

DTS EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: FCC, IC
Test Requirements: FCC Part 15, RSS-Gen, RSS-210

Applicant: Silver Spring Networks
575 Broadway Street
Redwood City, CA 94063

FCC ID: **OWS-NIC40**
IC: **5975A-NIC40**
Model No.: NIC40

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) model NIC40 is an access point for electric power meter communications use. The radio incorporates a 2.4 GHz DTS radio, as well as a dual band 900 MHz/ 2.4 GHz frequency hopping mesh network radio. Test data for 900 MHz FHSS and 2.4 GHz FHSS operation are provided in separate reports.

III. TEST DATES AND TEST LOCATION

Testing was performed on various dates between 18 April 2011 and 11 June 2012.

Antenna port conducted and AC Line Conducted Emissions:
Compliance Certification Services
47173 Benicia Street
Fremont, CA 94538

Radiated emissions:
BACL Laboratories
1274 Anvilwood Ave.
Sunnyvale, CA 94089

Antenna port conducted emissions tests were performed at Silver Spring Networks.

T.N. Cokenias
EMC Consultant/Agent for Silver Spring Networks

14 December 2012

15.203 Antenna connector requirement

Antenna description	Mfr.	Model No.	Gain
External monopole antenna (omni)	SSN		3 dBi at 915 MHz 3.6 dBi at 2.4 GHz

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

RSS-Gen Issue 3: General Requirements and Information for the Certification of Radio Apparatus

KDB 558074 D01 Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under 15.247

RSS-210 Issue 8: Low power license exempt radio frequency devices
RSS-212: Test Facilities and Test Methods for Radio Equipment

ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Laboratory Accreditation Information

UL CCS

2.948 FCC: Registration Number: 152170
Industry Canada Test Site: 2324B
Accrediting Body: NVLAP

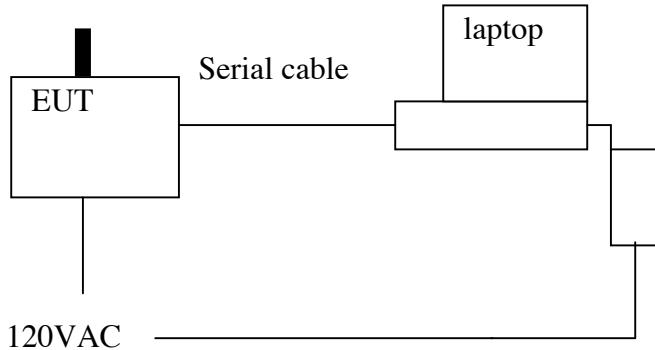
BACL

2.948 FCC Registration Number: 90464
Industry Canada Test Site Registration Number: 3062A
Accrediting Body: A2LA

Test Equipment

Compliance Certification Services:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
PSA	Agilent / HP	E4446A	C01012	9/2/11	12/2/12
Power Meter	HP	437B	T226	7/25/12	7/25/13
Power Sensor	HP	HP8481A	T269	7/26/12	7/26/13
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/15/11	11/15/12
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/16/11	11/16/12
EMI Test Receiver	R&S	ESC17	10000741	7/2/12	07/02/13


Silver Spring Networks:

Equipment	Mfr	Model	Serial No.	Cal Due
Spectrum analyzer	Agilent	E4405B	MY45113391	01/23/13
Spectrum analyzer	Agilent	N9030A	MY48030147	01/23/13
Spectrum Analyzer	HP	8652B	2712A00113	9/28/12

BACL

Manufacturer	Description	Model No.	Serial No.	Calibration Date
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2012-03-22
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
Sunol Science Corp	Combination Antenna	JB3	A0020106-3	2012-06-29
EMCO	Horn antenna	3115	9511-4627	2011-10-03
Hewlett Packard	Pre amplifier	8447D	2944A06639	2012-06-09
Mini-Circuits	Pre Amplifier	ZVA-183-S	570400946	2012-05-09

Test Set-up Diagram

Support Equipment

Equipment	Mfr	Model	Asset No.
DC Power Supply	Agilent	E3610A	2844
Laptop PC	Dell	PP01L	TW-0791UH1280-OC9-6558
AC/DC adapter	CUI Inc.	DSA-60W-20	2607HB

2.4 GHz HAN Radio Emissions Test Results

TEST RESULTS

Radiated Test Set-up, 30-25 GHz

Fig. 1

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.
2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.
3. Emissions were investigated to the 10th harmonic of the fundamental.
4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

15.205 Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

2.4 GHz HAN Radiated Spurious

Company: Silver Spring Network
 Frequency: 2.4 GHz
 measurement: Radiated emission above 1 GHz
 Date: 07-26-2012
 Tester: Quinn Jiang
 Site: 5 meter 2
 Mode: Zigbee, Modulated: OQSK
 EUT: Plc Brea with enclosure and external ant
 Project number: T1207261

