

FCC PART 15 SUB-PART B & C EMI TEST REPORT

on
5.8GHz Pulse RF Rangefinder

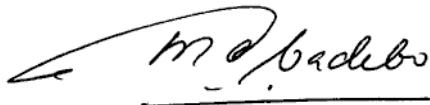
model name
Pulse RF Rangefinder

provided for evaluation by
Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, California 94551, USA

evaluated and prepared by
International Technology Company (ITC)
9959 Calaveras Road, Box 543
Sunol, California 94586-0543
Tel: (925) 862-2944
Fax: (925) 862-9013
Email: itcemc@aol.com
Web Site: www.itcemc.com

TEST RESULT SUMMARY

FCC PART 15 SUB-PART B & C


General Information

Product Name	5.8GHz Pulse RF Rangefinder
Model / Type	Pulse RF Rangefinder
Manufacturer's Name: Manufacturer's Address	Lawrence Livermore National Laboratory 7000 East Avenue Livermore, California 94551, USA Tel: (925) 424-2904 • Fax: (925) 423-1488
Laboratory	International Technology Company (ITC) 9959 Calaveras Road, PO Box 543 Sunol, CA 94586-0543 Tel: (925) 862-2944 • Fax: (925) 862-9013 Email: itcemc@aol.com • Web Site: www.itcemc.com
Test Number	1991007-1
Test Report Number	9910RS107-1/F
Test Date	October 11 - 14, 1999
Project Technician	Bruce Gordon

According to testing performed at International Technology Company (ITC); the above-mentioned unit is in compliance with the emissions requirements defined in FCC Part 15 B and C. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics. Any modifications necessary for compliance made during testing on the above mentioned date(s) must be implemented in all production units for compliance to be maintained.

International Technology Company (ITC) as an independent testing laboratory, declares that the equipment tested as specified above conforms to the emissions requirements of FCC Part 15 B & C.

Test Date: October 11 - 14, 1999

Michael Gbadebo, PE
Reviewing Engineer

EMI Test Report

Product Type	5.8GHz Pulse RF Rangefinder
Model	Pulse RF Rangefinder
Applicant / Manufacturer	Lawrence Livermore National Laboratory
Address	7000 East Avenue Livermore, California 94551, USA
Client Contact	Tel: (925) 424-2904 • Fax: (925) 423-1488 Mr. Rexford Morey, L-395

Test Results	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
Total Number of Pages including Appendices	28 Pages	
Test Report File No.	9910RS107-1/F	Date of Issue: Friday October 15, 1999

AGENCY DECLARATION/DISCLAIMER

INTERNATIONAL TECHNOLOGY COMPANY (ITC) reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. International Technology Company (ITC) shall have no liability for any deductions, inferences or generalizations drawn by the client or others from International Technology Company (ITC) issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval. This report shall not be used by the client to claim product endorsement by NVLAP or any agency of the US government.

International Technology Company (ITC) is:

Accepted by the Federal Communications Commission (FCC) for FCC Methods, CISPR Methods and AUSTEL Technical Standards (Ref: NVLAP Lab Code 200172-0)

Approved by the Industry Canada for Telecom Testing

Certified by Rockford Engineering Services GmbH for EMC Testing according to the European EMC Directive 89/336/EEC per EN45001

Certified by Reg. TP for EMC Testing according to the European EMC Directive 89/336/EEC per EN45001 for RES GmbH (DAR-Registration number: TTI-P-G 159/98-00)

Certified by the Voluntary Control Council for Interference by Information Technology Equipment (VCCI) for EMC testing, in accordance with the Regulations for Voluntary Control Measures, Article 8, Registration Numbers - Site 1: C-714 and R-696; Site 2: C-715 and R-697

Table of Contents

	<i>Pages</i>
Part 1: General	
1.1 Test Methodology	6
1.1.1 Test Facility	6
1.1.2 Accuracy of Test Data	6-7
1.2 Summary	8
1.2.1 Description of EUT	8
1.2.2 Support Equipment included in the Tests	8
Part 2: FCC Part 15 SubPart B, Open Field Radiated Emissions	
2.1 Configuration and Procedure.....	9
2.1.1 EUT Configuration.....	9
2.1.2 Test Procedure.....	9
2.1.3 Field Strength Calculation.....	10
2.1.4 Spectrum Analyzer Configuration.....	10
2.2 Open Field Radiated Emissions.....	11
2.2.1 Administrative Details.....	11
2.2.2 Open Field Radiated Emissions Test Results	11
Part 3: FCC Part 15 SubPart C, Occupied Bandwidth Tests	
3.1 Configuration and Procedure.....	12
3.1.1 EUT Configuration.....	12
3.1.2 Test Procedure.....	12
3.1.3 Spectrum Analyzer Configuration.....	12
3.2 Bandwidth Plot.....	13
Part 4: FCC Part 15 SubPart C, Frequency Stability Tests	
4.1 Configuration and Procedure.....	14
4.1.1 EUT Configuration.....	14
4.1.2 Test Procedure.....	14
4.1.3 Field Strength Calculation.....	14
4.1.4 Spectrum Analyzer Configuration.....	14
4.2 Frequency Stability	15
4.2.1 Administrative Detail.....	15
4.2.2 Frequency Stability Test Results	15

Table of Contents.....

