

Certification Report on
Specific Absorption Rate (SAR)
Experimental Analysis in Front of Face

Com-Net Ericsson Critical Radio Systems

Jaguar 700P
900 MHz trunking radio

Test Date: 28 July, 2000

CNEB-JAGUAR 700P-3497

51 Spectrum Way Nepean ON K2R 1E6
Tel: (613) 820-2730 Fax: (613) 820-4161
email: info@aprel.com

CERTIFICATION REPORT

Subject: **Specific Absorption Rate (SAR) Experimental Analysis
in Front of the Face**

Product: 900 MHz trunking radio

Model: Jaguar 700P

Client: Com-Net Ericsson Critical Radio Systems

Address: 3315 Old Forest Road
Lynchburg, VA 24501
U.S.A.

Project #: CNEB-JAGUAR 700P-3497

Prepared by: APREL Laboratories
51 Spectrum Way
Nepean, Ontario
K2R 1E6


Tested by Delia Zapata, D. M. O'Donnell
Ken O'Donnell and Delia M. Zapata
Engineering Staff

Submitted by Paul G. Cardinal
Dr. Paul G. Cardinal
Director, Laboratories

Approved by Jacek J. Wojcik
Dr. Jacek J. Wojcik, P. Eng.

Page 1 of 24
51 Spectrum Way
Nepean, Ontario K2R 1E6

© APREL 2000
This report shall not be reproduced, except in full,

Date: Aug 2/00

Date: 01 Sep 2000

without the express written approval of APREL Laboratories.

Tel. (613) 820-2730
Fax (613) 820 4161
e-mail: info@aprel.com

FCC ID: OWDTR0007-E
Applicant: Com-Net Ericsson Critical Radio Systems
Equipment: 900 MHz trunking radio
Model: Jaguar 700P
Standard: FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation

ENGINEERING SUMMARY

This report contains the results of the engineering evaluation performed on a Com-Net Ericsson Jaguar 700P trunking radio used in front of the face (for SAR Analysis on body and hand, see Project # CNEB-JAGUAR 700P-3498). The measurements were carried out in accordance with FCC 96-326. The trunking radio was evaluated at its nominal high power level (2W / 33dBm) and 100% duty factor.

The trunking radio was tested on the keyboard side of the handset and front side of the speaker-microphone with antenna port, using a quarter-wavelength end-fed antenna and a half-wavelength centre-fed whip antenna, at low, middle and high channels of the transmit band, and low, middle and high channels of the talk-around band, in "CONV 1" personality, 30 mm away from the phantom (Table 2, Appendix B).

The maximum SAR was found to coincide with the peak performance RF output power of the transmit band low channel (1, 896.0125 MHz), when using the quarter-wavelength centre-fed whip antenna and holding the speaker/microphone with antenna port in front of the face. Test data and graphs are presented in this report.

Based on the test results and on how the device will be used, it is certified that the product meets the requirements as set forth in the above specifications, for partial body exposure in an occupational /controlled RF exposure environment.

(The results presented in this report relate only to the sample tested.)

TABLE OF CONTENTS

1. Introduction.....	4
2. Applicable Documents	4
3. Equipment Under Investigation.....	4
4. Test Equipment	5
5. Test Methodology	5
6. Test Results.....	6
6.1. Transmitter Characteristics	6
6.2. SAR Measurements.....	7
7. Discussion.....	9
8. Conclusions	12
APPENDIX A. Measurement Setup and SAR Graphs	13
APPENDIX B. Manufacturer's Specifications	19
APPENDIX C. Uncertainty Budget.....	20
APPENDIX D. Simulated Brain Tissue Material and Calibration Technique	21
APPENDIX E. Validation Scans on a Head Simulation Phantom.....	24

TABLES AND FIGURES

Table 1. Sampled Conducted RF Power	6
Table 2. SAR Measurements in Front of Face.....	9
Table 3. Nose Protrusion Percentiles	10
Table 4. SAR versus Separation.....	10
Figure 1. Setup and Close up of Setup	13
Figure 2. Grid inside the Phantom.....	13
Figure 3. Contour Plot of the Area Scan 2.5mm Above Phantom Surface.....	14
Figure 4. Surface Plot of the Area Scan 2.5mm Above Phantom Surface.....	14
Figure 5. Contour Plot of the Area Scan 12.5mm Above Phantom Surface.....	15
Figure 6. Surface Plot of the Area Scan 12.5mm Above Phantom Surface.....	15
Figure 7. Zoom Scan 2.5mm Above Phantom Surface.....	16
Figure 8. Zoom Scan 7.5mm Above Phantom Surface.....	16
Figure 9. Zoom Scan 12.5mm Above Phantom Surface.....	16
Figure 10. Overlay of the DUI's Outlines Superimposed onto the Area Scan.....	17
Figure 11. Local SAR versus Sensor Separation.....	17
Figure 12. Face Simulating Phantom.....	18
Figure 13. SAR versus Separation from Face Simulation.....	18
Figure 14. Contour Plot of the Reference Area Scan 2.5mm Above Phantom.....	24
Figure 15. Surface Plot of the Reference Area Scan 2.5mm Above Phantom.....	24

1. INTRODUCTION

Tests were conducted to determine the Specific Absorption Rate (SAR) in Front of the Face of a sample of a Com-Net Ericsson Jaguar 700P trunking radio. (See Project # CNEB-JAGUAR 700P-3498 for SAR Analysis on Body and Hand). These tests were conducted at APREL Laboratories' facility located at 51 Spectrum Way, Nepean, Ontario, Canada. A view of the SAR measurement setup can be seen in Appendix A Figure 1. This report describes the results obtained.

2. APPLICABLE DOCUMENTS

The following documents are applicable to the work performed:

- 1) FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation
- 2) ANSI/IEEE C95.1-1992, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- 3) ANSI/IEEE C95.3-1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.
- 4) OET Bulletin 65 (Edition 97-01) Supplement C (Edition 97-01), “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields”.

3. EQUIPMENT UNDER INVESTIGATION

- Com-Net Ericsson Jaguar 700P trunking radio, S/N H1 900N05 (T19-1018), received on 14 July 2000.

The 900 MHz trunking radio will be called DUI (Device Under Investigation) in the following.

