FCC ID: OWS-NIC40 IC: 5975A-NIC40

: 5975A-NIC40 Model No.: NIC40

EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: FCC

Test Requirements: FCC Part 15

Applicant: Silver Spring Networks

575 Broadway Street

Redwood City, CA 94063

FCC ID: OWS-NIC40 IC: 5975A-NIC40

Model No.: NIC40

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) model NIC40 is an access point for electric power meter communications use. The radio incorporates a dual band 900 MHz and 2.4 GHz frequency hopping mesh network radio, as well as a 2.4 GHz DTS radio. Test data for 2.4GHz FHSS and DTS operation are provided in separate reports.

III. TEST DATES AND TEST LOCATION

Testing was performed on various dates between 19 December 2011 and 12 August 2012.

AC Line Conducted Emissions:

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

Radiated emissions:

BACL Laboratories 1274 Anvilwood Ave. Sunnyvale, CA 94089

J.M. Cohen

Antenna port conducted emissions tests were performed at Silver Spring Networks.

T.N. Cokenias

13 December 2012

EMC Consultant/Agent for Silver Spring Networks

FCC ID: OWS-NIC40 IC: 5975A-NIC40

Model No.: NIC40

15.203 Antenna connector requirement

Antenna description	Mfr.	Model No.	Gain
External monopole antenna	SSN		3 dBi at 915 MHz
(omni)			3.6 dBi at 2.4 GHz

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

RSS-Gen Issue 3: General Requirements and Information for the Certification of Radio Apparatus

RSS-210 Issue 8: Low power license exempt radio frequency devices (December 2010) RSS-212: Test Facilities and Test Methods for Radio Equipment

ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Laboratory Accreditation Information

UL CCS

2.948 FCC: Registration Number: 152170 Industry Canada Test Site: 2324B Accrediting Body: NVLAP

BACL

2.948 FCC Registration Number: 90464

Industry Canada Test Site Registration Number: 3062A

Accrediting Body:: A2LA

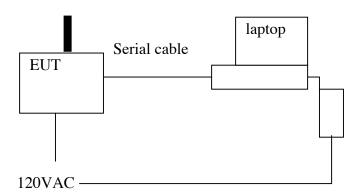
IC: 5975A-NIC40 Model No.: NIC40

Test Equipment

Compliance Certification Services:

	TES	T EQUIPMENT LIST			
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
PSA	Agilent / HP	E4446A	C01012	9/2/11	12/2/12
Power Meter	HP	437B	T226	7/25/12	7/25/13
Power Sensor	HP	HP8481A	T269	7/26/12	7/26/13
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/15/11	11/15/12
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/16/11	11/16/12
EMI Test Receiver	R&S	ESC17	10000741	7/2/12	07/02/13

Silver Spring Networks:


Equipment	Mfr	Model	Serial No.	Cal Due
Spectrum analyzer	Agilent	E4405B	MY45113391	01/23/13
Spectrum analyzer	Agilent	N9030A	MY48030147	01/23/13
Spectrum Analyzer	HP	8652B	2712A00113	9/28/12

BACL

Manufacturer	Description	Model No.	Serial No.	Cal Date	Cal Due
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2012-03-22	2013-03-22
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	
Sunol Science Corp	System Controller	SC99V 122303-1		N/R	2012-05-10
Sunol Science Corp	Combination Antenna	JB3	A0020106-3	2012-06-29	2013-06-29
EMCO	Horn antenna	Horn antenna 3115		2011-10-03	2012-10-03
Hewlett Packard	Pre amplifier	8447D	2944A06639	2012-06-09	2013-06-09
Mini-Circuits	Pre Amplifier	ZVA-183-S	570400946	2012-05-09	2013-05-09

Silver Spring Networks FCC ID: OWS-NIC40 IC: 5975A-NIC40 Model No.: NIC40

Test Set-up Diagram

Support Equipment

Equipment	Mfr	Model	Asset No.
Laptop PC	Dell	PP01L	TW-0791UH1280- OC9-6558
AC/DC adapter	CUI Inc.	DSA-60W-20	2607HB

FCC ID: OWS-NIC40 IC: 5975A-NIC40

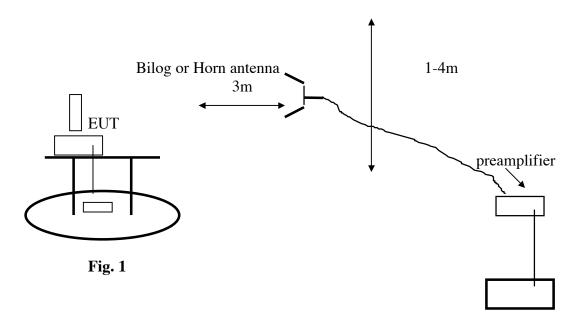
Model No.: NIC40

900 MHz FREQUENCY HOPPING SPREAD SPECTRUM RADIO EMISSIONS

The 900 MHz FHSS will employ the following channel separations and modulations:

Channel Separation	Modulation
400 kHz	FSK, GFSK
300 kHz	FSK, GFSK
200 kHz	FSK, GFSK

The following data is presented for all channel separation modes:


Occupied Bandwidth Hopping Channel Separation Number of hopping channels Channel occupancy in 20 seconds

Worst-case data for radiated emissions, antenna port conducted spurious, and output power was obtained for 300 kHz channel separation.

FCC ID: OWS-NIC40 IC: 5975A-NIC40 Model No.: NIC40

TEST RESULTS

Radiated Test Set-up, 30 MHz-9.3 GHz

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

- 1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.
- 3. Emissions were investigated to the 10th harmonic of the fundamental.
 - 4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

Silver Spring Networks FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

15.205 Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Model No.: NIC40

FCC ID: OWS-NIC40 IC: 5975A-NIC40

Radiated Emissions Above 1 GHz

Company: Silver Spring Network Project number: T1112194 Frequency: 900 MHz

measurement: Radiated Spurious Emission above 1GHz

Date: 12-19-2011 Tester: Quinn Jiang

Low Channel

LOW CHAIIII	CI										
Frequency	S.A.	Azimuth				Cable	Pre-Amp.	Cord.			
(MHz)	Reading	(degrees)		Test Antenna	1	Loss	(dB)	Reading	FC	CC	
	(dBµV)		Height	Polarity	Factor	(dB)		$(dB\mu V/m)$	Limit	Margin	
			(cm)	(H/V)	(dB/m)				$(dB\mu V/m)$	(dB)	Comments
				Low chan	nel 902.3 MI	Hz measured	at 3 meters				
4511	42.59	247	100	V	31.8	5.36	27.35	52.36	74	-21.64	peak
4511	39.53	233	100	Н	32.0	5.36	27.35	49.54	74	-24.46	peak
4511	39.35	247	100	V	31.8	5.36	27.35	49.12	54	-4.88	Ave
4511	35.46	233	100	Н	32.0	5.36	27.35	45.47	54	-8.53	Ave

Middle Channel

Frequency	S.A.	Azimuth				Cable	Pre-Amp.	Cord.			
(MHz)	Reading	(degrees)		Test Antenna	1	Loss	(dB)	Reading	FO	CC	
	(dBµV)		Height	Polarity	Factor	(dB)		$(dB\mu V/m)$	Limit	Margin	
			(cm)	(H/V)	(dB/m)				$(dB\mu V/m)$	(dB)	Comments
	Middle channel 915.2 MHz measured at 3 meters										
4576	42.57	283	111	V	32.0	5.36	27.4	52.58	74	-21.42	peak
4576	41.25	360	100	Н	32.0	5.36	27.4	51.26	74	-22.74	peak
4576	39.86	283	111	V	32.0	5.36	27.4	49.87	54	-4.13	Ave
4576	37.37	360	100	Н	32.0	5.36	27.4	47.38	54	-6.62	Ave

High Channel

riigir Oriam											
Frequency (MHz)	S.A. Reading	Azimuth (degrees)		Test Antenna	ı	Cable Loss	Pre-Amp. (dB)	Cord. Reading	FC	CC	
	(dBµV)		Height	Polarity	Factor	(dB)		$(dB\mu V/m)$	Limit	Margin	
			(cm)	(H/V)	(dB/m)				$(dB\mu V/m)$	(dB)	Comments
	High channel 927.8 MHz measured at 3 meters										
4639	41.64	265	106	V	32.0	5.36	27.4	51.65	74	-22.35	peak
4639	41.01	11	100	Н	32.0	5.36	27.4	51.02	74	-22.98	peak
4639	38.25	265	106	V	32.0	5.36	27.4	48.26	54	-5.74	Ave
4639	37.88	11	100	Н	32.0	5.36	27.4	47.89	54	-6.11	Ave

Radiated Emissions Below 1 GHZ

All emissions from transmitter more than 20 dB limits.

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

20 dB Bandwidth

LIMIT

15.247(a) i: 500 kHz maximum bandwidth allowed.

TEST PROCEDURE

The TX output is connected to a spectrum analyzer. The OCC BW function is activated.