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Low channel 2405 MHz measured at 3 meters											
4810	42.41	7	103	V	32.62	5.56	27.78	52.81	74	-21.19	peak
4810	46.16	108	100	H	32.62	5.56	27.78	56.56	74	-17.44	peak
4810	31.43	7	103	V	32.62	5.56	27.78	41.83	54	-12.17	Ave
4810	36.19	108	100	H	32.62	5.56	27.78	46.59	54	-7.41	Ave
7215	35.15	55	100	V	35.47	6.84	27.59	49.87	note	-	peak
7215	33.77	41	100	H	35.47	6.84	27.59	48.49	note	-	peak
7215	22.83	55	100	V	35.47	6.84	27.59	37.55	note	-	Ave
7215	21.95	41	100	H	35.47	6.84	27.59	36.67	note	-	Ave

note: 3rd harmonic is not in the restricted band

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Middle channel 2440 MHz measured at 3 meters											
4880	42.2	329	100	V	32.80	5.56	27.67	52.89	74	-21.11	peak
4880	44.30	110	100	H	32.80	5.56	27.67	54.99	74	-19.01	peak
4880	31.29	329	100	V	32.80	5.56	27.67	41.98	54	-12.02	Ave
4880	33.92	110	100	H	32.80	5.56	27.67	44.61	54	-9.39	Ave
7320	36.40	282	130	V	36.01	6.90	27.51	51.80	74	-22.20	peak
7320	35.80	33	105	H	36.01	6.90	27.51	51.20	74	-22.80	peak
7320	24.38	282	130	V	36.01	6.90	27.51	39.78	54	-14.22	Ave
7320	24.30	33	105	H	36.01	6.90	27.51	39.70	54	-14.30	Ave
2372	53.51	204	118	V	28.2	3.82	27.73	57.80	74	-16.20	peak
2372	43.99	45	108	H	28.2	3.82	27.73	48.28	74	-25.72	peak
2372	49.50	204	118	V	28.2	3.82	27.73	53.79	54	-0.21	Ave
2372	38.41	45	108	H	28.2	3.82	27.73	42.70	54	-11.30	Ave

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
High channel 2480 MHz measured at 3 meters											
4960	39.30	11	106	V	33.06	5.36	27.73	49.99	74	-24.01	peak
4960	37.80	122	100	H	33.06	5.36	27.73	48.49	74	-25.51	peak
4960	28.14	11	106	V	33.06	5.36	27.73	38.83	54	-15.17	Ave
4960	26.75	112	100	H	33.06	5.36	27.73	37.44	54	-16.56	Ave
2376	45.42	222	100	V	28.2	3.82	27.73	49.71	74	-24.29	peak
2376	37.77	341	126	H	28.2	3.82	27.73	42.06	74	-31.94	peak
2376	38.50	222	100	V	28.2	3.82	27.73	42.79	54	-11.21	Ave
2376	29.58	341	126	H	28.2	3.82	27.73	33.87	54	-20.13	Ave

Radiated Bandedge Emissions

Company: Silver Spring Network

Frequency: 2.4 GHz

measurement: Radiated Band Edge

Date: 07-20-2012

Tester: Quinn Jiang

Site: 5 meter 3

Mode: Zigbee

EUT: Plic Brea with enclosure and external ant

Project number: T1207202

Frequency: 2405 MHz

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Low channel 2405 MHz measured at 3 meters											
2390	34.30	221	100	V	28.2	3.12	0.0	65.62	74	-8.38	peak
2390	28.13	325	100	H	28.2	3.12	0.0	59.45	74	-14.55	peak
2390	22.28	221	100	V	28.2	3.12	0.0	53.60	54	-0.40	Ave
2345	19.40	221	100	V	28.2	3.12	0.0	50.72	54	-3.28	ave
2390	15.39	325	100	H	28.2	3.12	0.0	46.71	54	-7.29	Ave

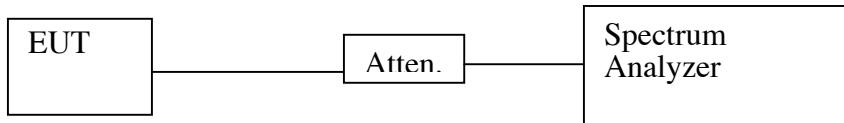
Frequency: 2480 MHz

Frequency (MHz)	S.A. Reading (dB μ V)	Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
2480 MHz measured at 3 meters											
2483.5	32.46	10	138	V	28.4	3.25	0.0	64.11	74	-9.89	peak
2483.5	27.60	350	142	H	28.4	3.25	0.0	59.25	74	-14.75	peak
2483.5	21.79	10	138	V	28.4	3.25	0.0	53.44	54	-0.56	Ave
2483.5	15.19	350	142	H	28.4	3.25	0.0	46.84	54	-7.16	Ave

Silver Spring Networks
FCC ID: OWS-NIC40
IC: 5975A-NIC40

Report No: 12PRO018C Rev1

Model No.: NIC40


Radiated Emissions 30-1000 MHz

All transmitter emissions were at least 20 dB below limits

6dB Bandwidth for DTS

Test Requirement: FCC: 15.247 (a) 2
IC: RSS-210 Sec. 6.2.2(o)(iv)

Test Set-up

Test Procedures

The transmitter output is connected to a spectrum analyzer via coaxial cable with appropriate attenuation.

