

FCC PART 15, SUBPART C
TEST METHOD: ANSI C63.4-1992
TEST REPORT

for

KEYLESS ENTRY TRANSMITTER
 Model: KETX

Prepared for

ACCELE ELECTRONICS
 17900 CRUSADER AVENUE
 CERRITOS, CALIFORNIA 90703

COMPATIBLE ELECTRONICS INC.
 114 OLINDA DRIVE
 BREA, CALIFORNIA 92823
 (714) 579-0500

DATE: FEBRUARY 23, 2000

	REPORT BODY	APPENDICES				TOTAL
		<i>A</i>	<i>B</i>	<i>C</i>	<i>D</i>	
PAGES	15	2	2	8	13	40

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. Description of Test Configuration	8
4.1 Description of Test Configuration - EMI	8
4.1.1 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
5.2 EMI Test Equipment	11
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
7. Test Procedures	13
7.1 Radiated Emissions (Spurious and Harmonics) Test	13
7.2 Bandwidth of the Fundamental	14
8. CONCLUSIONS	15

LIST OF APPENDICES

APPENDIX	TITLE
A	Modifications to the EUT
B	Additional Models Covered Under This Report
C	Diagrams, Charts and Photos <ul style="list-style-type: none">• Test Setup Diagrams• Radiated Emissions Photos• Antenna and Effective Gain Factors
D	Data Sheets

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form unless done so in full with the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: Keyless Entry Transmitter
 Model: KETX
 S/N: WTX001

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: Accele Electronics
 17900 Crusader Avenue
 Cerritos, California 90703

Test Date: February 21, 2000

Test Specifications: EMI requirements
 CFR Title 47, Part 15 Subpart C, Sections 15.205 and 15.231

Test Procedure: ANSI C63.4: 1992

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 450 kHz - 30 MHz	This test was not performed because the EUT runs off one 12 volt battery only and cannot be powered by any device that runs off of the AC public mains.
2	Radiated RF Emissions, 10 kHz - 3100 MHz	Complies with the limits of CFR Title 47, Part 15, Subpart B and Subpart C, sections 15.205 and 15.231

1.**PURPOSE**

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Keyless Entry Transmitter Model: KETX. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined by CFR Title 47, Part 15, Subpart B and Subpart C, sections 15.205 and 15.231.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Accele Electronics

Emery Pudder Engineer

Compatible Electronics Inc.

Kyle Fujimoto	Test Engineer
Scott McCutchan	Lab Manager

2.4 Date Test Sample was Received

The test sample was received on February 21, 2000.

2.5 Disposition of the Test Sample

The test sample was returned to Accele Electronics on February 22, 2000.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3.**APPLICABLE DOCUMENTS**

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Subpart C	FCC Rules – Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

The Keyless Entry Transmitter Model: KETX (EUT) was tested as a stand alone unit and placed in the middle of the table. The EUT was tested in three orthogonal axis. The EUT was continuously transmitting. The final radiated data was taken in the mode above. **The final radiated data was taken in the X axis, which was the orthogonal axis that produced the highest emissions during the initial investigation.**

Please see Appendix D for the data sheets.

4.1.1 **Cable Construction and Termination**

There were no external cables connected to the EUT.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

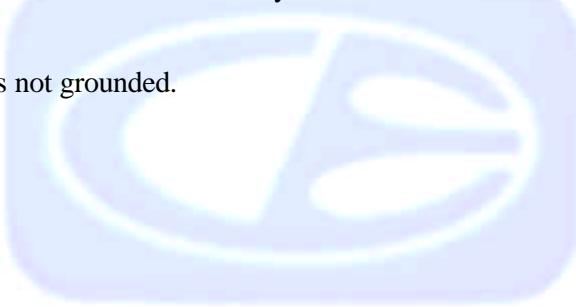
5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
KEYLESS ENTRY TRANSMITTER (EUT)	ACCELE ELECTRONICS	KETX	N/A	OXEKETX