RBW > 1% of 20 dB BW

VBW>RBW
Detector: PEAK

RESULTS

No non-compliance noted:

NOTE: Both GFSK and FSK modulations are available for all three channel separations. Worst case (largest occupied bandwidths) were for FSK modulation

400 kHz Channel Separation, FSK

Channel	Frequency	20 dB Bandwidth,	20 dB Bandwidth,
	(MHz)	FSK (kHz)	GFSK (kHz)
Low	902.4	214.5	140.9
Middle	915.2	208.1	140.2
High	926.8	212.9	140.9

300 kHz Channel Separation, FSK

Channel	Frequency	20 dB Bandwidth,	20 dB Bandwidth,	
	(MHz)	FSK (kHz)	GFSK (kHz)	
Low	902.3	213.1	140.1	
Middle	915.2	211.6	140.6	
High	926.9	212.1	140.5	

200 kHz Channel Separation, FSK

Channel	Frequency 20 dB		20 dB Bandwidth.		
	(MHz)	FSK (kHz)	GFSK (kHz)		
Low	902.4	195.6	188.8		
Middle	915.2	195.8	180.4		
High	926.8	195.2	188.8		

Silver Spring Networks FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

400 kHz Channel Separation

20 dB BANDWIDTH LOW CHANNEL, GFSK

400 kHz Channel Separation

20 dB BANDWIDTH LOW CHANNEL, FSK

FCC ID: OWS-NIC40
IC: 5975A-NIC40 Model No.: NIC40

400 kHz Channel Separation

20 dB BANDWIDTH MID CHANNEL, GFSK

400 kHz Channel Separation

20 dB BANDWIDTH MID CHANNEL, FSK

Silver Spring Networks FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

400 kHz Channel Separation

20 dB BANDWIDTH HIGH CHANNEL, GFSK

400 kHz Channel Separation

20 dB BANDWIDTH HIGH CHANNEL, FSK

Silver Spring Networks FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

300 kHz Channel Separation

20 dB BANDWIDTH LOW CHANNEL, GFSK

300 kHz Channel Separation

20 dB BANDWIDTH LOW CHANNEL, FSK

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

300 kHz Channel Separation

20 dB BANDWIDTH MID CHANNEL, GFSK

300 kHz Channel Separation

20 dB BANDWIDTH MID CHANNEL, FSK

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

300 kHz Channel Separation

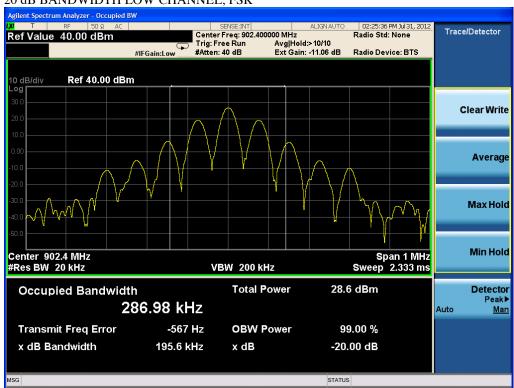
20 dB BANDWIDTH HIGH CHANNEL, GFSK

300 kHz Channel Separation

20 dB BANDWIDTH HIGH CHANNEL, FSK

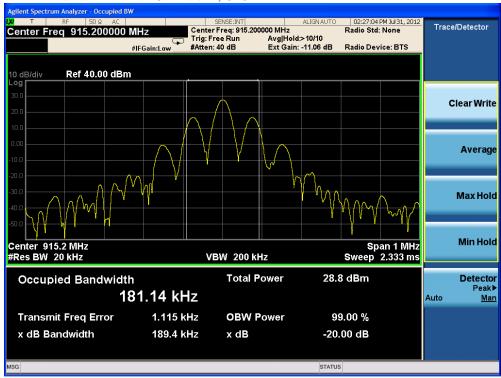
Silver Spring Networks FCC ID: OWS-NIC40 IC: 5975A-NIC40

