	Statement of the measurement uncertainty	7
4.4	Measurement Protocol for FCC, VCCI and AUSTEL	7
5	TEST CONDITIONS AND RESULTS	9
5.1	Conducted emissions	9
5.2	Field strength of the fundamental wave	10
5.3	Spurious emissions (magnetic field) 9 kHz – 30 MHz	12
5.4	Spurious emissions radiated (electric field)	14
5.5	Correction for pulse operation (duty cycle)	18
5.6	Emission bandwidth	23
5.7	On / Off Period	26
5.8	Signal deactivation	30
6	USED TEST EQUIPMENT AND ACCESSORIES	34
ΑT	TACHMENT	А

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart A - General (October, 2012)

Part 15, Subpart A, Section 15.31 Measurement standards

Part 15, Subpart A, Section 15.33 Frequency range of radiated measurements

Part 15, Subpart A, Section 15.35 Measurement detector functions and bandwidths

FCC Rules and Regulations Part 15, Subpart C - Intentional Radiators (October, 2012)

Part 15, Subpart C, Section 15.203 Antenna requirement

Part 15, Subpart C, Section 15.204 External radio frequency power amplifiers and antenna modifications

Part 15, Subpart C, Section 15.205 Restricted bands of operation

Part 15, Subpart C, Section 15.207 Conducted limits

Part 15, Subpart C, Section 15.209 Radiated emission limits, general requirements

Part 15, Subpart C, Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz

ANSI C63.4: 2003 Methods of Measurement of Radio-Noise Emissions from Low-

Voltage Electrical and Electronic Equipment in the Range of 9 kHz

to 40 GHz.

ANSI C95.1: 1992 IEEE Standard for Safety Levels with respect to Human Exposure

to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

CISPR 16-4-2: 2003 Uncertainty in EMC measurement

CISPR 22: 2005 Information technology equipment

EN 55022: 2006

2 SUMMARY

GENERAL REMARKS:

All radiated tests have been performed on samples which are in original state.

For activating the EuT a "TSS Trigger & Receiver Test System" was used. With this device it was possible to set the EuT in all operation modes

The DUT's have special test modes for radio approvals (mode 1, mode 2 and Tcw). These modes can be switched via LF commands (LF3 and LF12). These commands must be sent along with the ID of the DUT.

DUT "ALARM"

Mode 1 (normal mode)

=> one RF transmission each 60 s, *normal mode in application*Switch on: the DUT's are in normal mode when no other Mode is forced by LF

Mode 2 (fast transmission mode)

- => first 4 transmissions at intervals of about 32 ms and than
- => 120 transmissions at intervals of about 500 ms, alarm mode in application
- => after about 60 s fall back to Mode 1

Switch on: LF12 command with ID

Switch off: after 124 transmissions (about 60 seconds) fall back to Mode 1

DUT "CW"

Mode 0 (storage/test mode)

- => no independent RF transmission
- => RF transmission after receiving LF3 command

Mode Tcw (continuous wave mode)

=> RF transmitter works in continuous wave mode without modulation

Frequency: 433,92 MHz + 35 kHz = 433,955 MHz (f2)

Switch on: LF3 command with ID

Switch off: after 5 minutes the device will fall back to normal mode (Mode 0)

File No. T36049-01-04HU, page 4 of 34

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.:+49(0)9424-94810 · Fax: +49(0)9424-9481240

Rev. No. 1.1. 05.11.2008

The manufacturer declares following transmitting intervals:

<u>Transmitting intervals of TPMS application</u>

Normal mode

In normal mode, the wheel electronics measure the tire pressure and the approximate temperature of the air in the tire every 0.5 seconds (every 10 seconds when vehicle is stationary) but if the measured values are stable, RF transmitting processes only every 60 seconds.

Alarm mode

When a pressure loss > 660 mbar on the last sent pressure value is detected, the whee electronics switch immediately to alarm mode. In this situation, the wheel electronics measure and send every 0.5 seconds a RF datagram for about 60 seconds. After this time it falls back to the normal mode.

pulse duration of RF datagram for normal and alarm mode = 5.47 ms (+/-0.1 ms)

The EUT has an incorporated antenna and is powered by a primary battery.

For detailed information about the function of the differences, please refer to the operational description.

