

Preco, Inc.

FCC 15.249:2019 24.05-24.25 GHz Transceiver

Report # PRCO0103

NVLAP LAB CODE: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: October 8, 2019

Preco, Inc. EUT: SX97

Radio Equipment Testing

Standards

Specification	Method
FCC 15.249:2019	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not requested.
6.5, 6.6	Field Strength of Harmonics and Spurious Radiated Emissions	Yes	Pass	
6.6	Field Strength of Fundamental	Yes	Pass	
7.5	Duty Cycle	No	N/A	Not requested.

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

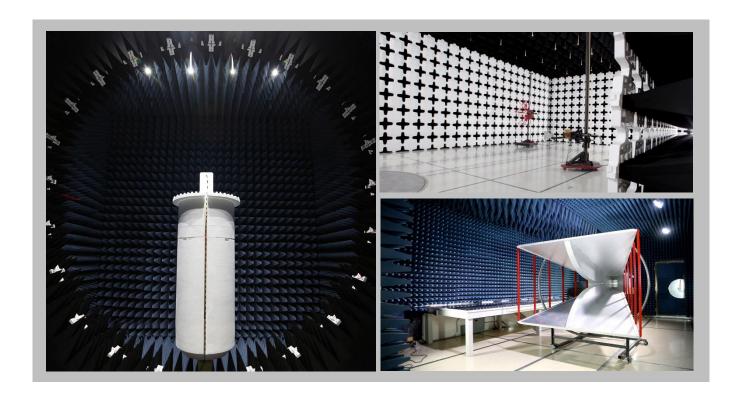
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

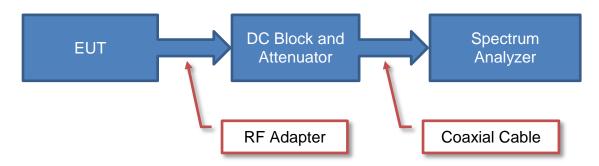
California Labs OC01-17 41 Tesla Irvine, CA 92618	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011		
(949) 861-8918	(612)-638-5136	(503) 844-4066	(469) 304-5255	(425)984-6600		
		NVLAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
	BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
	VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110		
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157		

MEASUREMENT UNCERTAINTY

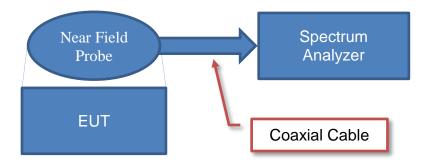
Measurement Uncertainty

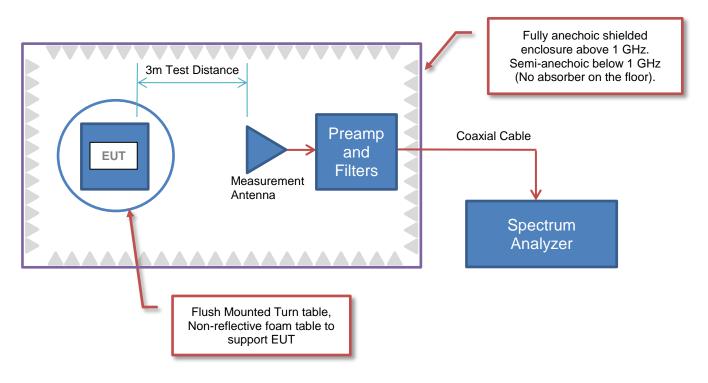
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Preco, Inc.
Address:	10335 West Emerald Street
City, State, Zip:	Boise, ID 83704
Test Requested By:	Donny LLoyd
EUT:	SX97
First Date of Test:	October 1, 2019
Last Date of Test:	October 8, 2019
Receipt Date of Samples:	October 1, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Preco Narrow Sentry FOV - SX97 is a 24 GHz Frequency Modulated Continuous Waveform radar object detection system designed to alert equipment (vehicle, truck, machine) operators to the presence of obstacles.

Testing Objective:

Seeking to demonstrate compliance under FCC 15.249:2019 for operation in the 24.05-24.25 GHz Band.

CONFIGURATIONS

Configuration PRCO0103-1

Software/Firmware Running during test	
Description	Version
Firmware	1.8

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
FMCW Radar	Preco, Inc.	SX97	None

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Linear DC Power Supply	Topward	TPS-2000	0074

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
USB CAN Adapter	Peak	PEH002021	None	
Remote Laptop	HP	Elitebook 820	5GG63636KL	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Transition Harness	No	10.0 m	No	Sensor Pigtail	USB CAN Adapter
Sensor Pigtail	No	0.2 m	No	Transition Harness	FMCW Radar
USB	Yes	0.8 m	No	USB CAN Adapter	Remote Laptop
DC Power	No	1.0 m	No	Linear DC Power Supply	Transition Harness

CONFIGURATIONS

Configuration PRCO0103- 2

Software/Firmware Running during test	
Description	Version
Firmware	1.8

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
FMCW Radar	Preco, Inc.	SX97	None

Remote Equipment Outside of	of Test Setup Bound	ary	
Description	Manufacturer	Model/Part Number	Serial Number
USB CAN Adapter	Peak	PEH002021	None
Remote Laptop	HP	Elitebook 820	5GG63636KL
Linear DC Power Supply	Topward	TPS-2000	0074

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Transition Harness	No	10.0 m	No	Sensor Pigtail	USB CAN Adapter
Sensor Pigtail	No	0.2 m	No	Transition Harness	FMCW Radar
USB	Yes	0.8 m	No	USB CAN Adapter	Remote Laptop
DC Power	No	1.0 m	No	Linear DC Power Supply	Transition Harness

