

Test Report Serial Number: Test Report Date: Project Number: 454646 R6.0 5 March 2021 1522

SAR Test Report - New Certification

Applicant:

Harris Corporation 221 Jefferson Ridge Parkway Lynchburg, VA, 24501 USA

Maximum Reported 1g SAR				
ECC		FACE:	2.36	
ISED	LMR	BODY:	3.52	
	LIVIE	FACE:	2.51	\ \ \/\/ca
		BODY:	3.52	W/kg
Simultaneous:		3.54		
	Occupational Limit:		8.00	

FCC ID:

OWDTR-0162-E
Product Name / PMN
XL-95

ISED Registration Number

3636B-0162
Product Model Number / HVIN
XL-x5-7/8

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: 714830

4541646 R6.0 5 March 2021

Table of Contents

1.0 DOCUMENT CONTROL	6
2.0 CLIENT AND DEVICE INFORMATION	7
3.0 SCOPE OF EVALUATION/DATA REUSE	8
4.0 NORMATIVE REFERENCES	9
5.0 STATEMENT OF COMPLIANCE	10
6.0 RF CONDUCTED POWER MEASUREMENT	11
7.0 NUMBER OF TEST CHANNELS (Nc)	12
8.0 ACCESSORIES EVALUATED	12
Table 8.1 Manufacturer's Accessory List	12
9.0 SAR MEASUREMENT SUMMARY	17
TABLE 9.1: MEASURED RESULTS LMR 7/800 BAND – BODY	17
TABLE 9.1: MEASURED RESULTS LMR 7/800 BAND – BODY (CONT)	18
TABLE 9.2: MEASURED RESULTS WLAN 2.4G & BT BAND – BODY	19
TABLE 9.3: MEASURED RESULTS WLAN 5G BAND – BODY	19
TABLE 9.4: MEASURED RESULTS LMR 7/800 BAND – FACE	20
TABLE 9.4: MEASURED RESULTS LMR 7/800 BAND – FACE (CONT)	21
TABLE 9.5: MEASURED RESULTS WLAN 2.4G & BT BAND – FACE	22
TABLE 9.6: MEASURED RESULTS WLAN 5G BAND – FACE	22
10.0 SCALING OF MAXIMUM MEASURE SAR	23
TABLE 10.1 SAR SCALING – LMR	23
11.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION	25
TABLE 11.1 LIST OF POSSIBLE TRANSMITTERS	25
TABLE 11.2 LIST OF POSSIBLE TRANSMITTERS COMBINATIONS	26
TABLE 11.3 ANALYSIS OF SUM-OF-THE-RATIOS	27
12.0 SAR EXPOSURE LIMITS	29
TABLE 12.1 EXPOSURE LIMITS	29
13.0 DETAILS OF SAR EVALUATION	30
TABLE 13.1 DAY LOG	30
TABLE 13.2 DUT POSITIONING	31
TABLE 13.3 GENERAL PROCEDURES AND REPORT	31
TABLE 13.4 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK	32
TABLE 13.5 SCAN RESOLUTION 100MHz TO 2GHz	32
TABLE 13.6 SCAN RESOLUTION 2GHz TO 3GHz	33
TABLE 13.7 SCAN RESOLUTION 5GHz TO 6GHz	33