IC: 5975A-NIC40 Model No.: NIC40

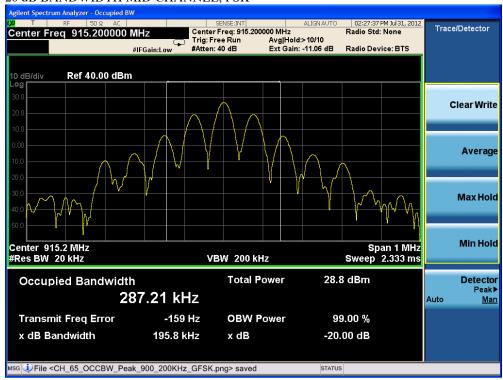

200 kHz Channel Separation

20 dB BANDWIDTH LOW CHANNEL, GFSK

200 kHz Channel Separation


20 dB BANDWIDTH LOW CHANNEL, FSK

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40


200 kHz Channel Separation

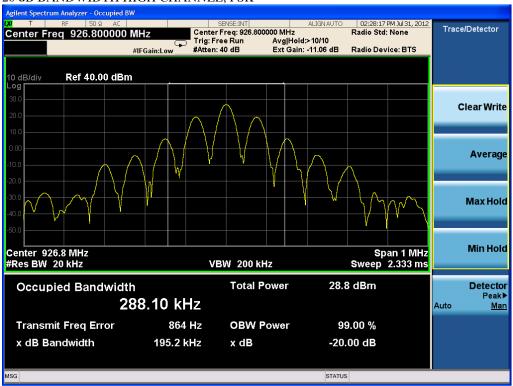
20 dB BANDWIDTH MID CHANNEL, GFSK

200 kHz Channel Separation

20 dB BANDWIDTH MID CHANNEL, FSK

Silver Spring Networks FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40


200 kHz Channel Separation

20 dB BANDWIDTH HIGH CHANNEL, GFSK

200 kHz Channel Separation

20 dB BANDWIDTH HIGH CHANNEL, FSK

FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

99% Occupied Bandwidth

LIMIT

None, for information purposes only.

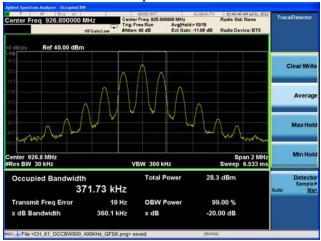
The TX output is connected to a spectrum analyzer. The OCC BW function is activated.

RBW > 1% of SPAN

VBW > 3xRBW

Detector: SAMPLE

RESULTS


No non-compliance noted.

Plots below show worst-case occupied bandwidth for each channel separation.

Channel Separation	Worst-case Occupied BW
400 kHz	371.7 kHz (High channel)
300 kHz	204.2 kHz (High channel)
200 kHz	288.15 kHz (High channel)

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

99% BW, 400 kHz separation

99% BW, 300 kHz separation

99% BW, 200 kHz separation

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

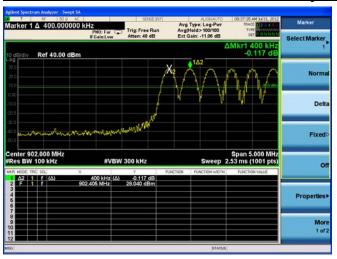
HOPPING FREQUENCY SEPARATION

LIMIT

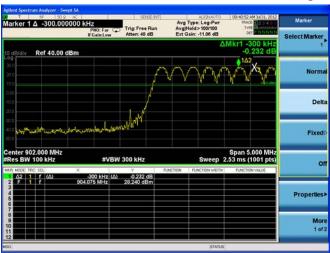
§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

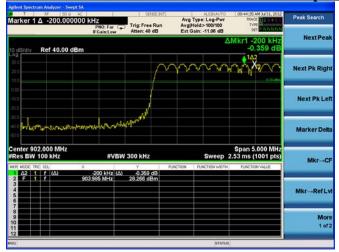
The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

No non-compliance noted:


Silver Spring Networks Report No: 12PRO018A Rev1 FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40