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Field	Tested as	No EMI suppression	EUT remained at
1	2019-10-01	Strength of	delivered to	devices were added or	Element following the
		Fundamental	Test Station.	modified during this test.	test.
		Field	Tested as	No EMI suppression	EUT remained at
2	2019-10-04	Strength of	delivered to	devices were added or	Element following the
		Harmonics	Test Station.	modified during this test.	test.
·		Spurious	Tested as	No EMI suppression	Scheduled testing
3	2019-10-08	Radiated	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	OML, Inc.	S119BFSS100390443	SUN	NCR	NCR
Diplexer	OML, Inc.	DPL26	DAA	NCR	NCR
Antenna	OML, Inc.	M08HWAX	AIL	18-Sep-19	18-Sep-22
Antenna	OML, Inc.	M12HWAX	AIK	19-Sep-19	19-Sep-22
Antenna	OML, Inc.	M19HWAX	AIJ	20-Sep-19	20-Sep-22
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-19	24-Mar-20

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting with an unmodulated carrier. The testing was done at distances closer than 3m as called out in the data sheets. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna orientation and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). The specifiation limit was adjusted for the closer test distances at 20 dB per decade as called out in the following table:

			S	pec limit			
	3m	1m	50cm	20 cm	10 cm	5 cm	2 cm
Average	68	77.54	83.56	91.5	97.5	103.6	111.5
Peak	88	97.54	103.56	111.5	117.5	123.6	131.5

The analyzer display was offset with the value of the test equipment losses (mixers, duplexers, and cables) specific to each band and the antenna factor per the following tables:

Low Frequency (MHz): 24056

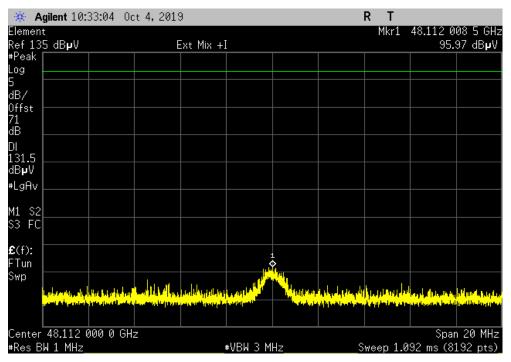
Freq	Antenna Gain	Antenna Factor	Mixer / Duplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
48112.00	24.00	39.87	31.13	71.00
72168.00	24.00	43.39	38.93	82.32
96224.00	24.00	45.89	36.14	82.03

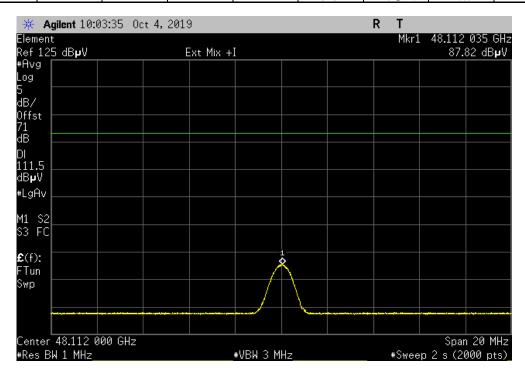
Mid Frequency (MHz): 24152

Freq	Antenna Gain	Antenna Factor	Mixer / Duplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
48304.00	24.00	39.90	30.09	69.99
72456.00	24.00	43.42	38.99	82.41
96608.00	24.00	45.92	34.86	80.78

High Frequency (MHz): 24247

Freq	Antenna Gain	Antenna Factor	Mixer / Duplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
48494.00	24.00	39.93	29.81	69.74
72741.00	24.00	43.46	38.67	82.13
96988 00	24 00	45 95	33.82	79 77

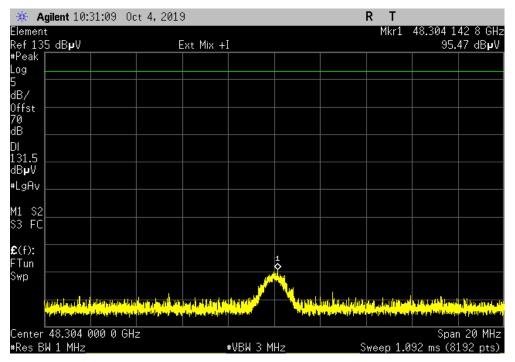

EUT: SX97
Serial Number: None
Customer: Preco, Inc. Work Order: PRCO0103
Date: 4-Oct-19
Temperature: 20.3 °C Humidity: 45.1% RH Barometric Pres.: 1024 mbar Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Power: 12 VDC via 110VAC/60Hz Test Method Job Site: EV01 FCC 15.249:2019 ANSI C63.10:2013 COMMENTS Measurements were taken with EUT in the orientation that generated highest level of emissions DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Value (dBuV) Limit (dBuV) Result Continuous TX, 24056 MHz - 24247 MHz 2nd Harmonic Low Ch. 24056 MHz Peak Average 131.5 @ 2 cm 111.5 @ 2 cm Pass Pass 95.97 87.82 Mid Ch. 24152 MHz 131.5 @ 2 cm Pass Peak 95.47 Average High Ch. 24247 MHz 89.03 111.5 @ 2 cm Pass Peak Average 131.5 @ 2 cm 111.5 @ 2 cm Pass Pass 93.38 85.28 3rd Harmonic Low Ch. 24056 MHz 131.5 @ 2 cm 111.5 @ 2 cm 106.21 Pass 91.80 Pass Mid Ch. 24152 MHz 131.5 @ 2 cm Pass Peak 105.13 Average High Ch. 24247 MHz 91.34 111.5 @ 2 cm Pass Peak Average 104.57 91.22 131.5 @ 2 cm 111.5 @ 2 cm Pass Pass 4th Harmonic Low Ch. 24056 MHz Peak Average 131.5 @ 2 cm 111.5 @ 2 cm Pass Pass 106.01 Mid Ch. 24152 MHz Peak 104.90 131.5 @ 2 cm Pass Average High Ch. 24247 MHz 111.5 @ 2 cm Pass 131.5 @ 2 cm 111.5 @ 2 cm 102 94 Pass Average 89.83 Pass