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer	Hewlett Packard	8566B	3638A08768	Dec. 14, 1999	Dec. 14, 2000
Preamplifier	Com Power	PA-102	1017	Jan. 11, 2000	Jan. 11, 2001
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	Dec. 14, 1999	Dec. 14, 2000
Biconical Antenna	Com Power	AB-100	1548	Oct. 14, 1999	Oct. 14, 2000
Log Periodic Antenna	Com Power	AL-100	16039	Oct. 14, 1999	Oct. 14, 2000
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	HP98561A	2522A05178	N/A	N/A
Printer	Hewlett Packard	2225A	2925S33268	N/A	N/A
Plotter	Hewlett Packard	7440A	8726K38417	N/A	N/A
Microwave Preamplifier	Com-Power	PA-122	25195	Jan. 13, 2000	Jan. 13, 2001
Horn Antenna	Antenna Research	DRG-118/A	1053	Dec. 8, 1995	N/A
Loop Antenna	Com-Power	AL-130	25309	April 13, 1999	April 13, 2000

6. TEST SITE DESCRIPTION


6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1

Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets. The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 3.1 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data.

7.2 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the transmitter. A plot of the -20 dB bandwidth is in Appendix D.

8. CONCLUSIONS

The Keyless Entry Transmitter Model: KETX meets all of the specification limits defined in CFR Title 47, Part 15, Subpart C, sections 15.205 and 15.231.

APPENDIX A

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

Modifications:

No modifications were made to the EUT.

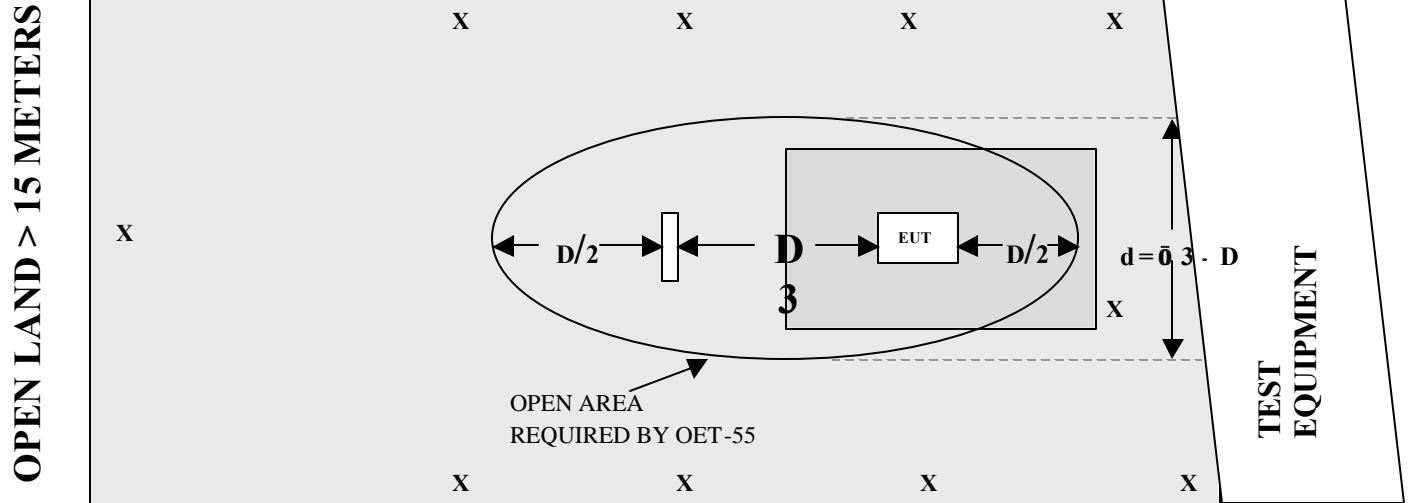
APPENDIX B

***ADDITIONAL MODELS COVERED
UNDER THIS REPORT***

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Keyless Entry Transmitter
Model: KETX
S/N: WTX001


There were no additional models covered under this report.