FINAL ASSESSMENT:	
The equipment under test fulfills the	EMI requirements cited in clause 1 test standards.
Date of receipt of test sample	acc. to storage records
Testing commenced on	19. December 2012
Testing concluded on	09. January 2013
Checked by:	Tested by:
Thomas Weise DiplIng.(FH) Laboratory Manager	Markus Huber

3 EQUIPMENT UNDER TEST

3.1 Photo documentation of the EUT - See Attachment A

3.2 Power supply system utilised							
Power supply voltage : 3.0 V / DC (Lithium battery)							
3.3 Short description of the Equipment under Test (EUT)							
The Wheel electronics measure the tire pressure and the air temperature in the tire and send these via a set radio route together with the residual battery life and the code (ID) to the digital antenna. For exactly description please refer to the technical documents.							
Number of tested samples: 2 Serial number: Pre production sample							
EUT operation mode:							
The equipment under test was operated during the measurement under the following conditions:							
- Unmodulated Tx mode at 433.92 MHz (continuous wave mode)							
- Modulated Tx mode at 433.92 MHz (alarm mode and normal mode)							
EUT configuration:							
The following peripheral devices and interface cables were connected during the measurements:							
- TSS Tester, supplied by Huf Electronics Model: F1-100-1115-012							
Model :							
Model :							
Model :							
Model :							

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

mikes-testingpartners gmbh Ohmstrasse 2-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement the environ	nmental conditions were within the	listed ranges:
Temperature:	15-35 ° C	
Humidity:	30-60 %	
Atmospheric pressure:	86-106 kPa	

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader may notice that tolerances within the calibration of the equipment and facilities may cause additional uncertainty. The measurement uncertainty is calculated for all measurements listed in this test report acc. to CISPR 16-4-2 "Uncertainties, statistics and limit modelling — Uncertainty in EMC measurement" and documented in the mikes-testingpartners gmbh quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, mikes-testingpartners gmbh, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component diversity and modifications in production process of devices may result in additional deviation. If necessary, refer to the test lab for the actual measurement uncertainty for the specific test. The manufacturer has the sole responsibility of continued compliance of the EUT.

4.4 Measurement Protocol for FCC, VCCI and AUSTEL

4.4.1 GENERAL INFORMATION

4.4.1.1 Test Methodology

Conducted and radiated disturbance testing is performed according to the procedures set out by the International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". In compliance with 47 CFR Part 15 Subpart A, Section 15.38 testing for FCC compliance may be achieved by following the procedures set out in ANSI C63.4 and applying the CISPR 22 limits.

4.4.1.2 Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

FCC ID: OYGTSSRE4ND 5 TEST CONDITIONS AND RESULTS

5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: NONE

5.1.2 Photo documentation of the test set-up

5.1.3 Applicable standard

According to FCC Part 15C, Section 15.207(a):

Except as shown in paragraphs (b) and (c) of this Section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency

5.1.4 Description of Measurement

The measurements are performed on the power interface 120 V / 60 Hz using a receiver, which has CISPR characteristic bandwidth, quasi-peak detection and line impedance stabilization network with $50\Omega/50~\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 cm above the floor and is positioned 40 cm from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

To convert between $dB\mu V$ and μV , the following conversions apply:

 $dB\mu V = 20 \log \mu V$ $\mu V = 10^{(dB\mu V/20)}$

5.1.5 Test result

Remarks:	The measurement is not applicable.				
The EuT has no AC mains connections.					
	The EuT is separated powered by a 3.0 V battery.				

5.2 Field strength of the fundamental wave

For test instruments and accessories used see section 6 Part CPR 2.

5.2.1 Description of the test location

Test location: OATS1

Test distance: 3 metres

5.2.2 Photo documentation of the test set-up

5.2.1 Applicable standard

According to FCC Part 15C, Section 15.231(e): The field strength of emissions from intentional radiators shall not exceed the effective field strength limits.

5.2.2 Description of Measurement

The radiated power of the fundamental wave from the EUT is measured in the frequency range of 30 to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 metres non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the EUT will be in accordance to ANSI C63.4. The Interface cables that are closer than 40 centimetres to the ground plane are bundled in the centre in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the centre of the table and to a screen room located outside the test area. The antenna was positioned 3, 10 or 30 metres horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 metres, measurement scans are made in horizontal and vertical antenna polarization's and the EUT is rotated 360 degrees.

The resolution bandwidth during the measurement is as follows:

30 MHz – 1000 MHz: RBW: 120 kHz

Example:

Frequency Level Factor Level Limit Delta (MHz) (dBµV) (dB) $dB(\mu V/m)$ $dB(\mu V/m)$ (dB) 170.5 5 20 25 30 -5

5.2.3 Test result

Frequency (MHz)	Level Pk (dBµV)	Level QP (dBµV)	Bandwidth (kHz)	Correct. factor (dB)	Duty Cycle Correct. factor (dB)	Level Pk dB(µV/m)	Calculated Level Av dB(µV/m)	Effective limit dB(µV/m)	Delta (dB)
433.92	54.6	51.2	120	19.8	-15.70	74.40	58.7	72.87	-14.2

Limit according to FCC Section 15.231(e):

Frequency	Field strength of fu	undamental @ 3m	Effective limit for 433.92 MHz		
(MHz)	(µV/m)	$(\mu V/m)$ $dB(\mu V/m)$		dB(μV/m)	
40.66 - 40.70	1000	60			
70 - 130	500	54			
130 - 174	500 to 1500*	54 to 63.5*			
174 - 260	1500	63.5	/ / Y		
260 - 470	1500 to 5000*	63.5 to 74*	4398.67	72.87	
Above 470	5000	81.9			

^{*}Linear interpolation

The requirements are FULFILLED.