Part 5: FCC Part 15 SubPart C, RF Power Output

5.1 Configuration and Procedure.....	17
5.1.1 EUT Configuration.....	17
5.1.2 Test Procedure.....	17
5.1.3 Spectrum Analyzer Configuration.....	17
5.2 Maximum Peak Output Power Plot.....	18

Part 6: Open Field Radiated Spurious and Harmonic Emissions

6.1 Configuration and Procedure.....	19
6.1.1 EUT Configuration.....	19
6.1.2 Test Procedure.....	19
6.1.3 Spectrum Analyzer Configuration.....	19
6.2 Open Field Radiated Spurious and Harmonic Emissions	20
6.2.1 Administrative Detail.....	20
6.2.2 Open Field Radiated Spurious and Harmonic Emissions Test Results	20

Part 7: Modulation Characteristics

7.1 Compliance Statement.....	22
-------------------------------	----

Appendices

A: Measurement Procedures.....	23
B: Description of Open Field Test Site.....	24
C: Test Equipment.....	25-26
D: EUT Specifications.....	27
E: Modification.....	28

Tables

2.2.2 Open Field Radiated Emissions.....	11
4.2.2 Frequency Stability	15-16
6.2.2 Open Field Radiated Spurious and Harmonic Emissions	20

Plots

3.2 6dB Bandwidth Plot.....	13
5.5 Maximum Peak Output Power.....	18

PART 1

GENERAL

1.1 Test Methodology

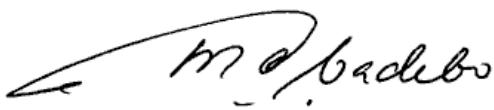
The electromagnetic interference tests which this report describes were performed by an independent electromagnetic compatibility consultant, International Technology Company, in accordance with the FCC test procedure ANSI C63.4-1992.

1.1.1 Test Facility

The open area test site, the conducted measurement facility, and the test equipment used to collect the emissions data is located in Sunol, California, and is fully described in site attenuation report. The approved site attenuation description is on file at the Federal Communications Commission.

1.1.2 Accuracy of Test Data

The test results contained in this report accurately represent the radiated, Powerline conducted electromagnetic emissions, bandwidth and stability tests generated by the sample equipment under test.


<i>Equipment Tested</i>	5.8GHz Pulse RF Rangefinder
<i>Date of Test</i>	October 11 - 14, 1999
<i>Antenna Requirement</i>	The equipment meets the requirement of FCC test procedure 47 CFR §15.203 because the antenna is permanently attached

Test Methodology.....

Tests Performed:

1. Radiated Emissions in a 3-meter open area site in accordance with the FCC test procedure 47 CFR §15.209 and §15.31(m). Part 2 of this report contains details.
2. Occupied bandwidth Test in accordance with the FCC test procedure 47 CFR §2.1049. Part 3 of this report contains details.
3. Frequency Stability Test requirements in accordance with 47CFR §2.1055. Part 4 of this report contains details.
4. Maximum Peak Output Power Test Requirement in accordance with 47 CFR §15.245. Part 5 of this report contains details.
5. Radiated Harmonic and Spurious Emissions in accordance with 47 CFR §2.1053 and §15.245. Part 6 of this report contains details.
6. Modulation Frequency Characteristics in accordance with 47 CFR §2.1047. Part 7 of this report contains compliance.

The results show that the sample equipment tested as described in this report is in compliance with the FCC Rules Part 15, SubPart B Radiated Emissions. Occupied Bandwidth, Frequency Stability, Maximum Peak Output Power, Fundamental/Harmonics and Modulation Frequency Characteristics test requirement limits of, FCC Part 15 SubPart C.

Michael Gbadebo, PE
Chief Engineer

1.2 Summary

1.2.1 Description of Equipment Under Test (EUT)

See Appendix D for more information

Model Name(s): Pulse RF Rangefinder

Applicant: Lawrence Livermore National Laboratory

Address: 7000 East Avenue
Livermore, California 94551, USA
• Tel: (925) 424-2904
• Fax: (925) 423-1488

Client Contact: Mr. Rexford Morey, L-395

Test Technician: Bruce Gordon

Test Number: 1991007-1

File Number: 9910RS107-1/F

PART 2

OPEN FIELD RADIATED EMISSIONS

per FCC PART 15 SUBPART B SECTION 47 CFR §15.209 & 47 CFR §15.31(m)

2.1 Configuration and Procedure

2.1.1 EUT Configuration

Pre-scan measurements are first performed by collecting data with a spectrum analyzer. Significant peaks are marked and then quasi-peaked. Measurement range investigated was from 30 MHz to 1 GHz. The EUT was set up in accordance with the suggested configuration given in FCC Measurement Procedure ANSI C63.4-1992. The measurement instrumentation used was a receiver with bandwidth parameters as stipulated in ANSI C63.4-1992. The Pulse RF Rangefinder was set up on a wooden non-conductive tabletop, 80 cm above the ground reference plane, in a shielded room. It transmitted continuously. The dimension of the table was 1.5m x 1.0m. EUT was powered by eight (8) D cell 1.5 Vdc batteries providing a total of 12 Vdc.