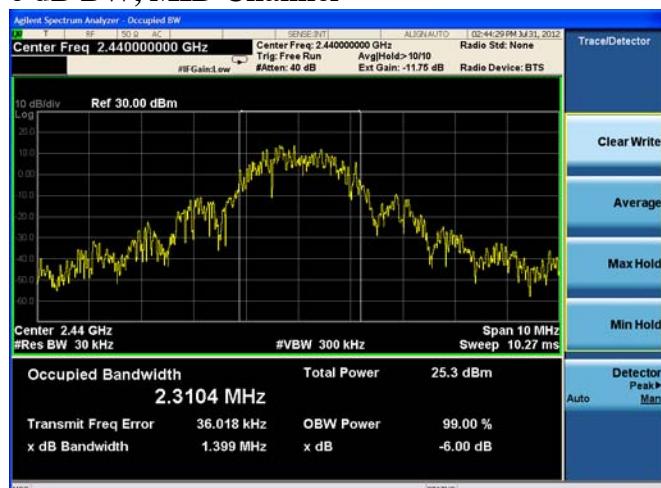
RBW = 1- 5% EBW

VBW > 3xRBW

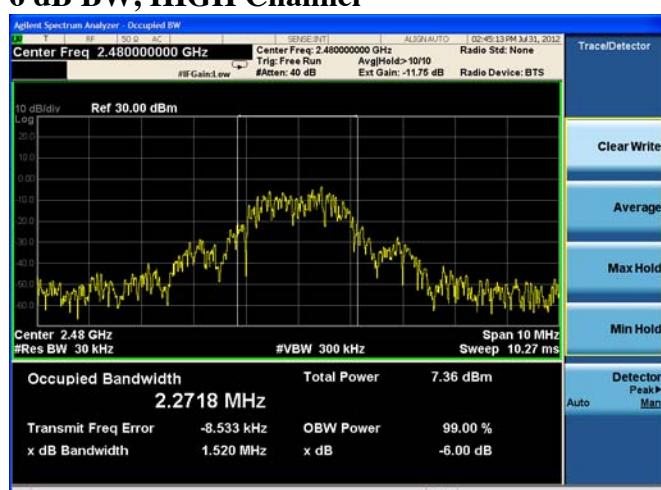
Detector: PEAK

Test Results. No non-compliance noted. Refer to data sheets below.

Minimum 6 dB BW: 1.399 MHz


Minimum Required: 500 kHz

Frequency, MHz	6 dB BW, MHz
2405 (Low)	1.514
2440 (Mid)	1.399
2480 (High)	1.520


6dB Bandwidth LOW Channel

6 dB BW, MID Channel

6 dB BW, HIGH Channel

99% Occupied Bandwidth

Test Requirement: None, information only

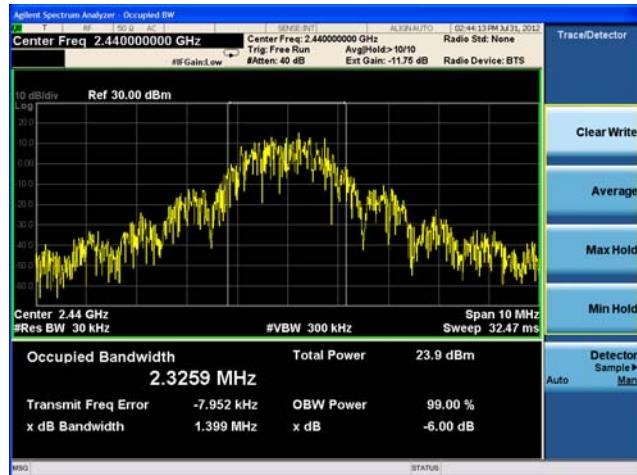
Test Procedures

The transmitter output is connected to a spectrum analyzer via coaxial cable with appropriate attenuation.

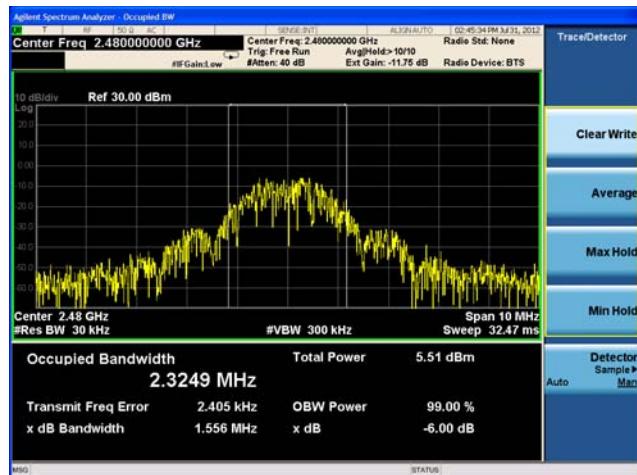
RBW = 1- 5% EBW

VBW > 3xRBW

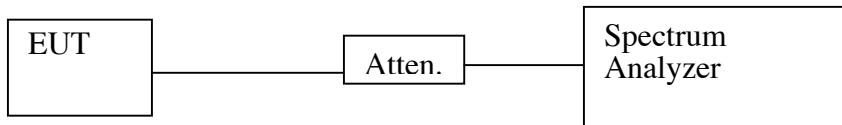
Detector: SAMPLE


Test Results. No non-compliance noted. Refer to data sheets below.

Frequency, MHz	99% BW, MHz
2405 (Low)	2.304
2440 (Mid)	2.236
2480 (High)	2.235


99% BW LOW Channel

99% BW MID Channel


99% BW HIGH Channel

RF Power Output

Test Requirement: FCC: 15.247(b)
IC: RSS-210 Sec. 6.2.2(o)(iv)

Test Setup

Test Procedures

Measurement Procedure PK1:

RBW \geq EBW.
VBW \geq 3 x RBW.
SPAN = zero.
Sweep time = auto couple.
Detector = peak.
Trace mode = max hold.
Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level within the fundamental emission.

Test Results

Refer to spectrum analyzer graphs. Reference level offset corrects for external attenuation and cable loss.