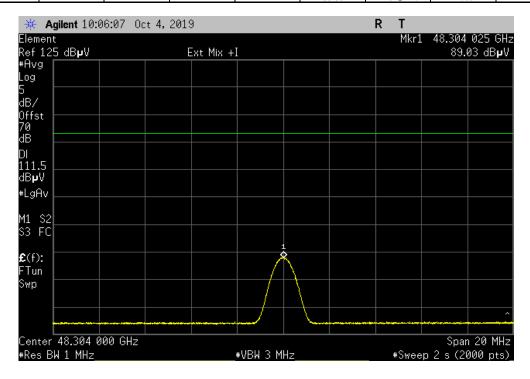

Continuous TX, 24056 MHz - 24247 MHz, 2nd Harmonic, Low Ch. 24056 MHz, Peak

Value Limit
(dBuV) (dBuV) Result

95.97 131.5 @ 2 cm Pass

	(Continuous TX, 24	1056 MHz - 24247	7 MHz, 2nd Harm	onic, Low Ch. 24	4056 MHz, Average		
					Value	Limit		
_					(dBuV)	(dBuV)	Result	_
	<u> </u>				87.82	111.5 @ 2 cm	Pass	

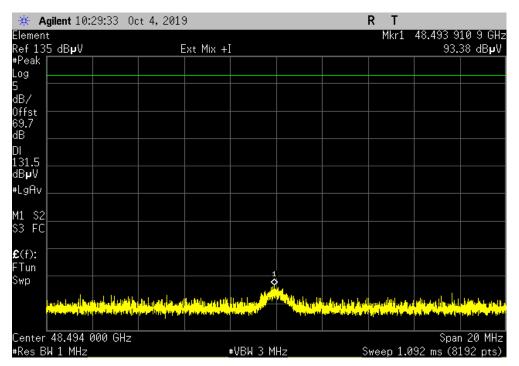


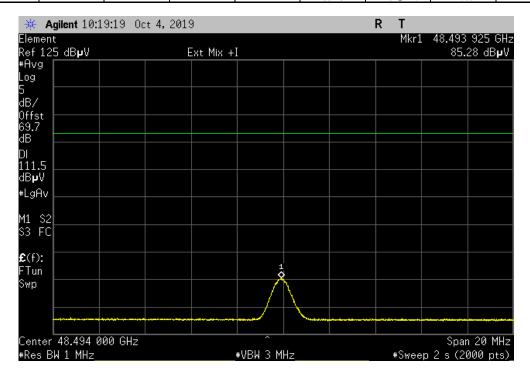

Continuous TX, 24056 MHz - 24247 MHz, 2nd Harmonic, Mid Ch. 24152 MHz, Peak

Value Limit
(dBuV) (dBuV) Result

95.47 131.5 @ 2 cm Pass

	(Continuous TX, 24	1056 MHz - 2424 ⁻	7 MHz, 2nd Harm	onic, Mid Ch. 24	152 MHz, Average	
Value Limit							
1					(dBuV)	(dBuV)	Result
1 [89.03	111.5 @ 2 cm	Pass




Continuous TX, 24056 MHz - 24247 MHz, 2nd Harmonic, High Ch. 24247 MHz, Peak

Value Limit
(dBuV) (dBuV) Result

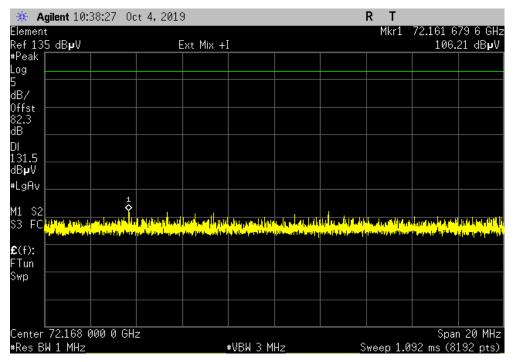
93.38 | 131.5 @ 2 cm | Pass

	C	Continuous TX, 24	056 MHz - 24247	MHz, 2nd Harm	onic, High Ch. 2	4247 MHz, Average		
					Value	Limit		
					(dBuV)	(dBuV)	Result	_
l	<u> </u>				85.28	111.5 @ 2 cm	Pass	

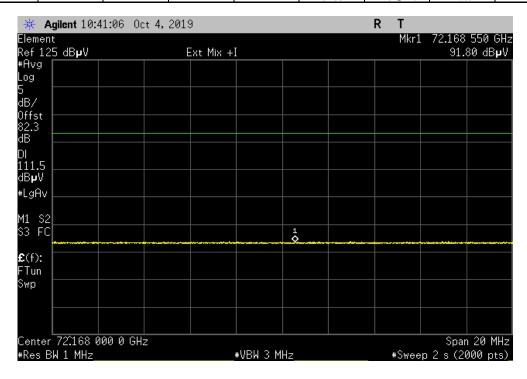
Continuous TX, 24056 MHz - 24247 MHz, 3rd Harmonic, Low Ch. 24056 MHz, Peak

Value

(dBuV)


(dBuV)

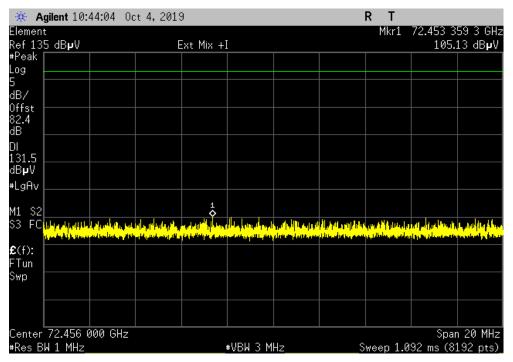
Result

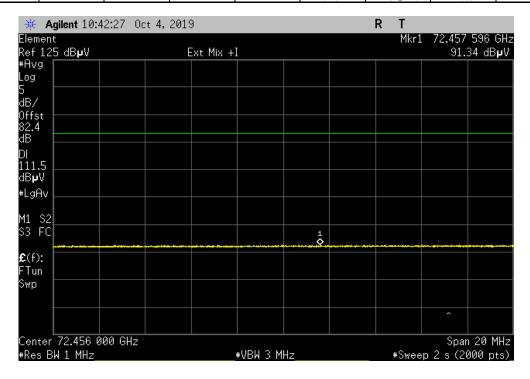

106.21

131.5 @ 2 cm

Pass

Continuous TX, 24056 MHz - 24247 MHz, 3rd Harmonic, Low Ch. 24056 MHz, Average										
				Value	Limit					
				(dBuV)	(dBuV)	Result				
				91.80	111.5 @ 2 cm	Pass				

