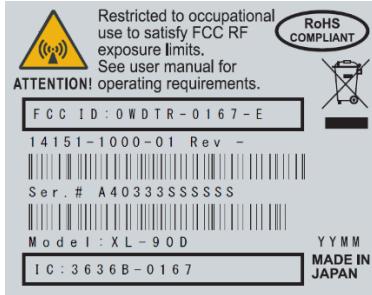


Product Manual

14221-6100-6000

Rev. C, August 2024



XL-90D P25 Data Radio

700 MHz/800 MHz/900 MHz

MANUAL REVISION HISTORY

REV	DATE	REASON FOR CHANGE
-	May/23	Initial release.
A	Feb/24	Updated Section 10.
B	Jul/24	Updated Table 4-1.
C	Aug/24	Updated Section 13.2.

CREDITS

L3Harris, Harris, and EDACS are registered trademarks of L3Harris Technologies.

Conxall and Multi-Con-X are registered trademarks of Conxall Inc.

Band-it is a registered trademark of BAND-IT-IDEX, Inc. A Unit of IDEX Corporation.

All other brand and product names are trademarks, registered trademarks, or service marks of their respective owners.

NOTICE!

THIS INFORMATION IS CONTROLLED BY THE U.S. DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS 15 CFR 730-774, EAR99. (EAR99.10.2023)

Information and descriptions contained herein are the property of L3Harris Technologies. Such information and descriptions may not be copied or reproduced by any means or disseminated or distributed without the express prior written permission of L3Harris Technologies, PSPC Business, 221 Jefferson Ridge Parkway, Lynchburg, VA 24501.

Repairs to this equipment should be made only by an authorized service technician or facility designated by the supplier. Any repairs, alterations or substitutions of recommended parts made by the user to this equipment not approved by the manufacturer could void the user's authority to operate the equipment in addition to the manufacturer's warranty.

This product conforms to the European Union WEEE Directive 2012/19/EU. Do not dispose of this product in a public landfill. Take it to a recycling center at the end of its life.

This manual is published by **L3Harris Technologies** without any warranty. Improvements and changes to this manual necessitated by typographical errors, inaccuracies of current information, or improvements to programs and/or equipment, may be made by **L3Harris Technologies** at any time and without notice. Such changes will be incorporated into new editions of this manual. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of **L3Harris Technologies**.

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1 REGULATORY AND SAFETY INFORMATION		6
1.1 SAFETY SYMBOL CONVENTIONS		6
1.2 REGULATORY APPROVALS		6
1.2.1 Transmitter		6
1.2.2 Receiver		7
1.2.3 FCC Compliance		7
1.2.4 Industry Canada		7
1.3 RF ENERGY EXPOSURE INFORMATION		8
1.3.1 Safety Training Information		8
1.3.2 Contact Information		9
1.3.3 Occupational Safety Guidelines and Safety Training Information		9
1.4 DIVISION 2 NON-INCENDIVE PROTECTION		10
2 INTRODUCTION		12
2.1 ABOUT THIS MANUAL		12
2.2 GLOSSARY OF TERMS		12
2.3 RELATED PUBLICATIONS		13
3 DESCRIPTION		14
3.1 MULTIPLE APPLICATIONS		14
3.2 OVER-THE-AIR PROGRAMMING		15
3.3 VERSATILE MOUNTING		15
4 OPERATION		16
4.1 STARTING THE XL-90D		16
4.2 INDICATORS		17
5 UNPACKING AND CHECKING EQUIPMENT		18
5.1 UNPACKING EQUIPMENT		18
5.2 INSPECTING AND INVENTORYING EQUIPMENT		18
5.3 ITEMS INCLUDED		18
5.4 OPTIONS AND ACCESSORIES		19
6 INSTALLATION		20
6.1 GENERAL PLANNING		20
6.2 SITE GROUNDING		20
6.3 EQUIPMENT INSTALLATION		20
6.4 MOUNTING THE XL-90D		21
6.5 SURGE PROTECTION		22
6.6 CONNECTIONS		23
6.6.1 Power Connections		23
6.6.2 Safety/Earth Ground		24
6.6.3 Antenna Installation		25
6.6.4 Ethernet Data Interface Connection		25
6.6.5 Serial Data Interface Connection		26
7 CONFIGURATION		27
7.1 REQUIREMENTS		27
7.2 CONFIGURING THE RF RADIO		27
7.3 CONFIGURING PPP/SLIP		28

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
7.4	CONFIGURING THE ETHERNET PORT	28
8	ETHERNET FIRMWARE INSTALLATION AND CONFIGURATION	31
8.1	UPDATE ETHERNET DEVICE FIRMWARE.....	31
8.1.1	Set Server IP Address.....	31
8.1.2	Install Software	31
8.2	CONFIGURATION.....	33
8.2.1	Load Factory Defaults	33
8.2.2	Set Server IP Address	33
8.2.3	Serial Channel and Network Configuration.....	34
8.3	IMPLEMENTATION.....	38
8.4	IMPLEMENTATION EXAMPLES	39
8.4.1	Sample Implementation, XL-90D and One Logical Network	39
8.4.2	Sample Implementation, XL-90D and Two Logical Networks	41
8.4.3	Sample Implementation, XL-90D, 2 Logical Networks, and Multiple Devices ..	43
9	DISTRIBUTED NETWORK PROTOCOL (DNP3)	46
9.1	RPM2 DNP3 CONFIGURATION	47
9.2	DNP3/IP ADDRESSING	47
9.2.1	DNP3/IP Routing Table	47
9.2.2	Static Addressing	48
9.2.3	Dynamic Addressing	49
9.2.4	Broadcast Address.....	49
10	SERIAL TUNNELING	50
10.1	ESTABLISHING SERIAL COMMUNICATIONS	50
10.2	SERIAL TUNNELING	51
10.2.1	Static Tunneling	52
10.2.2	Network Initiated Serial Tunneling (NiST).....	52
10.2.3	Client Initiated Serial Tunneling (CiST).....	53
11	TROUBLESHOOTING AND SERVICING	55
11.1	TROUBLESHOOTING.....	55
11.2	SERVICING.....	55
12	CUSTOMER SERVICE	56
12.1	TECHNICAL ASSISTANCE.....	56
12.2	CUSTOMER CARE	56
13	SPECIFICATIONS	57
13.1	GENERAL SPECIFICATIONS	57
13.2	TRANSMITTER SPECIFICATIONS.....	58
13.3	RECEIVER SPECIFICATIONS	58
13.4	DIGITAL OPERATION.....	58
14	WARRANTY REGISTRATION.....	58

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
LIST OF FIGURES		
Figure 3-1: XL-90D System Application.....		14
Figure 4-1: XL-90D Indicators and Controls		16
Figure 6-1: XL-90D Physical Dimensions		22
Figure 6-2: Serial Port Protective Cover for Division 2 Non-Incendive Applications		26
Figure 8-1: XL-90D and One Logical Network		39
Figure 8-2: XL-90D and Two Logical Networks		41
Figure 8-3: XL-90D, Two Logical Networks, and Multiple Devices.....		43
Figure 9-1: DNP3 Protocol Example.....		46
Figure 9-2: DNP3 Static Addressing Example		48
LIST OF TABLES		
Table 1-1: MPE Table		9
Table 2-1: Glossary of Terms		12
Table 4-1: Indicators and Controls.....		17
Table 6-1: Surge Protection Options		22
Table 6-2: XL-90D Connections		23
Table 6-3: Ethernet Interface Signals		25
Table 6-4: Ethernet LEDs		25
Table 6-5: Serial Interface Signals.....		26
Table 9-1: DNP3/IP Routing Table		48

L3Harris Technologies, Public Safety and Professional Communications (PSPC) Business continually evaluates its technical publications for completeness, technical accuracy, and organization. You can assist in this process by submitting your comments and suggestions to the following:

L3Harris Technologies, Inc.
 PSPC Business
 Technical Publications
 221 Jefferson Ridge Parkway
 Lynchburg, VA 24501

fax your comments to: 1-434-455-6851
 or
 e-mail us at: PSPC_TechPubs@l3harris.com

1 REGULATORY AND SAFETY INFORMATION

1.1 SAFETY SYMBOL CONVENTIONS

The following conventions are used to alert the user to general safety precautions that must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere violates safety standards of design, manufacture, and intended use of the product. L3Harris assumes no liability for the customer's failure to comply with these standards.

WARNING

The **WARNING** symbol calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a **WARNING** symbol until the conditions identified are fully understood or met.

CAUTION

The **CAUTION** symbol calls attention to an operating procedure, practice, or the like, which, if not performed correctly or adhered to, could result in a risk of danger, damage to the equipment, or severely degrade the equipment performance.

NOTE

The **NOTE** symbol calls attention to supplemental information, which may improve system performance or clarify a process or procedure.

This symbol calls attention to RF radiation hazards. Personnel should observe all safety information regarding specific absorption rate (SAR) and RF exposure limits listed in this manual.

1.2 REGULATORY APPROVALS

1.2.1 Transmitter

The transmitting devices listed below have been tested and meet the following regulatory requirements:

MODEL	DESCRIPTION	FCC ID (PART 90)	INDUSTRY CANADA (RSS-119)
XL-90D	XL Data Radio 700/800/900 MHz	OWDTR-0167-E	3636B-0167

1.2.2 Receiver

This receiver associated with this transmitting device has been tested and declared to meet the regulatory requirements defined in the following sub-sections. Associated FCC labelling may be found on page 2.

1.2.3 FCC Compliance

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

1.2.4 Industry Canada

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

The installer of this XL-90D must ensure that the antenna is located or pointed such that it does not emit RF field in excess of Health Canada limits for the general population; consult Safety Code 6, obtainable from Health Canada's website www.hc-sc.gc.ca/rpb.

1.3 RF ENERGY EXPOSURE INFORMATION

To ensure that exposure to RF electromagnetic energy is within the FCC allowable limits for occupational use, always adhere to the following guidelines:

- DO NOT operate the XL-90D without a proper antenna attached, as this may damage the XL-90D and may also cause the FCC RF exposure limits to be exceeded. A proper antenna is the antenna supplied with this XL-90D by L3Harris Technologies or an antenna specifically authorized by L3Harris for use with this XL-90D.
- Always transmit using low power when possible.

1.3.1 Safety Training Information

YOUR L3HARRIS XL-90D GENERATES RF ELECTRO-MAGNETIC ENERGY DURING TRANSMIT MODE. THIS XL-90D IS DESIGNED FOR AND CLASSIFIED AS "OCCUPATIONAL USE ONLY," MEANING IT MUST BE USED ONLY IN THE COURSE OF EMPLOYMENT BY INDIVIDUALS AWARE OF THE HAZARDOUS RF ENERGY AND THE WAYS TO MINIMIZE EXPOSURE. THIS STATION IS NOT INTENDED FOR USE BY THE "GENERAL POPULATION" IN AN UNCONTROLLED ENVIRONMENT. IT IS THE RESPONSIBILITY OF THE LICENSEE TO ENSURE THAT THE MAXIMUM PERMISSIBLE EXPOSURE LIMITS ARE OBSERVED AT ALL TIMES DURING TRANSMISSION. THE STATION LICENSEE IS TO ENSURE THAT NO BYSTANDERS COME WITHIN THE RADIUS OF THE LIMITS.

When licensed by the FCC, this device complies with the FCC RF exposure limits when persons are beyond the MPE radius of the antenna (see Table 1-1). In addition, your L3Harris XL-90D installation complies with the following Standards and Guidelines with regard to RF energy and electromagnetic energy levels and evaluation of such levels for exposure to humans:

FCC OET Bulletin 65 Edition 97-01 Supplement C, Evaluating Compliance with FCC Guidelines for Human Exposure to RADIO Frequency Electromagnetic Fields.

American National Standards Institute (C95.1 – 1992), IEEE Standard for Safety Levels with Respect to Human Exposure to RADIO Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

American National Standards Institute (C95.3 – 1992), IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

Table 1-1: MPE Table

MOUNT	ANTENNA	GAIN (dBi)	PART #	BAND (MHz)	MINIMUM SAFE DISTANCE BETWEEN USER AND ANTENNA			
					UNCONTROLLED EXPOSURE		CONTROLLED EXPOSURE	
					United States (cm)	Canada (cm)	United States (cm)	Canada (cm)
Magnetic	Dual-Band Low Profile Roof-Mount	4.15	AN-225001-004	700/800	22	26	20	20
Magnetic	Dual-Band Roof-Mount	7.15	AN-225001-005	700/800	21	31	20	20
Magnetic	Low Profile Roof-Mount	4.15	AN-225005-004	900	22	33	20	20
Magnetic	Roof-Mount	5.15	AN-225005-001	900	23	39	20	20
Standard	Dual-Band Low Profile Roof-Mount	4.15	AN-225001-004	700/800	27	41	20	20
Standard	Dual-Band Roof-Mount	7.15	AN-225001-005	700/800	26	41	20	20
Standard	Low Profile Roof-Mount	4.15	AN-225005-004	900	28	44	20	20
Standard	Roof-Mount	5.15	AN-225005-001	900	28	47	20	20

To ensure that your exposure to RF electromagnetic energy is within the FCC allowable limits for occupational use, do not operate the station in a manner that would create an MPE distance exceeding that allowable by the FCC.