2.1.2 Test Procedure

The EUT was set up as described above, in live functional modes. The EUT was rotated 360 degrees azimuth and the search antenna height varied 1 to 4 m in order to maximize the emissions from the EUT. The highest emissions were also analyzed in detail by operating the spectrum analyzer in fixed tuned mode to determine the precise amplitude of the emissions. While doing so, interconnecting cables were moved around to maximize the emissions.

Configuration and Procedure.....

2.1.3 Data Table Legend and Field Strength Calculation

'Margin' indicates the degree of compliance with the applicable limit. For example, a margin of -8 dB means that the emissions are 8 dB below the limit (in compliance); +a margin of +4 dB means that the emission is 4 dB over the limit (out of compliance). The margin calculated as follows:

Margin = Corrected Amplitude - Limit, where Corrected Amplitude = Amplitude + Antenna Correction Factor + Cable Loss - Distance Factor, measured in quasi peak mode.

2.1.4 Spectrum Analyzer Configuration (during swept frequency scans)

Start Frequency 30MHz
Stop Frequency 1000MHz
Sweep Speed Manual

Measurements below 1GHz

RES Bandwidth..... 100 KHz
Video Bandwidth..... 100 KHz
Quasi Peak Adapter Mode..... Normal
Quasi peak Adapter Bandwidth..... 120 KHz

Measurements above 1GHz (unless stated otherwise)

Analyzer Mode Video Filter
RES Bandwidth..... 1MHz
Video Bandwidth..... 1MHz
Freq. Span..... 3MHz
Offset..... 0dB
Quasi Peak Adapter Mode..... Disabled

2.2 Open Field Radiated Emissions per FCC Part 15 SubPart B

2.2.1 Administrative Details

Date(s) of Test: October 12, 1999
 Emission Limits: Class B
 Temperature/Humidity: 19.8°C / 64%
 ATM Pressure: 1010 Mbar
 Test Technician(s): Bruce Gordon
 Antenna Used: Biconical Antenna, model # 3104, S/N 3459 and Log Periodic Antenna, model # 3146, S/N 2075 (calibrated June 25, 1999, next calibration due date is June 25, 2000)

2.2.2 Test Results

The table below shows a summary of the highest amplitudes of the radiated emissions from the equipment under test at various antenna heights, antenna polarization, and EUT orientations.

INDICATED FREQ MHz	AMPL dBuV/m	CORRECTN ANT dB	CORR CAB dB	T/TAB AMPL dBuV/m	ANT ANG DEG	HT m	ANT POL	FCC 15 LIMIT dBuV/m	CLASS B MARG dB
123.81	8.4	13.4	4.2	25.9	0	1.0	HB	43.0	-17.1
126.35	24.2	12.7	4.2	41.4	0	1.0	VB	43.0	-1.9
208.77	11.6	9.3	5.4	26.3	0	1.0	VL	43.0	-16.7
208.77	12.1	9.3	5.4	26.8	0	1.5	HL	43.0	-16.2
241.32	22.8	11.4	5.7	39.9	0	1.0	HL	46.0	-6.1
269.76	22.1	11.9	6.3	40.3	0	1.0	VL	46.0	-5.7
276.48	23.1	11.9	6.4	41.4	0	1.0	VL	46.0	-4.6
342.80	11.7	12.5	7.4	31.7	0	1.0	HL	46.0	-14.3
348.70	12.3	12.5	7.5	32.3	0	2.0	VL	46.0	-13.7
396.30	9.6	12.9	7.9	30.4	0	2.0	VL	46.0	-15.6
562.00	4.0	15.0	9.7	28.8	0	1.0	VL	46.0	-17.2
589.30	6.9	15.4	10.1	32.2	0	1.0	VL	46.0	-13.8
796.40	0.1	19.3	12.4	31.8	0	1.0	VL	46.0	-14.2
969.60	1.4	22.5	13.3	37.2	0	2.0	VL	54.0	-16.8
1496.00	39.5	25.5	3.0	38.0	0	1.0	VH	54.0	-16.0
2330.00	30.7	28.6	6.0	35.3	0	1.0	VH	54.0	-18.7
2630.00	35.7	29.2	6.3	41.2	0	1.0	VH	54.0	-12.8
5939.00	28.0	35.5	7.5	41.0	0	1.0	VH	54.0	-13.0
11865.80	17.0	41.9	20.8	49.7	0	1.0	VH	54.0	-4.3

Table 2.2.2 Open Field Radiated Emissions

No emissions of significant levels were observed between 30 MHz and the lowest frequencies shown in the above data. No emissions of significant levels were observed between the highest frequency shown in the above data and 60.329 GHz.

Conclusion: The 5.8GHz Pulse RF Rangefinder meets the requirements of the test reference for Open Field Radiated Emissions.