APPENDIX C

DIAGRAMS, CHARTS AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE**OPEN LAND > 15 METERS****OPEN LAND > 15 METERS**

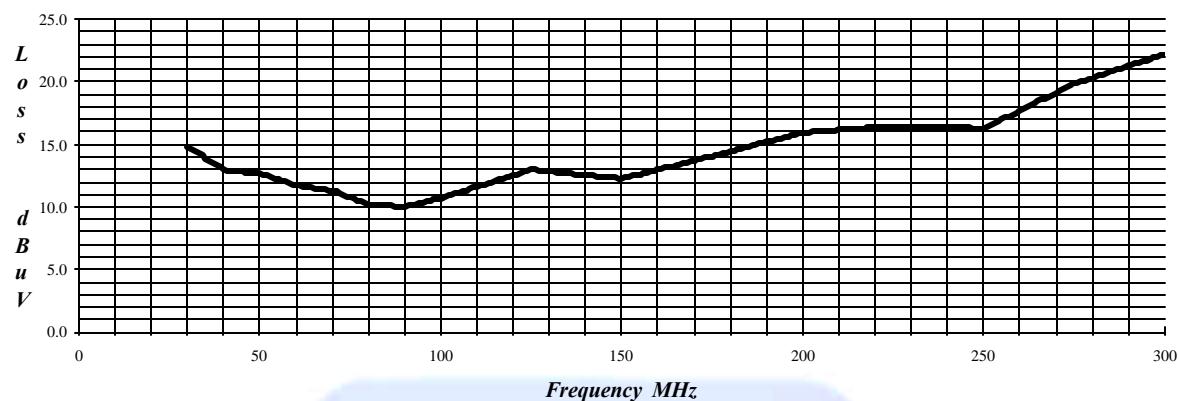
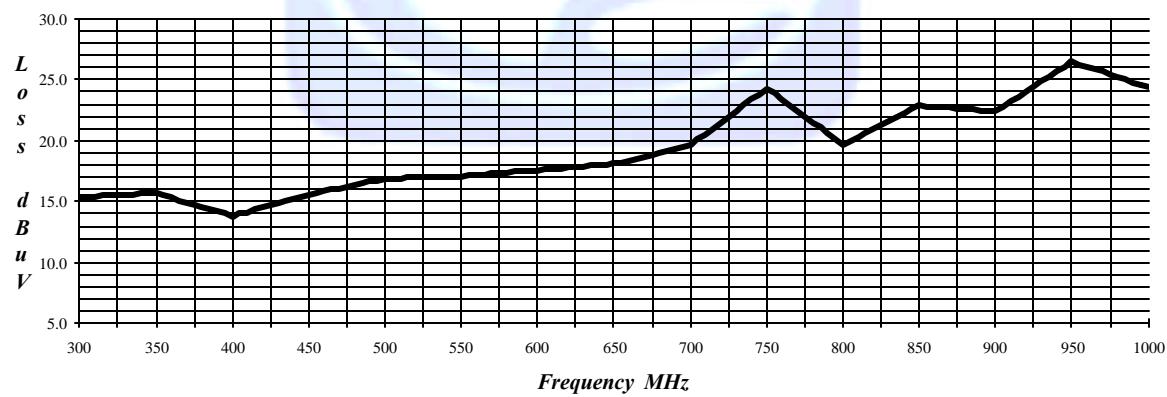
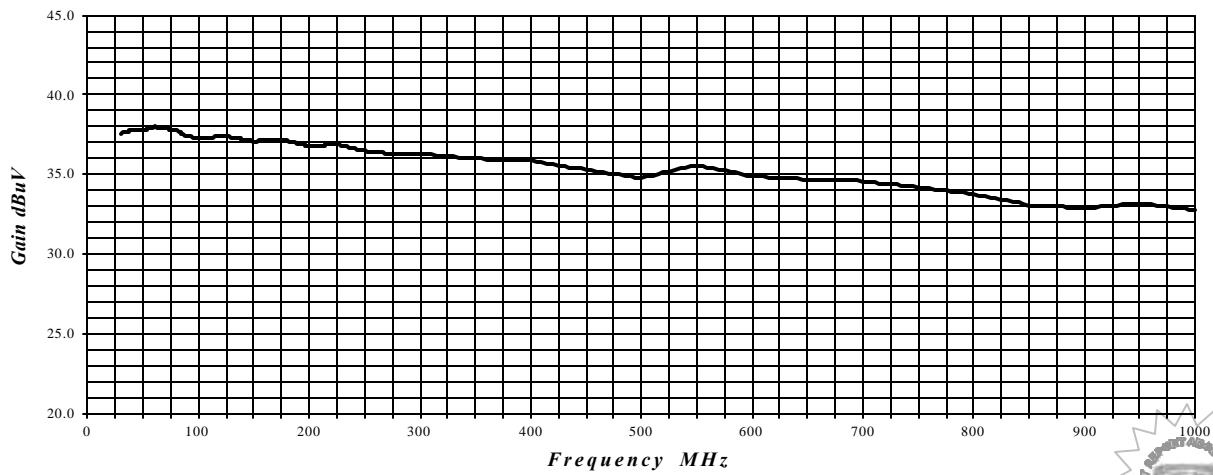
X	= GROUND RODS		= GROUND SCREEN
D	= TEST DISTANCE (meters)		= WOOD COVER