Changes or modifications not expressly approved by L3Harris could void the user's authority to operate the equipment.

1.3.2 Contact Information

For additional information on exposure requirements or other information, contact L3Harris at 1-800-528-7711 or at <https://www.l3harris.com/>.

1.3.3 Occupational Safety Guidelines and Safety Training Information

To ensure bodily exposure to RF electromagnetic energy is within the FCC allowable limits for occupational use. Always adhere to the following basic guidelines:

- The XL-90D should only be used for necessary work-related communications.
- The XL-90D should only be used by authorized and trained personnel.
- Do not attempt any unauthorized modification to the XL-90D. Changes or modifications to the XL-90D may cause harmful interference and/or cause it to exceed FCC RF exposure limits. Only qualified personnel should service the XL-90D.

- Always use L3Harris authorized accessories (antennas, control heads, speakers/mics, etc.). Use of unauthorized accessories can cause the FCC RF exposure compliance requirements to be exceeded.

The information listed above provides the user with information needed to make him or her aware of an RF exposure, and what to do to assure that this XL-90D operates within the FCC exposure limits of this radio.

1.4 DIVISION 2 NON-INCENDIVE PROTECTION

Division 2 Non-Incendive Protection is included with the XL-90D 700/800/900 MHz unit. This apparatus is suitable for use in hazardous locations as defined by the National Electrical Code (NEC) as Class I, Division 2, groups A, B, C, and D applications. Specific torque values for antenna and cable connections (further discussed in the installation section of this manual) are required to conform to this rating. When no serial cable connection is present, a protective cover (supplied with the option) is required.

When installing electrical equipment in hazardous areas, it is important to be familiar with the National Electrical Code rules, the National Fire Protection Agency regulations, all local codes, and the specifications of your underwriter for hazardous areas. Ensure those who are responsible for installing the equipment are properly qualified for the work and are informed of all necessary information and specifications.

This device must be installed in a NEMA enclosure to comply with Hazardous Locations ratings.

WARNING: EXPLOSION HAZARD.
DO NOT DISCONNECT WHILE THE CIRCUIT IS LIVE OR UNLESS THE AREA IS KNOWN TO BE FREE OF IGNITABLE CONCENTRATIONS.

Always follow all NEC, NFPA, and local codes when installing this equipment in hazardous areas. Knowledgeable personnel, who are familiar with national and local codes, must supervise hazardous area equipment installations.

WARNING

L3Harris is not responsible for the installation of your hazardous area equipment. YOU MUST ENSURE THAT THE INSTALLATION OF THIS EQUIPMENT CONFORMS TO ALL APPLICABLE REGULATIONS AND CODES, INCLUDING, BUT NOT LIMITED TO, THOSE OF THE NATIONAL FIRE PROTECTION ASSOCIATION, THE NATIONAL ELECTRICAL CODE, AND ANY APPLICABLE LOCAL CODES. Important information regarding installation of the XL-90D is included in this manual; however, should not be regarded as the complete set of information required to safely install electrical equipment in hazardous areas. Always use qualified technicians and knowledgeable personnel who are familiar with national and local codes to install such equipment in hazardous areas.

NOTE

This apparatus is suitable for use in Class I, Division 2 groups A, B, C, and D.

2 INTRODUCTION

2.1 ABOUT THIS MANUAL

This manual is written for the communications professional responsible for installing and maintaining the XL-90D.

Some features found in this manual require a specific XL-90D operating software version. Refer to the *XLP Software Release Notes* for more information.

2.2 GLOSSARY OF TERMS

The following table is a list of terms used in this manual.

Table 2-1: Glossary of Terms

TERM	DEFINITION
AWG	American Wire Gauge
DNP3	Distributed Network Protocol
ICMP	Internet Control Message Protocol
IEEE	Institute of Electrical & Electronics Engineers
LED	Light Emitting Diode
LCL	Licensed Channel List
MES	Mobile End System
NEC	National Electrical Code
NEMA	National Electrical Manufacturers Association
NFPA	National Fire Protection Association
PPP	Point to Point Protocol
SDO	Site Deployment Order
SLIP	Serial Line Internet Protocol
SNMP	Simple Network Management Protocol
TAC	Technical Assistance Center
TFTP	Trivial File Transfer Protocol
TRU	Remote Terminal Unit
UDP	User Datagram Protocol
VIDA	Voice, Interoperability, Data, and Access
WAN	Wide Area Network

2.3 RELATED PUBLICATIONS

MANUAL NUMBER	DESCRIPTION
14221-6100-1010	XL-90D Quick Guide
14221-2100-3000	Advanced Access Control/Radio Personality Manager Overview Manual
14221-1100-8170	Radio Personality Manager 2 (RPM2) Software Release Notes
14221-1100-2060	RPM2 User's Manual
14221-1800-8010	XLP Radio Software Release Notes
14221-2100-2010	L3Harris Device Management User's Manual
14221-2100-8030	L3Harris Device Management Software Release Notes.

3 DESCRIPTION

The XL-90D is part of the P25 suite of products which delivers very high capacity, end-to-end digital data communication. The small and lightweight unit is housed in a plastic case suitable for mounting in a National Electrical Manufacturers Association (NEMA) approved enclosure. It is designed to provide reliable, secure, and cost-effective data communications to and from remote locations.

The XL-90D P25 Data radio is suitable for use in hazardous locations and it meets the requirements defined by the *National Electrical Code* (NEC) for use in Class I, Division 2, groups A, B, C, and D applications.

3.1 MULTIPLE APPLICATIONS

The XL-90D is suitable for a wide range of applications. The substantial coverage of a private wireless network means that the XL-90D can be useful to collect or distribute data messages in locations where other wireless technologies are either not available or unreliable. Utilities will find it an excellent means of communication with line reclosers, capacitor banks, and other devices on the grid. Transportation applications include automated signs, bus stop kiosks, and connection with remote traffic flow and weather sensors. Public safety agencies can use it to send alarms for public notification of severe weather, emergencies, or for a host of other applications.

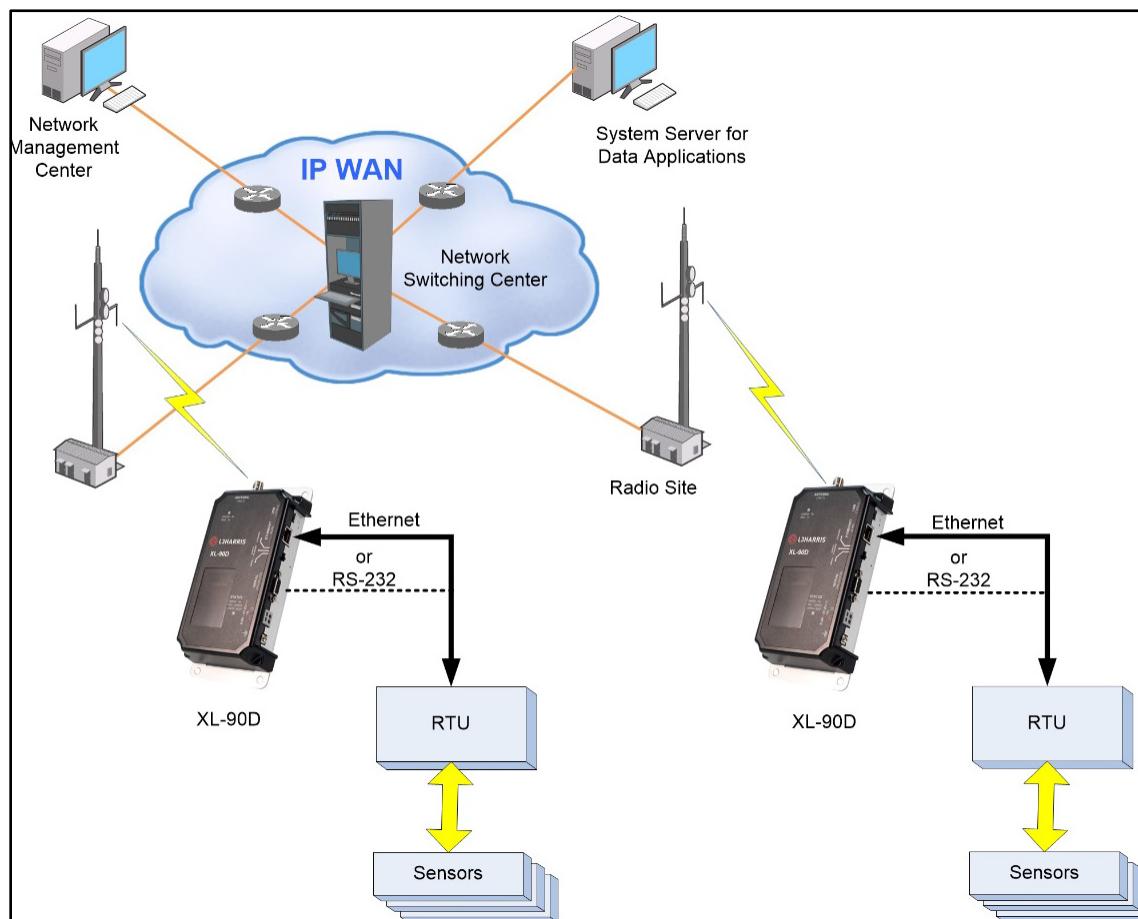


Figure 3-1: XL-90D System Application

The XL-90D provides a choice of Ethernet (RJ45) or Serial (DB9) interface to remote terminals. Its 3-Watt RF output makes it a compact and cost-effective wireless link that can easily fit alongside Remote Terminal Units (RTUs) and other devices.

The XL-90D can interface to RTUs via an Ethernet 10/100Base-T interface port or TIA/EIA-232 Serial interface port. The Ethernet port can operate as a data interface between the XL-90D and external devices with MTU size of 1400 bytes or less.

The Serial port can operate as the data interface using Serial Line Internet Protocol (SLIP), Point-to-Point Protocol (PPP), Packetized Distributed Network Protocol (DNP3), or Serial Tunneling between the XL-90D and external devices (RTUs). The XL-90D is configured so that the data interface communicates with the Ethernet port or the Serial port, but not both simultaneously. For additional information, refer to Section 9 for DNP3 or Section 10 for Serial Tunneling.

The USB-C port is used as a maintenance port to configure the RF radio, software loading, and configuration of the Ethernet port.

3.2 OVER-THE-AIR PROGRAMMING

The XL-90D benefits from a flexible, software-based design. Features, profiles, and system updates are software-defined and can be reprogrammed over-the-air.

3.3 VERSATILE MOUNTING

The XL-90D is designed to be mounted indoors or in an NEMA-approved enclosure.

4 OPERATION

In-service operation of the XL-90D is automatic. Once the unit is properly installed and configured, local unit operation is observed by viewing the Status LEDs for proper operation. After properly installing the unit, operational control and monitoring can be made from the Network Management Center and the Centralized System Server.

Refer to Figure 4-1 for the XL-90D Indicators and Controls.

Figure 4-1: XL-90D Indicators and Controls

4.1 STARTING THE XL-90D

Perform the following to initiate radio operation:

1. When installed in hazardous locations, observe all safety requirements for operating such apparatus.
2. Apply DC power to the transceiver.
3. Observe the Status LEDs for the proper indications as defined in Table 4-1.

4.2 INDICATORS

The XL-90D has two tri-color LEDs which indicate its operating status.

- The Unit Status LED, located near the power connector, indicates Power On or Normal Operation (amber or orange). It also indicates when the unit is in the Configure Ethernet mode (red) or is booting up (green).
- The Radio Status LED, located near the antenna connector, indicates the operational status of the radio section. This LED indicates whether data is being transmitted (red), received (green), or other support functions (orange).

Table 4-1: Indicators and Controls

INDICATOR	INDICATOR COLOR	DESCRIPTION
Radio Status LED	OFF	No Status
	Solid Green	Data registered and completed a data transaction on the system.
	Blinking GREEN	Receiving RF Signal
	Blinking RED	Transmitting RF Signal
	Blinking AMBER	Data Registration Failure and/or Loss of Sync
	Solid AMBER	Offline
Unit Status LED	OFF	No Power Applied
	AMBER	Normal Operation
	GREEN	Booting Up
	RED	Configure Ethernet
CONTROL	POSITION	DESCRIPTION
Configuration Switch (Config)	Ethernet	Selects Ethernet Port for data interface.
	Config Ethernet	Allows you to configure the Ethernet port settings using an RS-232 terminal.
	Serial	Selects Serial Port for data interface.

5 UNPACKING AND CHECKING EQUIPMENT

Before unpacking, installing, or operating the XL-90D, read this section thoroughly. It contains detailed unpacking and handling instructions, and safety precautions to protect users and equipment.

5.1 UNPACKING EQUIPMENT

The XL-90D may be shipped in separate transit packages. The associated cabling and accessories for each unit, if any, may also be shipped in separate containers.

When unpacking the equipment, check the contents against the packing list. Contact your L3Harris representative and the carrier if any discrepancies are noted.

Save the shipping cartons and packing materials in case the equipment needs to be shipped back to the L3Harris for service.

5.2 INSPECTING AND INVENTORYING EQUIPMENT

Carefully unpack the equipment and examine each item. If there is any damage to the equipment, contact the carrier immediately and have their representative verify the damage. If you fail to report the shipping damages immediately, you may forfeit any claim against the carrier.