Channel	Frequency, MHz	Output Power, dBm
Low	2405	20.109
Mid	2440	24.23
High	2480	5.91

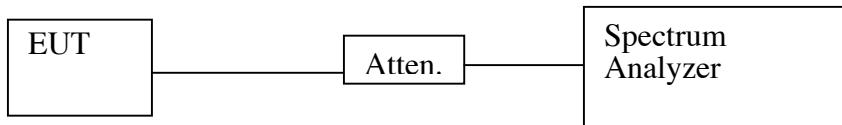
Note:

Low channel power is limited by restricted emissions requirement at 2310-2390 MHz.

High channel power is limited by restricted band emissions requirement at 2483.5-2500 MHz.

Peak Output Power LOW Channel

Peak Output Power MID Channel



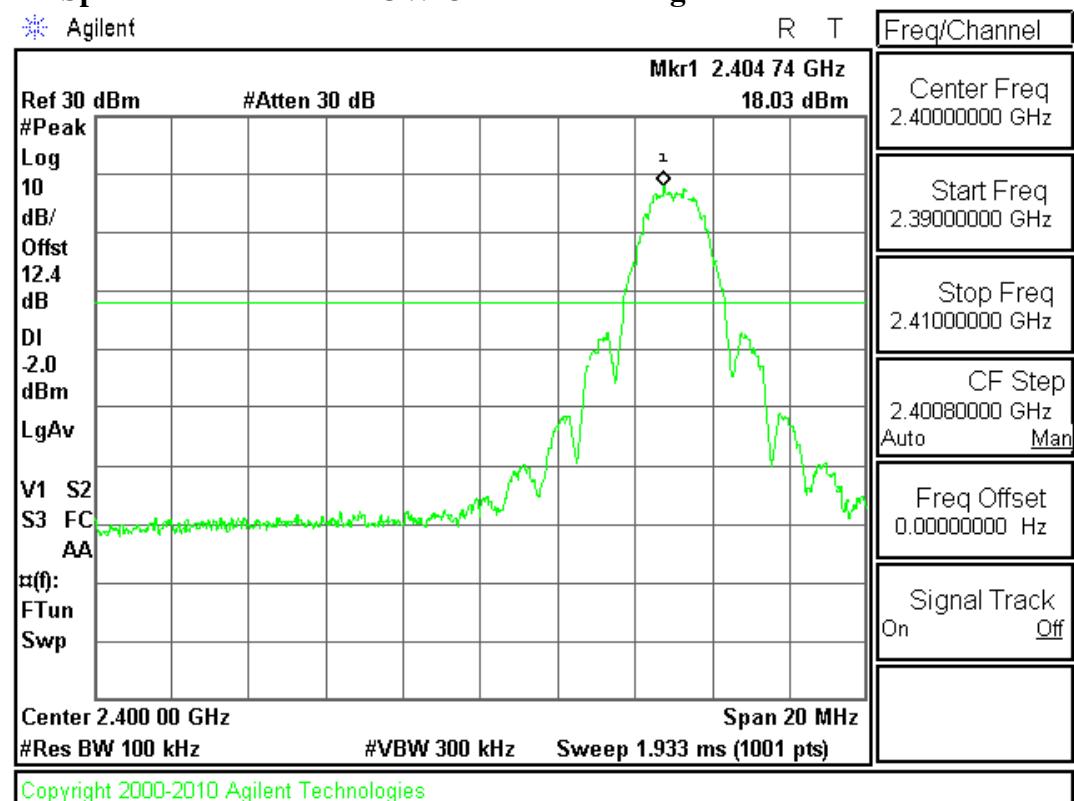
Peak Output Power HIGH Channel

**Spurious Emissions, Conducted
Test Requirement: FCC: 15.247(d)