FRONT VIEW

ACCELE ELECTRONICS
KEYLESS ENTRY TRANSMITTER
MODEL: KETX

FCC SUBPART C - RADIATED EMISSIONS - 2-21-00

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**




REAR VIEW

ACCELE ELECTRONICS
KEYLESS ENTRY TRANSMITTER
MODEL: KETX

FCC SUBPART C - RADIATED EMISSIONS - 2-21-00

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

LAB "D" BICONICAL ANTENNA AB-100 S/N 01548 Cal: 10-14-99**LAB "D" LOG PERIODIC ANTENNA AL-100 S/N 16039 Cal: 10-14-99****PREAMPLIFIER EFFECTIVE GAIN AT 3 METERS PA-102 S/N: 1017 Effective 1-13-00**

COM-POWER PA-122
MICROWAVE PREAMPLIFIER
S/N: 25195

CALIBRATION DATE: JANUARY 13, 2000

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	34.4	9.0	30.7
1.1	34.1	9.5	31.5
1.2	34.2	10.0	31.0
1.3	34.1	10.5	31.4
1.4	33.9	11.0	30.7
1.5	33.8	11.5	29.5
1.6	33.0	12.0	27.8
1.7	33.3	12.5	31.4
1.8	33.3	13.0	31.0
1.9	31.9	13.5	31.0
2.0	32.7	14.0	31.5
2.5	31.8	14.5	30.2
3.0	31.7	15.0	29.2
3.5	31.9	15.5	30.1
4.0	31.0	16.0	29.0
4.5	31.4	16.5	27.8
5.0	31.1	17.0	30.8
5.5	31.0	17.5	31.5
6.0	32.0	18.0	30.8
6.5	31.6		
7.0	32.3		
7.5	32.9		
8.0	32.1		
8.5	31.6		

E-FIELD ANTENNA FACTOR CALIBRATION

$$E(\text{dB V/m}) = V_o(\text{dB V}) + AFE(\text{dB/m})$$

Model number : DRG-118/A

Frequency GHz	AFE dB/m	Gain dBi
1	22.3	8.0
2	26.7	9.5
3	29.7	10.1
4	29.5	12.8
5	32.3	12.0
6	32.4	13.4
7	36.1	11.0
8	37.4	10.9
9	36.8	12.5
10	39.5	10.7
11	39.6	11.5
12	39.8	12.0
13	39.7	12.8
14	41.8	11.3
15	41.9	11.9
16	38.1	16.3
17	41.0	13.9
18	46.5	8.9