This is a Push-To-Talk (PTT) device that can operate in the frequency range 896-901 MHz transmit band and the 935-940 MHz talk-around band with a maximum output

power setting of 2W / 33dBm. One of two whip antennas may be attached to the right side of the device. One of the antennas is a quarter-wavelength end-fed whip antenna, 90 mm long, 900 MHz (KRE 101 1223/02), while the other is a half-wavelength centre-fed whip antenna, 215 mm long, 900 MHz (EXE-902MD). The device was tested using Com-Net Ericsson 7.5V nickel cadmium high capacity batteries (1700 mAh), BKB 191 210/3. A photograph of the DUI and accessories can be found in Appendix B. See the manufacturer's submission documentation for drawings and more design details.

4. TEST EQUIPMENT

- APREL Triangular Dosimetric Probe Model E-009, s/n 115, Asset # 301420
- CRS Robotics A255 articulated robot arm, s/n RA2750, Asset # 301335
- CRS Robotics C500 robotic system controller, s/n RC584, Asset # 301334
- APREL F-1, flat manikin, s/n 001
- Tissue Recipe and Calibration Requirements, APREL procedure SSI/DRB-TP-D01-033
- HP 438A power meter, s/n 2502A01684, Asset # 301417
- HP 8482A power sensor, s/n 2652A1512B, Asset # 301418
- HP 8340 Synthesized Sweeper 10MHz - 26.5 GHz, s/n 2819A00926, Asset # 100955

5. TEST METHODOLOGY

1. The test methodology utilised in the certification of the DUI complies with the requirements of FCC 96-326 and ANSI/IEEE C95.3-1992.
2. The E-field is measured with a small isotropic probe (output voltage proportional to E^2).

3. The probe is moved precisely from one point to the next using the robot (10 mm increments for wide area scanning, 5 mm increments for zoom scanning, and 2.5 mm increments for the final depth profile measurement).
4. The probe travels in the homogeneous liquid simulating human tissue. Appendix D contains information about the recipe and properties of the simulated tissue used for these measurements.
5. The liquid is contained in a manikin simulating a portion of the human body.
6. The DUI is positioned with its keyboard and speaker-microphone with antenna port 30 mm away from the phantom.
7. All tests were performed with the highest power available from the sample DUI (2W / 33dBm) under transmit conditions.

More detailed descriptions of the test method is given in Section 6 when appropriate.

6. TEST RESULTS

6.1. TRANSMITTER CHARACTERISTICS

The battery-powered DUI will consume energy from its batteries, which may affect the DUI's transmission characteristics. In order to gage this effect the output of the transmitter is sampled before and after each SAR run. In the case of this DUI, the conducted power was sampled. The following table shows the conducted RF power sampled before and after each of the six sets of data used for the worst case SAR in this report.

Table 1. Sampled Conducted RF Power

Scan		Power Readings (dBm)		D (dB)	Battery #
Type	Height (mm)	Before	After		
Area	2.5	7.93	7.90	-0.03	6
Area	12.5	7.96	7.94	-0.02	3
Zoom	2.5	7.98	7.89	-0.09	4
Zoom	7.5	7.93	7.91	-0.02	5
Zoom	12.5	7.94	7.91	-0.03	4
Depth	2.5 – 22.5	8.00	7.88	-0.12	5

NOTE: These readings were taken at the antenna port of the speaker microphone, and do not include the 23dB of attenuation, not the adapter losses.

6.2. SAR MEASUREMENTS

- 1) RF exposure is expressed as a Specific Absorption Rate (SAR). SAR is calculated from the E-field, measured in a grid of test points as shown in Appendix A Figure 2. SAR is expressed as RF power per kilogram of mass, averaged in 10 grams of tissue for the extremities and 1 gram of tissue elsewhere.
- 2) The DUI was put into test mode for the SAR measurements by turning it on and rotating a dial beside the antenna to control the channel. The power could be set to two levels using keyboard buttons and was set to its highest power level (nominally 2W).
- 3) Figure 3 in Appendix A shows a contour plot of the SAR measurements for the DUI (transmit band low channel, 1, 896.0125 MHz, quarter-wavelength centre-fed whip antenna, speaker/microphone with antenna port, 2W / 33dBm). The presented values were taken 2.5mm into the simulated tissue from the Universal Head-Arm's (UH-a) solid inner surface. Figures 1 and 2 in Appendix A show the UH-a used in the measurements. A grid is shown inside the phantom indicating the orientation of the x-y grid used. The x-axis is positive towards the left and the y-axis is positive towards the bottom. In this position, the top edge of the speaker-microphone is aligned with $x = 0$, while the red dot (on the top edge of the speaker-microphone) is located at (0,0).

A different presentation of the same data is shown in Appendix A Figure 4. This is a surface plot, where the measured SAR values provide the vertical dimension, which is useful as a visualisation aid.

Similar data was obtained 12.5 mm into the simulated tissue. These measurements are presented as a contour plot in Appendix A Figure 5 and surface plot in Figure 6.

Figure 10 in Appendix A shows an overlay of the DUI's outlines, superimposed onto the contour plot previously shown as Figure 3.

Figures 3 through 6 in Appendix A show that there is a dominant peak, in the contour plots, that diminishes in magnitude with depth into the tissue simulation.

4) For the SAR analysis in Front of the Face (Table 2), wide area scans were performed on both the keyboard side of the handset and the front side of the speaker-microphone with antenna port, with the DUI operating at maximum output power (2W / 33dBm) and 100% duty factor, for the middle channel of the two bands (channels 2 and 5), using the two antenna types (quarter-wavelength end-fed whip antenna and half-wavelength centre-fed whip antenna).

Then, wide area scans were performed on the keyboard side of the handset, with the antenna generating the highest SAR (quarter-wave length end-fed whip antenna) at the other four channels (1,3,5,6).

