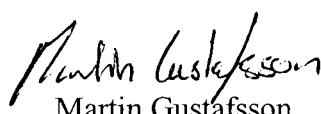


RADIO TEST REPORT

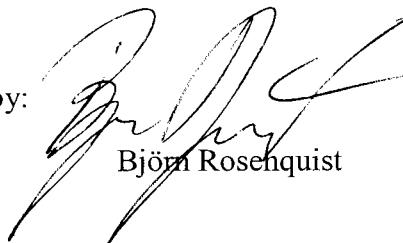
No. 0117035R3

EQUIPMENT UNDER TEST

Equipment : Bluetooth Palm Adapter
Type / model : LSE 044
Manufacturer : Wireless Solutions Sweden AB
Tested by request of : Wireless Solutions Sweden AB


SUMMARY

The equipment complies with the requirements of conducted and radiated spurious emission according to the following standard.


FCC CFR47 subpart B (1999) part 15.247

Date of issue: June 14, 2001

Tested by:

Martin Gustafsson

Approved by:

Björn Rosenquist

This report may not be reproduced other than in full, except with the prior written approval by SEMKO.

ITS Intertek Testing Services
ETL SEMKO

Postal address
SEMKO AB
Box 1103
S-164 22 KISTA
SWEDEN

Visiting address
Torshamnsgatan 43
KISTA-STOCKHOLM
SWEDEN

Telephone
+ 46 8 750 00 00
Fax
+ 46 8 750 60 30

CONTENTS

	Page
1. Client information.....	3
2. EQUIPMENT UNDER TEST (EUT).....	3
2.1 IDENTIFICATION OF THE EUT	3
2.2 ADDITIONAL INFORMATION ABOUT THE EUT.....	3
2.2.1 <i>Transmitter technical characteristics.</i>	3
2.2.2 <i>Transmitter RF power characteristics:</i>	3
2.2.3 <i>Transmitter modulation</i>	3
2.2.4 <i>Power source</i>	4
2.3 PERIPHERAL EQUIPMENT	4
2.4 EQUIPMENT INCLUDED IN THE TEST REPORT BUT NOT TESTED.....	4
3. TEST SPECIFICATIONS	4
3.1 STANDARDS.....	4
3.2 ADDITIONS, DEVIATIONS AND EXCLUSIONS FROM STANDARDS AND ACCREDITATION	4
4. TEST SUMMARY	5
5. RADIATED SPURIOUS EMISSION, TRANSMITTER AND RECEIVER	6
5.1 OPERATING ENVIRONMENT.....	6
5.2 MEASUREMENT UNCERTAINTY	6
5.3 TEST EQUIPMENT	6
5.4 TEST PROTOCOL.....	7
6. MAINS TERMINAL CONTINUOUS DISTURBANCE VOLTAGE, 0,45 – 30 MHZ.....	10
6.1 OPERATING ENVIRONMENT.....	10
6.2 TEST SET-UP AND TEST PROCEDURE.....	10
6.3 MEASUREMENT UNCERTAINTY	10
6.4 TEST EQUIPMENT	10
6.5 TEST PROTOCOL.....	10
PHOTOS OF THE EUT.....	12
Appendix A	14
Bluetooth RF test report According to FCC part 15.247.....	14

1. Client information

The EUT has been tested by request of

Company: Wireless Solutions Sweden AB
Box 2043, Rissneleden 138
174 02 Sundbyberg

Name of contact: Mikael Ohlsson

2. EQUIPMENT UNDER TEST (EUT)

2.1 Identification of the EUT

Equipment: Bluetooth Palm Adapter
Type/Model: LSE 044
Brand name: Wireless Solutions Sweden AB
Manufacturer: Wireless Solutions Sweden AB
Rating: 2,0 – 3,3 V DC from internal battery
(2xNiMH "AAA")
5 V DC/400mA from external power supply

2.2 Additional information about the EUT

The EUT consists of the following units:

Units	Type
Bluetooth Palm Adapter	LSE 044

The Palm Adapter supports File Transfer. The LSE 044 Palm Adapter provides wireless communication for Bluetooth application in the 2,4 GHz ISM band. The Palm Adapter is intended to work together with a Palm Pilot. The communication between the computer and Palm Adapter was performed via RS 232 interface.

2.2.1 Transmitter technical characteristics.

Frequency range: 2402 – 2480 MHz

2.2.2 Transmitter RF power characteristics:

Maximum rated transmitter output power: 0 dBm e.i.r.p (power class 2)

Antenna: Integrated antenna

Transmitter output power is not variable.

2.2.3 Transmitter modulation

Modulation: FHSS, GFSK

Bit rate: 1 Mbps

2.2.4 Power source

Power supply: 2,0 – 3,3 V DC from internal battery
2xNiMH "AAA") and 5 V DC/400mA from external power supply

2.3 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not included as part of the testing and evaluation of the EUT.

Equipment	Type	Model
Laptop	Dell	PPX

2.4 Equipment included in the test report but not tested

The following equipment is not tested but included in this report. The changes described below will not affect the measurement result.

Palm adapter

Model number:

LSE 044/..

Differences:

The ".." after the slash in the model designation indicates different customer deliveries and the differences are only decorative.

3. TEST SPECIFICATIONS

3.1 Standards

FCC Subpart C – Intentional Radiators §15.247 for frequency hopping systems operating in the 2400 – 2486.5 MHz and 5725 – 5850 MHz. Conducted emissions 15.207.

FCC subpart B – Unintentional radiators: conducted emissions.

3.2 Additions, deviations and exclusions from standards and accreditation

No additions, deviations or exclusions have been made from standards and accreditation.

4. TEST SUMMARY

The results in this report apply only to sample tested:

	Test	Result	Note
15.247(c)	Radiated spurious emission	Pass	
15.247(b)	Peak output power	Pass	1
15.247(a)	20 dB Bandwidth	Pass	1
15.247(a)	Carrier frequency separation	Pass	1
15.247(a)	Number of hopping channels	Pass	1
15.247(c)	Band edge compliance	Pass	1
15.247(a)	Time of occupancy (dwell time)	Pass	1
15.207	Mains terminal disturbance voltage	Pass	1

- 1) These measurements have been performed by Wireless Solutions Sweden AB under super vision of SEMKO.

5. RADIATED SPURIOUS EMISSION, TRANSMITTER AND RECEIVER

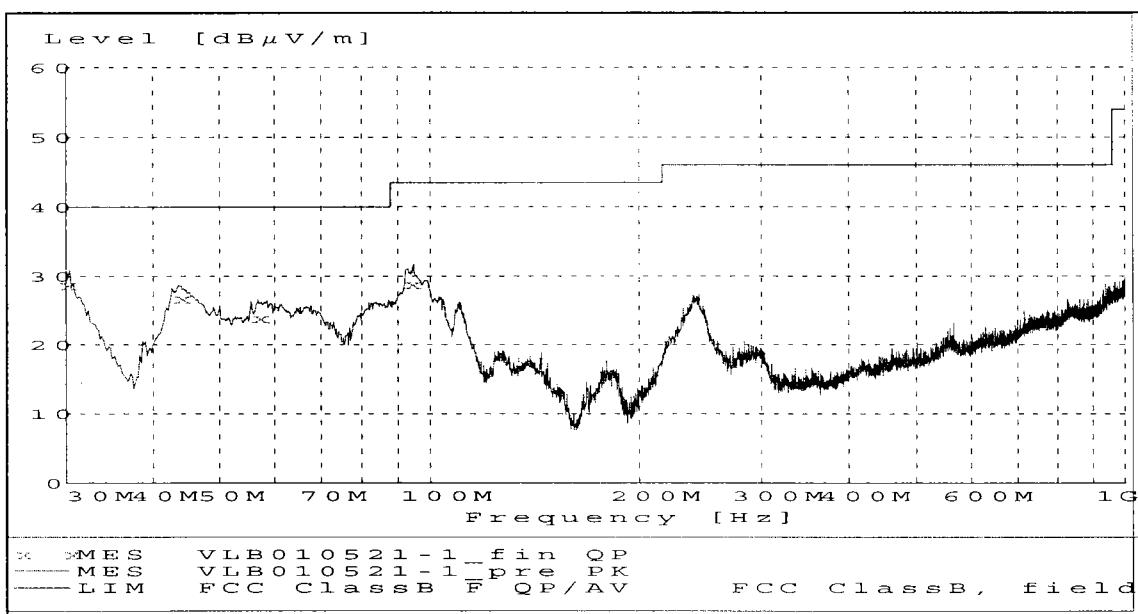
5.1 Operating environment

Temperature: 23 °C (15 - 35 °C)
Relative Humidity: 28 % (30 - 60 %)