After removal from the carton, examine the XL-90D for broken, damaged, loose, or missing parts. Examine the RF connector(s), power connector, and ground lug for cracks, bent or damaged threads, or damage to any paint or seals. If any are noted, contact the L3Harris Customer Care Center immediately. Any unauthorized attempts to repair or modify this equipment will void the warranty and could create a safety hazard.

5.3 ITEMS INCLUDED

The following items are included in the XL-90D package:

- 14151-1000-01 Radio Unit
- *XL-90D Data Modem Quick Guide* (14221-6100-1010)
- Serial Port Protective Cover
- External connector covers

5.4 OPTIONS AND ACCESSORIES

MODEL/OPTION NUMBER	DESCRIPTION
Transceivers	
XL-90D	XL-90D, Data Only, 700/800/900 MHz
Antennas	
AN-225001-001	764-870 MHz, Dual band 3 dB gain roof mount antenna
AN-225001-002	764-870 MHz, Dual band 3 dB gain elevated feed point antenna
AN-225001-003	764-870 MHz, Dual band 3 dB gain elevated feed point antenna
AN-225001-004	764-870 MHz, Dual band 2 dB gain low profile antenna
AN-225001-005	764-870 MHz, Dual band 5 dB gain roof mount antenna
AN-225005-001	900 MHz, 3 dB gain roof mount antenna
AN-225005-002	900 MHz, 3 dB gain elevated feed roof mount antenna
AN-225005-003	900 MHz, 3 dB gain elevated feed roof mount antenna
AN-225005-004	900 MHz, 2 dB gain low profile antenna

6 INSTALLATION

6.1 GENERAL PLANNING

Careful planning and preparation of any installation will always benefit the result.

1. Always read and follow all installation instructions, local and national building and electrical codes, and general safety rules.
2. Before beginning the installation, collect information from the Site Deployment Order (SDO) specific to the site access such as:
 - Permission to access the site.
 - Important contact names and telephone numbers.
 - Location of and directions to the site.
 - Keys and/or lock combinations to access the site and equipment shelter (if any), or points of contact to obtain them.
 - Site entry alarm system passcodes and/or disable keys.
 - Information about work practices needed to work safely at the site including, where applicable, additional work practices required for working in non-incendive areas.
3. Other important information that may or may not be included on the SDO includes:
 - Type of mounting - NEMA case, interior wall, etc.
 - Drawing or description of each site showing how and where the equipment is being installed.
 - Applicable inspections completed (electrical, local build code, etc.).
 - Installer must be aware of other transmitters and receivers on site that could cause interference to, or be interfered with, by the equipment. Strong signals from, or to, co-located equipment could inflict permanent damage to either device.
4. L3Harris recommends pre-staging the equipment to become familiar with the specific hardware and cabling, tooling, and supplies needed to complete the installation.

6.2 SITE GROUNDING

Installers should review the recommended grounding procedures in the *Site Grounding and Lightning Protection Guidelines Manual*, AE/LZT 123 4618/1 and ensure that a suitable ground is installed between the XL-90D's ground lug and earth ground. Grounding must also comply with any local and national electrical codes.

6.3 EQUIPMENT INSTALLATION

The following are the basic steps for installing the XL-90D. In most cases, these steps alone are sufficient to complete the installation. However, when installed in hazardous locations as defined by the NEC as Class I, Division 2 groups A, B, C, or D, the XL-90D product must include the factory label specifying it meets the standard and requires additional installation procedures. Read, understand, and follow all instructions, Notes, Cautions, and Warnings which appear in this and other sections of this manual before attempting installation.

The 700/800/900 MHz unit, XL-90D, when installed in hazardous locations as defined by the NEC as Class I, Division 2 groups A, B, C, or D, require additional installation procedures. Read, understand, and follow all instructions, Notes, Cautions, and Warnings which appear in this and other sections of this manual before beginning installation.

Always follow all NEC, NFPA, and local codes when installing this equipment in hazardous areas. Knowledgeable personnel, who are familiar with national and local codes, must supervise hazardous area equipment installations. Refer to Section 1.4 for additional information.

WARNING: EXPLOSION HAZARD.

DO NOT DISCONNECT WHILE THE CIRCUIT IS LIVE OR UNLESS THE AREA IS KNOWN TO BE FREE OF IGNITABLE CONCENTRATIONS.

1. Mount the XL-90D to a stable surface. Refer to Section 6.4 for dimensions.
2. Connect the RTU equipment to the appropriate data interface connector. See Section 6.6.4 for Ethernet interface or 6.6.5 for a serial interface.

Only one data interface connection can be used at a time.

3. Select the interface using the Configuration switch.
4. Connect the XL-90D to a suitable power source (see Section 6.5) which meets the following requirements:
 - a. A readily accessible disconnect device shall be incorporated external to the equipment.
 - b. A 1-Amp over-current protection device shall be provided external to the equipment.
5. Install and orient the antenna as required (see Section 6.6.3).
6. Configure the XL-90D as required. Refer to Section 7 for instructions.

The operating frequencies are not set at the factory. Determine the transmitter and receiver frequencies to be used and follow the programming instructions in Section 7.

6.4 MOUNTING THE XL-90D

The XL-90D is typically installed in an outdoor enclosure that protects the unit from weather and where temperature is not typically controlled. The unit may also be mounted indoors in equipment closets.

Outdoors, the XL-90D should be mounted in a customer-supplied NEMA type enclosure that can supply the required voltage as well as the appropriate environmental conditions. See Specifications in Section 13.1 for environmental requirements.

Indoors, the XL-90D can be mounted using the mounting holes on the housing in areas of appropriate environmental conditions. Figure 6-1 shows the XL-90D mounting dimensions.

The XL-90D should be mounted at least three (3) feet from human traffic.

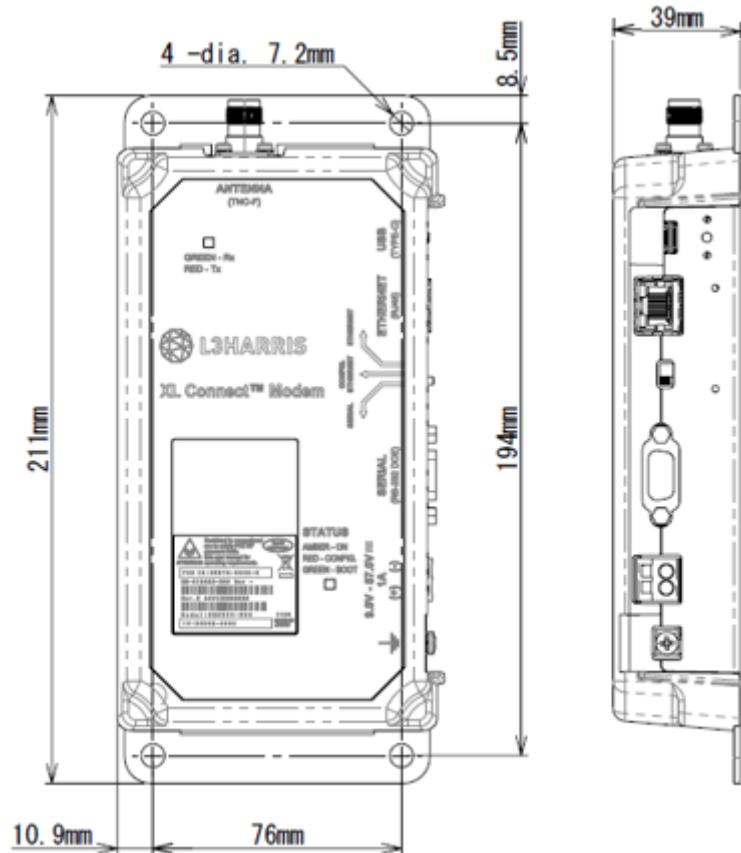


Figure 6-1: XL-90D Physical Dimensions

6.5 SURGE PROTECTION

When installing an XL-90D, always install external surge protectors to protect the unit from lightning or transient damage. Table 6-1 lists surge protectors that have been tested and are available from L3Harris.

Table 6-1: Surge Protection Options

PART NUMBER	DESCRIPTION
PT-016508-002	RF Surge Protector, Coax, TNC.
PT-016508-003	Cat5e, RJ-45, Data Port Surge Protector.
PT-016508-005	Surge Protector, DC, Wire, 54 VDC.

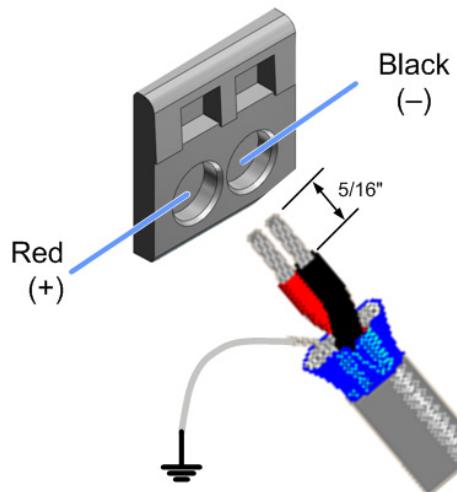
6.6 CONNECTIONS

Table 6-2: XL-90D Connections

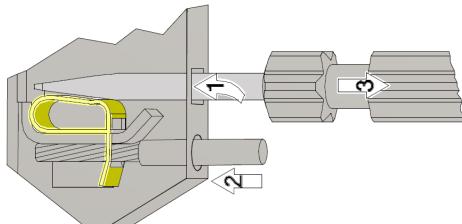
CONNECTION	DESCRIPTION
Input Power:	WAGO, 2-pin connector for DC Power (+9 to 57 VDC)
Ethernet Interface:	Ethernet connector (RJ-45)
Serial Interface:	Serial RS-232 connector (DB-9F)
Antenna:	RF connector (TNC-F)
Troubleshooting:	USB-C

6.6.1 Power Connections

The XL-90D is compatible with any well-filtered +9.0 to +57 VDC power source.



Exceeding the maximum input voltage of +57 Volts may cause permanent damage to the equipment.


The power interface meets the following requirements:

- Connector Type: WAGO, 2-pin
- Connector Part Number: 231-602/017-000-2
- Mating Wire: AWG 12-18 (red and black)
- Maximum Power: 20 Watts
- Input Voltage Range: +9 to +57 VDC

Use the following procedure to connect the power cable wires to the XL-90D. The red wire (12-18 AWG) on the power cable is the positive lead; the black wire (12-18 AWG) is negative.

1. Route the power cable between the XL-90D and the power source.
2. At the XL-90D, strip off 5/16-inch (8-9 mm) of insulation from each wire.
3. Using a small flat-head screwdriver, insert the screwdriver blade ① into the power connector release port to open the spring clamp.

4. Insert the stripped wire end ② into the power connector wire opening.
5. Remove the screwdriver ③ and the spring clamp will secure the wire. This can be verified by gently tugging in the wire.
6. Repeat the process for the other wire.
7. Connect the shield directly to ground or the grounding lug.

Remember to connect the shield wire to ground.

8. Connect the other end of the power cable to the power source as required. A readily accessible disconnect device must be incorporated external to the equipment. A 1-Amp over-current protection device must be provided external to the equipment.

6.6.2 Safety/Earth Ground

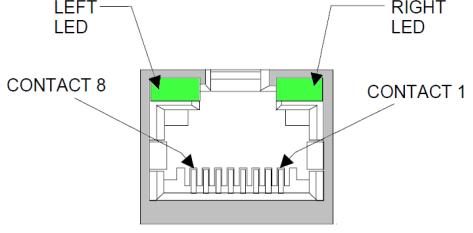
To minimize the chances of damage to the XL-90D and RTU equipment, a good safety ground is recommended which bonds the antenna system, the XL-90D, power source, and connected data equipment to a single-point ground. For safety purposes, earth ground and lightning protection connections should be made as required by local ordinances and the *Site Grounding and Lightning Protection Guidelines Manual*, AE/LZT 123 4618/1.

To prevent equipment damage, ensure all equipment is connected to a single-point ground system and keep all grounds leads as short as possible.

Normally, adequate ground is provided if the XL-90D is mounted to a grounded metal surface. If the XL-90D is not mounted to a grounded surface, connect a safety ground to the XL-90D using the grounding lug or one of the four mounting screws.

6.6.3 Antenna Installation

FOR DIVISION 2 NON-INCENDIVE APPLICATIONS:
Any connection to the RF antenna connector shall be torqued from 15 to 17 in-lbs.


1. Connect an antenna or antenna feedline cable onto the antenna connector on the top of the XL-90D by turning it clockwise into the TNC female connector.
2. Torque the antenna cable connection from 15 to 17 in-lbs.
3. Install surge protectors as required.