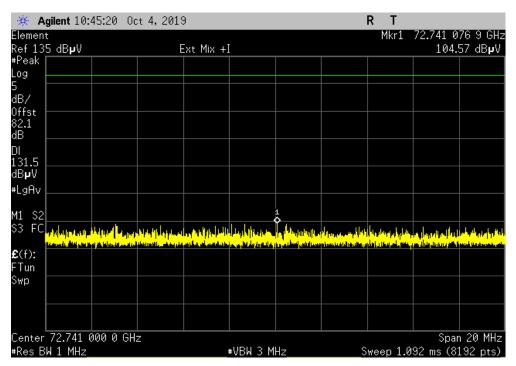



Continuous TX, 24056 MHz - 24247 MHz, 3rd Harmonic, Mid Ch. 24152 MHz, Peak

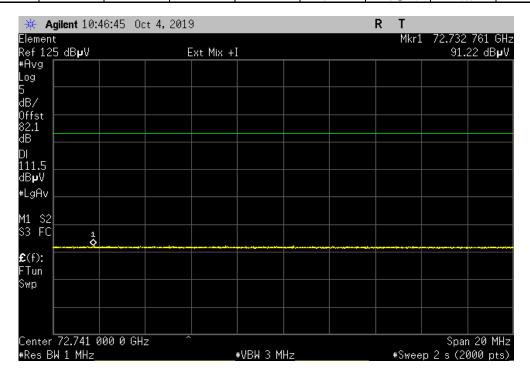
Value Limit
(dBuV) (dBuV) Result

105.13 131.5 @ 2 cm Pass

	Continuous TX, 24056 MHz - 24247 MHz, 3rd Harmonic, Mid Ch. 24152 MHz, Average										
					Value	Limit					
1					(dBuV)	(dBuV)	Result	_			
1					91.34	111.5 @ 2 cm	Pass				



Continuous TX, 24056 MHz - 24247 MHz, 3rd Harmonic, High Ch. 24247 MHz, Peak


Value

Limit
(dBuV)
(dBuV)
Result

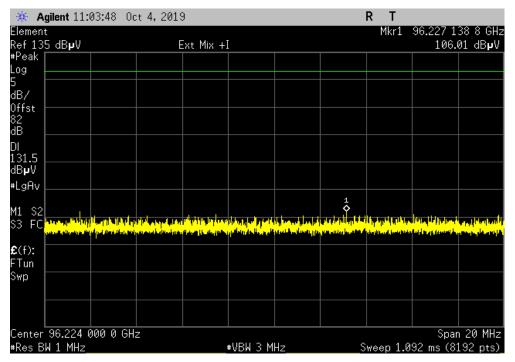
104.57
131.5 @ 2 cm
Pass

	Continuous TX, 24056 MHz - 24247 MHz, 3rd Harmonic, High Ch. 24247 MHz, Average										
					Value	Limit					
					(dBuV)	(dBuV)	Result	_			
l					91.22	111.5 @ 2 cm	Pass	1			

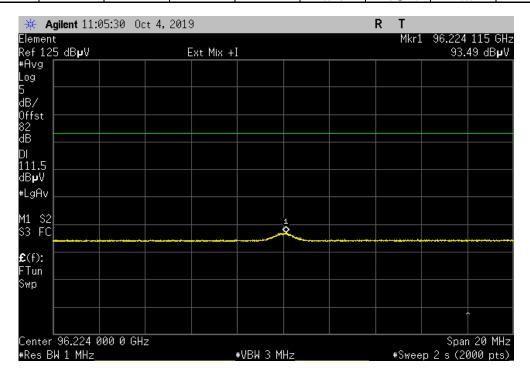
Continuous TX, 24056 MHz - 24247 MHz, 4th Harmonic, Low Ch. 24056 MHz, Peak

Value

(dBuV)


(dBuV)

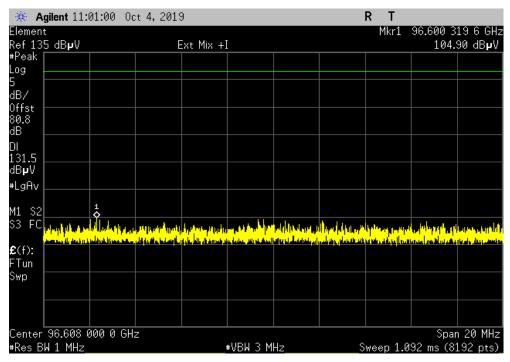
Result

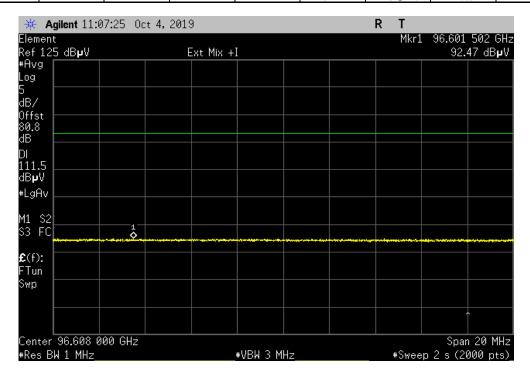

106.01

131.5 @ 2 cm

Pass

	Continuous TX, 24056 MHz - 24247 MHz, 4th Harmonic, Low Ch. 24056 MHz, Average										
					Value	Limit					
					(dBuV)	(dBuV)	Result				
l					93.49	111.5 @ 2 cm	Pass				