IC: RSS-210 Sec. 6.2.2(o)(e1)**

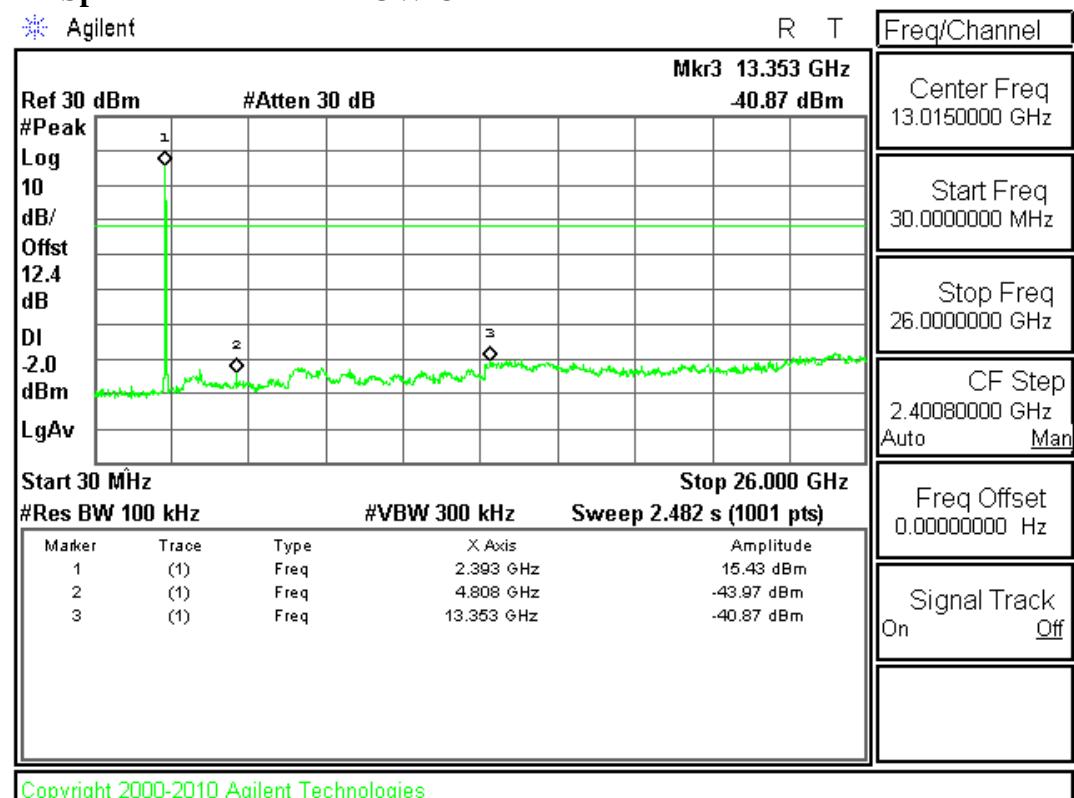
Test Setup

Test Procedure

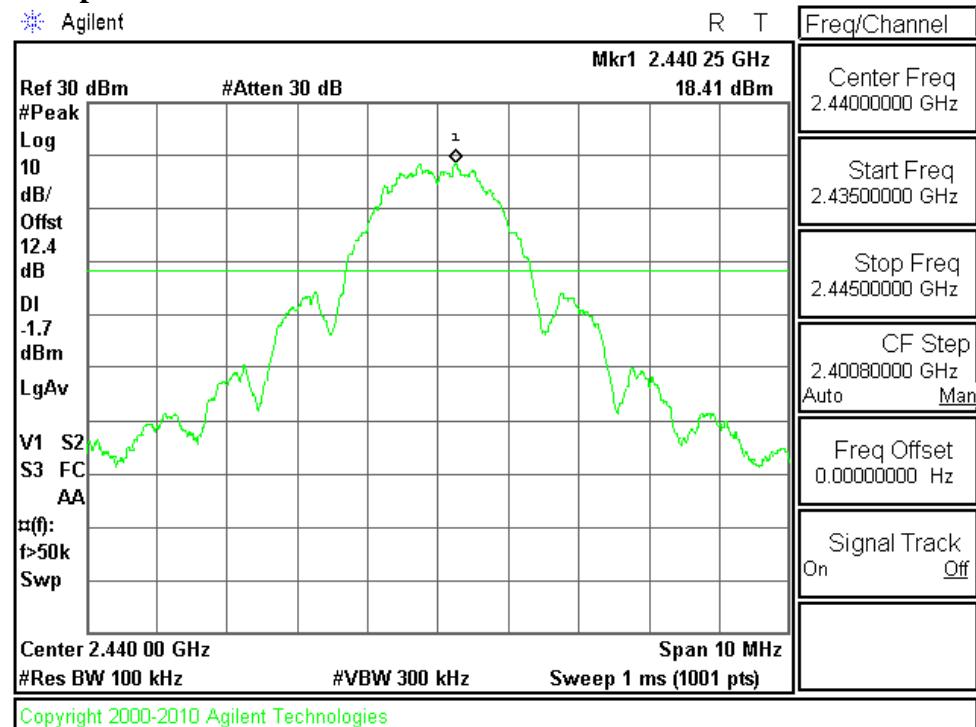
1. The EUT was configured on a test bench. The cable was connected between the EUT antenna port and the spectrum analyzer input port.

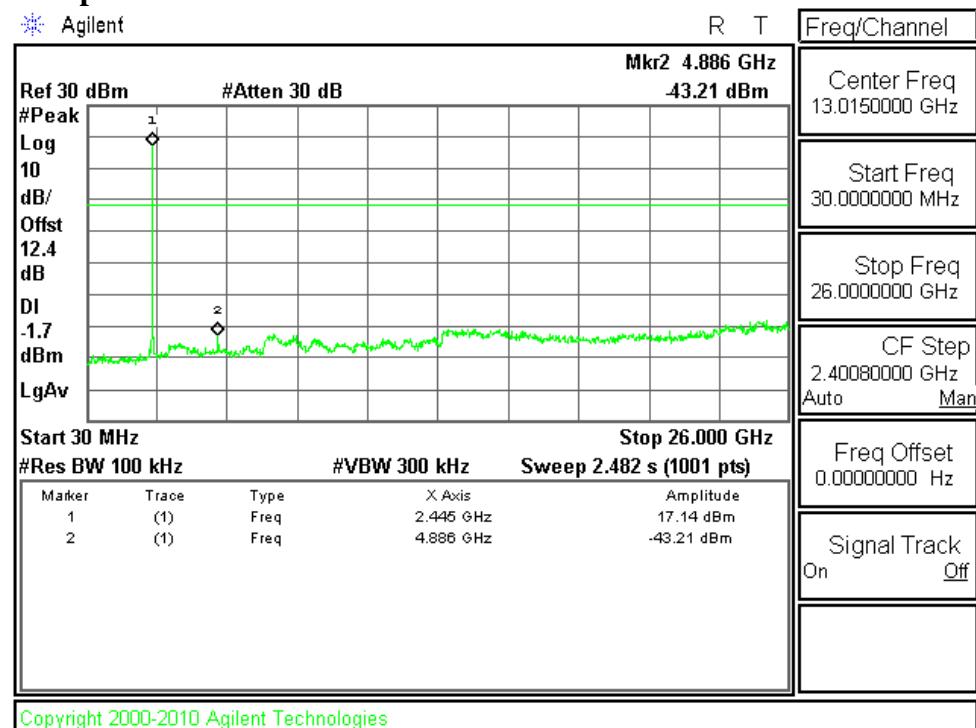

Spectrum analyzer RES BW was set to 100 kHz. While the transmitter broadcast a steady stream of digital data, the analyzer MAX HOLD function was used to capture the envelope of the transmission.