6.6.4 Ethernet Data Interface Connection

The XL-90D Ethernet interface is used for connecting to an RTU. The unit's Ethernet Interface meets the following requirements:

- Connector Type: RJ-45 Receptacle
- Electrical Protocol: 10/100Base-T
- Data Rate: 10/100 Mbps
- Data Format: Ethernet IEEE 802.3

Table 6-3: Ethernet Interface Signals

	SIGNAL NAME	DIR	PIN	PRIMARY FUNCTION
	TX+	Out	1	Transmit Data +
	TX-	Out	2	Transmit Data -
	RX+	In	3	Receive Data +
	RX-	In	6	Receive Data -
	Not Used		4	Terminated
	Not Used		5	Terminated
	Not Used		7	Terminated
	Not Used		8	Terminated
	SHIELD			Chassis Ground

Table 6-4: Ethernet LEDs

LINK LED (LEFT SIDE)		ACTIVITY LED (RIGHT SIDE)	
COLOR	MEANING	COLOR	MEANING
Off	No Link	Off	No Activity
Amber	10 Mbps	Amber	Half-Duplex
Green	100 Mbps	Green	Full-Duplex

6.6.5 Serial Data Interface Connection

The XL-90D serial interface is used for Serial Line Internet Protocol (SLIP), Point to Point Protocol (PPP), or DNP3 data, as well as for unit configuration and maintenance support. The serial interface can be configured to operate as a full duplex DCE EIA/TIA-232 port and meets the following requirements:

- Connector Type: DB-9F Receptacle
- Mating Part Number: DEMM9 Plug
- Electrical Protocol: EIA/TIA-232 Full Duplex
- Data Rate: 9.6 kbps for 900 MHz, 19.2 kbps for 800 MHz
- Data Format: 8 bits/character, No Parity, 1 stop bit

To meet Division 2 Non-Incendive applications, the serial connection must have installed either a serial cable or a protective cover (refer to Figure 6-2). Torque the mounting screws of the cable or protective cover to a minimum of 3 in-lbs.

FOR DIVISION 2 NON-INCENDIVE APPLICATIONS:
If the serial port connection is not used, a serial port cover (refer to Figure 6-2) must be installed on the serial port.

FOR DIVISION 2 NON-INCENDIVE APPLICATIONS:
Torque the serial cable or protective cover mounting screws to a minimum of 3 in-lbs.

Table 6-5: Serial Interface Signals

	PIN NUMBER	SIGNAL NAME
5	1	Not Connected (NC)
5	2	Receive Data (RD)
9	3	Transmit Data (TD)
9	4	Not Connected (NC)
6	5	Signal Ground (GND)
6	6	Not Connected (NC)
6	7	Request-To-Send (RTS)
6	8	Clear-To-Send (CTS)
9	9	Not Connected (NC)

Figure 6-2: Serial Port Protective Cover for Division 2 Non-Incendive Applications

7 CONFIGURATION

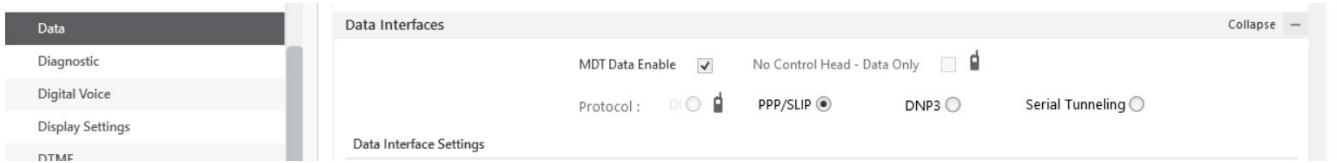
Configuration of the XL-90D is performed with an external computer attached to the DB9 serial port (for ethernet port configuration and firmware loading) or to the USB-C port (for radio personality and XLP code loading). Your Network Administrator should configure the XL-90D. Changes to the configuration, if required, can also be made over-the-air if this option has been purchased. There are three primary considerations when setting up an XL-90D. These include configuration and software loading of either the RF Radio or the Ethernet port.

WARNING: EXPLOSION HAZARD.

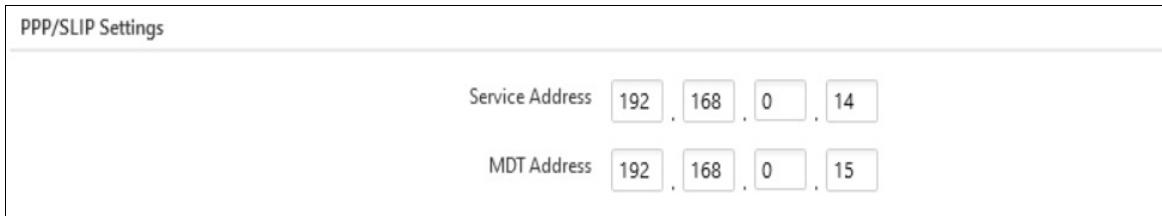
DO NOT DISCONNECT WHILE THE CIRCUIT IS LIVE OR UNLESS THE AREA IS KNOWN TO BE FREE OF IGNITABLE CONCENTRATIONS.

7.1 REQUIREMENTS

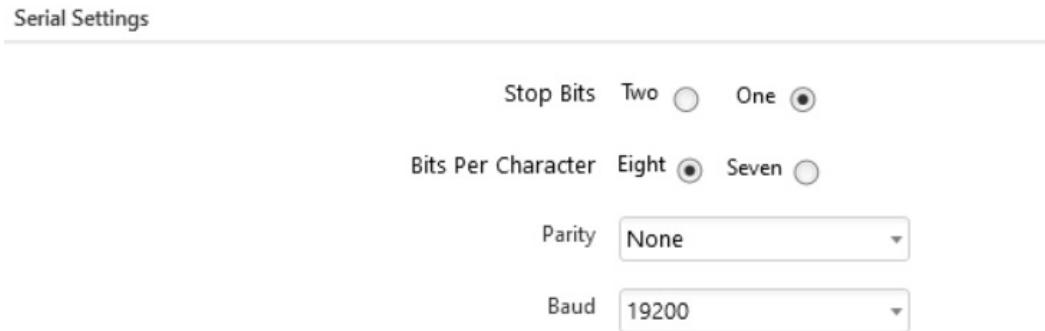
- Service PC
- RPM2 R16A or later
- XLP R16A or later


7.2 CONFIGURING THE RF RADIO

XL-90D configuration is performed using Radio Personality Manager 2 (RPM2). RPM2 is a Microsoft® Windows®-based software application used to program L3Harris radios. RPM2 allows the user to load XLP software, as well as create and modify radio personalities. A personality is a computer file generated by the user containing data that directs certain operating characteristics of the radio. The technician can program personalities into the radio, read personalities from the radio, and save them to a hard drive or other computer storage media. Configure the XL-90D RF Radio unit using a USB connection between the PC and the XL-90D's USB-C port.


1. Connect the XL-90D to the PC running RPM2.
2. When creating a personality for the XL-90D, select **XL Portable** as the Radio Type.
3. Refer to the *RPM2 User Manual*, 14221-1100-2060, and online help for instructions on how to load code, modify/program personalities, and detailed descriptions of personality parameters.

7.3 CONFIGURING PPP/SLIP


1. In RPM2, select **Data** from the Personality Rail. Under **Data Interfaces**, check **MDT Data Enable** and select **PPP/SLIP**.

2. Configure the desired PPP/SLIP interface IP addresses. The Service Address is IP address assigned to the RF Device and the MDT Address is the IP assigned to host PC on the PPP/SLIP interface on dialup connection.

3. Configure the Serial settings used for PPP/SLIP interface.

7.4 CONFIGURING THE ETHERNET PORT

To configure the XL-90D Ethernet port through a serial connection between a console terminal or PC and the XL-90D's Serial port:

1. Connect a console terminal or PC running a terminal emulation program (i.e., HyperTerminal) to your unit's serial port. The default serial port settings are **9600 baud, 8 bits, no parity, 1-stop bit, no-flow control**.
2. Toggle the XL-90D's Configuration Switch from and to the Config-Ethernet position. Within three (3) seconds of setting the switch, enter three lowercase x characters (**xxx**).

The easiest way to enter Setup Mode is to hold down the **x** key at the terminal (or emulation) while switching the unit into Config-Ethernet. **You must do this within three seconds of setting the XL-90D's Configuration Switch into the Config-Ethernet position.**

The terminal should display a firmware version banner like the following example:

```
*** SLIP Server ***
MAC address xxxxxxxxxxxx
Software version V6.7SLIP.3.SLIP (120116) CPK6702_XPTEX
Press Enter for Setup Mode
```

3. Within 5 seconds, press the **Enter** key to enter the Ethernet Setup Mode.

The terminal should display the current configuration settings followed by the Change Setup menu:

```
Change Setup:
 0 Server configuration
 1 Channel 1 configuration
 5 Expert
 6 Security
 7 factory defaults
 8 exit without save
 9 save and exit
                                         Your choice ?
```

4. From the Change Setup menu, enter **0** for Server configuration after the “**Your choice ?**” and press the **Enter** key.
5. Set the entry fields (as shown on the next page) where the IP Address **xxx.xxx.xxx.xxx** is replaced with the desired IP Address for the XL-90D Ethernet port.

After every entry field, a respective default or previously set value will be displayed within the parenthesis. If the displayed value is correct, simply press the **Enter** key.

```
IP Address : (0) xxx.(0) xxx.(0) xxx.(0) xxx
Set Gateway IP Address (N) ?
Netmask: Number of Bits for Host Part (0=default) (8)
Change telnet config password (N) ?
```

6. From the Change Setup menu, enter **1** for Channel 1 configuration after “**Your choice ?**” and press the **Enter** key.
7. Set the entry fields as shown below, where the Local Serial IP address **xxx.xxx.xxx.xxx** is replaced with the previously configured XL-90D service IP address (PPP/SLIP settings) in the personality and the Peer Serial IP address **yyy.yyy.yyy.yyy** is replaced with previously configured XL-90D MDT IP address (PPP/SLIP settings) in the personality.

PPP/SLIP Settings

Service Address	192	.	168	.	0	.	14
MDT Address	192	.	168	.	0	.	15

After every entry field, a respective default or previously set value will be displayed within the parenthesis. If the displayed value is correct, press the **Enter** key.

```
Baudrate (19200)
I/F Mode (4C) ?
Flow (00) ?
Enable passive mode (N) ?
Enable bridge mode (N) ?
Local Serial IP address: (255) xxx.(255) xxx.(255) xxx.(255) xxx
Peer Serial IP address: (255) yyy.(255) yyy.(255) yyy.(255) yyy
NAT IP address: (000) .(000) .(000) .(000)
NAT IP address offset: (16) ?
DNS Server IP address: (000) .(000) .(000) .(000)
Allow broadcasts in (Y) ?
Monitor Connection Control (N) ?
SLIP Client Mode (N) ?
```

8. From the Change Setup menu, enter **9** for Save and exit after “**Your choice ?**” and press the **Enter** key.
9. After all values are stored into nonvolatile memory, the terminal should display the “Parameters stored ...” message.
10. Toggle the XL-90D’s Configuration Switch into either the Serial or the Ethernet position for the desired normal operation of the XL-90D.

8 ETHERNET FIRMWARE INSTALLATION AND CONFIGURATION

This section provides instructions for installing ethernet device firmware in the XL-90D, and for configuring the ethernet device.

8.1 UPDATE ETHERNET DEVICE FIRMWARE

8.1.1 Set Server IP Address

WARNING: EXPLOSION HAZARD.

DO NOT DISCONNECT WHILE THE CIRCUIT IS LIVE OR UNLESS THE AREA IS KNOWN TO BE FREE OF IGNITABLE CONCENTRATIONS.

1. Connect the XL-90D to the PC serial port. If working with a DTE device, a null modem cable or adapter is required.
2. Place the XL-90D serial interface selector switch in the **Config Ethernet** position.
3. Connect power to the device being configured while depressing the “x” key (must be lower case).
4. The following message should appear:

```
*** SLIP Server ***
MAC address xxxxxxxxxxxx
Software version V6.7SLIP.3.SLIP (120116) CPK6702_XPTEX
Press Enter for Setup Mode
```

5. Within five (5) seconds, press the **Enter** key to enter Setup Mode.

The following message should appear:

```
Change Setup:
  0  Server configuration
  1  Channel 1 configuration
  5  Expert
  6  Security
  7  factory defaults
  8  exit without save
  9  save and exit
                                         Your choice ?
```

6. Proceed to next section to install software.

8.1.2 Install Software

1. If this is a new install and the device has yet to be configured, enter “7” to load factory defaults.
2. Enter “0” to configure server.
3. When prompted for an IP Address, enter the desired IP address (i.e., 192.168.1.254).
4. When asked to set Gateway IP Address (N): Press the **Enter** key.
5. When prompted for a Netmask, enter: **8**
6. Change telnet config password (N): Press the **Enter** key.

7. When the following menu appears:

```
Change Setup:
  0  Server configuration
  1  Channel 1 configuration
  5  Expert
  6  Security
  7  factory defaults
  8  exit without save
  9  save and exit
                                         Your choice ?
```

8. Enter "9" to exit configuration mode and start normal operation.
9. Connect the Ethernet port of the slip converter to the Ethernet port of the PC containing the FTP server and code for the device being configured.
10. Set the TFTP PC's IP address to 192.168.1.5.
11. Place the code to be downloaded in the directory C:\Code.
12. Place the serial selector switch in the "**Ethernet**" position.
13. Open a DOS command prompt window.
14. Enter the following command:

tftp -i (IP Address of XL-90D) PUT c:\code\xpteslps6.7.SLIP.3.rom X5
(i.e., tftp -i 192.168.1.254 PUT c:\code\xpteslps6.7.SLIP.3.rom X5)
15. Wait for the transfer to complete (about 8-10 seconds) and then set the needed IP addresses for the serial ports and the translation tables.