Wide area scans were also performed on the front side of the speaker-microphone with antenna port, with the antenna generating the highest SAR (quarter-wave length end-fed whip antenna) on the other four channels (1,3,5,6). The peak single point SAR for the scans were:

DUI side	Speaker mic SWA/S*	Ant	Channel				Highest SAR (W/kg)
			Band	L/M/H	#	Frequency (MHz)	
keyboard	none	$\lambda/4$	transmit	M(1)	2	899.0000	0.940
keyboard	none	$\lambda/4$	talk-around	M(2)	5	938.0000	0.744
keyboard	none	$\lambda/2$	transmit	M(1)	2	899.0000	0.401
keyboard	none	$\lambda/2$	talk-around	M(2)	5	938.0000	0.381
SWA speaker (front side)	SWA	$\lambda/4$	transmit	M(1)	2	899.0000	1.015
SWA speaker (front side)	SWA	$\lambda/4$	talk-around	M(2)	5	938.0000	0.993
SWA speaker (front side)	SWA	$\lambda/2$	transmit	M(1)	2	899.0000	0.496
keyboard	none	$\lambda/4$	transmit	L(1)	1	896.0125	0.909
keyboard	none	$\lambda/4$	transmit	H(1)	3	901.9875	0.867
keyboard	none	$\lambda/4$	talk-around	L(2)	4	935.0125	0.809
keyboard	none	$\lambda/4$	talk-around	H(2)	6	940.9875	0.746
SWA speaker (front side)	SWA	1/4	transmit	L(1)	1	896.0125	1.055
SWA speaker (front side)	SWA	$\lambda/4$	transmit	H(1)	3	901.9875	0.996
SWA speaker (front side)	SWA	$\lambda/4$	talk-around	L(2)	4	935.0125	0.822
SWA speaker (front side)	SWA	$\lambda/4$	talk-around	H(2)	6	940.9875	0.843

Table 2. SAR Measurements in Front of the Face

*S: speaker/microphone; *SWA: speaker/microphone with antenna port

All subsequent testing was performed on the transmit band low channel (1, 896.0125 MHz), with the speaker/microphone with antenna port and the quarter-wavelength centre-fed whip antenna.

- 5) The transmit band low channel (1, 896.0125 MHz) was then explored on a refined 5 mm grid in three dimensions. Figures 7, 8 and 9 show the measurements made at 2.5, 7.5 and 12.5 mm, respectively. The SAR value averaged over 1 gram was determined from these measurements by averaging the 27 points (3x3x3) comprising a 1 cm cube. The maximum SAR value measured averaged over 1 gram was determined from these measurements to be 0.93 W/kg.
- 6) To extrapolate the maximum SAR value averaged over 1 gram to the inner surface of the phantom a series of measurements were made at a few (x,y) co-ordinates within the refined grid as a function of depth, with 2.5 mm spacing. Figure 11 in Appendix A shows the data gathered and the exponential curves fit to them. The average exponential coefficient was determined to be $(-0.058 \pm 0.001) / \text{mm}$.
- 7) The distance from the probe tip to the inner surface of the phantom for the lowest point is 2.5 mm. The distance from the probe tip to the tip of the measuring dipole within the APREL Triangular Dosimetric Probe Model E-009 is 2.3 mm. The total extrapolation distance is 4.8 mm, the sum of these two.

Applying the exponential coefficient over the 4.8 mm to the maximum SAR value averaged over 1 gram that was determined previously, we obtain the maximum SAR value at the surface averaged over 1 gram, 1.22 W/kg.

7. DISCUSSION

The factory tolerance for setting the power level of the 900 MHz trunking radio is $2\text{W} \pm 5\%$. The DUI could then have an absolute maximum power of 2.1 W. Then, it is determined by proportional scaling of the maximum power (2.1 W) that the device would produce an estimated maximum 1 gram SAR of 1.28 W/kg.

The most appropriate nose protrusion to use for SAR measurements is an open question. The DOD Handbook 743A defines Nose Protrusion as “the maximum anterior protrusion of the nose”; it is their dimension 137. In Table 137b they show the percentiles in centimetres for various series of measurements, a portion of which is included in the following table:

No.	Series	Percentiles in Centimetres		
		5 th	95 th	99 th
1	US Army Men (1988)	1.5	2.3	2.4
2	USAF Basic Trainees (1965)	1.8	2.8	3.0
3	US Navy Aviators (1964)	1.9	2.7	3.0
4	USAF Flying Personnel (1950)	1.8	2.7	3.0
5	CWS Face Study (1945)	1.7	2.6	2.8
6	US Army Women (1988)	1.5	2.2	2.4

Table 3. Nose Protrusion Percentiles

The SAR measurements reported herein have used a 30 mm separation between the face simulating phantom and the DUT. This actually corresponds to 32.5 mm between the DUT and the liquid head simulation when the phantom's shell thickness of 2.5 mm is included (see Figure 12). This would be equivalent to 1 cm in front of the tip of the nose for the average of the most recent 1988 US Army 95th percentile data, series 1 and 6.

A series of wide area SAR scans were performed on the worst channel (transmit band low, 1, 896.0125 MHz) versus the separation between the DUT and the tissue simulation. These will enable the maximum 1g SAR for a separation of 32.5 mm to be interpolated for other separations between the plane of the face simulation and the surface of the DUT. The peak single point SAR for each scan were:

DUT – tissue simulation separation (mm)	Highest local SAR (W/kg)
12.5	2.88
22.5	2.11
32.5	1.01

Table 4. SAR versus Separation

Figure 13 in Appendix A shows the data plotted as a function of separation and the curves fit to them. Note that the data obtained from the area, zoom and depth scans for the worst channel and worst antenna, reported elsewhere in this report, are also included in the figure. The 5th and 95th percentile nose protrusions from the DOD-Handbook data for the 1988 US Army (average of men and women) are indicated of

the figure.

If the data for Figure 13 is fitted to an exponential equation we get:

$$\text{Peak Local SAR} = 5.676 e^{-0.0494 * (\text{separation})}$$

A similar equation will exist for the maximum 1g SAR versus separation:

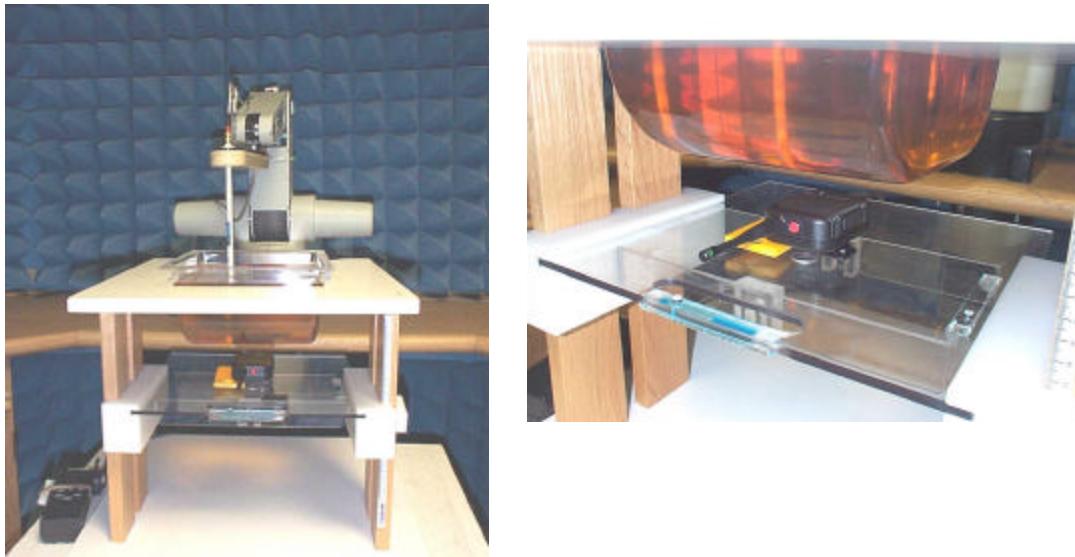
$$\text{Maximum 1g SAR} = k e^{-0.0494 * (\text{separation})}$$