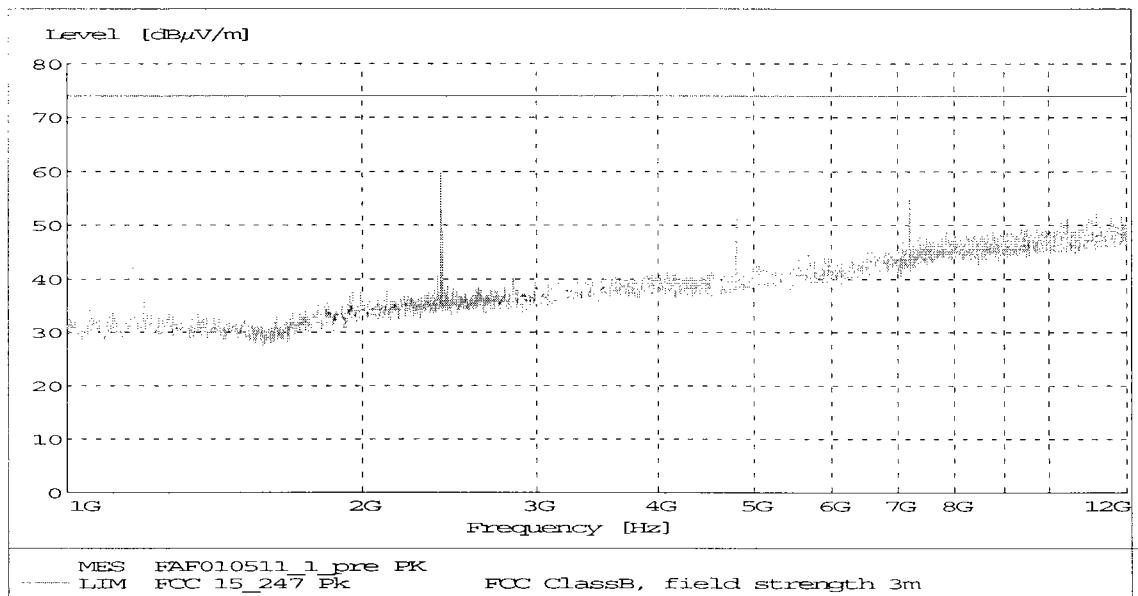
5.2 Measurement uncertainty

Measurement uncertainty: ± 4 dB

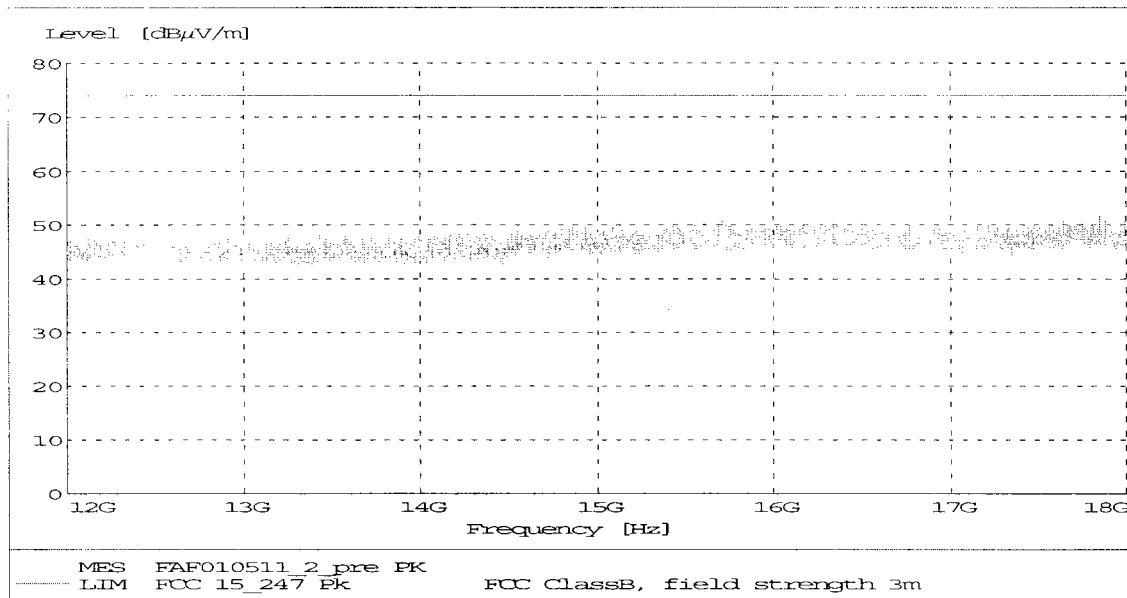
5.3 Test equipment

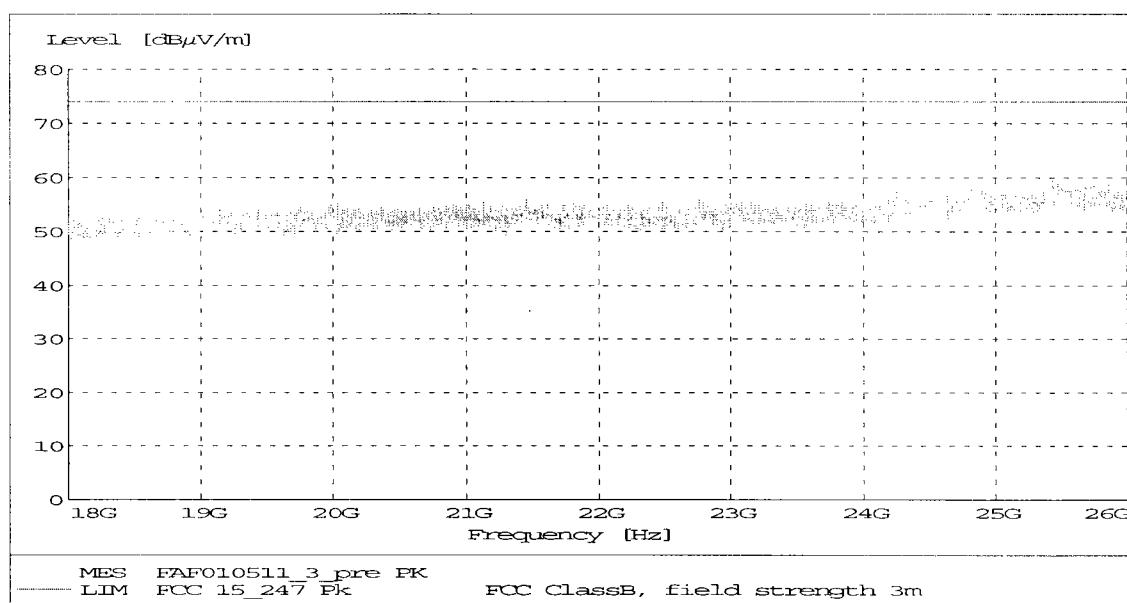

Test site: Semi-anechoic shielded chamber. 10 x 20 x 8,5 m (W x L x H)

Equipment	Manufacturer	Type	SEMKO No.
Software:	R&S	ES-K1	
Software:	Frank Hoppert	REMI	
Measurement receiver:			
Monitor unit:	R&S	ESAI	2973
RF unit:	R&S	ESAI	2974
Spectrum analyser:	R&S	FSEM 30	
Antenna amplifier:	SEMKO		7992, 7993
Preamplifier:	HP	8449B	6685
Antennas:			
Bilog:	Chase	CBL6111A	1550
Double Ridge Waveguide Horn:	EMCO	3115	4936
Pyramidal Horn Antenna:	EMCO	3160-08	30099
Pyramidal Horn Antenna:	EMCO	3160-09	30101
High pass filter 40 dB meas.	K&L	11SH10-	7989
rang 2,4 – 8,0 GHz		2400/U8000-O/O	
6 dB – 50 att. (DC – 12,4 GHz P=2W)	HP	8491A	7636


5.4 Test protocol

Date of test: May 11 and 21, 2001


Overview sweep max peek at a distance of 10 m (30 – 1000 MHz):


Overview sweep max peek at a distance of 3 m (1 – 12 GHz):

Overview sweep max peek at a distance of 3 m (12 – 18 GHz):

Overview sweep max peek at a distance of 3 m (18 – 26 GHz):

Field strength of spurious emission. Tx test data sequence						Note	
Frequency [MHz]	RBW [kHz]	Measured level		Limit			
		Peak [dB μ V/m]	QP/AV [dB μ V/m]	Peak [dB μ V/m]	QP/AV [dB μ V/m]		
30 – 88	120	<31	-	60	40		
88 – 216	120	<32	-	63,5	43,5		
216 – 960	120	<29	-	66	46		
960 – 1000	120	<30	-	74	54		
1000 – 2400	1000	<41	-	74	54		
2483,5 – 4800	1000	<45	-	74	54		
4800	1000	45	-	74	54		
4800-7200	1000	*	-	74	54		
7200	1000	54	-	60	-		
7200-12000	1000	*	-	74	54		
12000-18000	1000	*	-	74	54		
18000-26000	1000	*	-	74	54		

* No disturbance above the noise floor was obtained.