8.2 CONFIGURATION

8.2.1 Load Factory Defaults

1. Connect the XL-90D to the serial port of the PC and place the serial interface selector switch in the **Config Ethernet** position.
2. Connect power to the device being configured while depressing the “x” key (must be lower case).
3. The following message should appear:

```
*** SLIP Server ***
MAC address xxxxxxxxxxxx
Software version V6.7SLIP.3.SLIP (120116) CPK6702_XPTEX
Press Enter for Setup Mode
```

4. Within five (5) seconds, press the **Enter** key to enter Setup Mode.

The following message should appear:

```
Change Setup:
 0 Server configuration
 1 Channel 1 configuration
 5 Expert
 6 Security
 7 factory defaults
 8 exit without save
 9 save and exit
                                         Your choice ?
```

5. Enter “7” followed by the **Enter** key.
6. After selecting factory defaults, select menu item “9” followed by the **Enter** key to exit and save changes.

8.2.2 Set Server IP Address

1. Connect the XL-90D to the serial port of the PC and place the serial interface selector switch in the **Config Ethernet** position.
2. Connect power to the device being configured while depressing the “x” key (must be lower case)

When the following message appears:

```
*** SLIP Server ***
MAC address xxxxxxxxxxxx
Software version V6.7SLIP.3.SLIP (120116) CPK6702_XPTEX
Press Enter for Setup Mode
```

3. Press the **Enter** key to enter Setup Mode.

The following message appears:

```
Change Setup:
  0  Server configuration
  1  Channel 1 configuration
  5  Expert
  6  Security
  7  factory defaults
  8  exit without save
  9  save and exit
                                         Your choice ?
```

4. Enter “0” followed by the **Enter** key.
5. When prompted for an IP Address, enter the desired IP address of the Ethernet server port (i.e., 192.168.1.254), placing a period between the octets, or press the **Enter** key to move to the next octet.
6. When asked to set Gateway IP Address (N), press then **Enter** key.
7. When prompted for a Netmask, enter the number of bits for Host Part (0): **8**
8. When prompted to change the telnet config password (N)?: Press the **Enter** key.
9. When the following menu appears:

```
Change Setup:
  0  Server configuration
  1  Channel 1 configuration
  5  Expert
  6  Security
  7  factory defaults
  8  exit without save
  9  save and exit
                                         Your choice ?
```

10. If this was the last item to configure, enter “9” followed by the **Enter** key.

8.2.3 Serial Channel and Network Configuration

Both the serial converter and the XL-90D can perform PAT/NAT translations. Before starting a configuration, the user should have a good understanding of what device(s) are going to be connected to the Ethernet port. The mapping contained in the static table is an important piece of the configuration.

1. From the main menu, enter “1” followed by the **Enter** key.
2. When prompted for the “Baudrate (19200),” enter **X** value (supported values: 9600/19200/38400) configured in the personality or press the **Enter** key.
3. When prompted for the “I/F Mode (4C)?”: Press the **Enter** key.
4. When prompted for the “Flow (00)?”: Press the **Enter** key.
5. When prompted for to “Enable passive mode (N)?”: Press the **Enter** key.
6. When prompted for the “Enable bridge mode (N)?”: Press the **Enter** key.
7. When prompted for the “Local Serial IP address,” enter the Service Address configured in the personality (i.e., 192.1668.0.14), placing a period between the octets, or press the **Enter** key to move to the next octet.

8. When prompted for the “Peer Serial IP address,” enter the MDT Address configured in the personality (i.e., 192.168.0.15), placing a period between the octets, or press the **Enter** key to move to the next octet.
9. When prompted for the “NAT IP address (000.000.000.000)": Leave set to 000.000.000.000, placing a period between the octets, or press the **Enter** key to move to the next octet.
10. When prompted for the “NAT IP address offset: (16)?": Press the **Enter** key.
11. When prompted for the “DNS Server IP address: address (000.000.000.000)": Leave set to 000.000.000.000, placing a period between the octets, or press the **Enter** key to move to the next octet.
12. When prompted for the “Allow broadcasts in (N)?": Press the **Enter** key.
13. When prompted for the “Monitor Connection Control (N)?": Press the **Enter** key.
14. When prompted for the “SLIP Client Mode (N)?": Press the **Enter** key.

```

Static Map Table
    PROTO      [Cloud Socket]          [Ethernet Socket]
01: ICM 192.168.000.015:00000 <-> 192.168.001.001:00000
02: UDP 192.168.000.015:00000 <-> 192.168.001.001:00000
03: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
04: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000

```

15. When prompted to “Change Map Table? (N)?": Enter **Y** and press the **Enter** key.
16. When prompted to “Clear Map Table? (N)?": Press the **Enter** key.
17. When prompted to “Edit entry # (0 to exit): (0)?": Enter **1**
18. When prompted for the “Map Cloud TCP, UDP or ICMP to Ethernet IP & Port” and “A(LL) or T(CP) or U(DP) or (I)CMP:" Enter:
 - **A** for ALL traffic

The ALL filter selection allows all traffic from the radio (cloud socket) to flow to the Ethernet socket. IP address and port translation can be accomplished if required.
 - **T** for TCP traffic

The TCP filter selection enables TCP traffic from the radio (cloud socket) to flow to the Ethernet socket. IP address and port translation can be accomplished if required.
 - **U** for UDP traffic

The UDP filter selection enables UDP traffic from the radio (cloud socket) to flow to the Ethernet socket. IP address and port translation can be accomplished if required.

➤ **I** for ICMP traffic

The ICMP filter selection enables ICMP traffic from the radio (cloud socket) to flow to the Ethernet socket. Only IP address translation can be accomplished, if required. ICMP does not use port numbers.

19. When prompted for the “Cloud Port #: (0)?”: Enter the port number that was assigned at the source of the message (i.e., telnet port 23, HTTP port 80).

20. When prompted for the “To Port #: (0)?”: Enter the port number that the destination application will want to see.

If it is the same number assigned at the source of the message (i.e., telnet port 23, HTTP port 80), enter 0 for the cloud port and to port numbers. When both the cloud and two port numbers are set to zero, no port translation takes place.

21. When prompted for the “At IP address”: Enter the destination IP address, (where you want the data sent to on the Ethernet port network), placing a period between the octets or press the **Enter** key to move to the next octet.

22. When prompted for the “Edit entry # (0 to exit): (1)?”: Enter 0 if all entries have been completed or the next table position to be configured.

23. If 0 was entered, you are provided the current static map table and asked if you wish to make changes. Review the entries; if correct enter “**N**;” otherwise, enter “**Y**” and make any needed corrections.

```
Static Map Table
    PROTO      [Cloud Socket]          [Ethernet Socket]
01: ICM 192.168.000.015:00000 <-> 192.168.001.001:00000
02: UDP 192.168.000.015:00000 <-> 192.168.001.001:00000
03: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
04: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
```

Change Map Table? (N) ?

24. When the following information is displayed, select menu item “**9**” followed by the **Enter** key to save changes and exit.

```
*** basic parameters
Hardware: Ethernet TPI
IP addr 192.168.1.254, no gateway set, netmask 255.255.255.0
*** Security
SNMP is           enabled
SNMP Community Name: public
Telnet Setup is    enabled
TFTP Download is   enabled
Port 77FEh is      enabled
Web Server is      enabled
```

```

Web Setup is           enabled
ECHO is               disabled
Enhanced Password is disabled

***** Channel 1 *****
Baudrate 19200, I/F Mode 4C, Flow 00
CPU performance : Standard
Local Serial IP address 192.168.0.15
Peer Serial IP address 192.168.0.14
NAT IP address 0.0.0.0
NAT IP address offset 16
DNS Server IP address 0.0.0.0
Passive Mode: disabled
Bridge Mode: disabled
Allow broadcasts: disabled
Monitor Connection Control: disabled
SLIP Client Mode: disabled

Static Map Table
  PROTO      [Cloud Socket]          [Ethernet Socket]
01: ICM 192.168.000.015:00000 <-> 192.168.001.001:00000
02: UDP 192.168.000.015:00000 <-> 192.168.001.001:00000
03: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
04: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000

*** Expert

CPU performance: Regular
Monitor Mode @ bootup : enabled
MTU Size: 1400
Alternate MAC: disabled
Ethernet connection type: auto-negotiate

Change Setup:
  0 Server configuration
  1 Channel 1 configuration
  5 Expert
  6 Security
  7 factory defaults
  8 exit without save
  9 save and exit
                                         Your choice ?

```

8.3 IMPLEMENTATION

Once the new slip code is loaded, you receive a message like the following when you connect to the XL-90D:

```
*** SLIP Server ***
MAC address 00204ADFCAF7
Software version V6.7.SLIP.3 (120116) CPK6702_XPTEX
Press Enter for Setup Mode

*** basic parameters
Hardware: Ethernet TPI
IP addr 10.248.15.109, no gateway set, netmask 255.255.255.0
*** Security
SNMP is           enabled
SNMP Community Name: public
Telnet Setup is   enabled
TFTP Download is  enabled
Port 77FEh is     enabled
Web Server is    enabled
Web Setup is     enabled
ECHO is          disabled
Enhanced Password is disabled

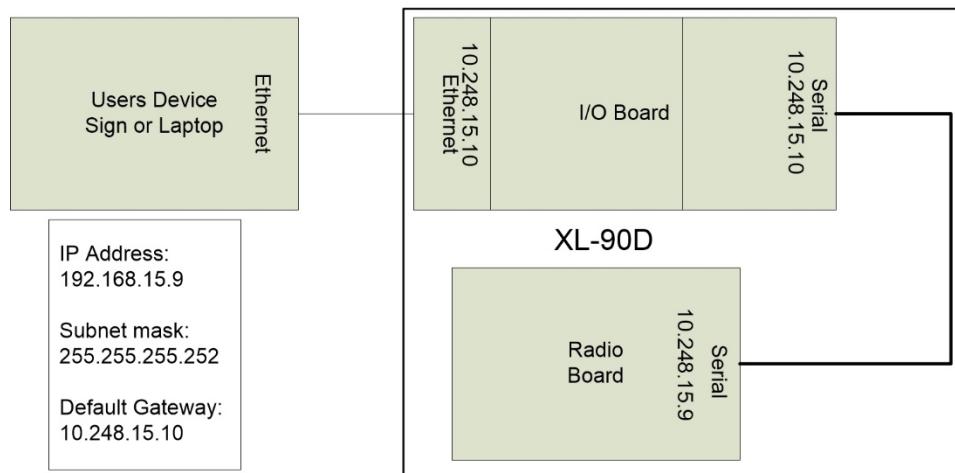
***** Channel 1 *****
Baudrate 9600, I/F Mode 4C, Flow 00
CPU performance : Standard
Local Serial IP address 255.255.255.255
Peer Serial IP address 255.255.255.255
NAT IP address 255.255.255.255
DNS Server IP address 255.255.255.255
Passive Mode: enabled
Bridge Mode: enabled
Allow broadcasts: enabled
Monitor Connection Control: enabled
SLIP Client Mode: enabled

Static Map Table
  PROTO  [Cloud Socket]          [Ethernet Socket]
01: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
02: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
03: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
04: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
```

```

*** Expert

CPU performance: Regular
Monitor Mode @ bootup : enabled
MTU Size: 1400
Alternate MAC: disabled
Ethernet connection type: auto-negotiate


Change Setup:
  0 Server configuration
  1 Channel 1 configuration
  5 Expert
  6 Security
  7 factory defaults
  8 exit without save
  9 save and exit
Your choice ?

```

8.4 IMPLEMENTATION EXAMPLES

8.4.1 Sample Implementation, XL-90D and One Logical Network

This is a sample implementation for a single device and one (1) logical network.

Figure 8-1: XL-90D and One Logical Network

For this example, you would enter the following configuration:

1. Assign a Server IP Address and net mask (Menu Selection 0).
2. Assign a Serial IP Address (Menu Selection 1).
3. Assign a Peer Serial IP Address (Menu Selection 1).
4. Assign static entries into the translation table to allow UDP and ICMP traffic (Menu Selection 1 table entry).