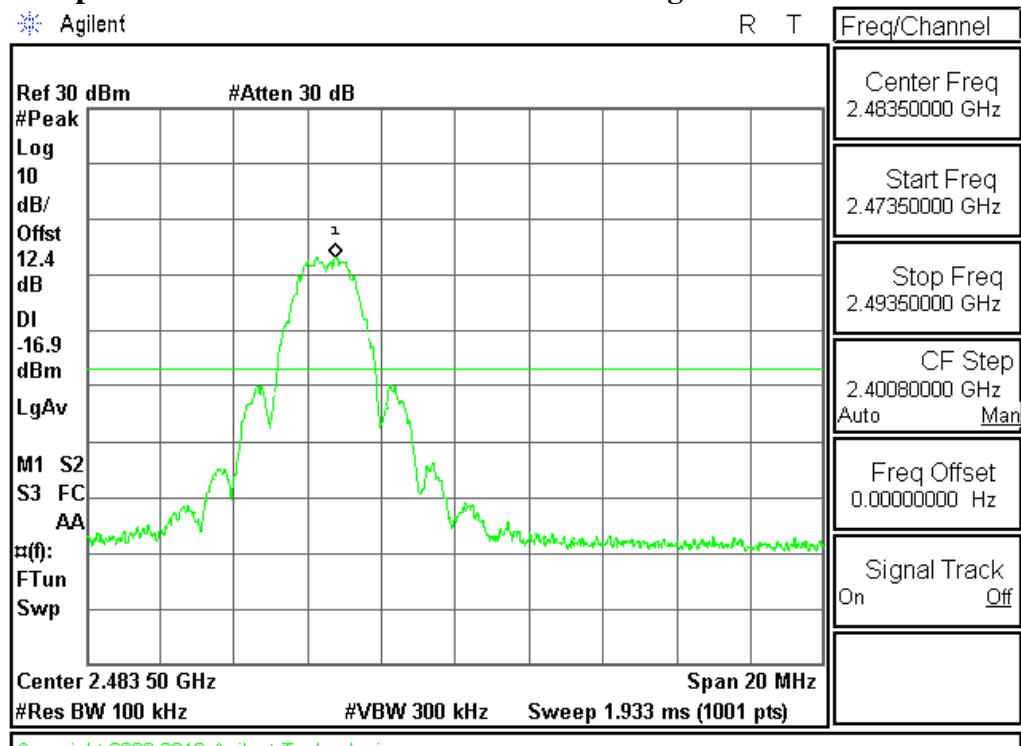
Readings were taken out to 10fo.


Test Results

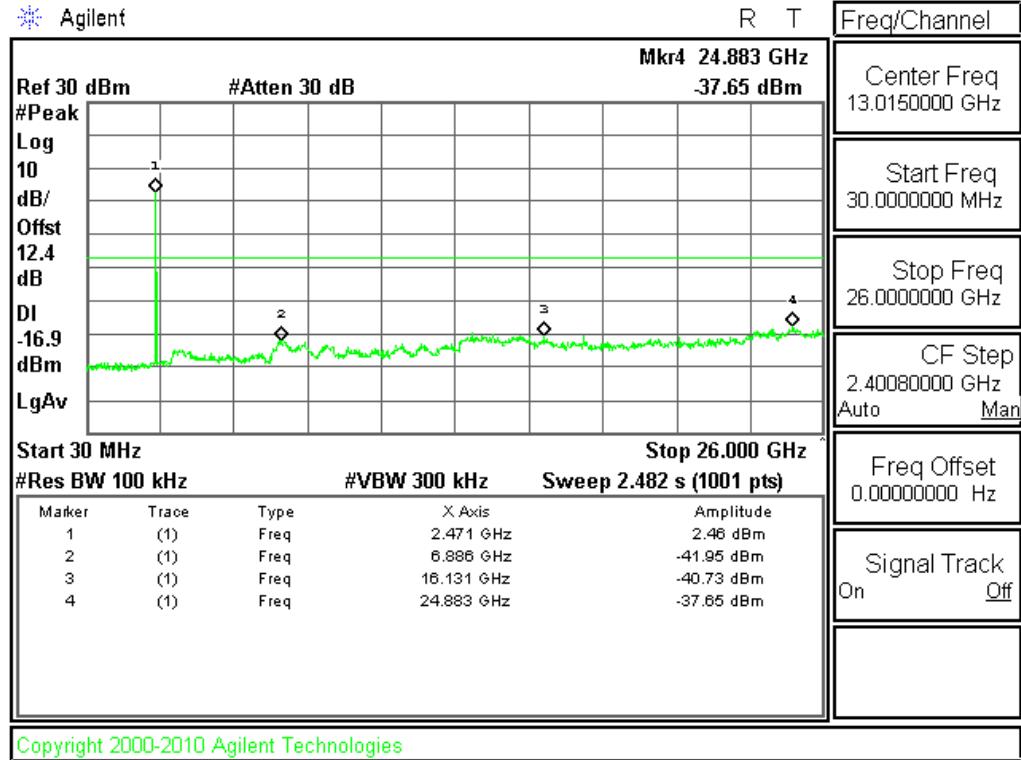
Refer to spectrum analyzer plots. Data shows out of band emissions are suppressed well below the -20 dBc minimum required by the Rules.