Remarks:	The level of Field Strength are identically in all Tx operation modes.

The test was performed in continuous wave mode of the EuT.

5.3 Spurious emissions (magnetic field) 9 kHz - 30 MHz

For test instruments and accessories used see section 6 Part SER 1.

5.3.1 Description of the test location

Test location: OATS1

Test distance: 3 metres

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15C, Section 15.209:

The emissions from intentional radiators shall not exceed the effective field strength limits.

5.3.4 Description of Measurement

The magnetic field strength from the EUT will be measured on an open area test site in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna. The set up of the Equipment under test will be in accordance to ANSI C63.4. The antenna was positioned 3, 10 or 30 meters horizontally from the EUT. Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions. In the case where larger measuring distances are required the results will extrapolated based on the values measured on the closer distances according to Section 15.31(f)(2)(2). The final measurement will be performed with an EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209(d)(2).

The resolution bandwidth during the measurement is as follows:

9 kHz – 150 kHz: RBW: 200 Hz 150 kHz – 30 MHz: RBW: 9 kHz

Example:

Frequency Level Factor Level Limit Delta (MHz) (dBµV) (dB) $dB(\mu V/m)$ $dB(\mu V/m)$ (dB) 1.705 5 20 25 30 -5

5.3.5 Test result

Measurement distance: 3 m

Frequency [MHz]	L: QP [dBµV]	L: AV [dBµV]	Bandwidth [kHz]	Correct. [dB]	L: QP [dBµV/m]	L: AV [dBµV/m]	Limit [dBµV/m]	Delta [dB]
0.009-0.150			0.2	20	< 30			>20
0.150-30.0			9.0	20	< 30			>20

Limit according to FCC Part 15C Section 15.209(a):

Frequency	Field strength of sp	ourious emissions	Measurement distance
(MHz)	(μV/m) dB(μV/m)		(metres)
0.009-0.490	2400/F(kHz)	/	300
0.490-1.705	24000/F (kHz)		30
1.705-30.0	30	29.5	30

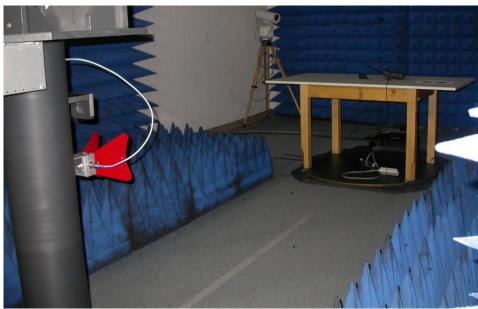
The requirements are FULFILLED.

Remarks:	All unwanted emissions in the frequency range from 9 kHz to 30 MHz are below 10 dB $\mu\text{V/m}$
	at a test distance of 3 metres.

5.4 Spurious emissions radiated (electric field)

For test instruments and accessories used see section 6 Part SER 2, SER 3.

5.4.1 Description of the test location


Test location: OATS1

Anechoic Chamber A2

Test distance: 3 metres

5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15C, Section 15.231(e), Section 15.209(a) and Section 15.205(a): The emissions from intentional radiators shall not exceed the effective field strength limits.

5.4.4 Description of Measurement

The radiated power of the spurious emission from the EUT is measured in the frequency range of 30 to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 m non-conducting table 80 cm above the ground plane. Floor standing equipment is placed directly on the turntable ground plane. The set up of the EUT will be in accordance to ANSI C63.4. The interface cables closer than 40 cm to the ground plane are bundled in the centre in a serpentine fashion so they are at least 40 cm away from the ground plane. Cables to simulators/testers are routed through the centre of the table to a screen room located outside the test area. To locate maximum emission from the test sample the antenna is varied in height from 1 to 4 m, measurement scans are made in horizontal and vertical antenna polarization and the EUT is turned 360 degrees.

The radiated power of the spurious emission from the EUT is measured in the frequency range above 1 GHz using a spectrum analyser and appropriate linear polarised antennas. Measurements are made in the horizontal and vertical polarization of the antenna. The set up of the EUT will be in accordance to ANSI C63.4. The interface cables closer than 40 cm to the ground plane are bundled in the centre in a serpentine fashion so they are at least 40 cm away from the ground plane. Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration results in the highest emission and therefore shall be used for final testing. During the tests the EUT is turned 360 degrees to find the maximum level of emission. For testing above 1 GHz, if the emission level of the EUT in peak mode complies with the average limit is 20 dB lower, then testing will be stopped and peak values of the EUT will be reported, otherwise the emission will be measured in average mode again and reported.