14.0 MEASUREMENT UNCERTAINTIES	34
Table 14.1 Measurement Uncertainty	34
TABLE 14.2 CALCULATION OF DEGREES OF FREEDOM	35
15.0 FLUID DIELECTRIC PARAMETERS	36
TABLE 15.1 FLUID DIELECTRIC PARAMETERS 835MHz HEAD TSL, 11 JAN 2021	36
Table 15.2 Fluid Dielectric Analysis 835MHz HEAD TSL, 11 Jan 2021	37
TABLE 15.3 FLUID DIELECTRIC PARAMETERS 835MHz HEAD TSL, 14 JAN 2021	38
TABLE 15.4 FLUID DIELECTRIC ANALYSIS 835MHz HEAD TSL, 14 JAN 2021	39
TABLE 15.5 FLUID DIELECTRIC PARAMETERS 2450MHz HEAD TSL, 18 JAN 2021	40
TABLE 15.6 FLUID DIELECTRIC ANALYSIS 2450MHz HEAD TSL, 18 JAN 2021	41
TABLE 15.5 FLUID DIELECTRIC PARAMETERS 5250MHz HEAD TSL, 20 JAN 2021	42
TABLE 15.6 FLUID DIELECTRIC ANALYSIS 5250MHz HEAD TSL, 20 JAN 2021	43
TABLE 15.7 FLUID DIELECTRIC PARAMETERS 5750MHz HEAD TSL, 20 JAN 2021	44
TABLE 15.8 FLUID DIELECTRIC ANALYSIS 5750MHz HEAD TSL, 20 JAN 2021	45
16.0 SYSTEM VERIFICATION TEST RESULTS	46
Table 16.1 System Verification Results 835MHz HEAD TSL, 11 Jan 2021	46
Table 16.2 System Verification Results 835MHz HEAD TSL, 14 Jan 2021	47
Table 16.3 System Verification Results 2450MHz HEAD TSL, 18 Jan 2021	48
Table 16.4 System Verification Results 5250MHz HEAD TSL, 20 Jan 2021	49
TABLE 16.5 SYSTEM VERIFICATION RESULTS 5750MHz HEAD TSL, 20 JAN 2021	50
17.0 MEASUREMENT SYSTEM SPECIFICATIONS	51
Table 17.1 Measurement System	51
TABLE 17.2 MEASUREMENT SYSTEM SPECIFICATIONS	52
18.0 TEST EQUIPMENT LIST	54
TABLE 18.1 EQUIPMENT LIST AND CALIBRATION	54
19.0 SYSTEM VALIDATION SUMMARY	55
20.0 FLUID COMPOSITION	56
TABLE 20.1 FLUID COMPOSITION 835MHz HEAD TSL	56
TABLE 20.2 FLUID COMPOSITION 2450MHz HEAD TSL	56
TABLE 20.3 FLUID COMPOSITION 5250MHz HEAD TSL	56
APPENDIX A – SYSTEM VERIFICATION PLOTS	57
PLOT A.1 SYSTEM VERIFICATION PLOT, 835MHz, 11 JANUARY 2021	57
PLOT A.2 SYSTEM VERIFICATION PLOT, 835MHz, 14 JANUARY 2021	59
PLOT A.3 SYSTEM VERIFICATION PLOT, 2450MHz, 18 JANUARY 2021	
PLOT A.4 SYSTEM VERIFICATION PLOT, 5250MHz, 20JANUARY 2021	63
PLOT A.5 SYSTEM VERIFICATION PLOT, 5750MHz, 18 JANUARY 2021	65

APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	67
Рьот В2	67
PLOT B21	69
PLOT F16	71
PLOT F25	73
APPENDIX C - SETUP PHOTOS	75
FIGURE C.1 - BODY CONFIGURATION, KRE101506/2 ANTENNA	75
FIGURE C.2 - BODY CONFIGURATION, KRE101506/1 ANTENNA	76
FIGURE C.3 - BODY CONFIGURATION, 14002-0223-01 ANTENNA	77
FIGURE C.4 - BODY CONFIGURATION, 14002-0217-01 HOLSTER	78
FIGURE C.5 - BODY CONFIGURATION, 14011-0012-01 BELT LOOP	79
FIGURE C.6 - BODY CONFIGURATION, MC-011617-602 SPEAKER MIC	80
FIGURE C.7 - BODY CONFIGURATION, MC-011617-703 SPEAKER MIC	81
FIGURE C.8 - FACE CONFIGURATION, KRE101506/2 ANTENNA	82
FIGURE C.9 - FACE CONFIGURATION, MC-011617-602 SPEAKER MIC	83
FIGURE C.10 - FACE CONFIGURATION, MC-011617-703 SPEAKER MIC	84
APPENDIX D – DUT PHOTOS	85
FIGURE D.1 – XL-95P – FRONT	85
FIGURE D.2 – XL-95P – BACK	85
FIGURE D.3 – XL-95P – BACK W/O BATTERY	86
FIGURE D.4 – XL-95P – LEFT	86
FIGURE D.5 – XL-95P – RIGHT	86
FIGURE D.6 – XL-95P – TOP	87
FIGURE D.7 – XL-95P – BOTTOM	87
FIGURE D.8 – P1 – BT-023436-001 LI-POLYMER BATTERY	88
FIGURE D.9A – P2 – 14002-0199-01 – AA ALKALINE CLAM-SHELL BATTERY	88
FIGURE D.9B – P2 – 14002-0199-01 – AA ALKALINE CLAM-SHELL BATTERY	88
Figure D.10 – P3 – 14002-0214-01 – Li-Ion Battery	89
Figure D.11– P4 – 14002-0214-02 – Li-Ion Battery	89
FIGURE D.12– T1 – KRE1011506/1 ANTENNA	90
FIGURE D.13– T4 – KRE1011506/2 ANTENNA	90
FIGURE D.14– T4 – 14002-0223-01 ANTENNA	90
FIGURE D.15A– B2 - CC23894 BELT CLIP	91
FIGURE D.15B– B2 - CC23894 BELT CLIP	91
FIGURE D.16A- B13 - 14002-0217-01 NYLON CASE	91
FIGURE D.16B- B13 - 14002-0217-01 NYLON CASE	91