Using this equation with:

Maximum 1 g SAR determined above = 1.28 W/kg
Tissue simulation – DUT separation = 32.5 mm

results in a $k = 6.389$ W/kg, which corresponds to the maximum 1 g SAR when the separation is 0 mm. The estimated maximum 1 g SAR at a separation corresponding to the DUT touching a 5th percentile nose from the 1988 US Army data would be 3.05 W/kg, which is well below the FCC partial body limit of 8.0 W/kg for occupational or controlled exposure.

8. CONCLUSIONS


The maximum Specific Absorption Rate (SAR) averaged over 1 gram, determined at 896.0125 MHz (transmit band low, 1, speaker/microphone with antenna port, quarter-wavelength centre-fed whip antenna, 2W / 33dBm) of a Com-Net Ericsson Jaguar 700P trunking radio, is 1.28 W/kg. Since this is a PTT device, its maximum effective duty factor is 50%, resulting in an effective maximum 1 gram SAR of 0.64 W/kg. The overall margin of uncertainty for this measurement is $\pm 11.4\%$ (Appendix C).

The SAR limit given in the FCC 96-326 safety guideline is 8 W/kg for partial body occupational /controlled RF exposure.

Considering the above, this unit as tested, and as it will be marketed and used (with user training), is found to be compliant with this requirement.