TX Spurious Emissions: LOW Channel Bandedge

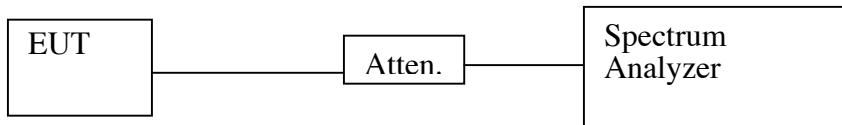

TX Spurious Emissions: LOW Channel


TX Spurious Emissions: Reference MID Channel

TX Spurious Emissions: MID Channel



TX Spurious Emissions: HIGH Channel Bandedge


Copyright 2000-2010 Agilent Technologies

TX Spurious Emissions: HIGH Channel

Power Spectral Density
Test Requirement: 15.247(e)
RSS-210 Sec. 6.2.2(o)(iv)

Test Setup

Test Procedure

Measurement Procedure PKPSD:

1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
2. Set the RBW = 100 kHz.
3. Set the VBW \geq 300 kHz.
4. Set the span to 5-30 % greater than the EBW.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
10. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log(3\text{ kHz}/100\text{ kHz}) = -15.2\text{ dB}$.
11. The resulting peak PSD level must be $\leq 8\text{ dBm}$.

Test Results

PASS.

Maximum PSD is for MID channel: $(21.74 - 15.2)\text{ dBm} = 6.52\text{ dBm}$ ($\leq 8\text{ dBm}$).

Refer to attached spectrum analyzer plots.

Power Spectral Density LOW Channel

Power Spectral Density MID Channel

Power Spectral Density HIGH Channel

RF Exposure (MPE) Calculations

Silver Spring Networks											
FCC ID: OWS-NIC40											
IC: 5975A- NIC714											
Dual 900 MHz/2.4 GHz FHSS and 2.4 GHz DTS radio						Calculate mW/cm ² here. Enter frequency in MHz:					
RF Hazard Distance Calculation						Calculation of Limits from 1.1310 Table 1					
mW/cm ² from Table1: 1.00 (E: 61 V/m)						F(MHz) Actual F, MHz					
Max RF Power TX Antenna MPE distance S, mW/cm@ P, dBm G, dBi cm at 20 cm						0.3-3 0.5					
24.2 3.6 6.9 0.12						3.0 - 30.0 5					
						30.0-300 55					
						300-1500 902					
						1500-100000 5555					
						Controlled Ave 6 min Uncontrolled Ave 30 min					
						Occ, mW/c2 Gen, mW/cm ²					
						100.0 100.0					
						180.0 36.0					
						1.0 0.2					
						3.0 0.60					
						5.0 1.0					
						Enter P(mW) Equivalent dBm Enter dBm Equivalent Watts					
Basis of Calculations:						64 18.1 18.1 64.6					
E ² /3770 = S, mW/cm ²											
E, V/m = (Pwatts*Ggain*30) ^{0.5} /d, meters											
d = ((Pwatts*G*30)/3770*S)) ^{0.5}						Pwatts*Ggain = 10 ^{0.5} (PdBm-30+GdB) ^{0.5}					
S@20cm = 20 log (MPE dist/20cm)											
NOTE: For mobile or fixed location transmitters, minimum separation distance is for FCC compliance is 20 cm, even if calculations indicate MPE distance is less											

4.4 POWERLINE CONDUCTED EMISSIONS

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

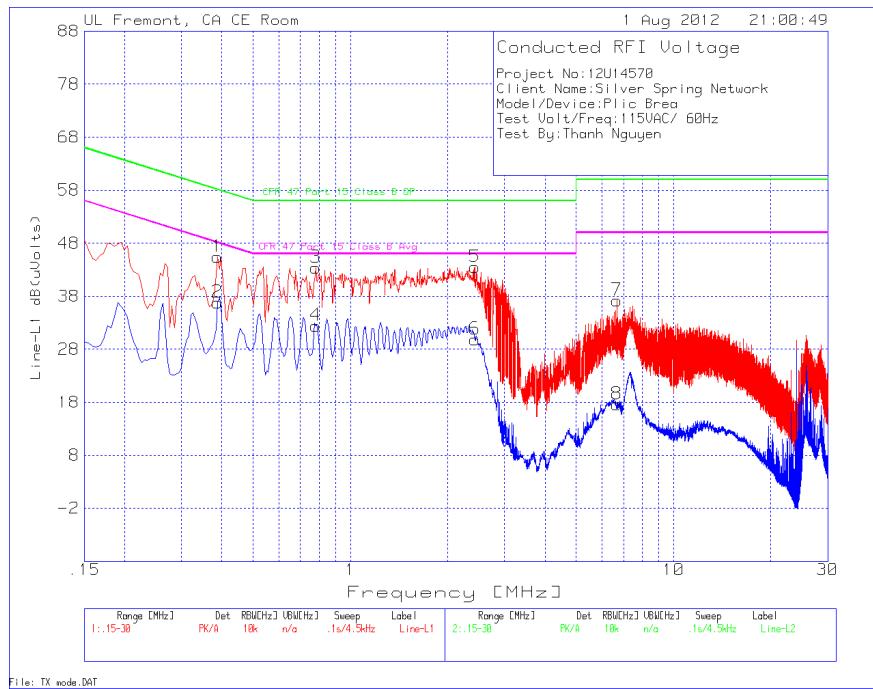
Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