Serial number : 1053
Job number : 96-092
Remarks : 3 meter calibration
Standards : LPD-118/A, TE-1000

Temperature : 72° F
Humidity : 56 %
Traceability : A01887
Date : December 08, 1995

Calibrated By

Com-Power Corporation

(949) 587-9800

Antenna Calibration

Antenna Type:	Loop Antenna	
Model:	AL-130	
Serial Number:	25309	
Calibration Date:	4/13/99	
Frequency MHz	Magnetic dB/m	Electric dB/m
0.01	-40.6	10.9
0.02	-41.5	10.0
0.03	-39.9	11.6
0.04	-40.2	11.3
0.05	-41.5	10.0
0.06	-41.1	10.4
0.07	-41.3	10.2
0.08	-41.6	9.9
0.09	-41.7	9.8
0.1	-41.7	9.8
0.2	-44.0	7.5
0.3	-41.6	9.9
0.4	-41.6	9.9
0.5	-41.7	9.8
0.6	-41.5	10.0
0.7	-41.4	10.1
0.8	-41.5	10.0
0.9	-41.6	9.9
1	-41.2	10.3
2	-40.5	11.0
3	-40.8	10.7
4	-41.0	10.5
5	-40.5	11.0
6	-40.5	11.0
7	-40.7	10.8
8	-40.8	10.7
9	-40.1	11.4
10	-40.4	11.1
12	-41.0	10.5
14	-42.1	9.4
15	-42.3	9.2
16	-42.7	8.8
18	-41.0	10.5
20	-41.1	10.4
25	-43.4	8.1
30	-45.3	6.2

Trans. Antenna Height
Receiving Antenna Height

2 meter
2 meter

APPENDIX D

DATA SHEETS

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPATIBLE
ELECTRONICS

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPATIBLE ELECTRONICS

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPATIBLE ELECTRONICS

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPATIBLE ELECTRONICS

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPATIBLE ELECTRONICS

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPATIBLE
ELECTRONICS

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMT. - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