The resolution bandwidth during the measurement is as follows:

30 MHz – 1000 MHz: RBW: 120 kHz 1000 MHz – 18000 MHz RBW: 1 MHz

Example:

Frequency Level Factor Level Limit Delta (MHz) (dBµV) (dB) $dB(\mu V/m)$ $dB(\mu V/m)$ (dB) 170.5 5 20 25 30 -5

5.4.5 Test result f < 1 GHz

Frequency (MHz)	Level Pk (dBµV)	Level QP (dBµV)	Bandwidth (kHz)	Correct. factor (dB)	Duty Cycle Correct. factor (dB)	Level Pk dB(µV/m)	Calculated Level Av dB(µV/m)	Effective limit dB(µV/m)	Delta (dB)
867.84	26.7	24.1	120	28.4	-15.70	55.1	39.4	52.9	-13.5

5.4.6 Test result f > 1 GHz

Frequency (MHz)	L: PK (dBµV)	L: AV (dBµV)	Bandwidth (kHz)	Correct. (dB)	Duty Cycle Correct. factor (dB)	PK level dB(µV/m)	Calculated AV level dB(µV/m)	Effective limit dB(µV/m)	Delta (dB)
1301.8	81.3		1000	-13.8	-15.70	67.5	51.8	54.0	-2.2
1735.7	74.5		1000	-13.6	-15.70	60.9	45.2	54.0	-8.8
2169.6	50.6	-	1000	-12.1	-15.70	38.5	22.8	54.0	-31.2
2603.5	66.3	-	1000	-9.5	-15.70	56.8	41.1	54.0	-12.9

Limit according to FCC Section 15.231(e), Section 15.209(a) and Section 15.205(a):

Frequency (MHz)	Field strength of spurious emissions @ 3m		Effective limit	for 433.92 MHz
	(µV/m)	dB(μV/m)	(µV/m)	dB(μV/m)
40.66 - 40.70	100	40		
70 - 130	50	34		
130 - 174	50 to 150*	34 to 43.5*		
174 - 260	150	43.5		
260 - 470	150 to 500*	51.4 to 54	439.87	52.87
Above 470	500	54		

^{*}Linear interpolation

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in the table above or to the general limits shown in the table below according to § 15.209, whichever limit permits a higher field strength.

Frequency	15.209 Limits	15.209 Limits
(MHz)	(μV/m)	dB(μV/m)
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

Additionally there is a limit according to §15.35(b) on the radio frequency emissions, as measured with a peak detector, corresponding to 20 dB above the maximum permitted average limits.

Restricted bands of operation according to FCC Part 15C, Section 15.205(a):

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15
0.495 - 0.505	16.69475 – 16.69525	608 – 614	5.35 – 5.46
2.1735 – 2.1905	16.80425 – 16.80475	960 – 1240	7.25 – 7.75
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 – 8.5
4.17725 – 4.17775	37.5 – 38.25	1435 – 1626.5	9.0 – 9.2
4.20725 – 4.20775	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7
6.26775 - 6.26825	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4
6.31175 – 6.31225	123 – 138	2200 – 2300	14.47 – 14.5
8.291 – 8.294	149.9 – 150.05	2310 – 2390	15.35 – 16.2
8.362 - 8.366	156.52475 – 156.52525	2483.5 – 2500	17.7 – 21.4
8.37625 - 8.38675	156.7 – 156.9	2690 – 2900	22.01 – 23.12
8.41425 – 8.41475	162.0125 – 167.17	3260 – 3267	23.6 – 24.0
12.29 – 12.293	167.72 – 173.2	3332 – 3339	31.2 – 31.8
12.51975 – 12.52025	240 – 285	3345.8 – 3358	36.43 – 36.5
12.57675 – 12.57725	322 – 335.4	3600 – 4400	Above 38.6

The requirements are **FULFILLED**.

Remarks:	The level of spurious emissions are identically in all Tx operation modes.
	The test was performed in alarm mode of the EuT.

5.5 Correction for pulse operation (duty cycle)

For test instruments and accessories used see section 6 Part DC.

5.5.1 Description of the test location

Test location: AREA4

5.5.2 Photo documentation of the test set-up

5.5.3 Applicable standard

According to FCC Part 15C, Section 15.35(c):

The emissions from intentional radiators shall not exceed the effective field strength limits.