When you have completed your configuration entries, your configuration will look like the following:

```
*** basic parameters
Hardware: Ethernet TPI
IP addr 10.248.15.10, no gateway set, netmask 255.255.255.0
*** Security
SNMP is           enabled
SNMP Community Name: public
Telnet Setup is    enabled
TFTP Download is   enabled
Port 77FEh is      enabled
Web Server is      enabled
Web Setup is       enabled
ECHO is           disabled
Enhanced Password is disabled

***** Channel 1 *****
Baudrate 19200, I/F Mode 4C, Flow 00
CPU performance : Standard
Local Serial IP address 10.248.15.10
Peer Serial IP address 10.248.15.9
NAT IP address 0.0.0.0
NAT IP address offset 16
DNS Server IP address 0.0.0.0
Passive Mode: disabled
Bridge Mode: disabled
Allow broadcasts: disabled
Monitor Connection Control: disabled
SLIP Client Mode: disabled

Static Map Table
PROTO      [Cloud Socket]      [Ethernet Socket]
01: ICM 010.248.015.009:00000 <-> 010.248.015.009:00000 (Sends all ICMP
traffic from the peer serial port to 010.248.015.009 at the Ethernet port)

02: UDP 010.248.015.009:00000 <-> 010.248.015.009:00000 (Sends all UDP
traffic from the peer serial port to 010.248.015.009 at the Ethernet port)

03: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
04: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000

An Alternate map that could be used is:

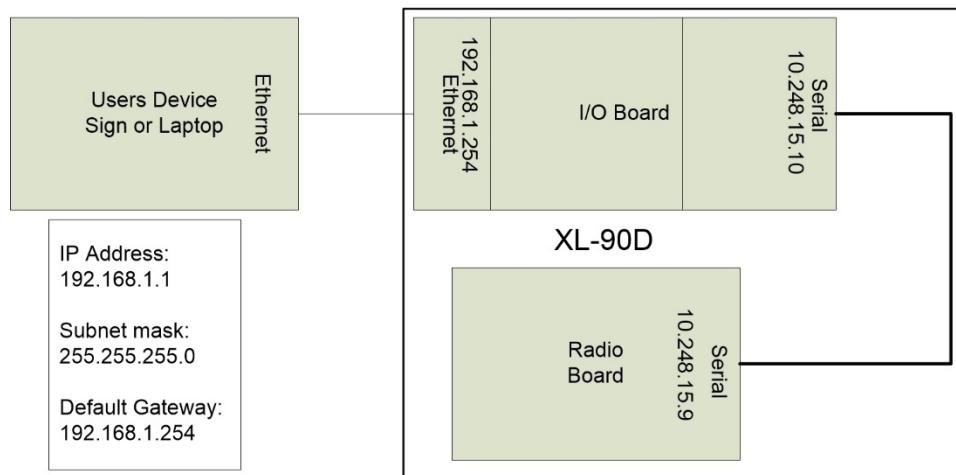
Static Map Table
PROTO      [Cloud Socket]      [Ethernet Socket]
```

```

01: ALL 010.248.015.009:00000 <-> 010.248.015.009:00000 (Sends all
traffic from the cloud to 010.248.015.009 at the Ethernet port)

02: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
03: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
04: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000

*** Expert


CPU performance: Regular
Monitor Mode @ bootup : enabled
MTU Size: 1400
Alternate MAC: disabled
Ethernet connection type: auto-negotiate

```

5. Select menu item “9” to save your configuration and exit.

8.4.2 Sample Implementation, XL-90D and Two Logical Networks

This is a sample implementation for a single device and two (2) logical networks.

Figure 8-2: XL-90D and Two Logical Networks

For this example, enter the following configuration:

1. Assign a Server IP Address and net mask (Menu Selection 0).
2. Assign a Serial IP Address (Menu Selection 1).
3. Assign a Peer Serial IP Address (Menu Selection 1).

4. Assign static entries into the translation table to allow UDP and ICMP traffic (Menu Selection 1 table entry).
5. When you have completed your configuration entries, your configuration will look like the following:

```
*** basic parameters
Hardware: Ethernet TPI
IP addr 192.168.1.254, no gateway set, netmask 255.255.255.0
*** Security
SNMP is           enabled
SNMP Community Name: public
Telnet Setup is   enabled
TFTP Download is  enabled
Port 77FEh is     enabled
Web Server is    enabled
Web Setup is     enabled
ECHO is          disabled
Enhanced Password is disabled

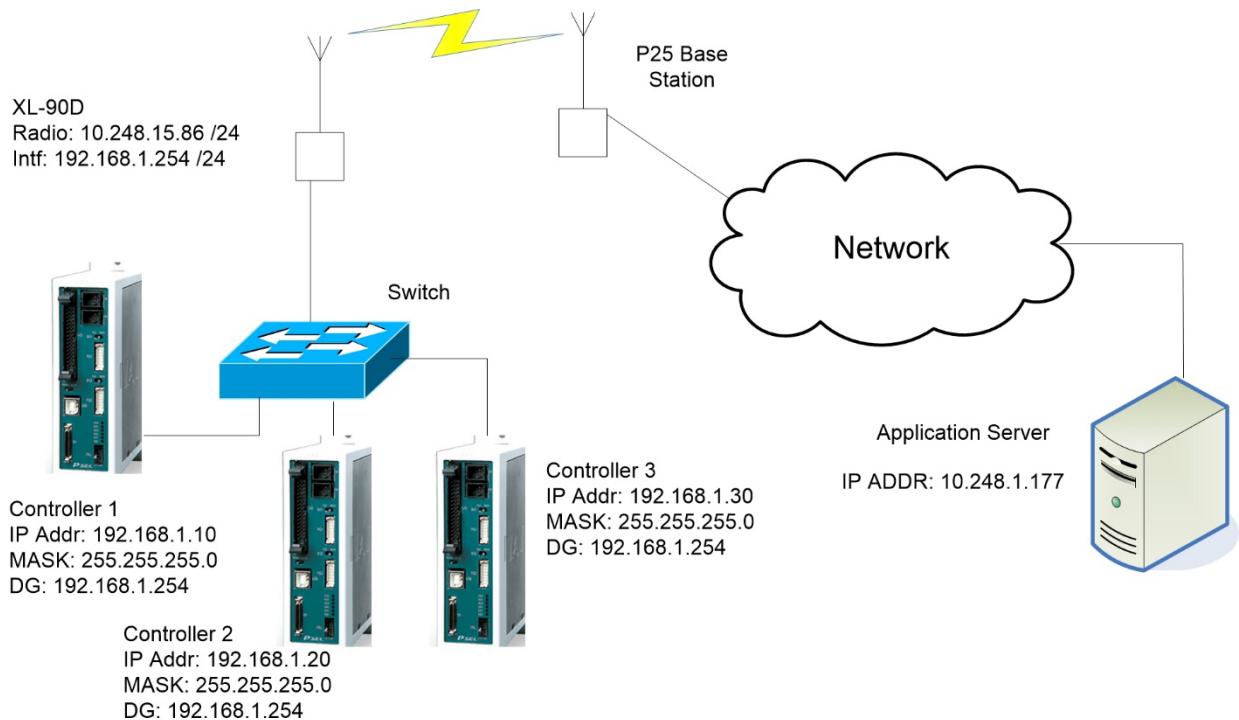
***** Channel 1 *****
Baudrate 19200, I/F Mode 4C, Flow 00
CPU performance : Standard
Local Serial IP address 10.248.15.10
Peer Serial IP address 10.248.15.9
NAT IP address 0.0.0.0
NAT IP address offset 16
DNS Server IP address 0.0.0.0
Passive Mode: disabled
Bridge Mode: disabled
Allow broadcasts: disabled
Monitor Connection Control: disabled
SLIP Client Mode: disabled

Static Map Table
    PROTO      [Cloud Socket]          [Ethernet Socket]
01: ICM 010.248.015.009:00000 <-> 192.168.001.001:00000 (Sends all ICMP
traffic to 192.168.001.001 )
02: UDP 010.248.015.009:00000 <-> 192.168.001.001:00000 (Sends all UDP
traffic to 192.168.001.001 )

03: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
04: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000

*** Expert
```

```


CPU performance: Regular
Monitor Mode @ bootup : enabled
MTU Size: 1400
Alternate MAC: disabled
Ethernet connection type: auto-negotiate

```

6. Select menu item "9" to save your configuration and exit.

8.4.3 Sample Implementation, XL-90D, 2 Logical Networks, and Multiple Devices

This is a sample implementation for multiple devices and two (2) logical networks.

Figure 8-3: XL-90D, Two Logical Networks, and Multiple Devices

In this example, the application server must maintain a static table that it associates the 192.x.x.x network address to a port number. Assume the ports and IP addresses have been associated in the following manner:

- 192.168.10 = 10.248.15.86 port 5010
- 192.168.20 = 10.248.15.86 port 5020
- 192.168.30 = 10.248.15.86 port 5030

For this example, enter the following configuration:

1. Assign a Server IP Address and net mask (Menu Selection 0).
2. Assign a Serial IP Address (Menu Selection 1).
3. Assign a Peer Serial IP Address (Menu Selection 1).
4. Assign static entries into the translation table to allow UDP and ICMP traffic (Menu Selection 1 table entry).

5. When you have completed your configuration entries, your configuration will look like the following:

```
*** basic parameters
Hardware: Ethernet TPI
IP addr 192.168.1.254, no gateway set, netmask 255.255.255.0
*** Security
SNMP is           enabled
SNMP Community Name: public
Telnet Setup is   enabled
TFTP Download is  enabled
Port 77FEh is     enabled
Web Server is    enabled
Web Setup is     enabled
ECHO is          disabled
Enhanced Password is disabled

***** Channel 1 *****
Baudrate 19200, I/F Mode 4C, Flow 00
CPU performance : Standard
Local Serial IP address 10.248.15.85
Peer Serial IP address 10.248.15.86
NAT IP address 0.0.0.0
NAT IP address offset 16
DNS Server IP address 0.0.0.0
Passive Mode: disabled
Bridge Mode: disabled
Allow broadcasts: disabled
Monitor Connection Control: disabled
SLIP Client Mode: disabled

Static Map Table
    PROTO      [Cloud Socket]          [Ethernet Socket]

01: ICM 010.248.015.086:00000 <-> 192.168.001.010:00000 (Sends all ICMP
traffic to 192.168.001.010 )

02: UDP 010.248.015.086:05010 <-> 192.168.001.010:00000 (Sends all UDP
port 5010 traffic to 192.168.001.010 )

03: UDP 010.248.015.086:05020 <-> 192.168.001.020:00000 (Sends all UDP
port 5020 traffic to 192.168.001.020 )

04: UDP 010.248.015.086:05030 <-> 192.168.001.030:00000 (Sends all UDP
port 5010 traffic to 192.168.001.030 )

05: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
06: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
07: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
08: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
09: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
10: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
11: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
12: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
13: --- 000.000.000.000:00000 <-> 000.000.000.000:00000
```

14: --- 000.000.000.000:00000 <-> 000.000.000.000:00000

*** Expert

CPU performance: Regular
Monitor Mode @ bootup : enabled
MTU Size: 1400
Alternate MAC: disabled
Ethernet connection type: auto-negotiate

6. Select menu item “9” to save your configuration and exit.

9 DISTRIBUTED NETWORK PROTOCOL (DNP3)

A common protocol used is the Distributed Network Protocol (DNP3). DNP3 is an open, standards-based, interoperability protocol typically used by the electric utility industry to establish communication between substation, outstations, and master stations. It is a more general protocol than IEC 60870-5-104. In addition to the electric utilities, it can also be used in the water infrastructure, oil and gas, wastewater, and security industries.

The XL-90D is designed to support the DNP3 protocol (via its serial port) to support various Outstation configurations (refer to Figure 9-1). DNP3 is also supported via the Ethernet port, but IP based Outstations and the DNP3 Master Station must perform their own encapsulation of DNP3 frames. A radio configured to support DNP3 cannot provide IP services to connected devices. For more information about DNP3 protocol, refer to the Distributed Network Protocol Organization at www.dnp.org.

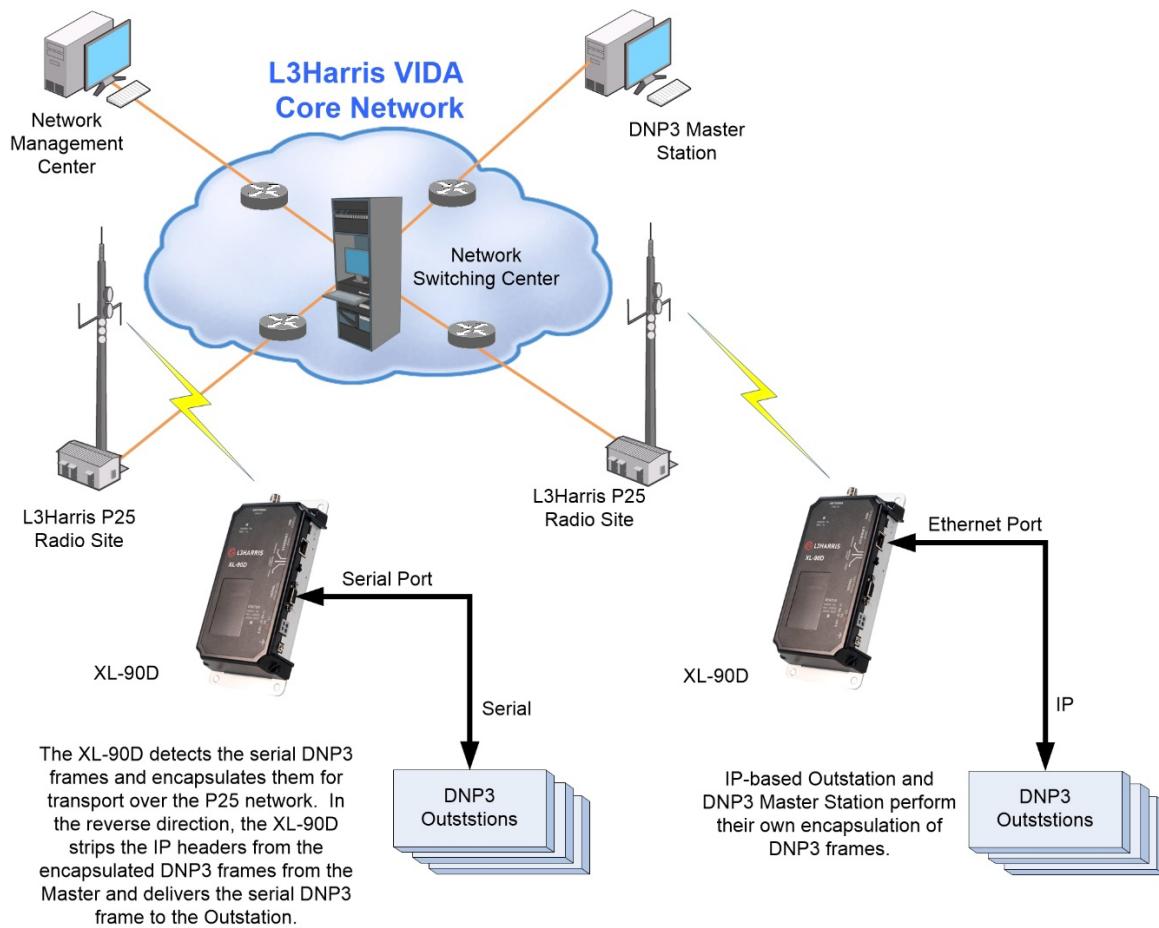


Figure 9-1: DNP3 Protocol Example

9.1 RPM2 DNP3 CONFIGURATION

1. In RPM2, select **DATA** from the Personality Rail.
2. Under **DNP3 Settings**, select **Dynamic** or **Static** and click **Create**.