Fulfil requirements: Yes

6. MAINS TERMINAL CONTINUOUS DISTURBANCE VOLTAGE, 0,45 – 30 MHZ

6.1 Operating environment

Temperature: 22 °C

Relative Humidity: 35 %

6.2 Test set-up and test procedure

The mains terminal disturbance voltage was measured with the equipment under test (EUT) 0,8 m above the ground plane and 0,4 m from the vertical ground plane. The EUT was connected to an artificial mains network (AMN). The AMN was placed on a metallic, grounded floor. Amplitude measurements were performed with a quasi-peak detector.

6.3 Measurement uncertainty

Mains terminal disturbance voltage, quasi-peak detection: ±2,0 dB

Mains terminal disturbance voltage, average detection: ±2,0 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT in the above mentioned way.

Measurement uncertainty is calculated in accordance with WECC 19-1990.

The measurement uncertainty is given with a confidence of 95%.

6.4 Test equipment

Test site: Shielded room

Equipment	Manufacturer	Type	SEMKO No.
Measurement receiver	Rohde & Schwarz	ESHS 30	3149
Artificial mains network	Rohde & Schwarz	ESH3-Z5	2260

6.5 Test protocol

Date of test: May 8, 2001

An overview sweep performed with a peak detector is included in the test report as chart A.

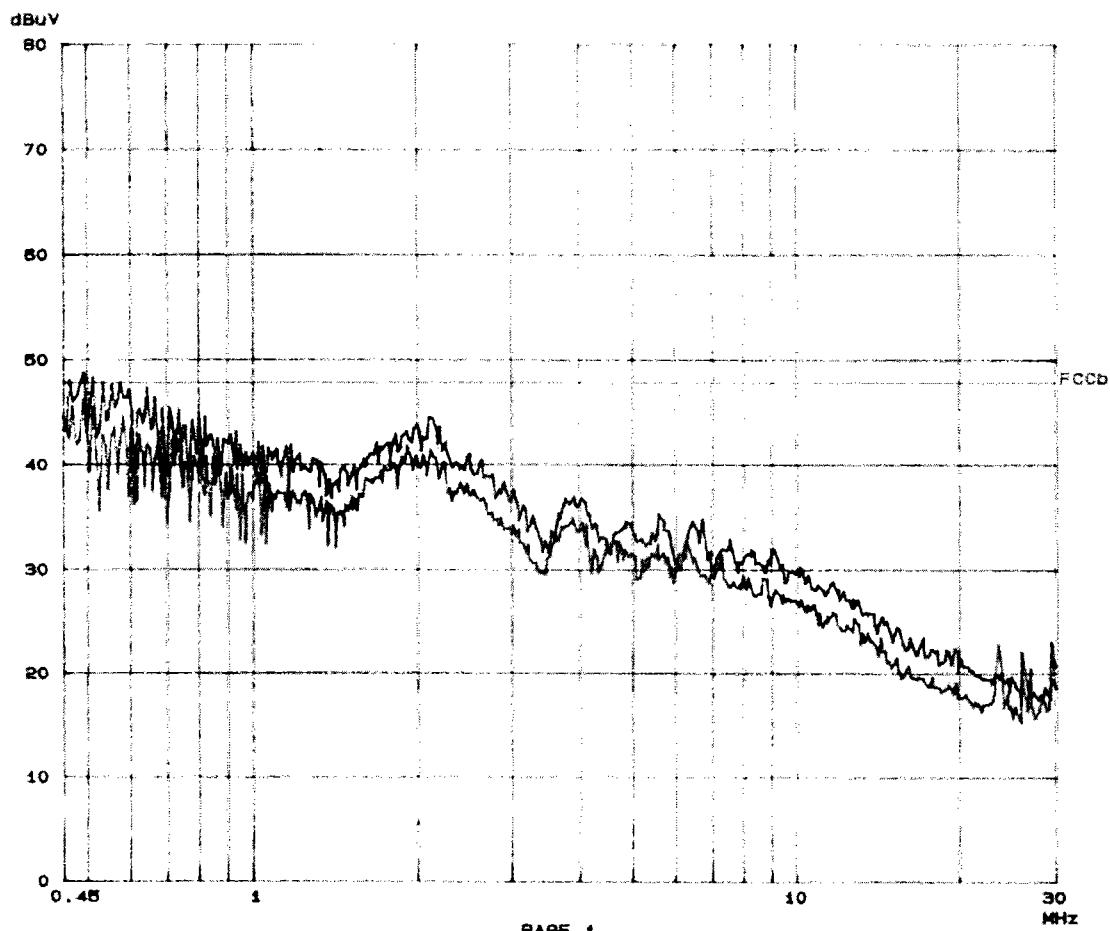
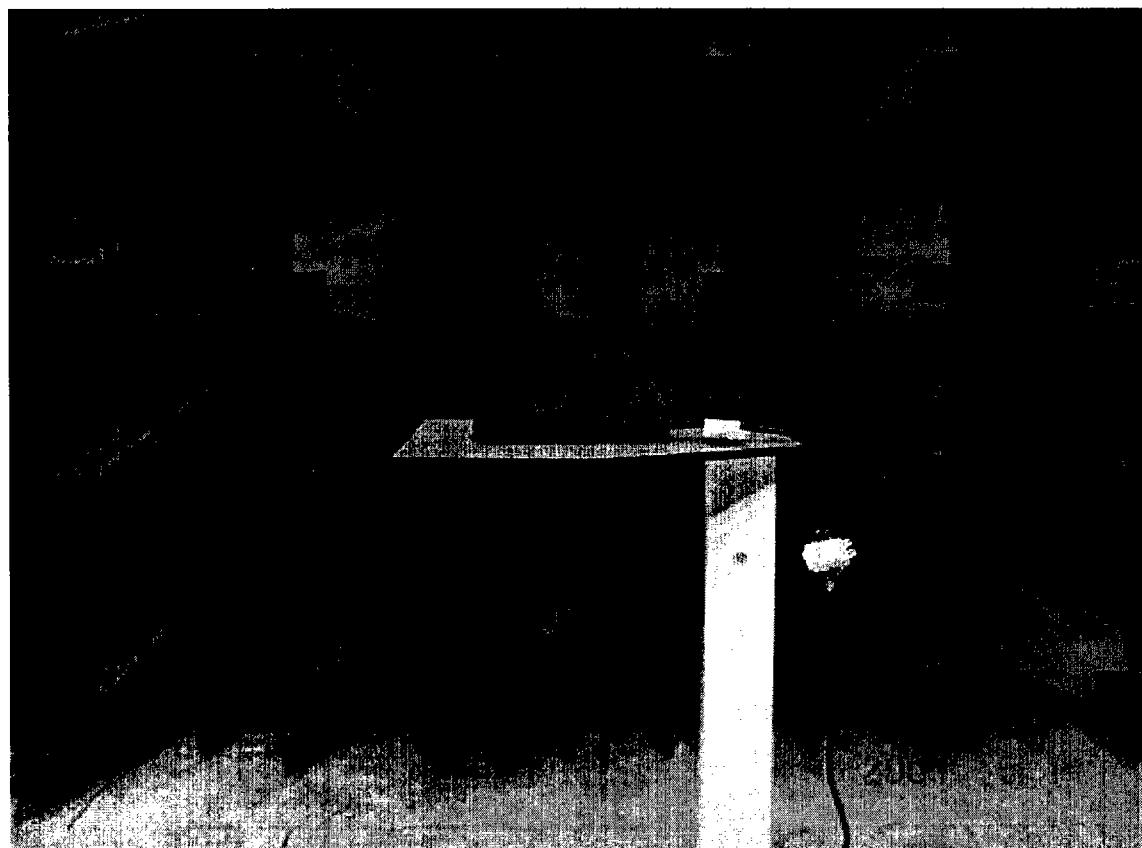
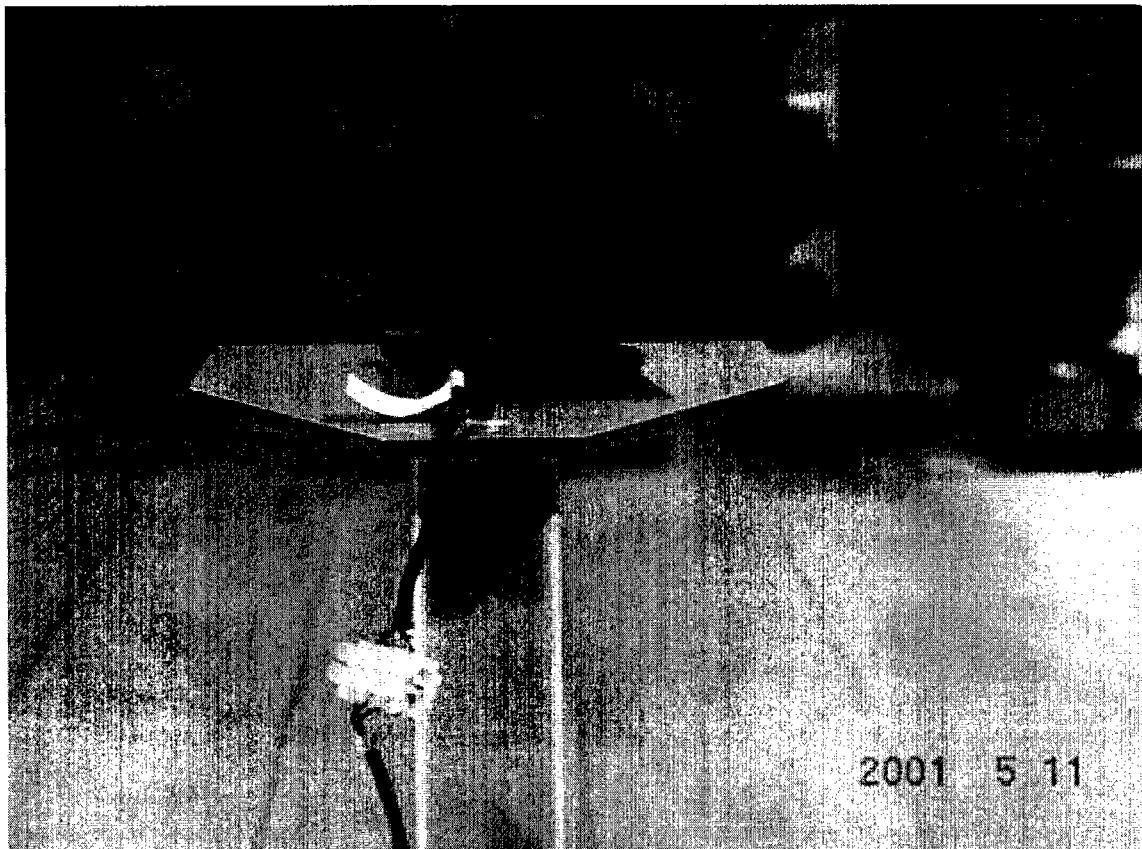