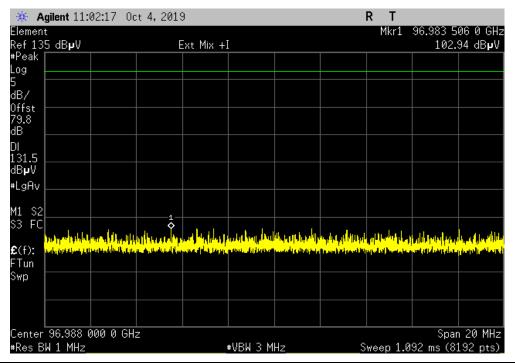


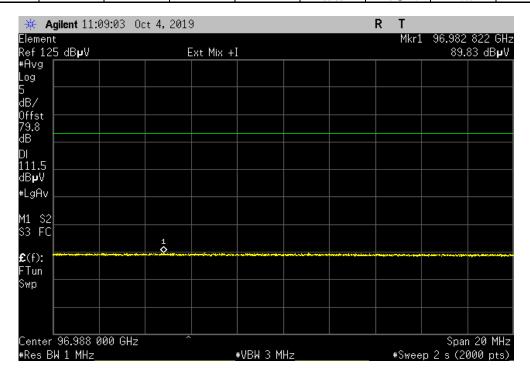

Continuous TX, 24056 MHz - 24247 MHz, 4th Harmonic, Mid Ch. 24152 MHz, Peak

Value Limit
(dBuV) (dBuV) Result

104.90 131.5 @ 2 cm Pass

	Continuous TX, 24056 MHz - 24247 MHz, 4th Harmonic, Mid Ch. 24152 MHz, Average										
					Value	Limit					
					(dBuV)	(dBuV)	Result	_			
1					92.47	111.5 @ 2 cm	Pass				




Continuous TX, 24056 MHz - 24247 MHz, 4th Harmonic, High Ch. 24247 MHz, Peak

Value Limit
(dBuV) (dBuV) Result

102.94 131.5 @ 2 cm Pass

	(Continuous TX, 24	056 MHz - 24247	7 MHz, 4th Harmo	onic, High Ch. 2	4247 MHz, Average		
					Value	Limit		
					(dBuV)	(dBuV)	Result	
l					89.83	111.5 @ 2 cm	Pass	1

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuous Tx, CW, Low Ch. = 24056 MHz, Mid Ch = 24152, High Ch 24247

POWER SETTINGS INVESTIGATED

12 VDC via 110VAC/60Hz

CONFIGURATIONS INVESTIGATED

PRCO0103 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	40 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	JSW45-26004000-40-5P	PAE	23-Apr-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	24-Nov-2018	12 mo
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	24-Nov-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	24-Nov-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	24-Nov-2018	12 mo
Attenuator	Weinschel Corp	54A-10	RBK	19-Nov-2018	12 mo
Cable	ESM Cable Corp.	KNKN-72 SMA Cable	EVZ	23-Apr-2019	12 mo
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	28-Mar-2019	12 mo
Cable	None	Standard Gain Horns Cable	EVF	24-Nov-2018	12 mo
Cable	N/A	Double Ridge Horn Cables	EVB	24-Nov-2018	12 mo
Cable	N/A	Bilog Cables	EVA	24-Nov-2018	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-10	AIW	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHY	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	0 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	7-Feb-2018	24 mo
Antenna - Biconilog	Teseq	CBL 6141B	AXR	2-Oct-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-2019	12 mo

TEST DESCRIPTION

The EUT was transmitting and while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes.

The average values were calculated as per FCC KDB 890966 - Measurement Procedure for Level Probing Radars, Section 9. The steps for the calculation are as follows:

1. Calculate the dwell time, T_C, of the sweep frequency signal per MHz of the sweep frequency span.

```
T_D = Ts/\Delta F, Where:
```

Ts is the signal sweep frequency time in seconds ΔF is the signal sweep frequency span in MHz

2. Calculate the Average Factor:

```
Average Factor = (T_D) / Cycle Time, Where:
```

Cycle Time is the total time for a complete cycle of the signal including retrace and any other latency times.