Applicant: Lawrence Livermore National Laboratory
28

File No. : 9910RS107-1/F

Page 12 of

Prepared By: International Technology Company (ITC)
Tel: (925) 862-2944
Fax: (925) 862-9013
Email: itceme@aol.com
Web: www.itceme.com

5.8GHz Pulse RF Rangefinder
Model Pulse RF Rangefinder

Rev. No 1.0

FCC Part 15 SubPart B & C

PART 3

OCCUPIED BANDWIDTH

per FCC PART 2 SECTION 47 CFR §2.1049

3.1 Configuration and Procedure

3.1.1 EUT Configuration

The EUT is set up in accordance with the suggested configuration given in FCC Measurement Procedure ANSI C63.4-1992. The measurement instrumentation used was an Hewlett Packard 8566B Spectrum Analyzer with detector and bandwidth parameters as stipulated in C63.4-1992. EUT was 12 Vdc powered.

3.1.2 Test Procedure

The Transmitter was placed on the test table. The EUT was configured for maximum response and was set up as described above and configured to transmit continuously. Signal was monitored with an HP 8566B Spectrum Analyzer, using the EMCO Double-Ridged Waveguide Horn Antenna, model #3115. Unless stated otherwise, the antenna to EUT distance was 1 meter.

3.1.3 Spectrum Analyzer Configuration (During Swept Frequency Scans)

Start Frequency	5.8329 GHz
Stop Frequency	6.0329 GHz
Sweep Speed	Manual
RES Bandwidth.....	100 kHz
Video Bandwidth.....	100 kHz
Quasi Peak Adapter Mode.....	Bypass
Quasi Peak Adapter Bandwidth.....	Disabled

3.2 Bandwidth Test
per FCC Part 2 Section 47CFR §2.1049

6dB Bandwidth Plot Performed at 1 Meter Distance

[See Page 13 in uploaded attachment]

Applicant: Lawrence Livermore National Laboratory
28

File No. : 9910RS107-1/F

Page 14 of

Prepared By: International Technology Company (ITC)
Tel: (925) 862-2944
Fax: (925) 862-9013
Email: itcemi@aol.com
Web: www.itcemi.com

5.8GHz Pulse RF Rangefinder
Model Pulse RF Rangefinder

Rev. No 1.0

FCC Part 15 SubPart B & C

PART 4

FREQUENCY STABILITY TEST

per FCC PART 2 SECTION 47 CFR §2.1055

4.1. Configuration and Procedure

4.1.1 EUT Configuration

The EUT is set up in accordance with the suggested configuration given in FCC Measurement Procedure ANSI C63.4-1992. The measurement instrumentation used was an Hewlett Packard 8569A Spectrum Analyzer with detector and bandwidth parameters as stipulated in C63.4-1992. EUT was powered by a dc power supply.

4.1.2 Test Procedure

The Transmitter was placed in the temperature control chamber. The EUT was configured for maximum response and was set up as described above and configured to transmit continuously. For frequency stability with respect to temperature, the temperature in the chamber was varied from -20 degrees Centigrade to +50 degrees Centigrade. Frequency stability was monitored with the HP 8569A Spectrum Analyzer, below and above the center frequencies using an appropriate receiving antenna.

4.1.3 Data Table Legend and Field Strength Calculation

'Margin' indicates the degree of compliance with the applicable limit. For example, a margin of -8 dB means that the emissions is 8 dB below the limit (in compliance); a margin of +4 dB means that the emission is 4 dB over the limit (out of compliance). The margin calculated as follows:

Margin = Corrected Amplitude - Limit; where Corrected Amplitude = Amplitude + Antenna Correction Factor + Cable Loss

A = Average

P = Peak

Q = Quasi Peak

4.1.4 Spectrum Analyzer Configuration (During Swept Frequency Scans)

Start Frequency	5.8329 GHz
Stop Frequency	6.0329 GHz
Sweep Speed	Manual
RES Bandwidth.....	100 kHz
Video Bandwidth.....	100 kHz
Quasi Peak Adapter Mode.....	Bypass

4.2 Frequency Stability Test per FCC Part 2 Section 47 CFR §2.1055

4.2.1 Administrative Details

Date(s) of Test: October 13, 1999
Emission Limits: Class C
Test Technician(s): Bruce Gordon

4.2.2 Test Results

Temperature	-20°C	-20°C	-20°C	-20°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9360	5.9361	5.9361	5.9361
Temperature	-10°C	-10°C	-10°C	-10°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9361	5.9361	5.9361	5.9361
Temperature	0°C	0°C	0°C	0°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9360	5.9360	5.9360	5.9360
Temperature	10°C	10°C	10°C	10°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9360	5.9360	5.9360	5.9360
Temperature	20°C	20°C	20°C	20°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9360	5.9360	5.9360	5.9360
Temperature	30°C	30°C	30°C	30°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9360	5.9360	5.9360	5.9360
Temperature	40°C	40°C	40°C	40°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9360	5.9361	5.9361	5.9361
Temperature	50°C	50°C	50°C	50°C
Time	Start Up	2 minutes	5 minutes	10 minutes
Frequency(GHz)	5.9361	5.9361	5.9361	5.9361

Frequency Stability Test
per FCC Part 2 Section 47 CFR §2.1055.....

Test Results.....