l	est	Repor	t S/N:
Γest Re	port	Issue	Date:

FIGURE D.17A– B15 – 14002-0012-01 BLACK NYLON CASE W/ BELT LOOP KIT	92
FIGURE D.17B– B15 – 14002-0012-01 BLACK NYLON CASE W/ BELT LOOP KIT	92
FIGURE D.18A– A50 – MC-011617-730 SPEAKER MIC W/ ANTENNA PORT	93
FIGURE D.18B– A50 – MC-011617-730 SPEAKER MIC W/ ANTENNA PORT	93
FIGURE D.19A– A51 – MC-011617-703 SPEAKER MIC W/ ANTENNA PORT	94
FIGURE D.19B– A51 – MC-011617-703 SPEAKER MIC W/ ANTENNA PORT	94
FIGURE D.20A– A52 – MC-011617-718 SPEAKER MIC W/ ANTENNA PORT	95
FIGURE D.20B– A52 – MC-011617-718 SPEAKER MIC W/ ANTENNA PORT	95
FIGURE D.21A— A54 – MC-011617-602 SPEAKER MIC W/ ANTENNA PORT	96
FIGURE D.21B— A54 – MC-011617-602 SPEAKER MIC W/ ANTENNA PORT	96
FIGURE D.22– A53 – MC-011617-606 SPEAKER MIC	97
APPENDIX E – PROBE CALIBRATION	98
APPENDIX F – DIPOLE CALIBRATION	99
APPENDIX G - PHANTOM	100

4541646 R6.0 5 March 2021

1.0 DOCUMENT CONTROL

Revision History						
Sam	Samples Tested By: Jasmeet Gill, Trevor Whillock Date(s) of Evaluation:				12 Jan - 22 Jan 2021	
Repo	ort Prepared By:	Trevor Whillock, Art Voss, P.Eng.	Re	port Reviewed By:	Art Voss	
Report		Description of Revision	Revised	Revised	Revision Date	
Revision		Description of Revision	Section	Ву	Revision Date	
0.1	Draft Release		n/a	Trevor Whillock	22 Jan 2021	
0.2	Draft Release - Revised		n/a	Art Voss	25 Jan 2021	
1.0	Final Release		n/a	Art Voss	26 Jan 2021	
2.0	Revised LMR Operating Frequencies		2.0	Art Voss	27 Jan 2021	
3.0	Revised Product Marketing Name / PMN		2,3,5	Art Voss	27 Jan 2021	
4.0	Revised per TCB Comments		2,10,11,F	Art Voss	11 Feb 2021	
5.0	Removed Battery P4 from the Manufacturer's Accessory List		8	Art Voss	12 Feb 2021	
6.0	Revised Rated Power, pg 11		6	Art Voss	5 March 2021	