**COMPATIBLE
ELECTRONICS**

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

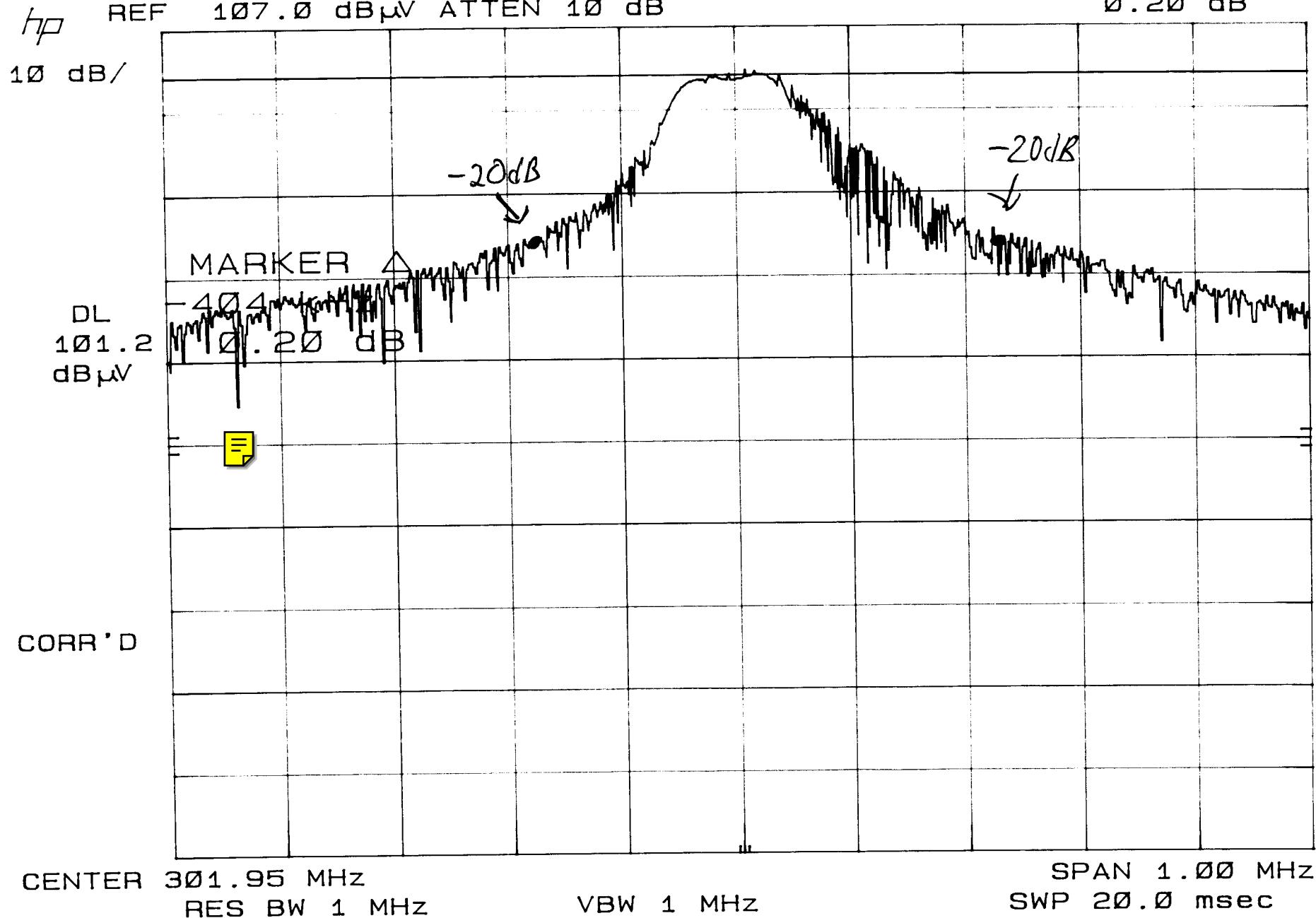
** DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.231)

COMPATIBLE ELECTRONICS

COMPANY	ACCELE ELECTRONICS	DATE	2/21/00
EUT	Keyless Entry Transmitter	DUTY CYCLE	30.00 %
MODEL	KETX	PEAK TO AVG	-10.46 dB
S/N	WTX001	TEST DIST.	3 METERS
TEST ENGINEER	Kyle Fujimoto	LAB	D

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN


** DELTA = SPEC LIMIT - CORRECTED READING

Test location: Compatible Electronics
Customer : ACCELE ELECTRONICS Date : 2/21/2000
Manufacturer : ACCELE ELECTRONICS Time : 14.21
EUT name : KEYLESS ENTRY TRANSMITTER Model: KETX
Specification: FCC_B Test distance: 3.0 mtrs Lab: D
Distance correction factor($20 \log(\text{test/spec})$) : 0.00
Test Mode :
SPURIOUS EMISSIONS - TRANSMITTER - 10 kHz TO 3100 MHz
TEMPERATURE 55 DEGREES F., RELATIVE HUMIDITY 83%
TESTED BY: Kyle Fujimoto
KYLE FUJIMOTO

NO SPURIOUS EMISSIONS FOUND FROM 10 kHz TO 3100 MHz IN
EITHER POLARIZATION FOR THE TRANSMITTER

OCCUPIED BANDWIDTH OF FUNDAMENTAL
REF 107.0 dB μ V ATTEN 10 dB

MKR Δ -404 kHz
0.20 dB