HOPPING FREQUENCY SEPARATION 400 kHz Separation

HOPPING FREQUENCY SEPARATION 300 kHz Separation

HOPPING FREQUENCY SEPARATION 200 kHz Separation

Model No.: NIC40

FCC ID: OWS-NIC40 IC: 5975A-NIC40

NUMBER OF HOPPING CHANNELS

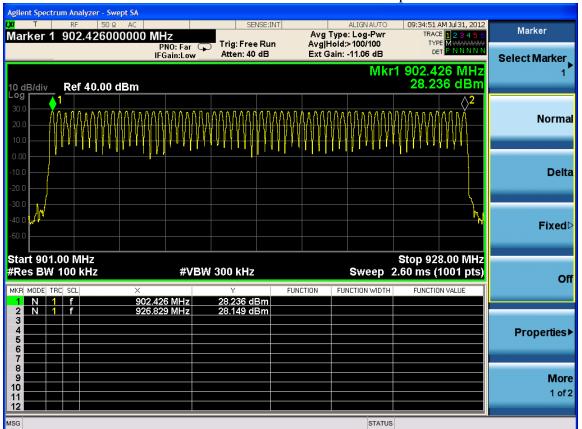
LIMIT

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

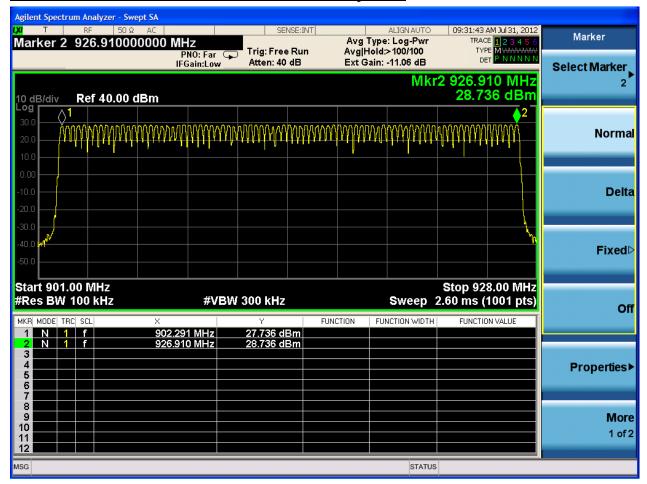
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 3 % of the span. The analyzer is set to Max Hold.

RESULTS


No non-compliance noted:

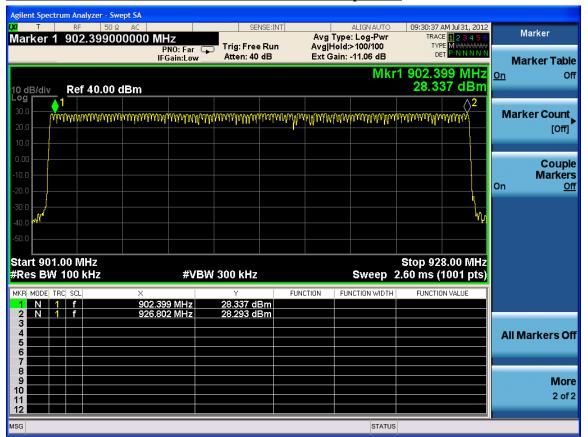
400 kHz channel separation: 62 channels 300 kHz channel separation: 83 channels 200 kHz channel separation: 122 channels

Silver Spring Networks FCC ID: OWS-NIC40


IC: 5975A-NIC40 Model No.: NIC40

NUMBER OF HOPPING CHANNELS: 400 kHz Channel Separation

IC: 5975A-NIC40 Model No.: NIC40


NUMBER OF HOPPING CHANNELS: 300 kHz Channel Separation

Silver Spring Networks FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

NUMBER OF HOPPING CHANNELS: 200 kHz Channel Separation

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

AVERAGE TIME OF OCCUPANCY

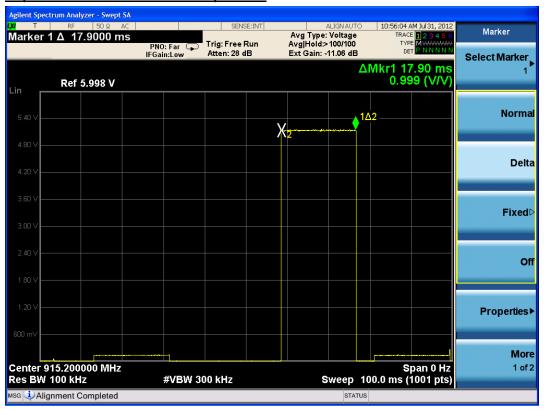
LIMIT

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 20 second scan, to enable resolution of each occurrence.

RESULTS


No non-compliance noted:

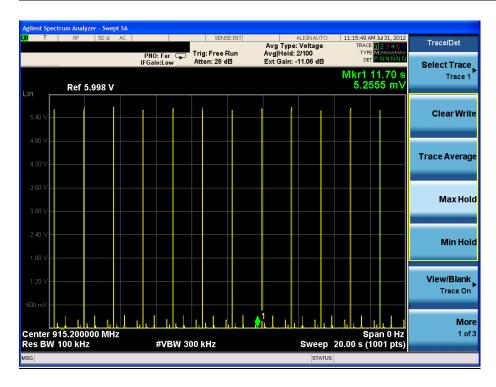
Channel	Нор	Total hops/20 sec	Average time of	Limit
Separation	duration		occupancy msec	in 20 sec
	msec			msec
400 kHz	17.9	16	286.4	400
300 kHz	18	13	234	400
200 kHz	18	8	144	400