<i>Voltage</i>	12 Vdc	12 Vdc	12 Vdc	12 Vdc
<i>Time</i>	Start Up	2 minutes	5 minutes	10 minutes
<i>Frequency(GHz)</i>	5.9360	5.9360	5.9360	5.9360
<i>Voltage</i>	10.2 Vdc	10.2 Vdc	10.2 Vdc	10.2 Vdc
<i>Time</i>	Start Up	2 minutes	5 minutes	10 minutes
<i>Frequency(GHz)</i>	5.9360	5.9360	5.9360	5.9360
<i>Voltage</i>	13.8 Vdc	13.8 Vdc	13.8 Vdc	13.8 Vdc
<i>Time</i>	Start Up	2 minutes	5 minutes	10 minutes
<i>Frequency(GHz)</i>	5.9360	5.9360	5.9360	5.9360

Stability Test for Pulse RF Rangefinder

Conclusion: The 5.8GHz Pulse RF Rangefinder meets the requirements of the test reference for Frequency Stability.

PART 5

MAXIMUM PEAK OUTPUT POWER & TRANSMITTED POWER DENSITY

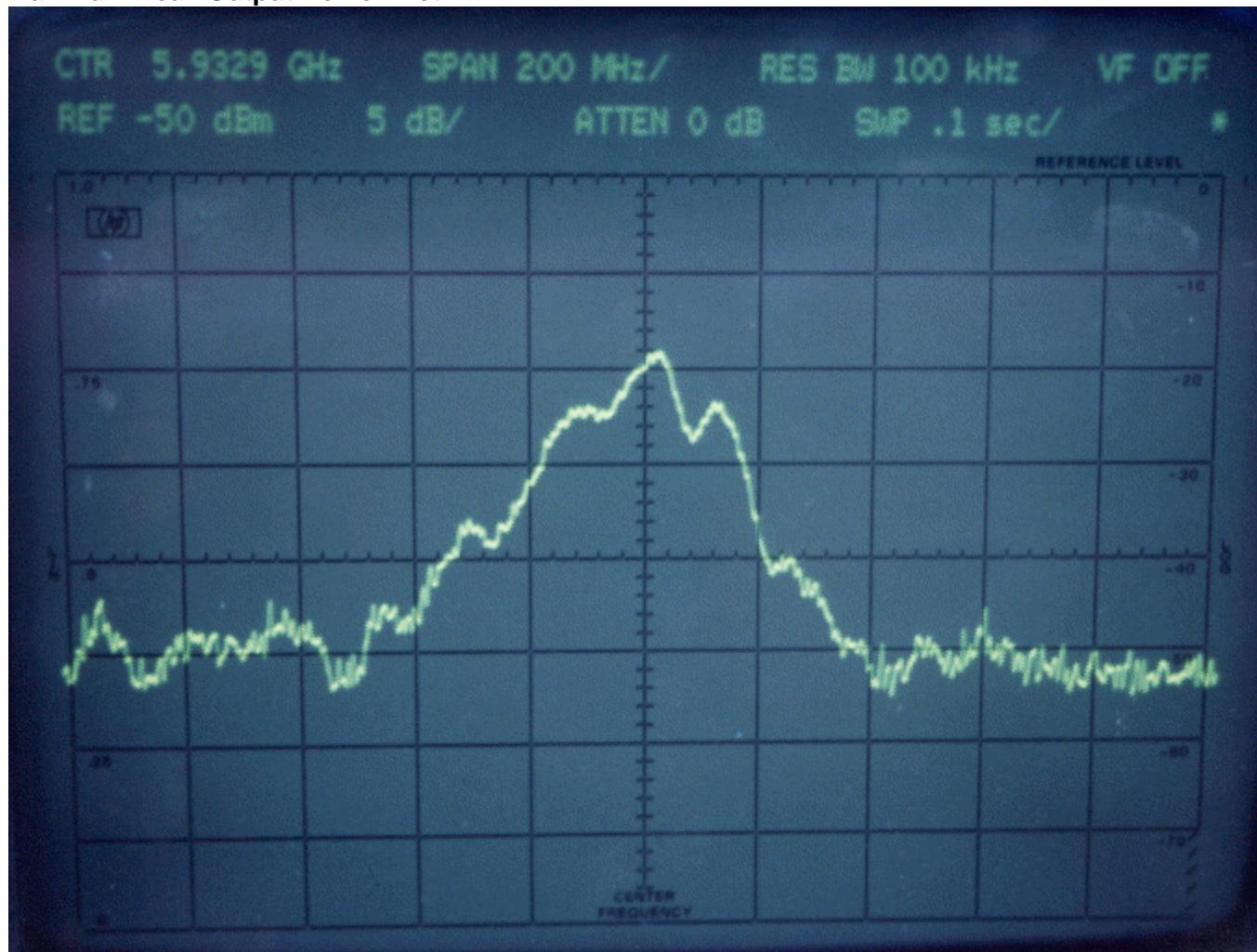
per FCC PART 15 SECTION 47 CFR §15.245

5.1. Configuration and Procedure

5.1.1 EUT Configuration

The EUT is set up in accordance with the suggested configuration given in FCC Measurement Procedure ANSI C63.4-1992. The measurement instrumentation used was an Hewlett Packard 8569A Spectrum Analyzer with detector and bandwidth parameters as stipulated in C63.4-1992. EUT was 12 Vdc powered.