5.5.4 Test result

The Duty cycle factor (dB) is calculated applying the following formula:

 $KE= 20 \log ((tiB)/100)$

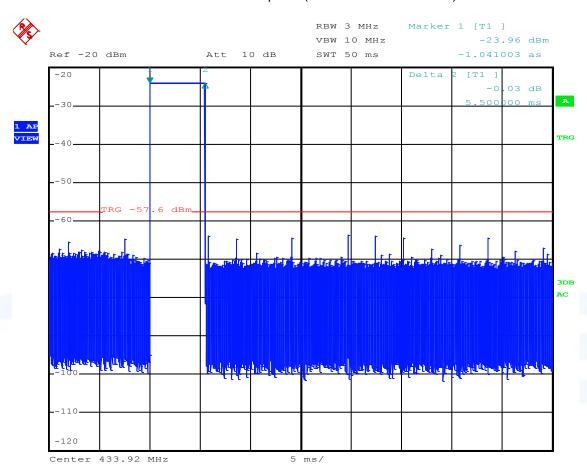
KE: pulse operation correction factor (dB) tiB pulse duration for one pulse (ms)

Maximum transmitting duration in every 100ms period 3x 5.47 ms:

 $KE= 20 \log ((16.41)/100) = -15.70 \text{ dB}$

⇒ max. KE accd. FCC regulation = -20.0 dB

emarks:			



5.5.5 Test protocol

Correction for pulse operation (duty cycle)

FCC Part 15C, Section 15.35(c)

Pulse duration for one pulse (Normal and Alarm Mode)

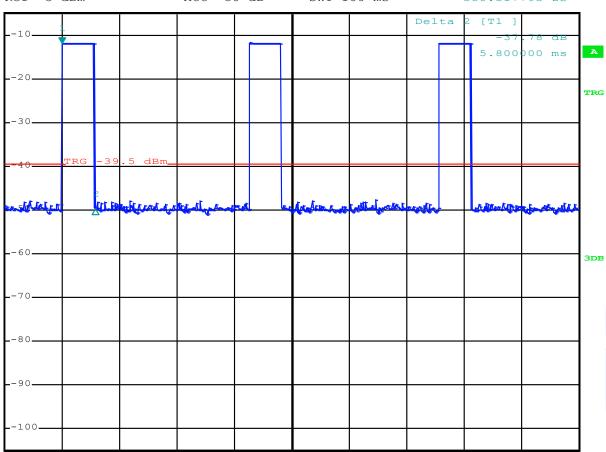
Worst case Tx on time:

Alarm mode

When a pressure loss > 660 mbar on the last sent pressure value is detected, the wheel electronics switch immediately to alarm mode. In this situation, the wheel electronics measure and send every 0.5 seconds a RF datagram for about 60 seconds. After this time it falls back to the normal mode.

pulse duration of RF datagram for normal and alarm mode = 5.47 ms (+/-0.1 ms)

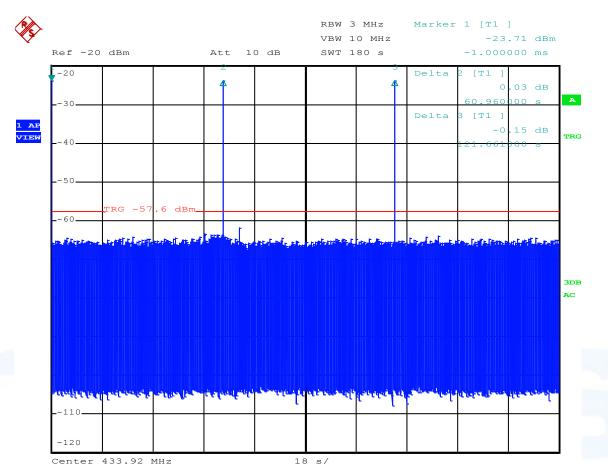
⇒ Maximum transmitting duration in every 100ms period is 3 times 5.47 ms



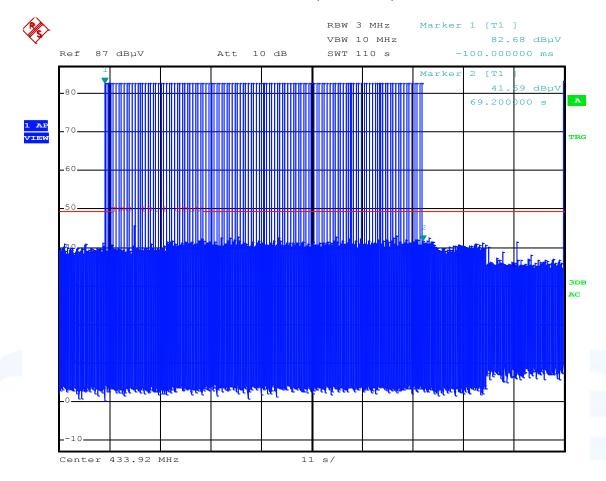
RBW 3 MHz Marker 1 [T1]