Silver Spring Networks FCC ID: OWS-NIC40 IC: 5975A-NIC40

IC: 5975A-NIC40 Model No.: NIC40

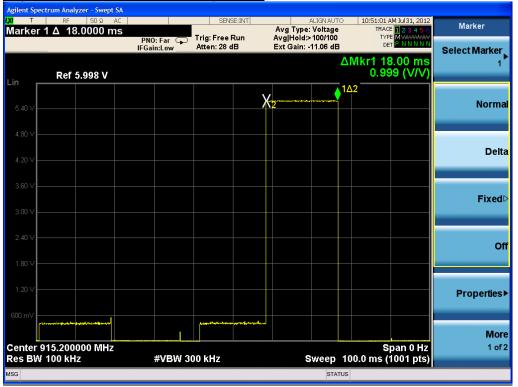
Hop duration 400kHz Channel Separation

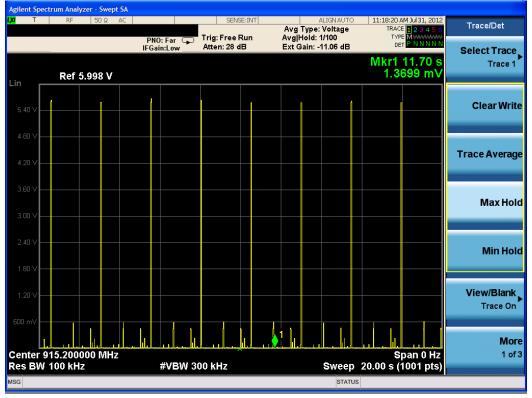
NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD 400kHz Channel Separation


Silver Spring Networks FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

Hop duration 300kHz Channel Separation


NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD 300kHz Channel Separation


Silver Spring Networks FCC ID: OWS-NIC40 IC: 5975A-NIC40

IC: 5975A-NIC40 Model No.: NIC40

Hop duration 200kHz Channel Separation

NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD 200kHz Channel Separation

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band, employing at least 50 hopping channels: 1 watt; and employing less than 50 hopping channels, but at least 25 hopping channels: 0.25 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 4 dBi, therefore the power limit is 30 dBm.

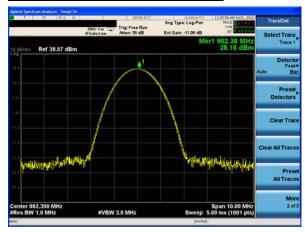
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer through appropriate attenuation. Analyzer settings:

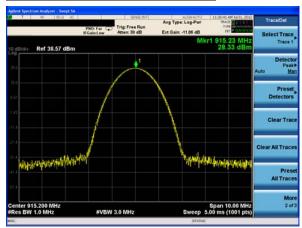
RBW > EBW VBW = 3xRBWDetector: PEAK

RESULTS

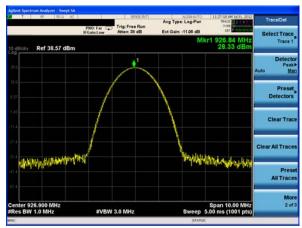
No non-compliance noted:


Channel	Frequency	P out
Low	902.3	28.16
Mid	914.9	28.33
High	926.9	28.33

Note: Power output essentially equal for all hopping channel separation modes. Data presented for 300 kHz channel separation mode as most typical worst case.


Silver Spring Networks Report No: 12PRO018A Rev1 FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40


OUTPUT POWER LOW CHANNEL

OUTPUT POWER MID CHANNEL

OUTPUT POWER HIGH CHANNEL

FCC ID: OWS-NIC40 IC: 5975A-NIC40

Model No.: NIC40

MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	nits for Occupational	I/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500	614 1 <i>8</i> 42# 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300	6 6 6 6	
1500–100,000(B) Limits	for General Populati	on/Uncontrolled Ex	5 posure	6	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
1500_100.000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

FCC ID: OWS-NIC40 IC: 5975A-NIC40

Model No.: NIC40

Report No: 12PRO018A Rev1

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)} / d$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

 $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P(mW) = 10 \land (P(dBm) / 10)$$
 and

$$G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$$

yields

$$d = 0.282 * 10 \land ((P + G) / 20) / \sqrt{S}$$
 Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

LIMITS

From $\S1.1310$ Table 1 (B), S = 0.6 mW/cm²

RESULTS

No non-compliance noted:

Worst-case RF exposure condition is for internal antenna operation as the gain is higher

Power Density	Output	Antenna	S, mW/cm2
Limit	Power	Gain	at 20cm
(mW/cm^2)	(dBm)	(dBi)	
0.6	28.33	3.00	0.45

MPE Distance: 13.4 cm (for 900 MHz operation alone). MPE calculation for dual 900/2.4 GHz operation is presented in a separate document.