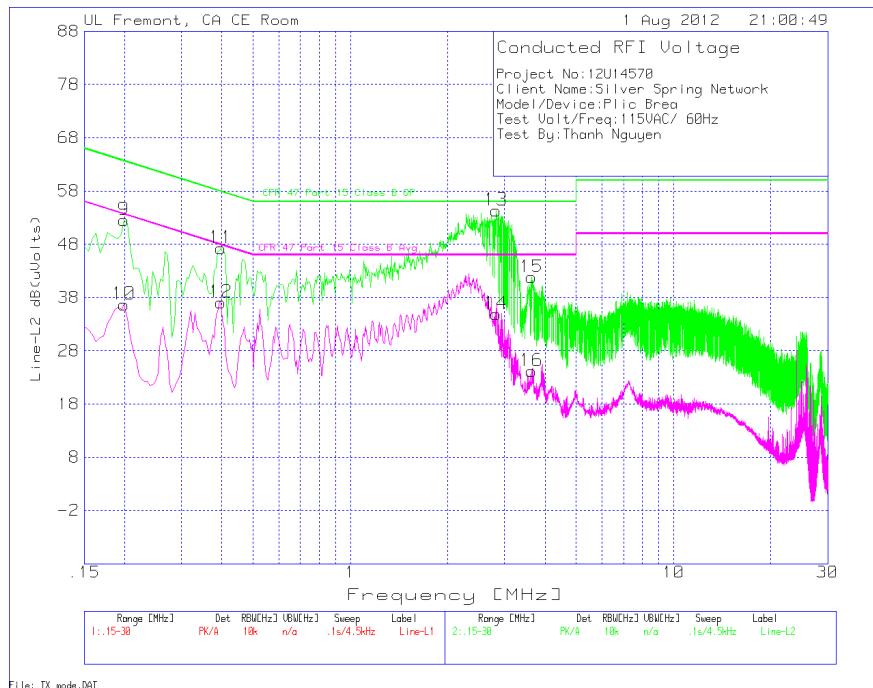
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.


The transmitter was configured to simultaneously transmit FHSS mode in the 902 MHz and 2.4 GHz bands simultaneously, since this is the worst case operation (maximum output power) for simultaneous operation.

Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

No non-compliance noted:

LINE 1 RESULTS

LINE 2 RESULTS

Project No:12U14570
 Client Name:Silver Spring Network
 Model/Device:Plic Brea, Transmit mode
 Test Volt/Freq:115VAC/ 60Hz
 Test By:Thanh Nguyen

Line-L1 .15 - 30MHz									
Test Frequency	Meter Reading	Detector	T24 IL L1.TXT (dB)	LC Cables 1&3.TXT (dB)	dB(uVolts)	CFR 47 Part 15 Class B QP	Margin	CFR 47 Part 15 Class B Avg	Margin
0.3885	45.29	PK	0.1	0	45.39	58.1	-12.71	-	-
0.3885	36.74	Av	0.1	0	36.84	-	-	48.1	-11.26
0.78	43.32	PK	0.1	0	43.42	56	-12.58	-	-
0.78	32.28	Av	0.1	0	32.38	-	-	46	-13.62
2.427	43.26	PK	0.1	0.1	43.46	56	-12.54	-	-
2.427	29.7	Av	0.1	0.1	29.9	-	-	46	-16.1
6.6795	36.95	PK	0.1	0.1	37.15	60	-22.85	-	-
6.6795	17.38	Av	0.1	0.1	17.58	-	-	50	-32.42
Line-L2 .15 - 30MHz									
Test Frequency	Meter Reading	Detector	T24 IL L1.TXT (dB)	LC Cables 1&3.TXT (dB)	dB(uVolts)	CFR 47 Part 15 Class B QP	Margin	CFR 47 Part 15 Class B Avg	Margin
0.1995	52.48	PK	0.1	0	52.58	63.6	-11.02	-	-
0.1995	36.55	Av	0.1	0	36.65	-	-	53.6	-16.95
0.3975	47.12	PK	0.1	0	47.22	57.9	-10.68	-	-
0.3975	36.98	Av	0.1	0	37.08	-	-	47.9	-10.82
2.823	54.09	PK	0.1	0.1	54.29	56	-1.71	-	-
2.823	34.67	Av	0.1	0.1	34.87	-	-	46	-11.13
3.642	41.48	PK	0.2	0.1	41.78	56	-14.22	-	-
3.642	23.83	Av	0.2	0.1	24.13	-	-	46	-21.87

Project No:12U14570
 Client Name:Silver Spring Network
 Model/Device:Plic Brea
 Test Volt/Freq:115VAC/ 60Hz
 Test By:Thanh Nguyen

Project No:12U14570
 Client Name:Silver Spring Network
 Model/Device:Plic Brea
 Test Volt/Freq:115VAC/ 60Hz
 Test By:Thanh Nguyen

PK - Peak detector
 QP - Quasi-Peak detector
 LnAv - Linear Average detector
 LgAv - Log Average detector
 Av - Average detector
 CAV - CISPR Average detector
 RMS - RMS detection
 CRMS - CISPR RMS detection
 Text File: TX mode.TXT
 File: TX mode.DAT

END OF REPORT

Report Revision History

Revision No.	Revision Description	Pages Revised	Revised by	Date
-	Original issue		T. Cokenias	15 August 2012
1	Correct test location: 2.4 GHz antenna port conducted and AC line only at CCS Correct test location: Radiated only at BACL Update BACL cal to show due date as well as cal date		T. Cokenias	14 December 2012