5.1.2 Test Procedure


The Transmitter was placed on the test table. The EUT was configured for maximum response and was set up as described above and configured to transmit continuously. Signal was monitored with an HP 8569A Spectrum Analyzer, using the EMCO Double-Ridged Waveguide Horn Antenna, model 3115. Unless stated otherwise, the antenna to EUT distance was 1 meter. The RF power output = Measured value - distance correction + antenna correction - pre-amplifier gain + cable correction, or $-40.5 \text{ dBm} - 10.5 \text{ dB} + 35.5 \text{ dB} - 30.0 + 0.0 \text{ dB} = -45.5 \text{ dBm}$

5.1.3 Spectrum Analyzer Configuration (During Swept Frequency Scans)

Start Frequency	5.8329 GHz
Stop Frequency	6.0329 GHz
Sweep Speed	Manual
RES Bandwidth.....	100 kHz
Video Bandwidth.....	100 kHz
Quasi Peak Adapter Mode.....	Bypass
Quasi peak Adapter Bandwidth.....	Disabled

5.2 Maximum Peak Output Power
per FCC Part 15 Section 47 CFR §15.245

Maximum Peak Output Power Plot

PART 6

OPEN FIELD RADIATED HARMONIC & SPURIOUS EMISSIONS

per FCC PART 2 SECTION 47 CFR §2.1053 &

PART 15 SECTION 47 CFR §15.245

6.1. Configuration and Procedure

6.1.1 EUT Configuration

The EUT is set up in accordance with the suggested configuration given in FCC Measurement Procedure ANSI C63.4-1992. The measurement instrumentation used was an Hewlett Packard 8566B and 8569A Spectrum Analyzers with detector and bandwidth parameters as stipulated in C63.4-1992. At frequencies above 1GHz, average measurements, if necessary, were made using the video filter method and quasi peak detector and preselector functions were disabled. A 12 Vdc adapter powered the EUT.

6.1.2 Test Procedure

The Transmitter was placed on the test table. The EUT was configured for maximum response and was set up as described above and configured to transmit continuously. Signal strength were monitored at an HP 8566B and 8569A Spectrum Analyzers, below and above the center frequencies using an appropriate receiving antenna. Varying the height of the antennas and then orienting the turntable in 360-degree turns with the analyzer in the manual mode obtained maximum emissions. Unless stated otherwise, the antenna to EUT distance was 3 meters. Any multiple entries cover the two orientations of the transmitters and cover all three axes due to rotation of the test table and EUT and are the maximum signals resulting from rotation and height search at each frequency. The measurements are quasi-peak measurements below 1000MHz and average measurements above 1,000 MHz.

6.1.3 Spectrum Analyzer Configuration (During Swept Frequency Scans)

Start Frequency	30 MHz
Stop Frequency.....	58.990 GHz
Sweep Speed	Auto
RES Bandwidth.....	100KHz below 1000MHz 1 MHz above 1,000 MHz
Video Bandwidth.....	100 KHz below 1,000 MHz 1 MHz above 1,000 MHz
Quasi Peak Adapter Mode.....	Normal below 1,000 MHz Bypass above 1,000 MHz
Quasi peak Adapter Bandwidth.....	Auto

6.2 Open Field Radiated Harmonic & Spurious Emissions
 per FCC Part 2 Section 47 CFR §2.1053 & Part 15 Section
 47 CFR §15.245

6.2.1 Administrative Details

Date(s) of Test: October 13-14, 1999
Emission Limits: Class C
Test Technician(s): Bruce Gordon

6.2.2 Test Results

The table below shows a summary of the highest amplitudes of the radiated emissions from the equipment under test at various antenna heights, antenna polarizations, and EUT orientations.

INDICATED	CORRECTION		CORR	T/TAB	ANT	FCC 15	MARG		
FREQ	AMPL	ANT	CAB	AMPL	ANG	HT	POL	LIMIT	dB
MHz	dBuV/m	dB	dB	dBuV/m	DEG	m	-	dBuV/m	dB
123.81	8.4	13.4	4.2	25.9	0	1.0	HB	43.0	-17.1
126.35	24.2	12.7	4.2	41.1	0	1.0	VB	43.0	-1.9
208.77	11.6	9.3	5.4	26.3	0	1.0	VL	43.0	-16.7
208.77	12.1	9.3	5.4	26.8	0	1.5	HL	43.0	-16.2
241.32	22.8	11.4	5.7	39.9	0	1.0	HL	46.0	-6.1
269.76	22.1	11.9	6.3	40.3	0	1.0	VL	46.0	-5.7
276.48	23.1	11.9	6.4	41.4	0	1.0	VL	46.0	-4.6
342.80	11.7	12.5	7.4	31.7	0	1.0	HL	46.0	-14.3
348.70	12.3	12.5	7.5	32.3	0	2.0	VL	46.0	-13.7
396.30	9.6	12.9	7.9	30.4	0	2.0	VL	46.0	-15.6
562.00	4.0	15.0	9.7	28.8	0	1.0	VL	46.0	-17.2
589.30	6.9	15.4	10.0	32.2	0	1.0	VL	46.0	-13.8
796.40	0.1	19.3	12.4	31.8	0	1.0	VL	46.0	-14.2
969.60	1.4	22.5	13.3	37.2	0	2.0	VL	54.0	-16.8
1496.00	39.5	25.5	3.0	38.0	0	1.0	VH	54.0	-16.0
2330.00	30.7	28.6	6.0	35.3	0	1.0	VH	54.0	-18.7
2630.00	35.7	29.2	6.3	41.2	0	1.0	VH	54.0	-12.8
5830.00	72.0	35.5	0.0	107.5	0	1.0	VH	114.0	-6.5
5830.00	50.0	35.5	0.0	85.5	0	1.0	VH	94.0	-8.5
11865.80	17.0	41.9	20.8	49.7	0	1.0	VH	54.0	-4.3