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

FCC ID: OWS-NIC40 IC: 5975A-NIC40

Model No.: NIC40

CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

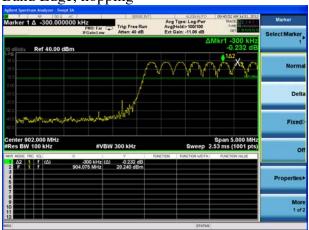
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

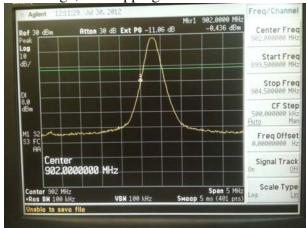
Testing was performed for worst-case operation:

300 kHz channel separation FSK modulation

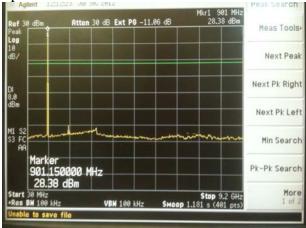
RESULTS


No non-compliance noted:

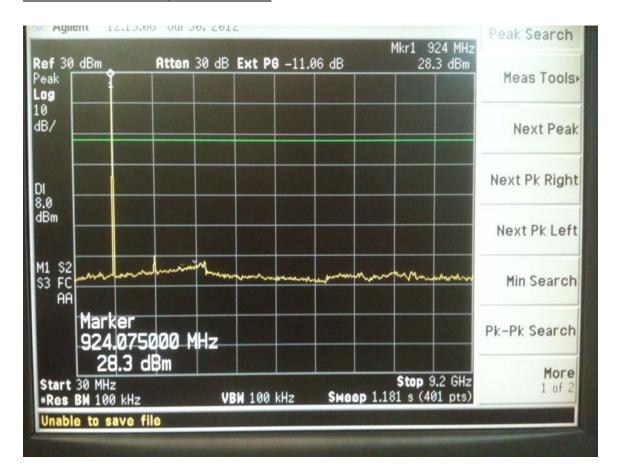
Model No.: NIC40


Silver Spring Networks FCC ID: OWS-NIC40 IC: 5975A-NIC40

SPURIOUS EMISSIONS, LOW CHANNEL


Band Edge, hopping

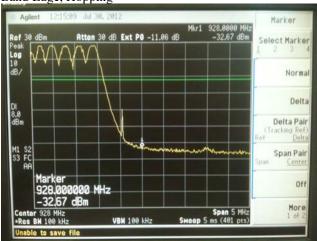
Band Edge, not hopping

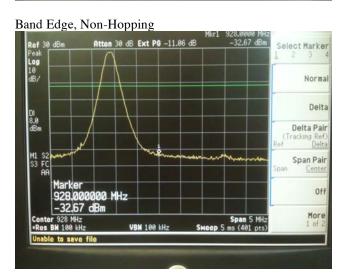

Spurious to 10th harmonic

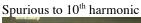
Silver Spring Networks Report No: 12PRO018A Rev1 FCC ID: OWS-NIC40

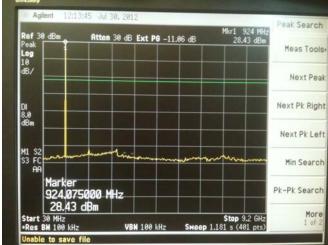
IC: 5975A-NIC40 Model No.: NIC40

SPURIOUS EMISSIONS, MID CHANNEL


Report No: 12PRO018A Rev1


Model No.: NIC40


Silver Spring Networks FCC ID: OWS-NIC40 IC: 5975A-NIC40


SPURIOUS EMISSIONS, HIGH CHANNEL

Band Edge, Hopping

FCC ID: OWS-NIC40
IC: 5975A-NIC40
Model No.: NIC40

POWERLINE CONDUCTED EMISSIONS

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Decreases with the logarithm of the frequency.