Frequency MHz	Disturbance level dB(µV)		Permitted limit dB(µV) QP
	Phase 1 QP	Neutral QP	
0,464	41,8	-	47,9
0,471	-	43,6	47,9
0,492	45,3	44,2	47,9
0,513	45,0	43,6	47,9
0,534	42,5	-	47,9
0,576	39,2	-	47,9

Chart A**EMC-CENTER**
FCC part15 Conducted

08. May 01 11:33



EUT: LSE044
Manuf: WIRELESS SOLUTIONS SWEDEN AB
Op Cond: 4.1V DC
Operator: VLB
Test Spec: Main terminals. Peak measurements.
Comment: TEMP +22 C RH 23%

Scan Settings (1 Range)
Frequencies | Receiver Settings
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
450K 30M 7K 10K PK 20ms AUTO LN OFF 60dB

PHOTOS OF THE EUT

Appendix A

Bluetooth RF test report According to FCC part 15.247
For
Bluetooth Palm Adapter
Type no. LSE 044/..

Serial no. LSE04401AB000001

General

Administrative data

Description of EUT

Device	Bluetooth Palm Adapter
Product type	LSE 044/..
S/N	LSE04401AB000001
HW status	R1A
Date of test started	2001-05-07
Date of test finished	2001-05-15
EUT comments	The LSE 044 has a built in antenna with 0dB gain.
Measurement comments	To make conducted measurements a semi-rigid cable with SMA connector was connected instead of the antenna.

List of measurements

Test case no.	Transmitter parameters	Regulatory reference	Result	Page no.
2.1.1	Peak power	15.247(b)	Pass	6
2.1.2	Bandwidth	15.247(a)	Pass	8
2.1.3	Carrier frequency separation	15.247(a)	Pass	10
2.1.4	Number of hopping frequencies	15.247(a)	Pass	11
2.1.5	Time of occupancy (dwell time)	15.247(a)	Pass	12
2.1.6	Band edge compliens	15.247(c)	Pass	14
2.1.7	Out of band spurious emissions conducted	15.247(c)	Pass	15

Declaration

All test cases with the regulatory requirement FCC part 15.247 (edition January 8, 2001), are performed according to **FCC DA 00-705, released March 30, 2000.**

The Bluetooth device is regarded as equipment using FHSS modulation.

The channel numbering according to the **Bluetooth specification, version 1.1**, is from 0 to 78, where 0 is the lowest channel frequency (2402 MHz) and 78 the highest (2480 MHz).

Measurements

For all measurements, a Bluetooth test data sequence DH1, PN9 was used. Modulation is GFSK and the hopping selection is described in the Bluetooth specification, version 1.1 chapter 11 (see appendix A in product documentation). Maximum data rate (1Mbps) is always used.

The humidity and the temperature were measured according to chapter 3. The Agilent E3631A power supply was used to vary the supply voltage to the Palm Adapter $\pm 15\%$.

Transmitter

Peak output power

Test Conditions and results

Relative humidity:	25%
Attenuation:	4.2dB
TX mode:	Hopping off
Peak power settings	
Test procedure:	
Fc:	Fmin, Fmax
Span:	5 MHz
RBW:	1 MHz
VBW:	1 MHz
Detector:	Peak
Trace:	Max hold

The peak power was measured with spectrum analyser FSP 30, which is according to clause 15.247(b).

The voltage was supplied and measured by E3631A.

The measurement is performed on the lowest (2402 MHz) and the highest (2480 MHz) channels only.

T _{nom} :	+25 °C
T _{min} :	-30 °C
T _{max} :	+55 °C
V _{nom} :	2.4 V
V _{min} :	2.0 V
V _{max} :	2.8 V
F _{min} :	2402 MHz
F _{max} :	2480 MHz

Readings from the spectrum analyser:

Test conditions		Transmitter output power peak (dBm) instrument readings		Transmitter output power (dBm) calculated values	
Temperature	Voltage	Fmin	Fmax	Fmin	Fmax
T _{nom}	V _{min}	-2.6	-2.4	1.6	1.8
	V _{nom}	-2.6	-2.4	1.6	1.8
	V _{max}	-2.6	-2.4	1.6	1.8
T _{min}	V _{min}	-3.1	-2.4	1.1	1.8
	V _{nom}	-3.1	-2.4	1.1	1.8
	V _{max}	-3.1	-2.4	1.1	1.8
T _{max}	V _{min}	-3.1	-3.2	1.1	1.0
	V _{nom}	-3.1	-3.2	1.1	1.0
	V _{max}	-3.1	-3.2	1.1	1.0

Formula to calculate peak value

P = Pout + attenuator and cable loss (i.e. 4.2dB)

Pout = measured power

Limits

The limits, according to FCC 15.247(b) is,

average power < 30 dBm

peak power < 30 dBm

Verdict

The equipment passed the test under all test conditions.

Test equipment used

Spectrum analyser	Rohde & Schwarz	FSP 30
Power supply	Agilent	E3631A
Coaxial cable 1	Suhner	
Attenuator	Suhner 3dB	6603.19

Measurement uncertainty

Amplitude: better than $\pm 1.0\text{dB}$.

Comments

Plots can be seen in Appendix 2.

TX 20dB bandwidth

Test conditions and results

Ambient temperature: 25°C

Relative humidity: 27%

Rated output power: 2 dBm

TX mode: Hopping off

Test procedure: Fc: Fmin, Fmax-1
 Span: 2401-2403 MHz (Fmin),
 2478-2480 MHz (Fmax-1)
 RBW: 30 kHz
 VBW: 30 kHz
 Detector: Peak
 Trace: Max hold

The test is performed according to clause 15.247(a).

T_{nom}: +25 °C

T_{min}: -30 °C

T_{max}: +55 °C

V_{nom}: 2.4 V

V_{min}: 2.0 V

V_{max}: 2.8 V

Readings from the spectrum analyser:

Test conditions		Frequency Range (kHz)	
Temperature	Voltage	f(L)	f(H)
T _{nom}	V _{min}	764	768
	V _{nom}	768	768
	V _{max}	768	768
T _{min}	V _{min}	752	760
	V _{nom}	752	760
	V _{max}	752	760
T _{max}	V _{min}	808	808
	V _{nom}	808	816
	V _{max}	804	812

Limits

The limit according to clause 15.247(a)(ii) is: 20dB bandwidth <1MHz.

Verdict

The equipment passed the test under all test conditions.