VBW 10 MHz -11.86 dBm

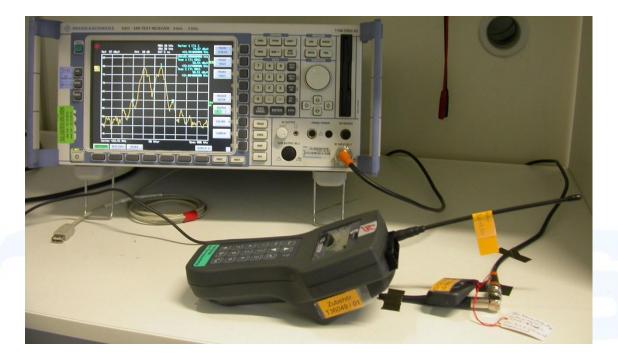
Ref -5 dBm Att 30 dB SWT 100 ms 380.317793 zs


Center 433.92 MHz

10 ms/


Normal operation mode

Fast send mode (Alarm mode)


5.6 Emission bandwidth

For test instruments and accessories used see section 6 Part MB.

5.6.1 Description of the test location

Test location: AREA4

5.6.2 Photo documentation of the test set-up

5.6.3 Applicable standard

According to FCC Part 15C, Section 15.231(c): The bandwidth of the emission shall not exceed the effective limits.

5.6.4 Description of Measurement

The measurement was performed conducted with intentional modulation using a spectrum analyser. The analyser span was set wide enough to capture the most of the power envelope of the signal. The function "20-dB-down" is used to determine the BW. For an overview on the adjacent restricted bands the span was set as wide as needed to show that the restricted bands are not affected.

5.6.5 Test result

Fundamental [MHz]	20dB Bandwidth F1 [MHz]	20dB Bandwidth F2 [MHz]	Measured Bandwidth [MHz]	LIMIT Fundamental f*0,0025 [MHz]
433.92	433.843	433.980	0.137	1.0848

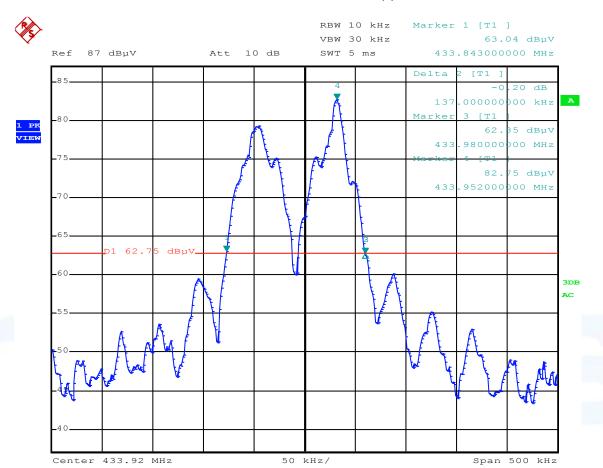
Limit according to FCC Part 15C Section 15.231(c):

Frequency (MHz)	20 dB BW limit dependent of the carrier (%)
70 – 900	0.25
above 900	0.50

The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

The requirements are **FULFILLED**.

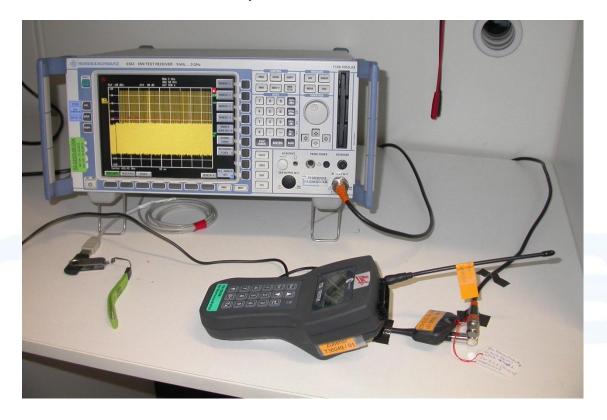
Remarks:	For detailed results, please see the test protocol below.	



5.6.6 Test protocol

Emission bandwidth

FCC Part 15C, Section 15.231(c)


5.7 On / Off Period

For test instruments and accessories used see section 6 Part MB.

5.7.1 Description of the test location

Test location: AREA4

5.7.2 Photo documentation of the test set-up

5.7.3 Applicable standard

According to FCC Part 15C, Section 15.231(e):

5.7.4 Description of Measurement

The duration of transmission is measured with the spectrum analyzer. The sweep points were set to maximum for higher the time resolution. The signal is modulated; the marker of the analyzer is set to maximum amplitude at normal temperature and zero span. The analyser was set to single sweep and triggered on the button, the marker was set to the edges in order to measure the duration time and than recorded.