3. Calculate the Duty Cycle Correction Factor (DCCF):

```
DCCF = 10*log(Average Factor)
```

4. Apply the DCCF to the PK measurements to determine the AVG values.

										EmiR5 2019.08.01	ı	PSA-ESCI 2019.05.1	0
W	ork Order:		O0103	T	Date:		t-2019	_	1				
	Project: Job Site:		V01		nperature: Humidity:		<u>8 ℃</u> % RH		A	-			
Seria	I Number:		one		tric Pres.:		mbar	-	Tested by:	Jeff Alcoke	3.53		
Corre		SX97	0110	Daronio		1021	moai		oolou by.	0011 7 1100110			_
Conf	figuration:												_
	Customer:	Preco, Inc	Э.										=
	Attendees:												- =
E	UT Power:		ia 110VAC/6										=
Operat	ing Mode:	Continuou	ıs Tx, CW, L	ow Ch. = 2	4056 MHz,	Mid Ch = 2	24152 , Hig	h Ch 24247					
		None											-
D	eviations:	140110											
	comments:	derived from	nents below om PK meas Time of 0.0 0*log(Averaç	surements a 1119 s. Th	s per FCC e Average	KDB 8909	66 Section _D/Cycle T	F. The radion ime = 5.24*1	o has a dwe	ell time (T_E	of 5.86*	10^-6 s	-
Test Spec							Test Meth						_
FCC 15.24	19:2019						ANSI C63	.10:2013					
Run #	I 9	Test D	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	-
				-		J (1)		, ,					_
80										\bot		Ш	
											-		
70													
60 +													
50													
30													
								_					
40													
30													
00													
20								•					
10								·					
							*						
0												Щ	
10			100			1000			10000			100000	
						MHz				■ PK	◆ AV	• QP	
										FR	▼ AV	♥ QF	
					Duty Cycle Correction	External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Factor	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
4546.467	52.3	3.8	2.4	292.0		0.0	Horz	PK	0.0	56.1	74.0	-17.9	High Ch, EUT on Side
4546.517	52.1	3.8	1.3	278.0		0.0	Vert	PK	0.0	55.9	74.0	-18.1	High Ch, EUT Horz
4546.483 4528.433	52.1 51.8	3.8 3.9	1.0 2.4	165.0 287.0		0.0 0.0	Vert Horz	PK PK	0.0 0.0	55.9 55.7	74.0 74.0	-18.1 -18.3	High Ch, EUT Vert Mid Ch, EUT on Side
4510.442	51.6	4.0	2.5	281.0		0.0	Horz	PK	0.0	55.6	74.0	-18.4	Low Ch, EUT on Side
4528.567	51.2	3.9	2.3	282.0		0.0	Vert	PK	0.0	55.1	74.0	-18.9	Mid Ch, EUT Horz
4510.475 4546.458	50.1 48.2	4.0 3.8	1.5 1.2	279.0 251.0		0.0 0.0	Vert Horz	PK PK	0.0 0.0	54.1 52.0	74.0 74.0	-19.9 -22.0	Low Ch, EUT Horz High Ch, EUT Vert
4546.433	47.6	3.8	2.2	203.0		0.0	Horz	PK	0.0	51.4	74.0	-22.6	High Ch, EUT Horz
10524.620	50.1	-1.0	2.0	325.0		0.0	Horz	PK	0.0	49.1	74.0	-24.9	Low Ch, EUT on Side
10607.900	49.1 47.9	-0.6 -0.8	1.9 1.9	213.0 251.0		0.0 0.0	Horz Vert	PK PK	0.0 0.0	48.5 47.1	74.0 74.0	-25.5 -26.9	High Ch, EUT on Side Mid Ch, EUT Horz
10566.620 10566.650	47.9 47.7	-0.8 -0.8	1.9 1.5	251.0 346.0		0.0	Vert Horz	PK PK	0.0	47.1 46.9	74.0 74.0	-26.9 -27.1	Mid Ch, EUT Horz Mid Ch, EUT on Side
10524.580	47.7	-1.0	2.0	244.0		0.0	Vert	PK	0.0	46.7	74.0	-27.3	Low Ch, EUT Horz
4546.067	41.9	3.8	1.2	355.0		0.0	Vert	PK	0.0	45.7	74.0	-28.3	High Ch, EUT on Side
10608.170 4546.467	45.7 52.3	-0.6 3.8	1.5 2.4	87.0 292.0	-32.8	0.0 0.0	Vert Horz	PK AV	0.0 0.0	45.1 23.3	74.0 54.0	-28.9 -30.7	High Ch, EUT Horz High Ch, EUT on Side
	JU	0.0		_00	02.0	0.0			0.0	_0.0	55	00.1	J . ,

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4546.517	52.1	3.8	1.3	278.0	-32.8	0.0	Vert	AV	0.0	23.1	54.0	-30.9	High Ch, EUT Horz
4546.483	52.1	3.8	1.0	165.0	-32.8	0.0	Vert	AV	0.0	23.1	54.0	-30.9	High Ch, EUT Vert
4528.433	51.8	3.9	2.4	287.0	-32.8	0.0	Horz	AV	0.0	22.9	54.0	-31.1	Mid Ch, EUT on Side
4510.442	51.6	4.0	2.5	281.0	-32.8	0.0	Horz	AV	0.0	22.8	54.0	-31.2	Low Ch, EUT on Side
4528.567	51.2	3.9	2.3	282.0	-32.8	0.0	Vert	AV	0.0	22.3	54.0	-31.7	Mid Ch. EUT Horz
1503.583	49.1	-7.2	1.4	117.0	02.0	0.0	Horz	PK	0.0	41.9	74.0	-32.1	Low Ch, EUT on Side
1509.558	48.7	-7.2	2.8	101.0		0.0	Vert	PK	0.0	41.5	74.0	-32.5	Mid Ch, EUT Horz
1509.500	48.6	-7.2	2.3	121.0		0.0	Horz	PK	0.0	41.4	74.0	-32.6	Mid Ch, EUT on Side
4510.475	50.1	4.0	1.5	279.0	-32.8	0.0	Vert	AV	0.0	21.3	54.0	-32.7	Low Ch, EUT Horz
1515.192	48.2	-7.2	1.6	123.0		0.0	Horz	PK	0.0	41.0	74.0	-33.0	High Ch, EUT on Side
1515.467	46.6	-7.2	1.5	51.0		0.0	Vert	PK	0.0	39.4	74.0	-34.6	High Ch, EUT Horz
1503.325	46.6	-7.2	1.5	249.0		0.0	Vert	PK	0.0	39.4	74.0	-34.6	Low Ch, EUT Horz
4546.458	48.2	3.8	1.2	251.0	-32.8	0.0	Horz	AV	0.0	19.2	54.0	-34.8	High Ch, EUT Vert
4546,433	47.6	3.8	2.2	203.0	-32.8	0.0	Horz	AV	0.0	18.6	54.0	-35.4	High Ch, EUT Horz
10524.620	50.1	-1.0	2.0	325.0	-32.8	0.0	Horz	AV	0.0	16.3	54.0	-37.7	Low Ch, EUT on Side
10607.900	49.1	-0.6	1.9	213.0	-32.8	0.0	Horz	AV	0.0	15.7	54.0	-38.3	High Ch, EUT on Side
10566.620	47.9	-0.8	1.9	251.0	-32.8	0.0	Vert	AV	0.0	14.3	54.0	-39.7	Mid Ch, EUT Horz
10566.650	47.7	-0.8	1.5	346.0	-32.8	0.0	Horz	AV	0.0	14.1	54.0	-39.9	Mid Ch, EUT on Side
10524.580	47.7	-1.0	2.0	244.0	-32.8	0.0	Vert	AV	0.0	13.9	54.0	-40.1	Low Ch, EUT Horz
4546.067	41.9	3.8	1.2	355.0	-32.8	0.0	Vert	AV	0.0	12.9	54.0	-41.1	High Ch, EUT on Side
10608.170	45.7	-0.6	1.5	87.0	-32.8	0.0	Vert	AV	0.0	12.3	54.0	-41.7	High Ch, EUT Horz
1503.583	49.1	-7.2	1.4	117.0	-32.8	0.0	Horz	AV	0.0	9.1	54.0	-44.9	Low Ch, EUT on Side
1509.558	48.7	-7.2	2.8	101.0	-32.8	0.0	Vert	AV	0.0	8.7	54.0	-45.3	Mid Ch, EUT Horz
1509.500	48.6	-7.2	2.3	121.0	-32.8	0.0	Horz	AV	0.0	8.6	54.0	-45.4	Mid Ch, EUT on Side
1515.192	48.2	-7.2	1.6	123.0	-32.8	0.0	Horz	AV	0.0	8.2	54.0	-45.8	High Ch, EUT on Side
1515.467	46.6	-7.2	1.5	51.0	-32.8	0.0	Vert	AV	0.0	6.6	54.0	-47.4	High Ch, EUT Horz
1503.325	46.6	-7.2	1.5	249.0	-32.8	0.0	Vert	AV	0.0	6.6	54.0	-47.4	Low Ch, EUT Horz