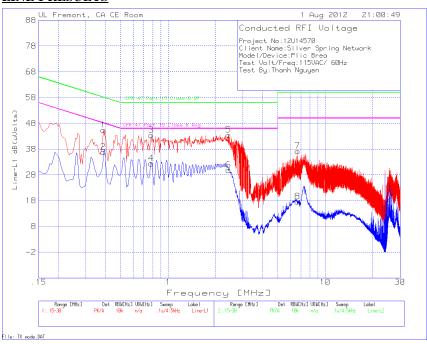
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

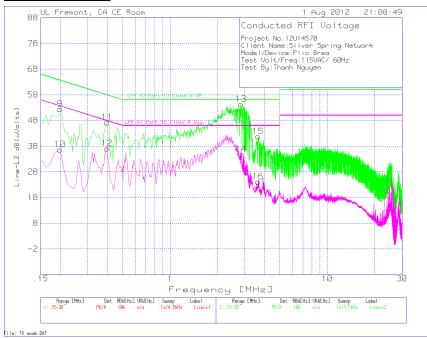
The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

The transmitter was configured to simultaneously transmit FHSS mode in the 900 MHz and 2.4 GHz bands simultaneously, since this is the worst case operation (maximum output power) for simultaneous operation.

Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

No non-compliance noted:


Silver Spring Networks Report No: 12PRO018A Rev1 FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

LINE 1 RESULTS

LINE 2 RESULTS

Report No: 12PRO018A Rev1

Model No.: NIC40

Silver Spring Networks FCC ID: OWS-NIC40 IC: 5975A-NIC40

Project No:12U14570 Client Name:Silver Spring Network Model/Device:Plic Brea, Transmit mode Test Volt/Freq:115VAC/ 60Hz Test By:Thanh Nguyen

- 15. Line-L1	30MHz								
Test	Meter	Detector	T24 IL	LC Cables	dB(uVolts)	CFR 47	Margin	CFR 47	Margin
Frequency	Reading		L1.TXT	1&3.TXT		Part 15		Part 15	
	_		(dB)	(dB)		Class B QP		Class B	
								Avg	
0.3885	45.29	PK	0.1	0	45.39	58.1	-12.71	-	-
0.3885	36.74	Av	0.1	0	36.84	-	-	48.1	-11.26
0.78	43.32	PK	0.1	0	43.42	56	-12.58	-	-
0.78	32.28	Av	0.1	0	32.38	-	-	46	-13.62
2.427	43.26	PK	0.1	0.1	43.46	56	-12.54	-	-
2.427	29.7	Av	0.1	0.1	29.9	-	-	46	-16.1
6.6795	36.95	PK	0.1	0.1	37.15	60	-22.85	-	-
6.6795	17.38	Av	0.1	0.1	17.58	-	-	50	-32.42
Line-L2 .15 -	30MHz								
Test	Meter	Detector	T24 IL	LC Cables	dB(uVolts)	CFR 47	Margin	CFR 47	Margin
Frequency	Reading		L1.TXT	1&3.TXT		Part 15	_	Part 15	
	_		(dB)	(dB)		Class B QP		Class B	
								Avg	
0.1995	52.48	PK	0.1	0	52.58	63.6	-11.02	-	-
0.1995	36.55	Av	0.1	0	36.65	-	-	53.6	-16.95
0.3975	47.12	PK	0.1	0	47.22	57.9	-10.68	-	-
0.3975	36.98	Av	0.1	0	37.08	-	-	47.9	-10.82
2.823	54.09	PK	0.1	0.1	54.29	56	-1.71	-	-
2.823	34.67	Av	0.1	0.1	34.87	-	-	46	-11.13
3.642	41.48	PK	0.2	0.1	41.78	56	-14.22	-	-
3.642	23.83	Av	0.2	0.1	24.13	-	-	46	-21.87
									l

Project No:12U14570

Client Name:Silver Spring Network Model/Device:Plic Brea Test Volt/Freq:115VAC/ 60Hz Test By:Thanh Nguyen

Project No:12U14570 Client Name:Silver Spring Network Model/Device:Plic Brea Test Volt/Freq:115VAC/ 60Hz Test By:Thanh Nguyen

PK - Peak detector
QP - Quasi-Peak detector
LnAv - Linear Average detector
LgAv - Log Average detector
Av - Average detector
CAV - CISPR Average detector
RMS - RMS detection
CRMS - CISPR RMS detection
Text File: TX mode.TXT
File: TX mode.DAT

Silver Spring Networks Report No: 12PRO018A Rev1 FCC ID: OWS-NIC40

IC: 5975A-NIC40 Model No.: NIC40

END OF REPORT

Report Revision History

Revision	Revision Description	Pages	Revised by	Date
No.		Revised		
-	Original issue		T. Cokenias	15 August 2012
1	Correct test location: AC line only at CCS	1	T. Cokenias	13 Dec 2012
	Update BACL cal to show due date as well as cal date			