- Network DNP3 Address 0 to 65535
- Host DNP3 Address 0 to 65535
- Network DNP3 Port 0 to 65519, Except 20000
- Host DNP3 Port 0 to 65519, Except 20000
- Network IP Address xxx.xxx.xxx.xxx

The network DNP3 address cannot be the same as the host DNP3 address. The host DNP3 port cannot be the same as the radio's service port. Up to 64 routes can be added to the table.

9.2 DNP3/IP ADDRESSING

A radio configured to provide DNP3 connectivity to an external device must be configured with its locally supported DNP3 addresses, local UDP port, and the DNP3 address and IP/UDP port pair for each Master with which it must communicate. Communication between a single Outstation and a number of Masters may be required for some redundant schemes or if there are multiple users of the outstation data.

The radio may learn these addresses initially through a static configuration and may optionally learn addresses dynamically. Dynamic address updates simplify the address configuration of devices and simplify updates to addressing in the field. Addressing may be limited to only static configuration to provide a higher level of security in the system. The radio is configured to operate in Static or Dynamic Addressing mode through local configuration (see Section 9.1).

9.2.1 DNP3/IP Routing Table

The XL-90D maintains a DNP3/IP Routing Table configured via RPM2. The table provides the information required to route DNP3 frames based on destination DNP3 Address and IP address and UDP port. The table may only contain one instance of any source/destination DNP3 address pair. An example DNP3/IP Routing Table is shown in Table 9-1. From the radio's perspective, Network components are used to identify remote DNP3 Masters. The Host Port is used to identify the UDP port to be used for IP communications to or from a DNP3 Master. The Host DNP3 address is used to identify locally connected DNP3 devices. The Host DNP3 and Network DNP3 address cannot be the same in any individual route in the DNP3/IP Routing Table.

UDP port 6425 is reserved, since it is the radio's service port number and cannot be entered in the DNP3/IP Routing Table as a Host Port. UDP port 20000 is defined as the default port number in the DNP3 specifications.

Table 9-1: DNP3/IP Routing Table

NETWORK DNP3 ADDRESS	HOST DNP3 ADDRESS	NETWORK DNP3 PORT	HOST DNP3 PORT	NETWORK IP ADDRESS
4001	2001	4001	2001	10.248.11.37

The radio's DNP3/IP Routing Table can contain a maximum of 64 entries.

9.2.2 Static Addressing

In this configuration, the radio is locally configured with all required DNP3 and IP address and port pairs. Messages received from the network are discarded if they meet the following:

- Are destined to a different DNP3 address than locally configured DNP3 addresses.
- Arrive from a network address/port that is not in the table.

Local messages are discarded if they meet the following:

- They are from a host address the radio does not recognize.
- The network address is not known.

Example:

1. Establish a communication link to the Outstation XL-90D.
2. Read the Personality from the XL-90D.
3. Select **DATA** from the Personality Rail. Under **DNP3 Settings**, select **Static**.
4. Remove a route, or all routes, from the Distributed Network Protocol (DNP3) Routing Table as required.
5. Add a route to the Distributed Network Protocol (DNP3) Routing Table.
6. Save the personality and write it back to the XL-90D.

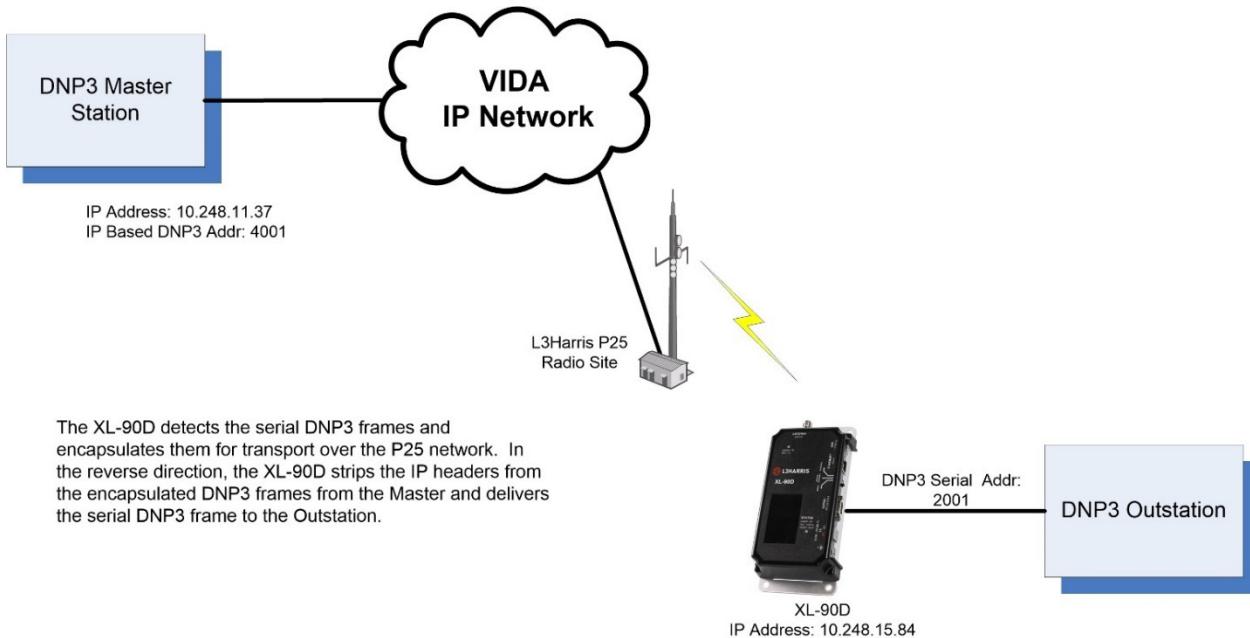


Figure 9-2: DNP3 Static Addressing Example

9.2.3 Dynamic Addressing

In this configuration, the radio can be locally configured with entries in the DNP3/IP Routing Table as described in Section 9.2.1.

With Dynamic Addressing enabled, if the radio receives a DNP3 frame from the network, it checks to see if the addressing is already in the table. If not, the radio updates the table accordingly.

If a DNP3 frame is received from the locally connected device, it checks to see if the addressing is already in the table. If not, the radio drops the DNP3 frame since the destination routing is unknown.

The radio learns about DNP3/IP routes based on messages from the network. When messages are received over the network with a different destination address than the previously configured DNP3 address, the radio updates the table to add the new entry. The radio also updates the table if it receives a DNP3 frame locally for a local DNP3 address that was previously unknown. If a DNP3/IP address pair received over the network conflicts with a pair in the table, the old pair is overwritten with the newly discovered pair.

9.2.4 Broadcast Address

Broadcast messages are also supported using a network-defined VIDA broadcast IP address and one of the three available DNP3 broadcast addresses. When a DNP3 frame with a broadcast address (65533-65535) is to be transmitted by a DNP3 Master, the DMS uses the configured broadcast address and UDP port for the subscribers.

10 SERIAL TUNNELING

Serial tunneling is a method of routing serial packet data between a client (RTU) and a server(s) located on the fixed IP network. The transport of the serial packets is transparent to the client and the server.

Several methods (modes) of serial tunneling are supported, each with unique routing behaviors. The supported methods include the following:

- Static tunneling (refer to Section 10.2.1).
- Network initiated tunneling (refer to Section 10.2.2).
- Client initiated tunneling (refer to Section 10.2.3).

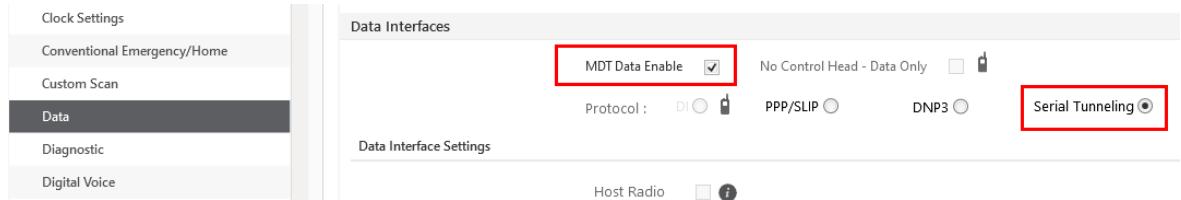
There are two (2) functions associated with each method of serial tunneling: client to server packet framing and packet routing between a client and a server. In general, a client sends serial data to the XL-90D's serial port. The XL-90D encapsulates the serial data within an IP/UDP packet and sends it to a Server on the network, based on the XL-90D's configuration. When the XL-90D receives an IP/UDP packet from a server on the network, it strips the IP/UDP header from the packet and sends the resulting serial data to the client via the serial port.

The following sub-sections are written from the XL-90D perspective and is based on these terms and the definitions:

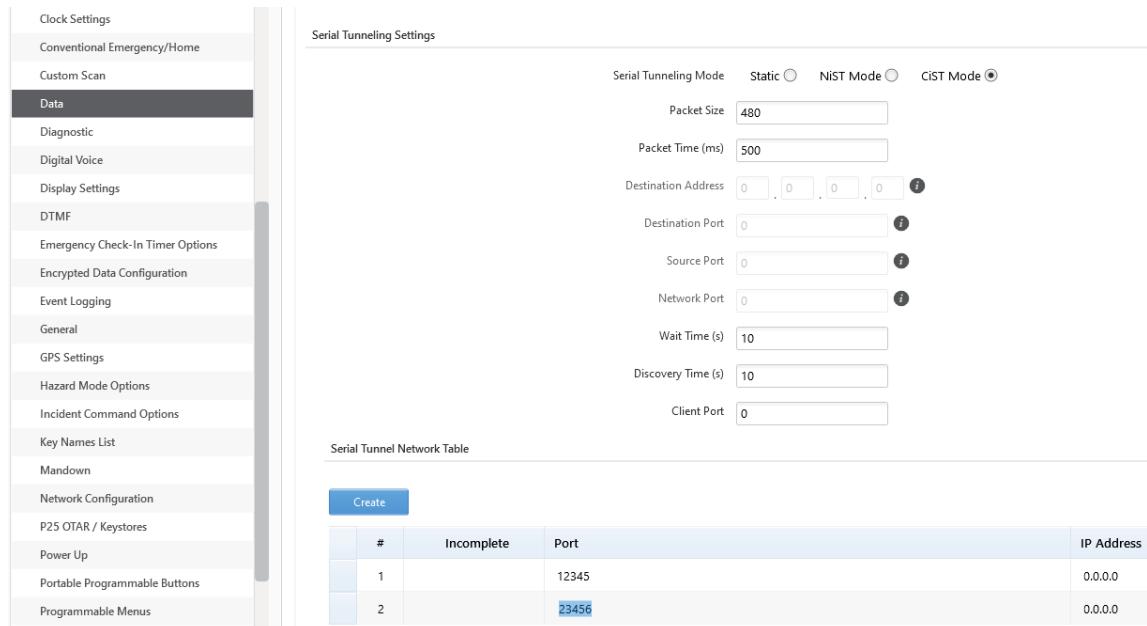
Destination: Refers to the server to which the XL-90D sends packets
Source: Refers to the XL-90D transceiver
Client: Refers to the device connected to the XL-90D's serial port

10.1 ESTABLISHING SERIAL COMMUNICATIONS

1. Connect your PC's COM port to the **SERIAL RS-232** port on the XL-90D.
2. Set the **CONFIG** switch on the XL-90D to **SERIAL**.
3. Connect the XL-90D to the PC with RPM2 installed using a serial cable.
4. Apply power to the XL-90D and do the following:
 - a. Observe the startup information displayed on the terminal program.
 - b. Verify the software versions reported are at least R16A or later.


The device is ready to configure when it reports "Connecting to Licensed Channel."