									EmiR5 2019.08.01		PSA-ESCI 2019.05.	10			
V	Vork Order:	PRCO0103		Date:	8-Oct	t-2019				- //	4				
	Project:		Те	mperature:		7°C	1 ,	1	//						
	Job Site:			Humidity:		% RH			14/	182	\rightarrow				
Seri	ial Number:		Barom	etric Pres.:	1018	mbar		Tested by:	Jeff Alcoke	1		_			
Col	EUI: nfiguration:	SX97										_			
Col		Preco, Inc.										_			
	Attendees:											_			
-		12 VDC via 110V	AC/60Hz									_			
Opera	ating Mode:	Continuous Tx, C	W, Low Ch. =	24056 MHz,	Mid Ch = 2	24152 , Hi	gh Ch 24247	,				_			
	Deviations:	None													
	Comments:	derived from PK r and Cycle Time o	ee comments below for Channel and EUT orientation. The radio employs FMCW modulation, the AVG values were erived from PK measurements as per FCC KDB 890966 Section F. The radio has a dwell time (T_D) of 5.86*10^6 s and Cycle Time of 0.01119 s. The Average Factor = T_D/Cycle Time = 5.24*10^4. The DCCF used to derive the AVG alue is 10*log(Average Factor) = -32.8 dB												
Test Spe	cifications		_												
FCC 15.2							3.10:2013								
Run	# 14	Test Distance	(m) 0.1	Antenna	Height(s)		1 to 4(m)		Results	Р	Pass	_			
Ruff	17	103t Distance	0.1	Antenna	. reigni(3)		1 10 7(111)		Results		400	_			
80 -															
70 -															
60 -															
50 -															
40 -															
30 -															
20 -															
10 -															
0 -1								1			100000				
100	,,,,				MHz				= 517	A 837	100000				
						1			■ PK	◆ AV	• QP				
Freq (MHz)	Amplitude (dBuV)	Factor Antenna I (dB) (mete	rs) (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments			
22731.820 22731.480 22642.370 22642.730 22552.800 22552.780 22731.480 22642.370 22642.730 22552.800	0 40.9 0 40.9 0 40.2 0 40.2 0 39.9 0 41.1 0 40.9 0 40.9 0 40.2	43.1 1.6 43.1 1.6	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	-32.8 -32.8 -32.8 -32.8 -32.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Horz Vert Horz Vert Horz Horz Vert Horz Vert Vert	PK PK PK PK PK AV AV AV AV	-29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5	54.7 54.5 54.5 53.8 53.8 53.5 21.9 21.7 21.7 21.0 21.0	74.0 74.0 74.0 74.0 74.0 54.0 54.0 54.0 54.0 54.0	-19.3 -19.5 -19.5 -20.2 -20.5 -32.1 -32.3 -32.3 -33.0 -33.0	High Ch, EUT Horz High Ch, EUT On Side Mid Ch, EUT Horz Mid Ch, EUT On Side Low Ch, EUT On Side Low Ch, EUT Horz High Ch, EUT Horz High Ch, EUT On Side Mid Ch, EUT Horz Mid Ch, EUT On Side Low Ch, EUT On Side			
22552.780	39.9	43.1 1.6	10.0	-32.8	0.0	Horz	AV	-29.5	20.7	54.0	-33.3	Low Ch, EUT Horz			

										EmiR5 2019.08.01		PSA-ESCI 2019.05.1	0
W	ork Order:	PRCO0	103		Date:	8-Oct		_	,	//	1	3	1
	Project:	None			perature:	21.7		(/	1	//			
Cori	Job Site: al Number:	EV01 None		H Barometr	lumidity:	46.39 1018			Tested by:	loff Alpoleo	-0-	$\overline{}$	
Seri		SX97		barometi	ic Pres	1016	Праг		rested by:	Jeli Alcoke			_
Con	figuration:	1											_
	Customer:	Preco, Inc.											<u>-</u> -
	Attendees:												- -
E	UT Power:	12 VDC via 1		_									
Opera	ting Mode:	Continuous T		_									
ı	Deviations:	None	_										
(Comments:	See commen derived from and Cycle Tir value is 10*lo	_										
Test Spe	cifications						Test Meth	od					-
FCC 15.2	49:2019						ANSI C63.	10:2013	•				_
Dun 4	1 10	Toot Diete		0.4	Antonno	Haimht(a)		1 to 4(m)		Beculto	Do		_
Run #	16	Test Dista	nce (m)	0.1	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	_
80 -													
70													
									I				
60 -													
50													
40 +									*				
30													
20 -			•										
40													
10 +													
0 ↓													
239	00 2	3950 2	24000	24050	241		24150	24200	24250	24	300	24350	
						MHz				■ PK	◆ AV	• QP	
Freq (MHz)	Amplitude (dBuV)	(dB)		Azimuth degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
24250.330 24250.230 24250.330	55.5	43.4 43.4 43.4	1.6 1.6 1.6	10.0 10.0 10.0	-32 B	0.0 0.0 0.0	Horz Vert Horz	PK PK AV	-29.5 -29.5 -29.5	70.4 69.4 37.6	74.0 74.0 54.0	-3.6 -4.6 -16.4	High Ch, EUT Horz High Ch, EUT on Side High Ch, EUT Horz
24250.330		43.4 43.4	1.6	10.0	-32.8 -32.8	0.0	Vert	AV AV	-29.5 -29.5	37.6 36.6	54.0 54.0	-16.4 -17.4	High Ch, EUT on Side
23997.410	40.4	43.3	1.6	10.0		0.0	Vert	PK	-29.5	54.2	74.0	-19.8	Low Ch, EUT on Side
23999.320 23997.410		43.3 43.3	1.6 1.6	10.0 10.0	-32.8	0.0 0.0	Horz Vert	PK AV	-29.5 -29.5	53.4 21.4	74.0 54.0	-20.6 -32.6	Low Ch, EUT Horz Low Ch, EUT on Side
23999.320		43.3	1.6	10.0	-32.8	0.0	Horz	AV	-29.5	20.6	54.0	-33.4	Low Ch, EUT Horz

