

To: FCC Application Processing Branch

April 27, 2000

From: Gilles JURQUET

Réf: RAD/CN/DIRC, 00/60100

E-Mail: gilles.jurquet@detexis.thomson-csf.com

Re: FCC ID OYAJETSAT
Applicant: Thomson-CSF Detexis
Correspondence Reference Number: 13656
731 Confirmation Number: EA97216
Date of Original E-Mail: 04/27/2000

Reply to FCC requests:

1. The Schematic diagrams per Section 2.1033(c)(10) are provided in document "Design and Performance" (Exhibit B) section 7.
2. The Internal and external equipment photographs per Section 2.1033(c)(12) are provided in document "Identification Label and Photographs" (Exhibit A), section 4.
3. As shown in document "FCC Compliance Report" (Exhibit D), section 6.1.2: the measured frequency from the transmit output of the equipment is within +/- 120 Hz whatever the temperature in the range -25°C to +70°C. The frequency error at -20°C is the same as the -25°C measurement.
4. The value of the DC voltage derived from the primary supply voltage which supplies the frequency synthesizer does not change with the primary supply voltage variation in the range 85 to 115 percent of the nominal value. Therefore the impact on frequency stability is negligable:
5. The JETSAT AES uses only phase modulation which corresponds to the symbol G. Therefore, the emission designator is 21K0G1W as per section 2.201, see also section 87.137: type of emission for aircraft earth stations. Symbol W shows that JETSAT combines different types of information to be transmitted.
6. Section 87.139(i)(1) Footnote 1 refers to composite spurious and noise measurement: see plots 1 to 4. The specification lines drawn on the plots take into account the fact that the spectrum analyzer does not have a 4kHz resolution bandwidth available. Therefore, assuming a 30kHz resolution bandwidth, the -83dBc/4kHz spec. Line is equivalent to $[-83 + 10\log(30\text{kHz}/4\text{kHz})] \text{ dBc}/30\text{kHz} = -74 \text{ dBc}/30\text{kHz}$.