Test equipment used

Spectrum analyser	Rohde & Schwarz	FSP 30
Coaxial cable 1	Suhner	
Attenuator	Suhner 3dB	6603.19

Measurement uncertainty

Frequency: $\pm 15\text{kHz}$

Comments

Plots can be seen in Appendix 3.

The measurements were made with marker to peak, and the 20dB-bandwidth is 20dB down from it.

Carrier frequency separation**Test conditions and results**

Ambient temperature:	26°C
Relative humidity:	28%
Rated output power:	2 dBm
TX mode:	Hopping on

The test is performed according to clause 15.247(a).

Spectrum Analyser settings:
RBW = 100 kHz
VBW = 100 kHz
Span = 9MHz
Detector = max peak
Trace = max hold

Result:

Test conditions		Separation channel 1 and channel 2
T _{nom}	V _{nom}	1008 kHz

Limits

Greater than the 20dB bandwidth, which in this case is >770 kHz.

Verdict

The equipment passed the test under all test conditions.

Test equipment used

Spectrum analyser	Rohde & Schwarz	FSP 30
Coaxial cable 1	Suhner	
Attenuator	Suhner 3dB	6603.19

Measurement uncertainty

Frequency: ± 20 kHz

Comments

Plots can be seen in Appendix 7, plot 3.

Number of hopping frequenciesTest conditions and results

Ambient temperature:	26°C
Relative humidity:	27%
Rated output power:	2 dBm
TX mode:	Hopping on

The test is performed according to clause 15.247(a).

Spectrum Analyser settings:
RBW = 100 kHz
VBW = 100 kHz
Span = 102MHz
Detector = max peak
Trace = max hold

Result:

According to the plot in Appendix 5, it is 79 channels.

Limits

≥ 75

Verdict

The equipment passed the test under all test conditions.

Test equipment used

Spectrum analyser	Rohde & Schwarz	FSP 30
Coaxial cable 1	Suhner	Sucoflex 100
Attenuator	Suhner 3dB	6603.19

Measurement uncertainty

Not applicable.

Comments

A plot can be seen in Appendix 5.

Time of occupancy (dwell time)

Test conditions and results

Ambient temperature:	26°C
Relative humidity:	28%
Rated output power:	2 dBm
TX mode:	Hopping on

The test is performed according to clause 15.247(a).

Spectrum analyser settings:
RBW = 1MHz
VBW = 1MHz
Span = 0Hz
Sweep time = 1ms
Detector = max peak
Trace = max hold

Transmit time = 0.414ms = T (see plot 1 appendix 6)

Number of times that channel 1 occurred in 30s = 125 = n (see plot 2 appendix 6)
How long time for channel 1 to be active in 30s = S

Formula:

$$S = T * n$$

$$S = 0.414ms * 125 = 0.052s$$

Result:

Channel 1 is active 0.052s under a period of 30 seconds.

Limits

0.4s

Verdict

The equipment passed the test under all test conditions.

Test equipment used

Spectrum analyser	Rohde & Schwarz	FSP 30
Coaxial cable 1	Suhner	Sucoflex 100
Attenuator	Suhner 3dB	6603.19

Measurement uncertainty

Time: $\pm 1.3ms$

Comments

Plots can be seen in Appendix 6.

Band edge compliance

Test conditions and results

Ambient temperature:	25°C
Relative humidity:	28%
Rated output power:	2 dBm
TX mode:	Hopping off and hopping on

The test is performed according to clause 15.247(c).

Spectrum Analyser settings:
RBW = 100kHz
VBW = 100kHz
Span = 9MHz
Detector = max peak
Trace = max hold

Result:

Test conditions	Frequency Range	
	2400 MHz	2483.5 MHz
Hopping off	-51.4 dBc	-56.9 dBc
Hopping on	-51.8 dBc	-56.7 dBc

Limits

<-20dBc

Verdict

The equipment passed the test under all test conditions.

Test equipment used

Spectrum analyser	Rohde & Schwarz	FSP 30
Coaxial cable 1	Suhner	
Attenuator	Suhner 3dB	6603.19

Measurement uncertainty

Amplitude: better than ± 1.2 dB.

Comments

Plots can be seen in Appendix 7.

Out of band spurious emissions conducted transmit**Test conditions and results**

Ambient temperature: 25°C
Relative humidity: 27%
Rated output power: 2 dBm
TX mode: Hopping on

The test is performed according to clause 15.247(c).

Spectrum Analyser settings:

RBW = 100 kHz
VBW = 100 kHz
Span = 100 MHz
Range = 9 kHz-25 GHz

With the equipment used as described in chapter 3, the loss from the EUT to the spectrum analyser is none.

T_{nom}: +25 °C
V_{nom}: 2.4 V

Readings from the spectrum analyser:

Test conditions: T _{nom} , V _{nom}		Spurious emission (dBm)	
Range	Limit	Spurious level (dBm)	Spurious frequency (GHz)
9 kHz-25 GHz	-20 dBm	None were found	

Limits

According to section 15.247(c), it should be $\leq -20\text{dBc}$.

Verdict

The equipment passed the test under all test conditions.

Test equipment used

Power supply	Agilent	E3631A	
Spectrum analyser	Rohde & Schwartz	FSP 30	9 kHz - 30 GHz
SMA connector	Male to male		

Measurement uncertainty

Frequency: $\pm 100\text{kHz}$

Amplitude: $\pm 3\text{dB}$

Comments

Plot can be seen in appendix 4.

Test equipment and ancillaries used

A computer was used both to ensure the correct test sequence for the EUT and to collect data from the spectrum analyser in the spurious emission measurement. The other plots in the Appendix are generated from the "Hardcopy" -> "Print screen" function on the spectrum analyser.

The Rohde & Schwarz FSP 30 Spectrum Analyser was used for all measurements.

The network analyser was used for calibrating the cables, connectors and the attenuator.

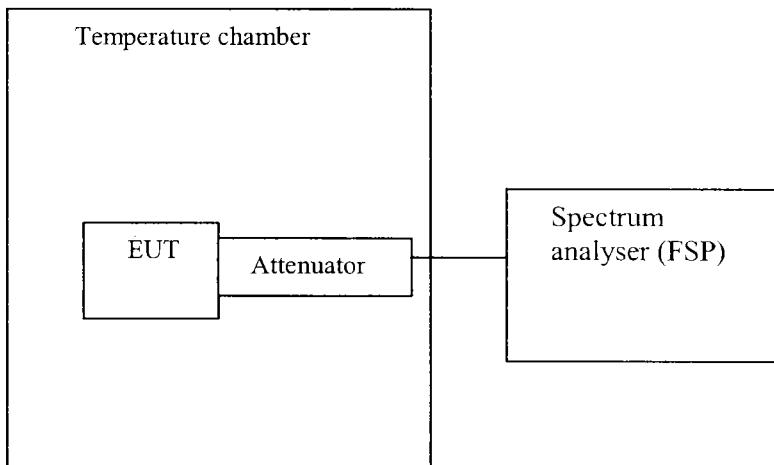
The attenuator was used together with a 1m SMA cable for all measurements except for the spurious, where the spectrum analyser was connected directly through a SMA connector. The accurate temperature was ensured by the temperature sensor and the multimeter. The sensor in the Heraeus temperature chamber was not used.

The humidity was measured with a hygrometer.

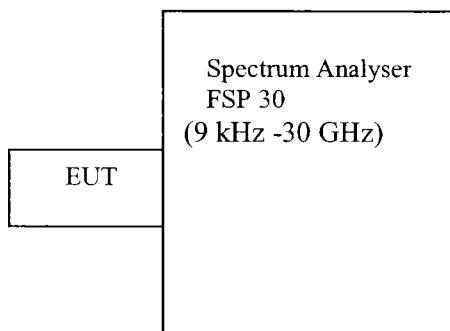
A torque wrench (Rosenberg 50 Ncm) was used to ensure good RF connections.