FIELD STRENGTH OF FUNDAMENTAL

PSA-FSCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuous Tx, CW, Low Ch. = 24056 MHz, Mid Ch = 24152 MHz, High Ch 24247 MHz

POWER SETTINGS INVESTIGATED

12 VDC via 110VAC/60Hz

CONFIGURATIONS INVESTIGATED

PRCO0103 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	24056 MHz	Stop Frequen	су	24247 MHz
-----------------	-----------	--------------	----	-----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	28-Mar-2019	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AIV	NCR	0 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-2019	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes.

The average values were calculated as per FCC KDB 890966 - Measurement Procedure for Level Probing Radars, Section 9. The steps for the calculation are as follows:

1. Calculate the dwell time, T_C, of the sweep frequency signal per MHz of the sweep frequency span.

 $T_D = Ts/\Delta F$, Where:

Ts is the signal sweep frequency time in seconds ΔF is the signal sweep frequency span in MHz

2. Calculate the Average Factor:

Average Factor = (T_D) / Cycle Time, Where:

Cycle Time is the total time for a complete cycle of the signal including retrace and any other latency times.

3. Calculate the Duty Cycle Correction Factor (DCCF):

DCCF = 10*log(Average Factor)

4. Apply the DCCF to the PK measurements to determine the AVG values.

FIELD STRENGTH OF FUNDAMENTAL

											EmiR5 2019.08.01		PSA-ESCI 2019.05.1	10
	Wo	ork Order:	PF	RCO0103		Date:		:-2019	_	,	//	- //	6	
		Project:		None	Ter	nperature:		9 °C	(/	1	//			
		Job Site:				% RH								
	Seria	I Number:		None	Barome	etric Pres.:	1023	mbar		lested by:	Jeff Alcoke	1		_
	Conf	iguration:	SX97										_	
			Preco, Inc.											_
			Donny Lloyd										=	
			: 12 VDC via 110VAC/60Hz										_	
Or		ing Mode:	Continuous Tx, CW, Low Ch. = 24056 MHz, Mid Ch = 24152 MHz, High Ch 24247 MHz										_	
		eviations:	None										_	
			See comments below for Channel and EUT orientation. The radio employs FMCW modulation, the AVG values were										_	
	Co	omments:	derived from PK measurements as per FCC KDB 890966 Section F. The radio has a dwell time (T_D) of 5.86*10^6 s and Cycle Time of 0.01119 s. The Average Factor = T_D/Cycle Time = 5.24*10^4. The DCCF used to derive the AVG value is 10*log(Average Factor) = -32.8 dB											
Tool C												=		
		9:2019						Test Met	3.10:2013					_
														_
Ru	un #	0	Test	Distance (m)	3	Antenna	a Height(s)		1 to 4(m)		Results	Pa	ass	_
•	140 -													
	120 -													
	120													
	100 -													
	100													
	00				*			*			*			
m/	80 -													
dBuV/m														
ъ	60 -													
	40 -													
	20 -													
	0 -													
	239	950	240	000	24050	241		24150	2	4200	24250		24300	
							MHz				■ PK	◆ AV	QP	
F		Amplitude	Foot	Antores Haile	Agirent	Duty Cycle Correction	External	Polarity/ Transducer	D.:	Distance	Adipatan	Span Limit	Compared to	
Fre (MH		Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Factor (dB)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	Comments
24056		75.6	43.4		3.0		0.0	Vert	PK	0.0	119.0	128.0	-9.0	Low Ch, EUT on Side
24152		75.6	43.4		3.0		0.0	Vert	PK	0.0	119.0	128.0	-9.0 -0.2	Mid Ch, EUT on Side High Ch, EUT on Side
24247 24152		75.4 73.1	43.4 43.4		4.0 7.0		0.0 0.0	Vert Horz	PK PK	0.0 0.0	118.8 116.5	128.0 128.0	-9.2 -11.5	Mid Ch, EUT Horz
24152		73.1 73.0	43.4 43.4		7.0 8.0		0.0	Horz	PK PK	0.0	116.5	128.0	-11.5 -11.6	Low Ch, EUT Horz
24246		73.0 72.5	43.4		9.0		0.0	Horz	PK	0.0	115.4	128.0	-11.6	High Ch, EUT Horz
24056		75.6	43.4		3.0	-32.8	0.0	Vert	AV	0.0	86.2	108.0	-21.8	Low Ch, EUT on Side
24152		75.6	43.4		3.0	-32.8	0.0	Vert	AV	0.0	86.2	108.0	-21.8	Mid Ch, EUT on Side
24247		75.4	43.4		4.0	-32.8	0.0	Vert	AV	0.0	86.0	108.0	-22.0	High Ch, EUT on Side
24152		73.1	43.4		7.0	-32.8	0.0	Horz	AV	0.0	83.7	108.0	-24.3	Mid Ch, EUT Horz
24056		73.0	43.4		8.0	-32.8	0.0	Horz	AV	0.0	83.6	108.0	-24.4	Low Ch, EUT Horz
24246		72.5	43.4		9.0	-32.8	0.0	Horz	AV	0.0	83.1	108.0	-24.9	High Ch, EUT Horz