Table 6.2.2 Open Field Spurious and Harmonic Emissions

No emissions of significant levels were observed between 9KHz and the lowest frequencies shown in the above data.
 No emissions of significant levels were observed between the highest frequency shown in the above data and 58.900 GHz

6.2 Open Field Radiated Harmonic & Spurious Emissions
per FCC Part 2 Section 47 CFR §2.1053 & Part 15 Section
47 CFR §15.245

The Emission at 5.830GHz was Calculated as Follows:

The PDF for line spectrum is $20\log [RF\ pulse\ width / PRF]$, so $20\log [4\ \text{nanoseconds} / 800\ \text{nanoseconds}] = -46\text{dB}$.

The Tabular Data is Calculated

The measurement was performed at a distance of 1 meter, so the distance correction factor is 10.5 dB. The measurement as seen by the display is -40.5 dBm/m = 66.5 dBuV/m. The antenna was connected directly to the pre-amplifier, so the cable loss is 0 dB. Therefore, the measurement for the Ampl column is calculated as follows.
Peak Measurement - Distance factor + PDF - Pre-amplifier gain, or $66.5\ \text{dBuV/m} - 10.5\ \text{dB} + 46\ \text{dB} - 30\ \text{dB} = 72.0\ \text{dBuV/m}$.

Conclusion: The 5.8GHz Pulse RF Rangefinder meets the requirements of the test reference for Radiated Spurious and Harmonic Emissions.

PART 7

MODULATION FREQUENCY CHARACTERISTICS

per FCC PART 2 SECTION 47 CFR §2.1047

The equipment meets the general requirements for modulation frequency characteristics.

Applicant: Lawrence Livermore National Laboratory
28

File No. : 9910RS107-1/F

Page 24 of

Prepared By: International Technology Company (ITC)
Tel: (925) 862-2944
Fax: (925) 862-9013
Email: itcemi@aol.com
Web: www.itcemi.com

5.8GHz Pulse RF Rangefinder
Model Pulse RF Rangefinder

Rev. No 1.0

FCC Part 15 SubPart B & C

APPENDIX A

MEASUREMENT PROCEDURES

Radiated Emissions

The EUT is set up in accordance with the suggested configuration given in FCC Measurement Procedure ANSI C63.4-1992.

The EUT and support equipment are set up on the turntable of an open field site. Desktop EUT are set up on a wooden stand (test table), 80 cm above the ground plane. All items on the table are placed at least 10 cm apart. Interconnecting cables which hang closer than 40 cm to the ground plane are folded back and forth to form a 30 cm by 40 cm long bundle, hanging approximately between the ground plane and table.

The highest emissions are also analyzed, in detail, by operating the spectrum analyzer in fixed tuned quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables are moved around and at the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings. The position of the peripheral devices are interchanged to check for any changes in emissions.

APPENDIX B

DESCRIPTION OF OPEN FIELD TEST SITE

The open field test site is located on a 5.5 acre parcel, in the agriculturally zoned section of the city of Sunol, California. It is situated adjacent to Highway 680 on the West side, and adjacent to Calaveras Road in the South East. Distance of the site to each of these roads is a minimum of 200 feet. The north end of the site is surrounded by hills measuring up to 150 ft. high. The distance of the site to the hills is approximately 200 ft.

Supporting structures used to support device being measured and test instrumentation include the following:

- a. Test Platform measuring 50 ft by 100 ft. The platform is located on top of a very large ground screen, to enhance a homogeneous reflective surface.
- b. Test Site building measures approx. 5000 Sq. ft. This building houses the test laboratory, the shielded room, for performing Line Conducted test, test personnel and other support staff. The test building is an all wooden building, constructed using 2 by 4 inch studs. It also contains all necessary electrical wiring and utilities.

The International Technology Company (ITC) RFI test site described above has been approved for conducting contract RFI measurement work for client companies following the procedures stated in FCC/OET ANSI C63.4-1992, EN 55011, EN 55022 Vfg. 243/1991 and VDE-0877. The site attenuation characteristics are routinely measured and recorded every three months.

Test site approved by VDE, File # F-R HF-MK.

Test site approved by FCC, Registration # 31010/SIT/ ITC.

Test site approved by VCCI, Membership # 242.

Test site approved by the Industry Canada, Registration # DEB 5072-7, DEB 90-3008.