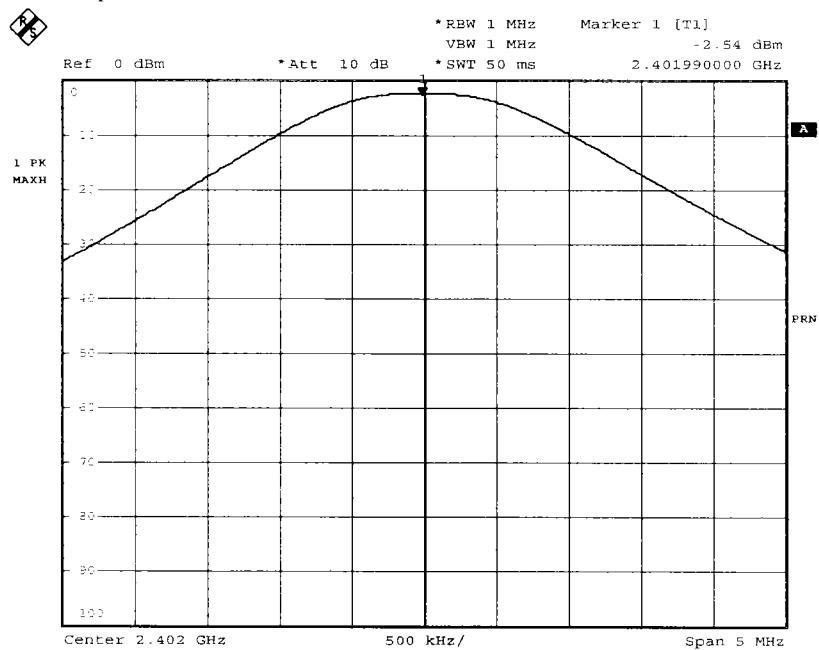
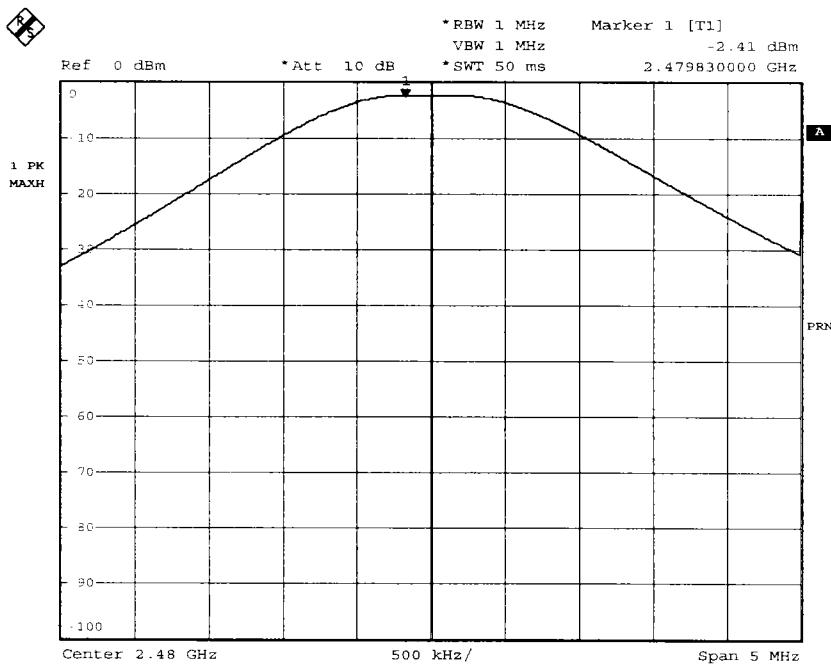
Instrument	Manufacturer	Type	S/N	Calibration due	Used in test case
Spectrum analyser	Rohde & Schwarz	FSP 30	837866/014	Jan 2002	All
Network analyser	Agilent	HP8753ES	US39172563	June 2001	For calibration
Multimeter	Agilent	HP34970	US 37031644	May 2001	All
Power supply	Agilent	E3631A	KR01128568	June 2001	All
Hygrometer	THGM	880	-	-	Humidity check
Coaxial cable 1	Suhner	-	-	-	All, except 2.1.7
SMA connector	Male to Male	-	-	-	2.1.7
Attenuator	Suhner 3dB	6603.19	-	-	All, except 2.1.7

Equipment accuracy.


Instrument	Manufacturer	Type	Accuracy
Spectrum analyser	Rohde & Schwarz	FSP 30	± 0.5 dB (amplitude) @ $f < 3000$ MHz ± 2 dB (amplitude) @ $f < 7000$ MHz ± 2.5 dB (amplitude) @ $f < 13600$ MHz ± 3 dB (amplitude) @ $f < 30000$ MHz max ± 2.5 ppm (frequency) $\pm 1\%$ max deviation (sweep time) at zero span
Network analyser	Agilent	HP8753ES	± 0.1 dB
Power supply	Agilent	E3631A	$\pm 2\%$
Multimeter	Agilent	HP34970	± 1 °C
Coaxial cable 1 + Attenuator SMA connector			5.2 ± 0.1 dB 0.1 dB
Hygrometer	THGM	880	$\pm 7\%$

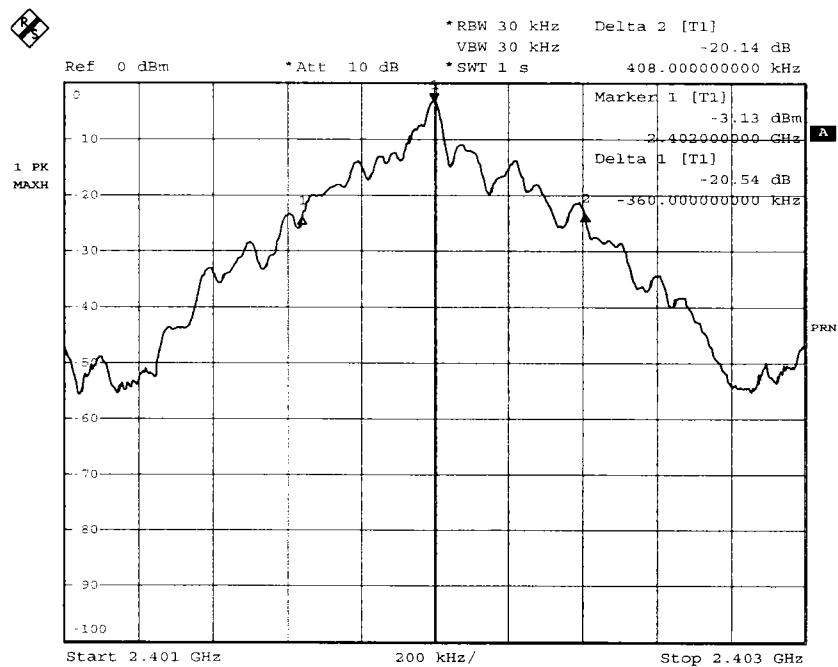
Appendix


1. Measurement set-up
2. Peak power
3. 20dB Bandwidth
4. Spurious emission
5. Number of hopping channels
6. Dwell time
7. Band edge



Appendix 1 – Measurement set-up

A1.1 Power measurements with spectrum analyser from Rohde & Schwarz.

A1.2 Spurious measurements with spectrum analyser from Rohde & Schwarz.



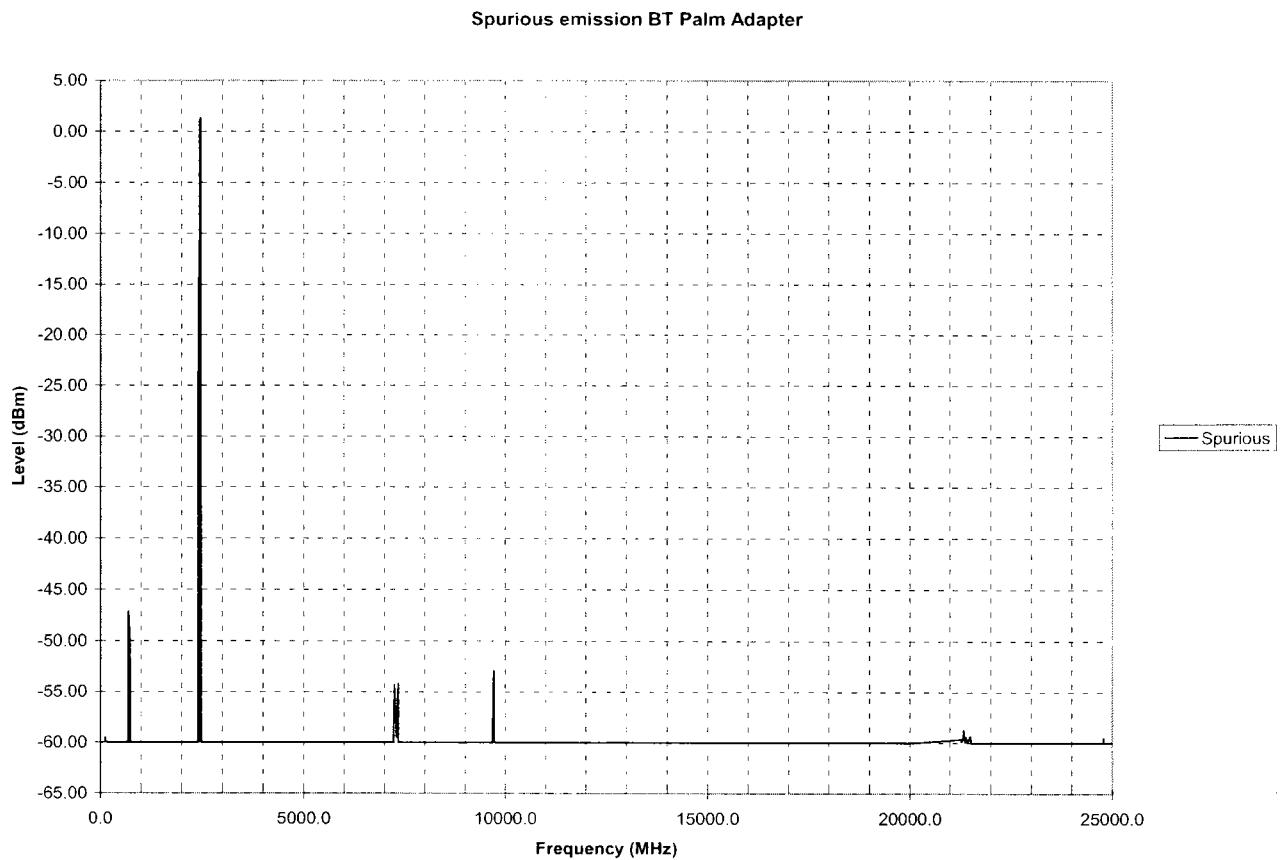
Appendix 2 – Peak power
Plot 1 – Peak power on lowest channel with 2.4V and at +25°C.