5.7.5 Test result

The manufacturer declares following transmitting intervals:

- Normal Operation mode:

In normal mode, the wheel electronics measure the tire pressure and the approximate temperature of the air in the tire every 0.5 seconds (every 10 seconds when vehicle is stationary) but if the measured values are stable, RF transmitting processes only every 60 seconds.

pulse duration of RF datagram for normal and alarm mode = 5.47 ms (+/-0.1 ms)

Duration of transmission (ms)	Limit (s)
5.47	1.0

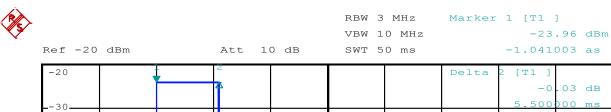
Silent period	Limit		
(s)	(s)		
60.0	> 10.0		

Limit according to FCC Part 15C, Section 15.231(e):

The requirements are FULFILLED.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Remarks: For detailed test results, please see the test protocol below.



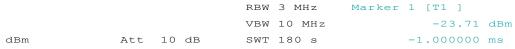
5.7.6 Test protocol

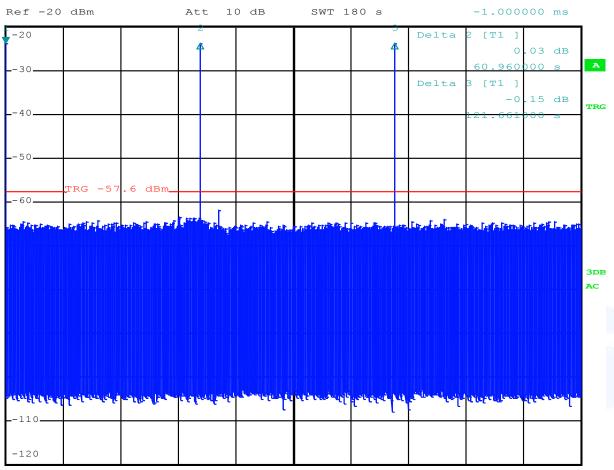
Signal deactivation

FCC Part 15C, Section 15.231(e)

Pulse duration for one pulse (Normal Mode)

Center 433.92 MHz

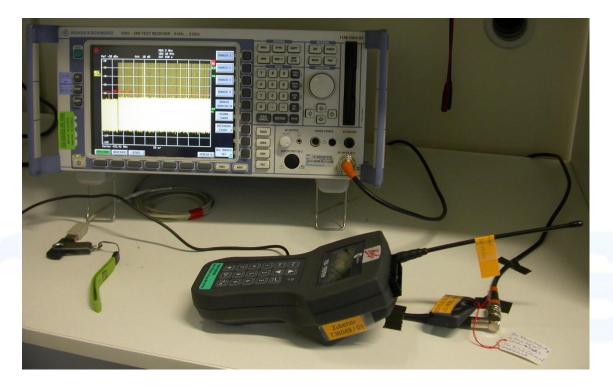

5 ms/



Normal operation mode

Center 433.92 MHz

18 s/


5.8 Signal deactivation

For test instruments and accessories used see section 6 Part MB.

5.8.1 Description of the test location

Test location: AREA4

5.8.2 Photo documentation of the test set-up

5.8.3 Applicable standard

According to FCC Part 15C, Section 15.231(a):

5.8.4 Description of Measurement

The duration of transmission is measured with the spectrum analyzer. The sweep points were set to maximum for higher the time resolution. The signal is modulated; the marker of the analyzer is set to maximum amplitude at normal temperature and zero span. The analyser was set to single sweep and triggered on the button, the marker was set to the edges in order to measure the duration time and than recorded.

5.8.5 Test result

The manufacturer declares following transmitting intervals:

- Fast send mode (Alarm mode):

Alarm mode

When a pressure loss > 660 mbar on the last sent pressure value is detected, the wheel electronics switch immediately to alarm mode. In this situation, the wheel electronics measure and send every 0.5 seconds a RF datagram for about 60 seconds. After this time it falls back to the normal mode.

pulse duration of RF datagram for normal and alarm mode = 5.47 ms (+/-0.1 ms)

⇒ Maximum transmitting duration in every 100ms period is 2 times 5.47 ms

Duration of transmission		
(ms)		
10.94		

Limit according to FCC Part 15C, Section 15.231(a)(4):

- (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released and a transmitter activated automatically shall cease transmission within 5 seconds after activation.
- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- (3) Periodic transmissions at regular predetermined inervals are not permitted. However, polling or supervision transmissions, including data, to determine systems integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds.
- (4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

The requirements are **FULFILLED**.