APPENDIX A. Measurement Setup and SAR Graphs



Figure 1. Setup and Close up of Setup

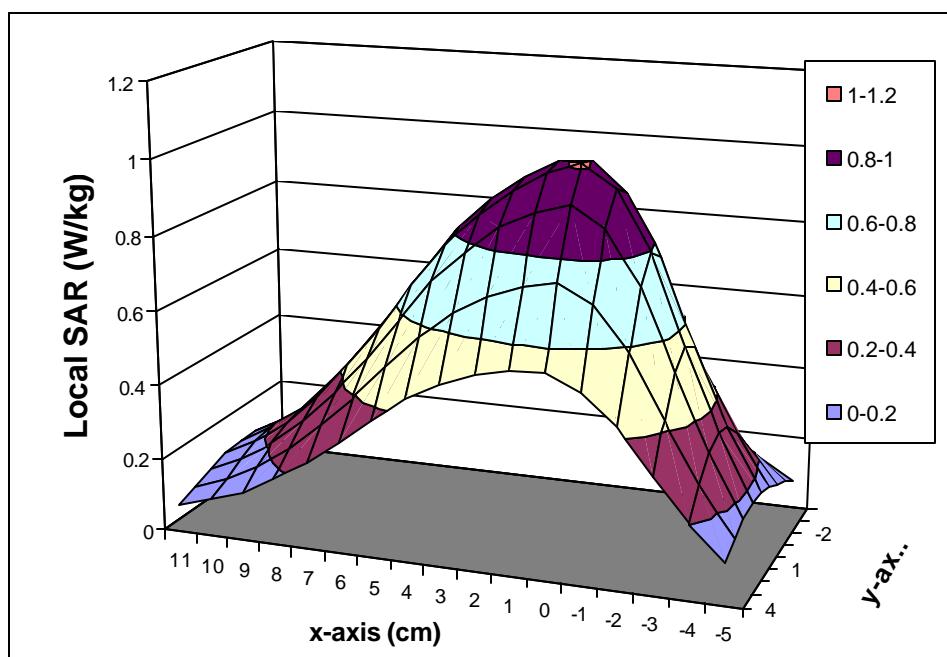


Figure 2. Grid inside the Phantom

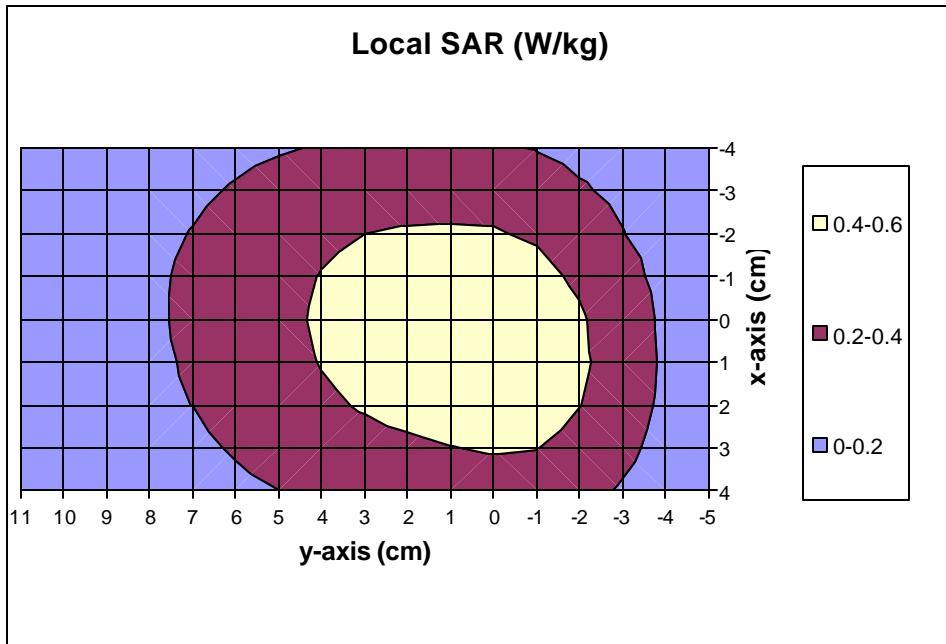


Figure 3. Contour Plot of the Area Scan 2.5mm Above Phantom Surface

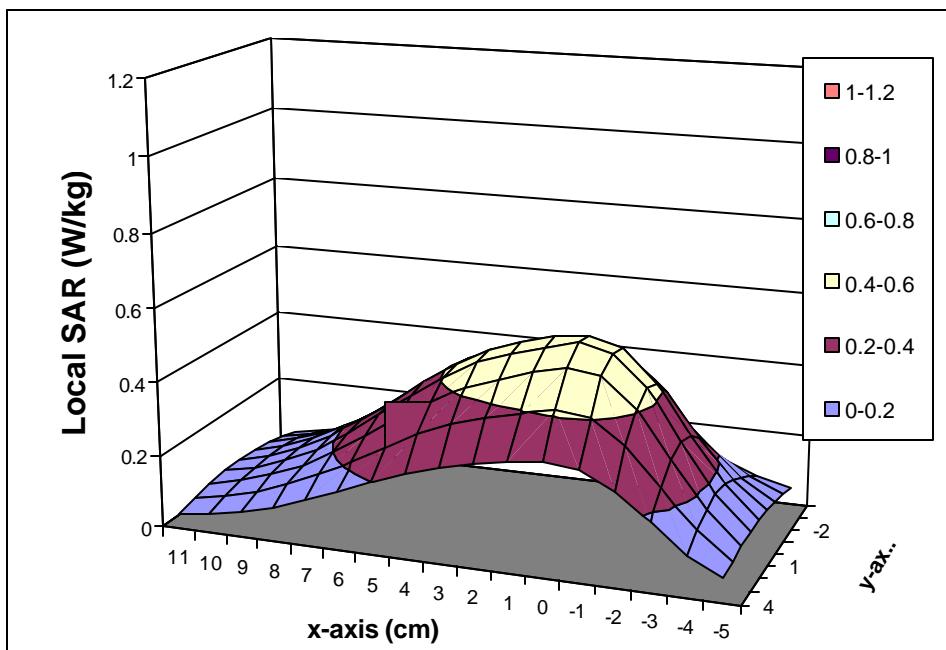


Figure 4. Surface Plot of the Area Scan 2.5mm Above Phantom Surface

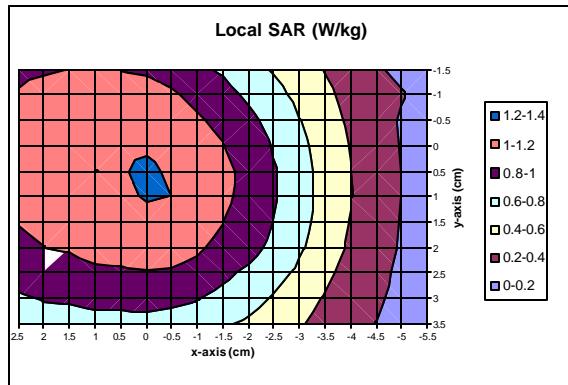


Figure 5. Contour Plot of the Area Scan 12.5mm Above Phantom Surface

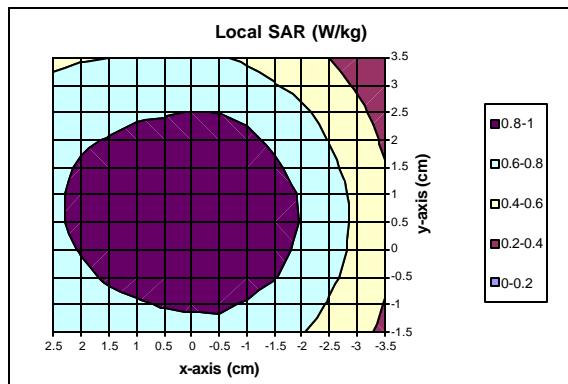
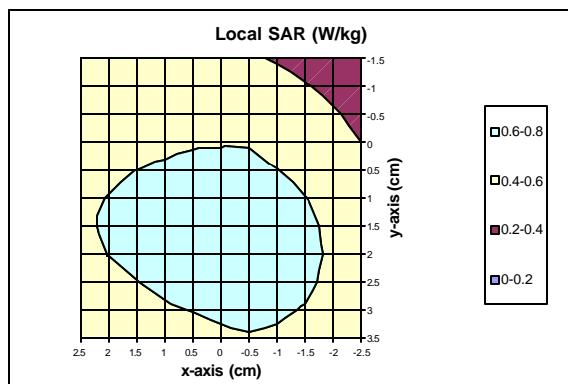
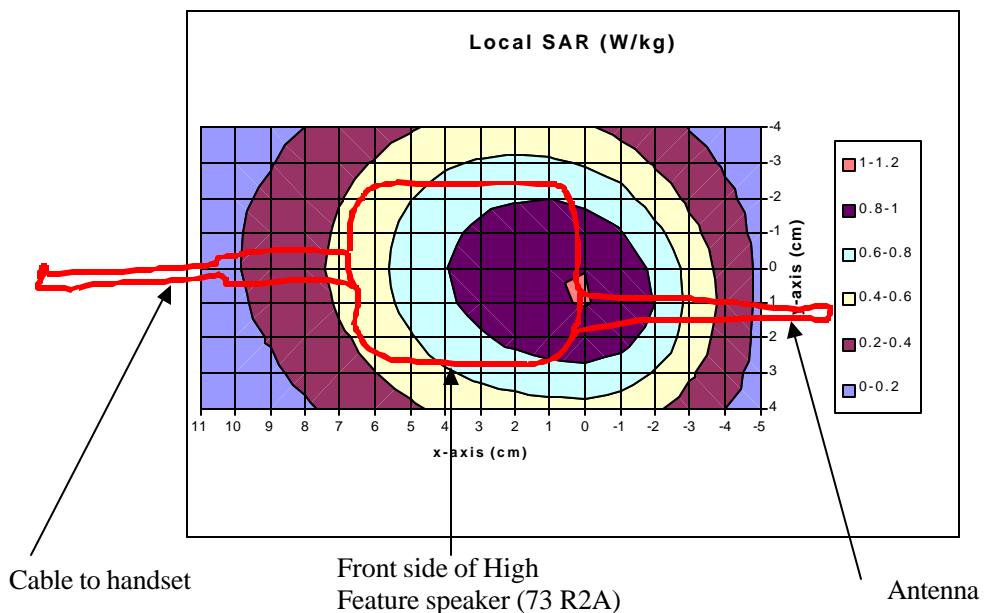
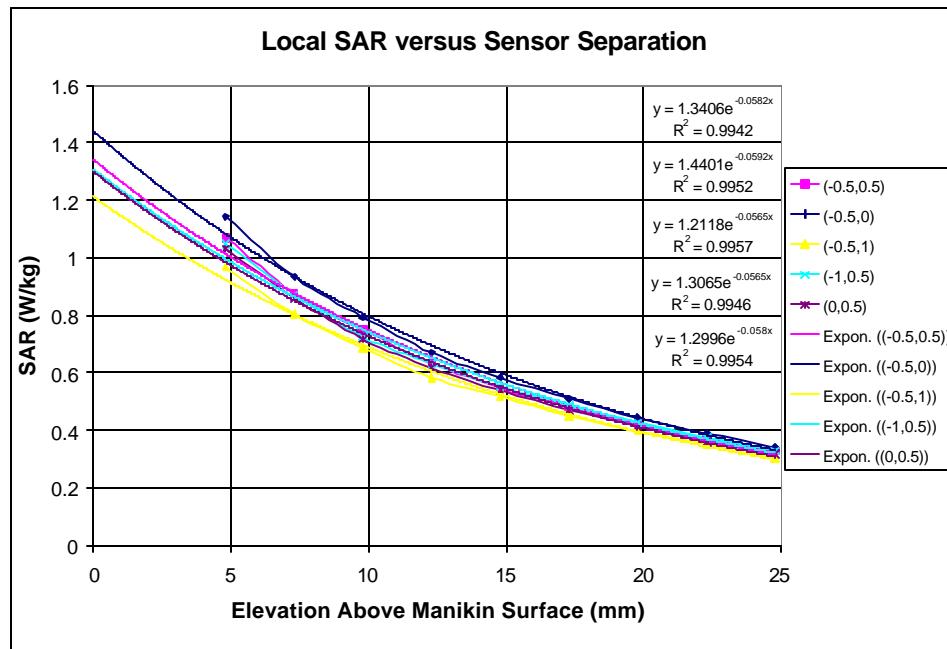
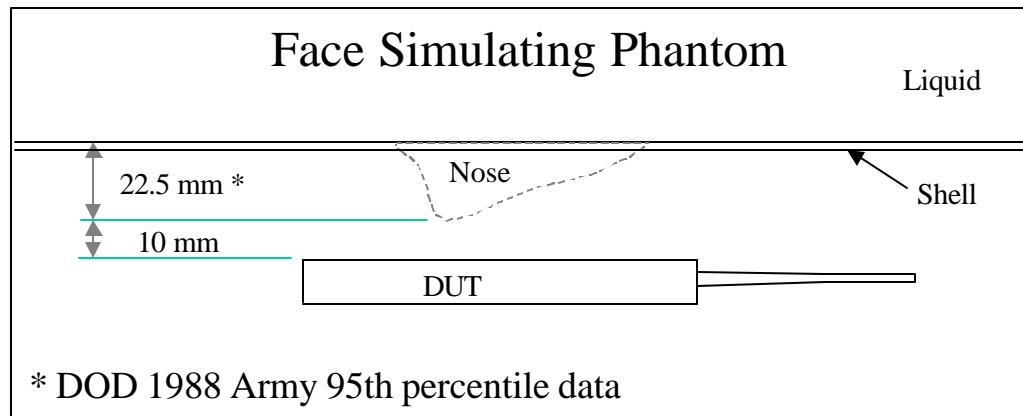


Figure 6. Surface Plot of the Area Scan 12.5mm Above Phantom Surface