APPENDIX C

TEST EQUIPMENT

Some or all of the following test equipment is currently used to measure the conducted and/or radiated emissions from the equipment under test:

<i>Test Equipment</i>	<i>Model</i>	<i>Serial Number</i>
Spectrum Analyzer	Hewlett Packard 8590A	2752 A02715
Spectrum Monitor	Rhode & Schwarz EZM	881 334/025
Test Receiver (9 KHz - 30 MHz)	Rhode & Schwarz ESH3	RES 0753
Test Receiver (20-1300 MHz)	Rhode & Schwarz ESVP	RES 0749
Spectrum Analyzer	Hewlett-Packard 8566B	2618A02909
Spectrum Analyzer	Hewlett-Packard 8567A	2602A00239
Spectrum Analyzer Display (Site 1)	Hewlett-Packard 8590A	2542A11954
Spectrum Analyzer Display (Site 2)	Hewlett-Packard 85662A	2542A12593
Quasi Peak Adapter (Site 1)	Hewlett-Packard 85650	2521A00871
Quasi Peak Adapter (Site 2)	Hewlett-Packard 85650A	2521A00737
Preselector (Site 1)	Hewlett-Packard 85685A	2620A00265
Preselector (Site 2)	Hewlett-Packard 85685A	2648A00462
Preamp	Hewlett-Packard 8447D	2648A04855
Preamp	Hewlett-Packard 8449B	3008A00101
Computer	Hewlett-Packard 9000/300	RES 449
Absorbing Clamp	MDS21	891 092/025
Antenna Cable (OPTK45)	RG8/u	-
Antenna System	EMCO 3230	-
Biconical Antenna (Site 1)	EMCO 3104	3549
Biconical Antenna (Site 2)	EMCO 3104C	9111-4463
Log Periodic Antenna (Site 1) (200-1000 MHz)	EMCO 3146	2075
Log Periodic Antenna (Site 2) (200-1000 MHz)	EMCO 3146	9510-4202
Adj. Element Dipole Antenna (28 MHz-1 GHz)	EMCO 3120	2632
Horn Antenna	Eaton 96001	2632
LISN (25 Amp)	EMCO 38825/2	9210-2008
LISN (100 Amp)	Solar 8610-50-TS-100N	
LISN	EMCO 3825/2R	1188/1001

Test Equipment.....

<i>Test Equipment</i>	<i>Model</i>	<i>Serial Number</i>
Remote Controlled 8 ft Rotating Table	RES RT1	
Remote Controlled 25 ft Rotating Table	RES RT2	
Remote Controlled 4 ft Rotating Table	RES RT3, RT4, RT5	
Remote Controlled 4 m Antenna Mast	RES AM1	
Remote Controlled 6 m Antenna Mast	RES AM2, RES AM3	
3 Phase 220 VAC/50 Hz Generator	-	DB7130B40
Oscilloscope (300 MHz)	Tektronix 2465	
Digital Scope	Hitachi VC-6075	
Power Analyzer	Valhalla Scientific/2101	RES 574
Digital Thermometer	Omega 440	
DC Power Supply	Kepco JQE 150-1.5m	H177085

The spectrum analyzers are self-calibrated before every test and are calibrated to NIST standards annually. All of the other EMI equipment is calibrated on a monthly basis using the spectrum analyzers as standards. Calibration dates of equipment are June 25, 1999. Next calibration is due on June 25, 2000.

APPENDIX D

EUT TECHNICAL DESCRIPTION

Applicant / Manufacturer	Lawrence Livermore National Laboratory
Functional Description	5.8GHz Pulse RF Rangefinder
Model Name	Pulse RF Rangefinder
Specification	See Manufacturer's manual

APPENDIX E

MODIFICATION LETTER

To Whom it May Concern:

This is to certify that the following modifications were necessary for:

5.8GHz Pulse RF Rangefinder, model Pulse RF Rangefinder

to comply with:

1. Radiated Emissions in a 3-meter open area site in accordance with the FCC test procedure 47 CFR §15.209 and §15.31(m).
2. Occupied bandwidth Test in accordance with the FCC test procedure 47 CFR §2.1049.
3. Frequency Stability Test requirements in accordance with 47CFR §2.1055.
4. Maximum Peak Output Power Test Requirement in accordance with 47 CFR §15.245.
5. Radiated Harmonic and Spurious Emissions in accordance with 47 CFR §2.1053 and §15.245.
6. Modulation Frequency Characteristics in accordance with 47 CFR §2.1047.

The results show that the sample equipment tested as described in this report is in compliance with the FCC Rules Part 15, SubPart B Radiated Emissions. Occupied Bandwidth, Frequency Stability, Maximum Peak Output Power, Fundamental/Harmonics and Modulation Frequency Characteristics test requirement limits of, FCC Part 15 SubPart C.

1. **The pulse-forming network was modified to increase the RF pulse width from 2 1/2 nanoseconds to 3 1/2 nanoseconds.**
2. **The output-coupling resonator was deleted and replaced with a capacitor.**

For further information, please contact the manufacturer at

Lawrence Livermore National Laboratory

7000 East Avenue

Livermore, California 94551, USA

Tel: (925) 424-2904

Fax: (925) 423-1488

Attention: Mr. Rexford Morey, L-395