Plot 2 – Peak power on highest channel with 2.4V and at +25°C.

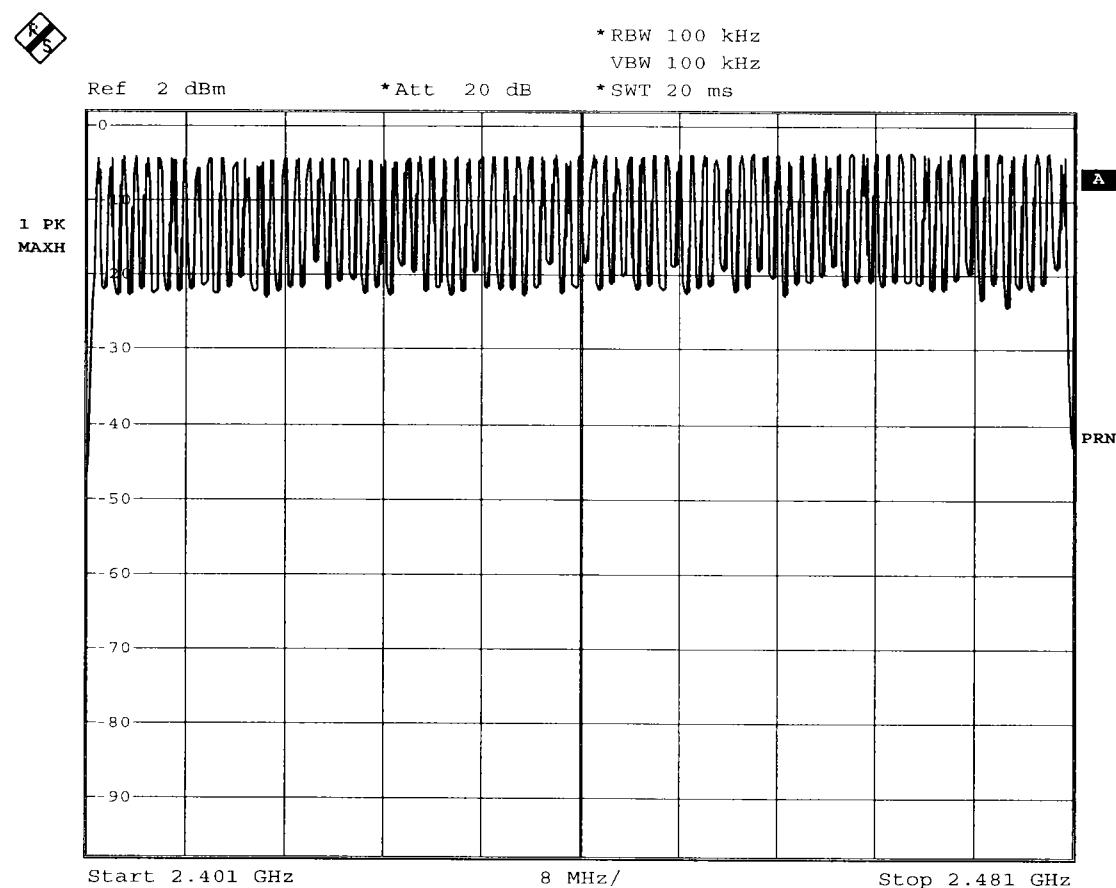

Date: 9.MAY.2001 15:57:26

Appendix 3 – 20dB bandwidth

Plot 1 – The 20dB bandwidth on the lowest channel, Vnom and Tnom.

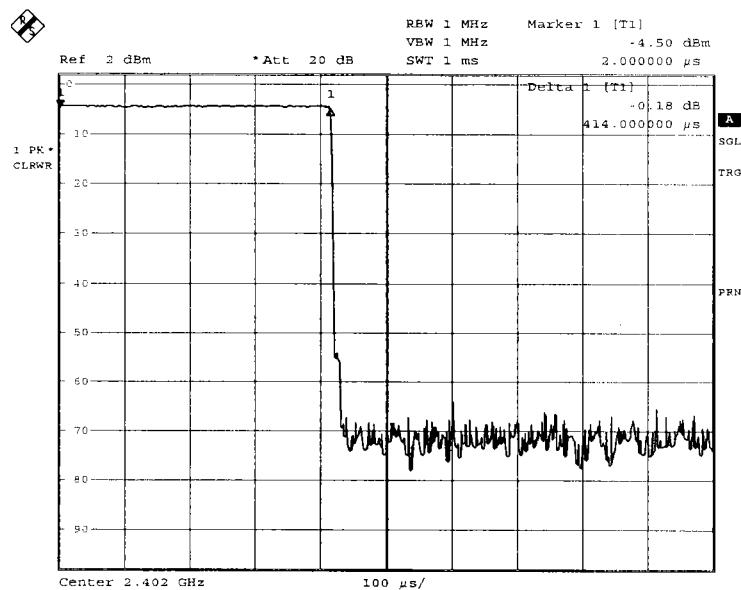


Plot 2 – The 20dB bandwidth on channel 77 (Fmax-1), Vnom and Tnom.

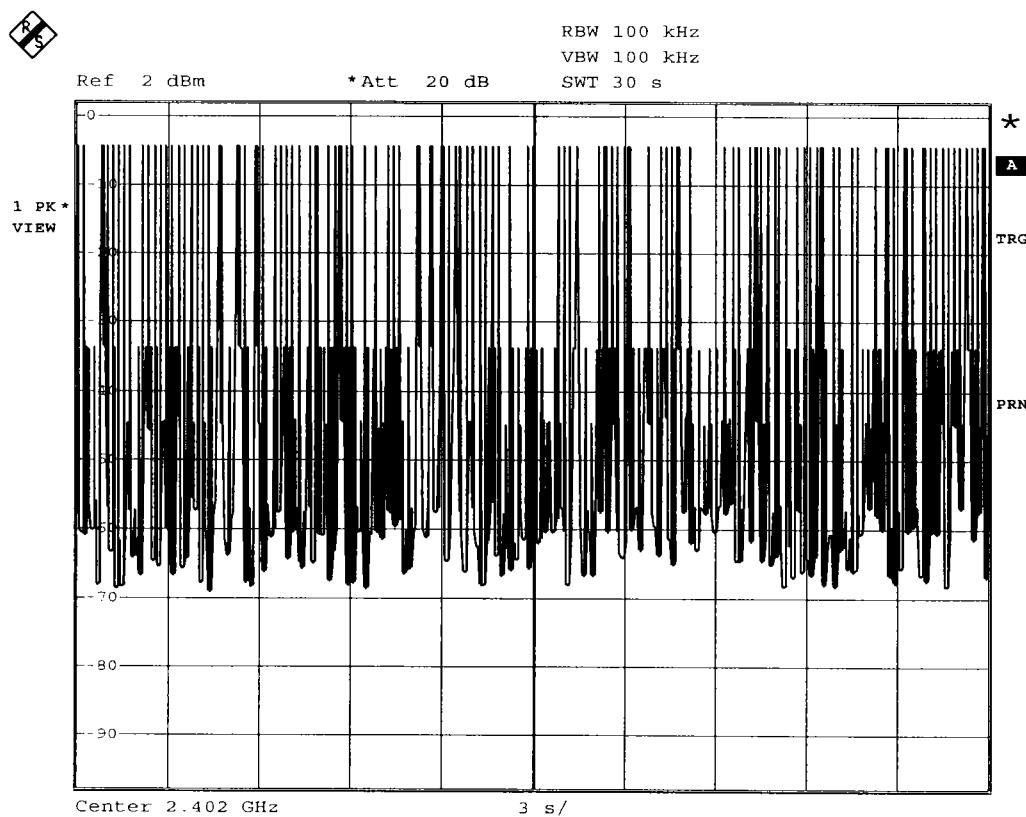

Appendix 4 - Spurious emission

The plot below shows the spurious emission when the EUT is transmitting in frequency hopping mode (no values was recorded below -60dBm), V_{nom} and T_{nom}.