Figure 7. Zoom Scan 2.5mm Above Phantom Surface


Figure 8. Zoom Scan 7.5mm Above Phantom Surface


Figure 9. Zoom Scan 12.5mm Above Phantom Surface

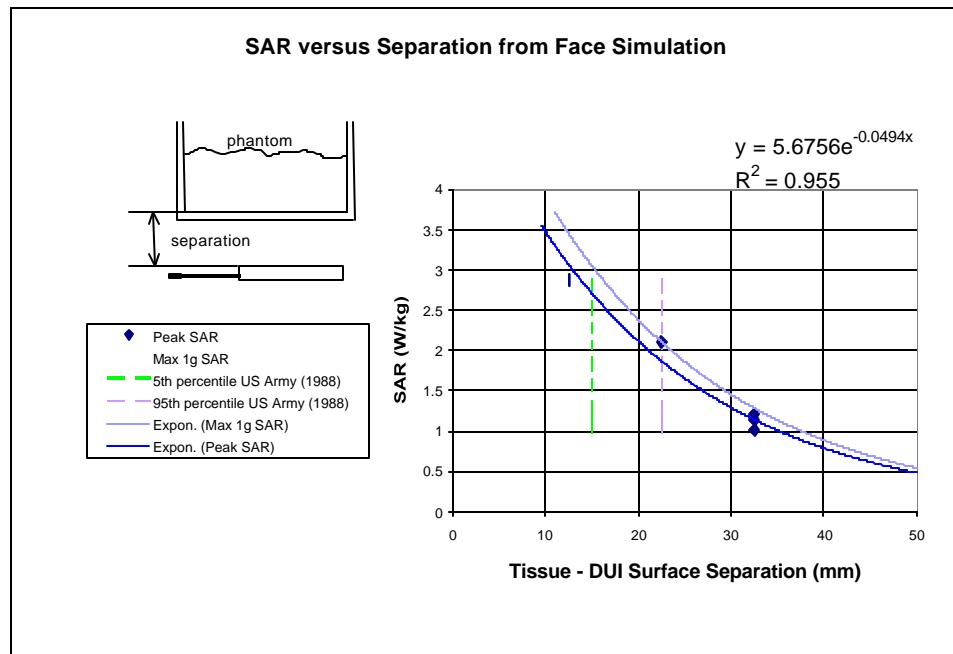

Figure 10. Overlay of the DUI's Outlines Superimposed onto the Area Scan

Figure 11. Local SAR versus Sensor Separation

Figure 12. Face Simulating Phantom

Figure 13. SAR versus Separation from Face Simulation

APPENDIX B. Manufacturer's Specifications

speaker/microphone with antenna port, black, Com-Net Ericsson, CSA/FM KRY 101 1617/84 (left)

speaker/microphone, black, Com-Net Ericsson, CSA/FM KRY 101 1617/83 (right)

half-wavelength centre-fed whip antenna, 215 mm long, 900 MHz (EXE-902MD) (left)

quarter-wavelength end-fed whip antenna, 90 mm long, 900 MHz (KRE 101 1223/02) (right)