5. Proceed to Section 10.2 and configure serial tunneling.


10.2 SERIAL TUNNELING

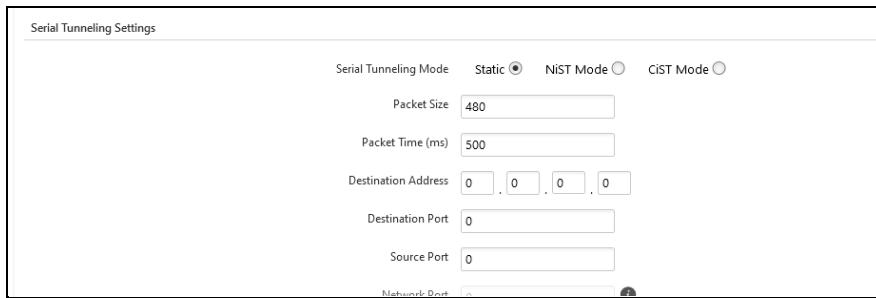
Serial Tunneling is fully configurable using RPM2.

1. In RPM2, select **Data** from the Personality Rail. Under **Data Interfaces**, check **MDT Data Enable** and select **Serial Tunneling**.

2. This enables the parameters under **Serial Tunneling Settings**.

3. select your Serial Tunneling mode.

- Static Mode
- Network Initiated Mode (NiST)
- Client Initiated Mode (CiST)


For each of the three modes, different fields are disabled or enabled depending on the configuration requirements for each mode.

10.2.1 Static Tunneling

Static tunneling supports packet routing between a client and one (1) server. In this mode, a packet session may be initiated at any time by the client or the server.

1. Connect the XL-90D to a PC running RPM2.
2. Toggle the XL-90D's Configuration Switch from and back to the **Serial** position. This resets and re-boots the RF-Radio which results in a software version banner being sent to the terminal display using serial tunneling break-in.

- In Static Mode, the required configurations are:
 - Packet Size: A value from 1 to 480 representing the maximum Serial Tunneling IP/UDP packet size in bytes.
 - Packet Time: A value from 1 to 1000 representing the Serial Tunneling Character Wait Time in milliseconds.
 - Destination Address: The destination (server's) IP address.
 - Destination Port: The destination (server's) UDP Port.
 - Source Port: The XL-90D's UDP port.

Serial Tunneling Settings

Serial Tunneling Mode Static NiST Mode CIST Mode

Packet Size

Packet Time (ms)

Destination Address

Destination Port

Source Port

10.2.2 Network Initiated Serial Tunneling (NiST)

In this mode, a Client cannot send a serial tunneling packet to the network until an IP/UDP packet has been received from a Server. The destination UDP port of the Server IP/UDP packet matches the Radio Network Filter Port configured in the radio. Server-originated packets with a destination UDP port other than the configured filter port are discarded.

When the radio receives a valid IP/UDP packet from a Server, it initiates a communications session between the Server and the Client. The radio starts a configured wait timer.

During the communications session, the Client and the Server may send messages to each other. All packets received from the network from an IP address other than the Server involved in the communications session are discarded. The Radio Network Filter UDP Port is used as the source UDP port for all messages from the Client to the Server. Whenever the radio receives a message from the Client or the Server, a configured wait timer is set/reset. Once the wait time has expired, the communications session has ended and the radio returns to an idle state.

In NiST mode the required configurations are:

Serial Tunneling Settings

Serial Tunneling Mode: NiST Mode CIST Mode

Packet Size: 480

Packet Time (ms): 500

Destination Address: 0.0.0.0

Destination Port: 0

Source Port: 0

Network Port: 0

Wait Time (s): 10

- **Packet Size:** A value from 1 to 480 representing the maximum Serial Tunneling IP/UDP packet size in bytes.
- **Packet Time:** A value from 1 to 1000 representing the Serial Tunneling Character Wait Time in milliseconds.
- **Network Port:** The destination port in the network packet.
- **Wait Time**

10.2.3 Client Initiated Serial Tunneling (CiST)

In this mode, the Client or Server may initiate a communications session. For Server-initiated sessions, the behavior is like that described in Section 10.2.2 for Network Initiated Serial Tunneling. For Client-initiated sessions, the Client sends data to the XL-90D where it is encapsulated into an IP/UDP packet using the destination IP address and destination UDP port for the first entry in the pre-stored table. The XL-90D sends the packet, starts the discovery timer, and enters the discover state. While the XL-90D is in the discover state, any additional serial tunneling data from the Client to the XL-90D is discarded.

When the XL-90D receives a reply IP/UDP packet from a Server, it checks to determine if it is a valid response to the query. If the network IP/UDP packet is not a valid response, the packet is discarded.

If the XL-90D does not receive a valid response from the current Server within the discover time, the XL-90D resends the serial tunneling packet to the next IP address/UDP port entry in the Network Address Table and resets the discover timer. This continues until the XL-90D receives a network IP/UDP packet from the currently queried Server or the Network Address Table is exhausted. If the Network Address Table is exhausted, the XL-90D reverts to an IDLE state.

If the XL-90D receives a valid packet from the Server it is currently querying, the XL-90D establishes a communications session between the Server and the Client. Once a communication session has been established, the XL-90D maintains the session as described in Section 10.2.2, with the following exceptions:

- Packets from the network must have a destination UDP port equal to the configured XL-90D Source UDP Port rather than the XL-90D Network Filter UDP Port.
- The destination UDP port of client-originated packets will be set to the source UDP port from the last received network packet.

Client-originated packets continue to use the configured XL-90D Source UDP Port as the source UDP port.

In CiST mode the required configurations are:

Serial Tunneling Settings

Serial Tunneling Mode
 Static
 NIST Mode
 CiST Mode

Packet Size	480
Packet Time (ms)	500
Destination Address	0.0.0.0
Destination Port	0
Source Port	0
Network Port	0
Wait Time (s)	10
Discovery Time (s)	10
Client Port	0

Serial Tunnel Network Table

	#	Incomplete	Port	IP Address
	Create			
	1		12345	0.0.0.0
	2		23456	0.0.0.0

- **Packet Size:** A value from 1 to 480 representing the maximum Serial Tunneling IP/UDP packet size in bytes.
- **Packet Time:** A value from 1 to 1000 representing the Serial Tunneling Character Wait Time in milliseconds.
- **Wait Time:** Configures the wait time within which the client or network can send a packet without returning to the IDLE state.
- **Discovery Time:** Configures the time within which a client can receive a packet from a server when establishing a communication link.
- **Client Port**
- **Serial Tunnel Network Table (click **Create** to add row):**
 - **Port:** UDP Port for the Server.
 - **IP Address:** IP Address for the Server.

11 TROUBLESHOOTING AND SERVICING

WARNING: EXPLOSION HAZARD.

DO NOT DISCONNECT WHILE THE CIRCUIT IS LIVE OR UNLESS THE AREA IS KNOWN TO BE FREE OF IGNITABLE CONCENTRATIONS

There are no user serviceable components within the XL-90D assembly. This assembly contains ESD sensitive components and should only be serviced by L3Harris qualified personnel.

11.1 TROUBLESHOOTING

If a unit is suspected to be faulty or needs service and repair, perform the following checks:

- Visually inspect the installation for obvious defects such as worn, weathered, or frayed cabling.
- Verify that the unit is receiving sufficient voltage and current to the power input connector.
- Replace any defective antenna or power source components as required and return any inoperable XL-90Ds to L3Harris for repairs.

11.2 SERVICING

The XL-90D is not a field-repairable unit. If a unit is suspected to need servicing or re-alignment, the unit should be removed from service and returned to L3Harris for repairs. Perform periodic checks of frequency and modulation bandwidth during routine preventative maintenance checks. Troubleshooting the XL-90D is not difficult, but it requires a logical approach. It is good practice to start by checking the simple things. For proper operation, the XL-90D must meet the following basic requirements:

- Proper and stable primary power. Remove power to reset the unit.
- Ensure all connections (RF, data, and power) are secure and torqued to specification, where indicated (refer to Section 6.6.5).
- Ensure the antenna system (antenna and lightning protection) are properly connected, torqued to specification (refer to Section 6.6.3), and in working order.
- Ensure the XL-90D is properly configured.
- Ensure you are using the correct interface between the XL-90D and the connected data equipment (correct cable wiring, proper data format, timing, etc.).
- The LED status indicators are an important troubleshooting tool and should be checked whenever a problem is suspected. Table 4-1 describes the function of each status LED.

There are no field-repairable components in the XL-90D RF Radio unit. If you suspect the XL-90D is defective, replace it with a known good unit and return the defective assembly to L3Harris for repair.

If troubleshooting assistance is required, contact a qualified service technician or the L3Harris Technical Assistance Center (see Section 12).

12 CUSTOMER SERVICE

12.1 TECHNICAL ASSISTANCE

The Technical Assistance Center's (TAC) resources are available to help with overall system operation, maintenance, upgrades, and product support. TAC is the point of contact when answers are needed to technical questions.

Product specialists, with detailed knowledge of product operation, maintenance, and repair provide technical support via a toll-free (in North America) telephone number. Support is also available through mail, fax, and e-mail.

For more information about technical assistance services, contact your sales representative, or contact the Technical Assistance Center directly at:

North America:	1-800-528-7711
International:	1-434-385-2400
Fax:	1-434-455-6712
E-mail:	PSPC_tac@l3harris.com

12.2 CUSTOMER CARE

If any part of the system equipment is damaged on arrival, contact the shipper to conduct an inspection and prepare a damage report. Save the shipping container and all packing materials until the inspection and the damage report are completed. In addition, contact the Customer Care center to arrange for replacement equipment. Do not return any part of the shipment until you receive detailed instructions from an L3Harris representative.

Contact the Customer Care center at <https://www.l3harris.com/all-capabilities/pspc-customer-care> or:

North America:

Phone Number:	1-800-368-3277
Fax Number:	1-321-409-4393
E-mail:	PSPC_CustomerFocus@l3harris.com

International:

Phone Number:	1-434-385-2857
Fax Number:	1-321-409-4394
E-mail:	PSPC_InternationalCustomerFocus@l3harris.com

13 SPECIFICATIONS

13.1 GENERAL SPECIFICATIONS

Model Number:

XL-90D (14151-1000-01)

Physical Characteristics:

Electrical Power:	+9 to +57 Vdc
Power Consumption:	9.6 Watt Transmit 2.5 Watt Receive <3 Watt Average Power at 95/5
Size (H x W x D):	1.5 x 3.9 x 8.3 in (3.9 x 9.8 x 21.1 cm)
Weight:	1.6 lbs. (0.7 kg) (less mounting hardware)

Environmental Specifications:

Operating Temperature:	-22 to +140°F (-30 to +60°C)
Relative Humidity:	95% @ 122°F (+50°C)
Altitude:	15000 ft (4572 m)
Color (case)	Black & Metallic
Non-incendive Rating (Optional):	Class I, Division 2 groups A, B, C, and D (available on the XL-90D-900, Revision A, 900 MHz units)

System Interfaces (Ethernet or Serial):

Ethernet - The XL-90D Ethernet interface is used for connecting to an RTU.

Serial - The XL-90D serial interface is used for data (SLIP/PPP) as well as for maintenance support. The serial interface is configurable to operate as a full duplex DCE EIA/TIA-232 port.

- Connector Type: RJ45
- Electrical Protocol: 10/100 BaseT
- Data Format: Ethernet IEEE 802.3
- Connector Type: 9-pin D Receptacle
- Electrical Protocol: EIA/TIA-232 Full Duplex
- Data Format: 8 bits/character, 1 start bit, 1 stop bit

13.2 TRANSMITTER SPECIFICATIONS

TYPICAL PERFORMANCE SPECIFICATIONS	700/800 MHZ	900 MHZ
Frequency Range (MHz):	768-776, 798-806, 806-817, 851-862	896-902 / 935-941
Rated RF Power Trunked (W):	0.5-3	0.5-3
Frequency Stability (-30 to +60°C; +25°C Ref) (ppm):	±1.5 / ±2.5	±1.5
Modulation Deviation (kHz):	±3.75 / ±4.0	±1.8

13.3 RECEIVER SPECIFICATIONS

TYPICAL PERFORMANCE SPECIFICATIONS	700/800 MHZ	900 MHZ
Frequency Range (MHz):	768-776, 851-862	935-941
Frequency Separation (MHz):	Full bandwidth	Full bandwidth
Channel Spacing (kHz):	25/NPSPAC	12.5
Frequency Stability (-30 to +60°C; +25 Ref) (ppm):	±1.5	±1.5

13.4 DIGITAL OPERATION

Data Rate (kbps):	19.2 for 7/800 MHz, 9.6 for 900 MHz
Modulation:	C4FM, H-CPM

14 WARRANTY REGISTRATION

Register this product within 10 days of purchase. Registration validates the warranty coverage and enables L3Harris to contact you in case of any safety notifications issued for this product.

Register on-line at the Customer Care center webpage: <https://www.l3harris.com/all-capabilities/pspc-customer-care>. While on the webpage, review the applicable battery and/or product warranty literature.

This page intentionally left blank.

About L3Harris Technologies

L3Harris Technologies is an agile global aerospace and defense technology innovator, delivering end-to-end solutions that meet customers' mission-critical needs. The company provides advanced defense and commercial technologies across air, land, sea, space, and cyber domains.