Appendix 5 – Number of hopping channels

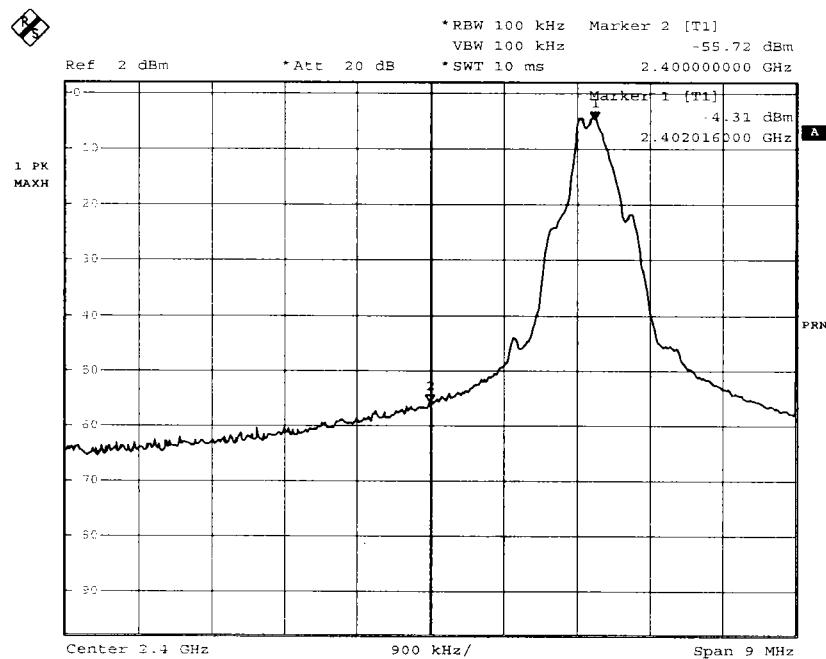

The plot below shows the number of hopping channels that the EUT is using (=79 channels), Vnom and Tnom.

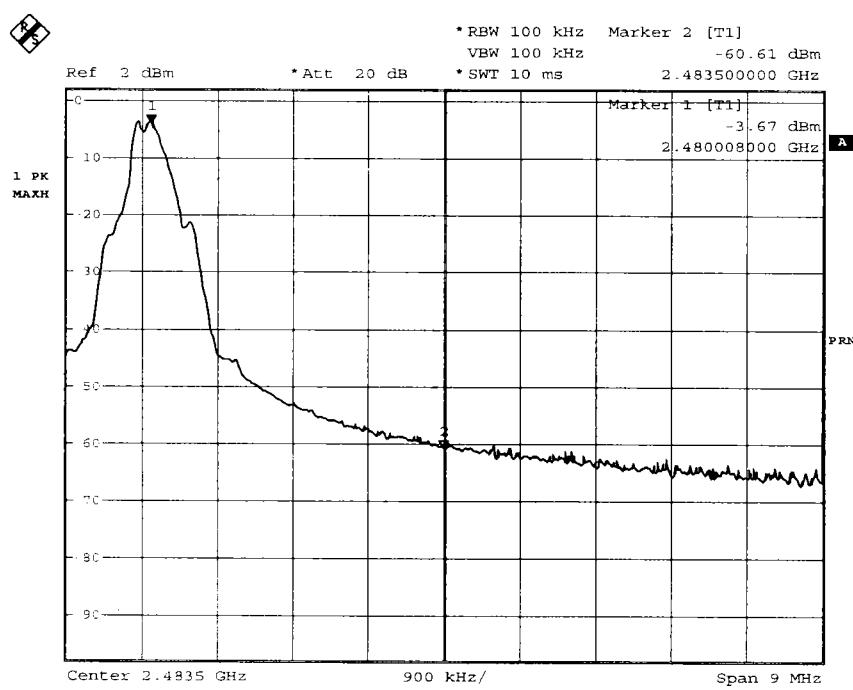
Date: 11.MAY.2001 16:33:00


Appendix 6 – Dwell time

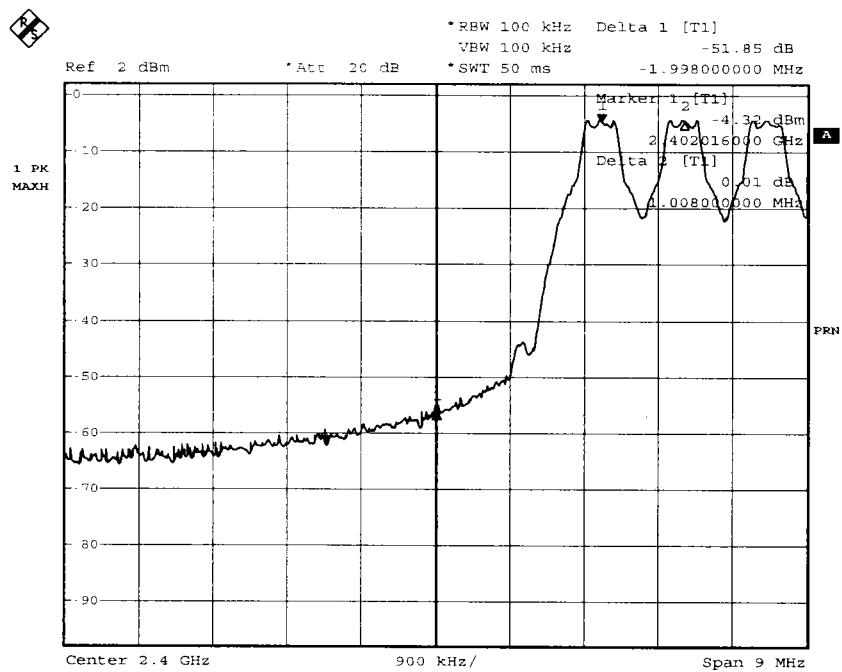
Plot 1 – The dwell time for the EUT on the lowest channel, Vnom and Tnom.

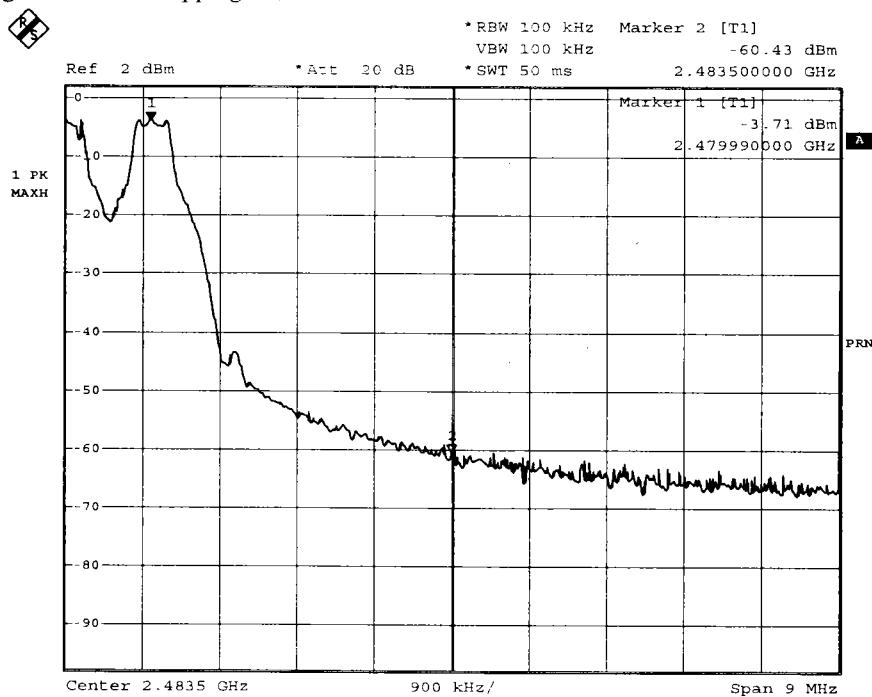
Date: 15.MAY.2001 09:33:48


Plot 2 – 30 seconds sweep time on the lowest channel, Vnom and Tnom.


Date: 15.MAY.2001 09:25:36

Appendix 7 – Band edge


Plot 1 – Lowest channel hopping off, Vnom and Tnom.


Plot 2 - Highest channel hopping off, Vnom and Tnom.

Plot 3 - Lowest channel hopping on, Vnom and Tnom.

Plot 4 - Highest channel hopping on, Vnom and Tnom.