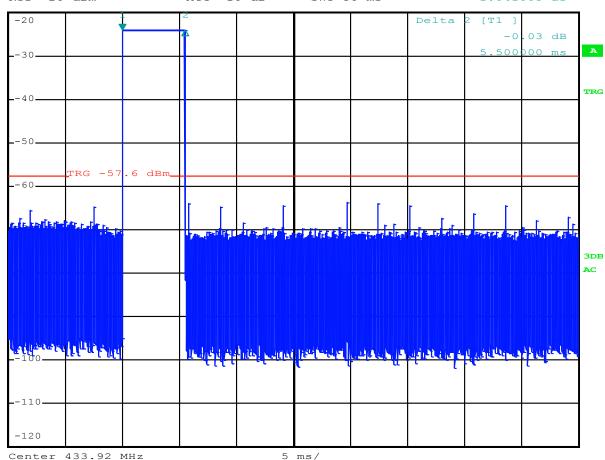
Tel.:+49(0)9424-94810 · Fax: +49(0)9424-9481240

Remarks:	For detailed test results, please see the test protocol below.						

5.8.6 Test protocol

Signal deactivation

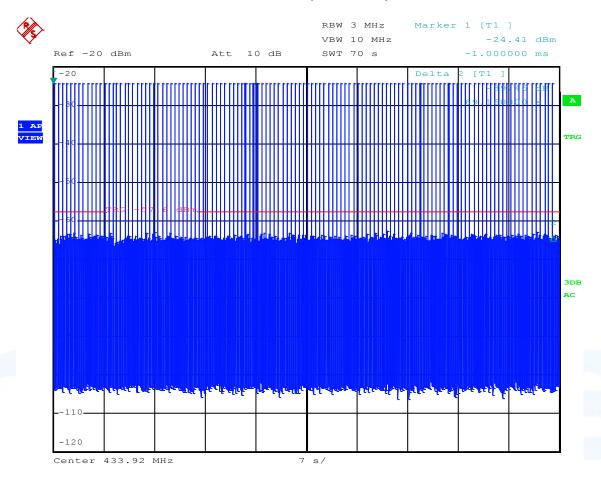
FCC Part 15C, Section 15.231(a)



RBW 3 MHz Marker 1 [T1]

VBW 10 MHz -23.96 dBm

Ref -20 dBm Att 10 dB SWT 50 ms -1.041003 as


3 11137

Pulse duration for one pulse

Fast send mode (Alarm mode)

Worst case Tx on time:

Alarm mode

When a pressure loss > 660 mbar on the last sent pressure value is detected, the wheel electronics switch immediately to alarm mode. In this situation, the wheel electronics measure and send every 0.5 seconds a RF datagram for about 60 seconds. After this time it falls back to the normal mode.

pulse duration of RF datagram for normal and alarm mode = 5.47 ms (+/-0.1 ms)

⇒ Maximum transmitting duration in every 100ms period is 2 times 5.47 ms

FCC ID: OYGTSSRE4ND 6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID	Model Type	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
CPR 2	ESVS 30 VULB 9168 S10162-B NW-2000-NB KK-EF393/U-16N-21N_20m	02-02/03-05-006 02-02/24-05-005 02-02/50-05-031 02-02/50-05-113 02-02/50-12-018	26/06/2013 16/03/2013	26/06/2012 16/03/2012	08/04/2013	08/10/2012
DC	ESCI RF Antenna	02-02/03-05-004 02-02/24-05-032	10/10/2013	10/10/2012		
MB	ESCI RF Antenna	02-02/03-05-004 02-02/24-05-032	10/10/2013	10/10/2012		
SER 1	FMZB 1516 ESCI S10162-B KK-EF393-21N-16 NW-2000-NB	01-02/24-01-018 02-02/03-05-004 02-02/50-05-031 02-02/50-05-033 02-02/50-05-113	10/10/2013	10/10/2012	16/02/2013	16/02/2012
SER 2	ESVS 30 VULB 9168 S10162-B NW-2000-NB KK-EF393/U-16N-21N_20m	02-02/03-05-006 02-02/24-05-005 02-02/50-05-031 02-02/50-05-113 02-02/50-12-018	26/06/2013 16/03/2013	26/06/2012 16/03/2012	08/04/2013	08/10/2012
SER 3	FSP 30 AFS4-01000400-10-10P-4 AMF-4F-04001200-15-10P AFS5-12001800-18-10P-6 3117 Sucoflex N-1600-SMA Sucoflex N-2000-SMA	02-02/11-05-001 02-02/17-05-003 02-02/17-05-004 02-02/17-06-002 02-02/24-05-009 02-02/50-05-073 02-02/50-05-075	18/10/2013 18/12/2013	18/10/2012 18/12/2012		