Com-Net Ericsson 7.5V nickel cadmium high capacity batteries (1700 mAh), BKB 191 210/3

(See manufacturer's submission documentation for drawings and more design details)

APPENDIX C. Uncertainty Budget

Uncertainties Contributing to the Overall Uncertainty

Type of Uncertainty	Specific to Uncertainty	
Power variation due to battery condition	DUI	1.4%
Extrapolation due to curve fit of SAR vs de	DUI & setup	4.1%
Extrapolation due to depth measurement	setup	2.8%
Conductivity	setup	6.0%
Density	setup	2.6%
Tissue enhancement factor	setup	7.0%
Voltage measurement	setup	0.4%
Probe sensitivity factor	setup	3.5%

11.4% RSS

APPENDIX D. Simulated Brain Tissue Material and Calibration Technique

The mixture used was based on that presented SSI/DRB-TP-D01-033, “Tissue Recipe and Calibration Requirements”.

De-ionised water	40.6 %
Sugar	58.0 %
Salt	1.0 %
HEC	0.3 %
Bactericide	0.1 %

Mass density, ρ	1.30 g/ml
	(The density used to determine SAR from the measurements was the recommended 1030 kg/m ³ found in Appendix C of Supplement C to OET Bulletin 65, Edition 97-01).

Dielectric parameters of the simulated tissue material were determined using a Hewlett Packard 8510 Network Analyser, a Hewlett Packard 809B Slotted Line Carriage, and an APREL SLP-001 Slotted Line Probe.

The dielectric properties at 918 MHz are:

	APREL	OET 65 Supplement	Δ / % (OET)
Dielectric constant, ϵ_r	47.0	45.73	2.7%
Conductivity, σ [S/m]	1.02	0.77	32.7%
Tissue Conversion Factor, γ	10.0 ¹	-	-

¹ the tissue conversion factor for brain tissue at 918MHz was estimated from calibrations of brain tissue at 835MHz and muscle tissue at 835 and 899MHz (see following table) by proportional scaling.

Frequency	Brain Tissue Conversion Factor, g	Muscle Tissue Conversion Factor, g
835	8.0	7.8
899	9.8	-

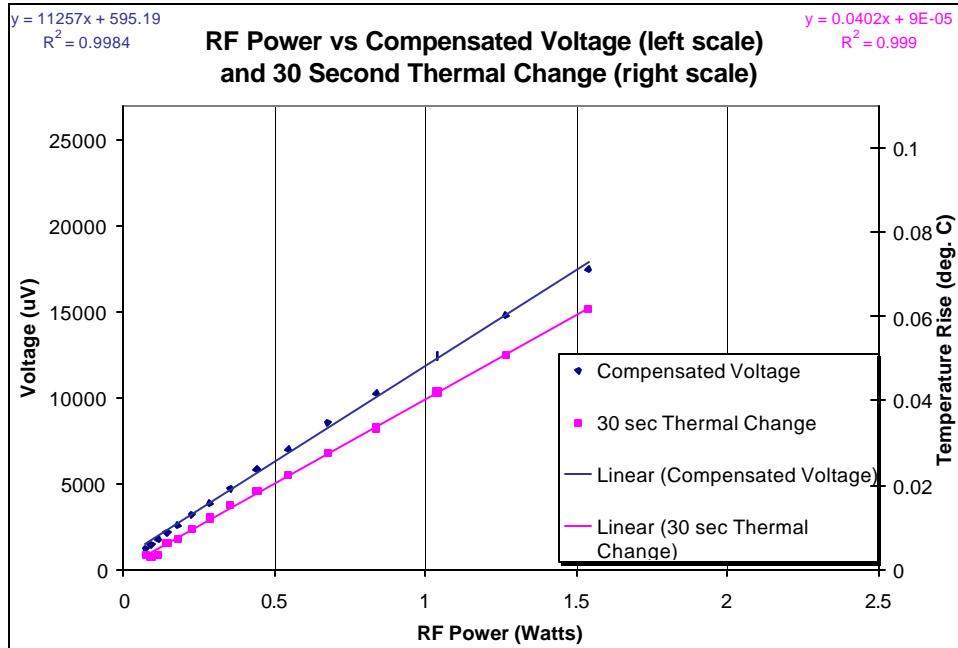
SIMULATION FLUID #980728-B Brain (100 MHz-1 GHz)
 CALIBRATION DATE 17-Jul-00
 CALIBRATED BY Ken O'Donnell
 Frequency Range 100 MHz-1 GHz
 Frequency Calibrated 918MHz
 Tissue Type Brain

Position [cm]	Amplitude [dBm]	Phase [deg]
0	-42.49	124.79
0.5	-43.69	85.61
1	-44.84	46.38
1.5	-46.03	7.68
2	-47.27	-30.27
2.5	-48.46	-88.47
3	-49.63	-140.71
3.5	-50.75	-145.43
4	-51.93	-175.76
4.5	-53.27	-138.59
5	-54.76	98.33
5.5	-55.8	57.87
6	-56.44	20.12
		338.88
ΔdB	-7.09	-231.5
1dB	-7.06	-231.04
2dB	-7.09	-230.62
3dB	-7.24	-229.09
4dB	-7.46	-231.4
5dB	-7.34	-233.66
6dB	-6.96	-233.17
Δdeg _{avg} [dB]	-7.17	-231.49/1429
dB _{avg} (deg _{avg}) [dB/cm]	-2.39	-77.16571429
(deg _{avg}) [NP/cm]	-0.275049272	(β _{avg}) [rad/cm]
I [Hz]	9.18E+08	
μ [Hz/cm]	1.25954E-08	
e [F/cm]	8.854E-14	
ε _{eff}	470	FCC
ε _{effective}	102	0.77
	Stm	2.7%
		32.7%

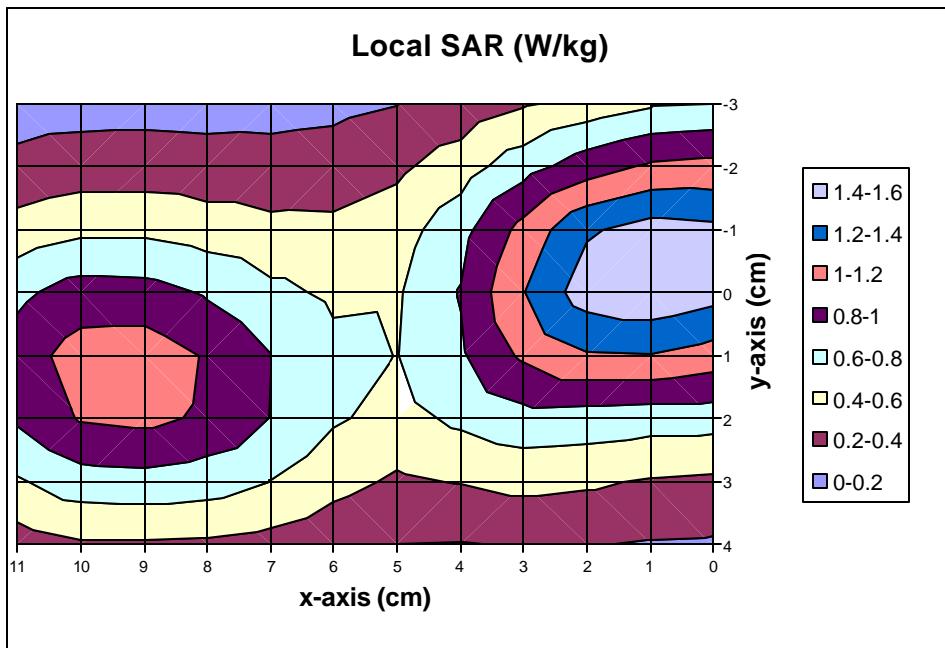
899 MHz Data (Tony & Heike) MUSCLE with E-115

RF Power	dBm	R&S	delta			Sum	Thermal	
			Ch0	Ch1	Ch2	0 sec	VI/EI	SAR
W			uV	uV	uV	deg. C		W/kg
0.0726	18.61	-26.74	317	708	1831	0	1174	0.31
0.0909	19.59	-25.76	342	830	2246	0	1406	0.26
0.1153	20.62	-24.73	381	1001	2808	0	1726	0.31
0.1435	21.57	-23.78	439	1221	3418	0	2087	0.56
0.1798	22.55	-22.8	513	1465	4224	0	2549	0.66
0.2249	23.52	-21.83	610	1807	6225	0	3140	0.89
0.2837	24.53	-20.82	732	2228	6421	0	3853	1.13
0.3531	25.48	-19.87	864	2710	7861	0	4695	1.39
0.4425	26.46	-18.89	1029	3345	9717	0	5789	1.70
0.5428	27.39	-17.96	1221	4077	11970	0	6993	2.08
0.6776	28.31	-17.04	1489	5005	13900	0	8517	2.54
0.8375	29.23	-16.12	1782	6079	15870	0	10263	3.09
1.0375	30.16	-15.19	2173	7422	17840	0	12403	3.89
1.2667	31.02	-14.33	2612	8936	19810	0.04	14761	4.71
1.5319	31.87	-13.46	3148	10693	21780	0.04	17481	5.71

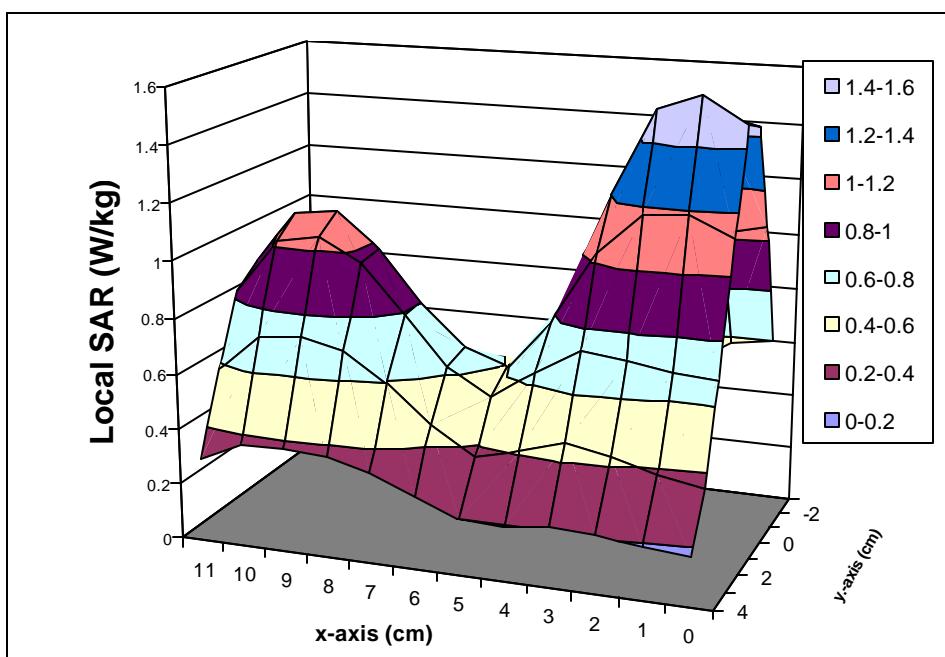
Directional Coupler factor **25.35** dB (Asset 100251 cal file data)


Additional inline attenuation **20** dB

Sensitivity (e) **1.619** **1.633** **1.62** - Sensor Sensitivity in mV/ (mW/cm²); 899 MHz cal


$\eta = 1.50 \times 0.429 = 2.45$ **2.43**

Conductivity **13** g/cm³ **###** kg/m³
 Conductivity **11.7** S/cm **12** S/m
 Heat Capacity (c) **2.775** J/C/g **###** J/C/kg - average of Balzano (2.7) and Kuster (2.85)
 Exposure Time **30** **ecorr** 30 seconds
 Slope of Measure Voltage (mV) **11257** **uV/W** 0 **V/W**
 - standard error or m_y **126.2** **uV/W** 0 **V/W** **1.1%**
 Slope of Measure Temp Change (n) **0.04** **C/W** 0 **C/W**
 - standard error or m_n **3E-04** **C/W** 0 **C/W** **0.9%**


Tissue Conversion Factor (g) **96**

APPENDIX E. Validation Scans on a Head Simulation Phantom

Figure 14. Contour Plot of the Reference Area Scan 2.5mm Above Phantom

Figure 15. Surface Plot of the Reference Area Scan 2.5mm Above Phantom