4541646 R6.0 5 March 2021

2.0 CLIENT AND DEVICE INFORMATION

Client Information				
Applicant Name	Harris Corporation			
	221 Jefferson Ridge Parkway			
Applicant Address	Lynchburg, VA, 24501			
	USA			
	DUT Information			
Device Identifier(s):	FCC ID: OWDTR-0162-E			
(3)	ISED: 3636B-0162			
Device Marketing Name / PMN:	XL-95			
Device Model(s) / HVIN:	XL-x5-7/8			
	A40198E2A012			
Test Sample Serial No.:	A40198E2A013			
	Licensed Non-Broadcast Transmitter Held to Face (TNF) FCC Part 90 - LMRS			
	Digital Transmission System (DTS) FCC Part 15C - WiFi			
Equipment Class (FCC):	Spread Spectrum Transmitter (DSS) FCC Part 15C - BT			
	• • • • • • • • • • • • • • • • • • • •			
	Unlicensed National Information Infrastructure (NII) FCC Part 15E - WiFi			
	Land Mobile Radio Transmitter/Receiver (27.41-960MHz) RSS-119			
	WLAN RSS-247 - WiFi 2412 - 2462MHz			
Equipment Class (ISED):	BlueTooth Device RSS-247 - BT			
	WLAN RSS-247 - WiFi 5180 - 5240MHz			
	Spread Spectrum/Digital Device (5725 - 5850MHz) RSS-247			
	700 Band: 763 - 776MHz, 793-806MHz			
	800 Band: 806 - 825MHz, 851 - 870MHz			
Transmit Frequency Range (FCC):	BT: 2402-2480MHz			
	WiFI 2.4G: 2412-2462MHz			
	WiFi 5G: 5180-5240MHz, 5745-5825MHz			
	700 Band: 768 - 776MHz, 798-806MHz			
	800 Band: 806 - 824MHz, 851 - 869MHz			
Transmit Frequency Range (ISED):	BT: 2402-2480MHz			
	WiFi 2.4G: 2412-2462MHz			
	WiFi 5G: 5180-5240MHz, 5745-5825MHz			
Number of Channels:	Programmable			
Transmitter Rated Power	700 Band: 2.7W (34.3dBm)			
Including Tune-Up Tolerance:	800 Band: 3.2W (35.1dBm)			
	BT: 0.0016W (2dBm) WLAN 2.4G: 0.0083W (9.2dBm)			
	WLAN 2.4G: 0.0083W (9.2dBm) WLAN 5G: 5180-5240MHz: 0.015W (11.76dBm)			
	WLAN 5G: 5745-5825MHz: 0.003W (4.77dBm)			
Duty Cycle:	BT/WLAN: 100%, LMR: 50% PTT Duty Cycle			
DUT Power Source:	7.4VDC Li-lon Rechargeable Battery, AA Alkaline Battery			
Deviation(s) from standard/procedure:	None			
Modification of DUT:	None			

4541646 R6.0 5 March 2021

3.0 SCOPE OF EVALUATION/DATA REUSE

This Certification Report was prepared on behalf of:

Harris Corporation

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC 47 CFR Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in this report.

The XL-95, FCC ID: **OWDTR-0162-E**, IC ID: **3636B-0162**, is a 7/800 MHz band Push-To-Talk (PTT), Licensed Mobile Radio Service (LMRS) transceiver intended for Occupational Use. This "host" employs WiFi and Bluetooth transceivers. The XL-95P is similar to the XG-75P, FCC ID: OWDTR-0074-E, IC ID: 3636B-0074, which has been previously evaluated for SAR and the results of those previous evaluations were taken into consideration when developing the XL-95P SAR Test Plan. The XL-95P uses the same accessories as the XG-75P and these accessories and additional accessories were also taken into consideration and/or evaluated as well.

Application:

This is an application for a new device certification.

Scope:

Due to the nature of this device, the scope of this evaluation is to evaluate the SAR for intended use applications. It will include an extensive evaluation of the LMR transmitter and all simultaneous transmission conditions that can occur with this host device. The analysis of the Standalone and Simultaneous Transmission SAR if found in Section 11.0 of this report.

The Test Plan developed for this evaluation is based on the required test channels and configurations which produced the highest worst case SAR and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The DUT was evaluated for SAR at the maximum tune up tolerance and conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEEE 1528, IEC 62209-2, FCC KDB 865646, 447498, and RSS 102.

4541646 R6.0 5 March 2021

4.0 NORMATIVE REFERENCES

Normative References*				
ANSI / ISO 17025:2017	General Requirements for competence of testing and calibration laboratories			
FCC CFR Title 47 Part 2	Code of Federal Regulations			
Title 47:	Telecommunication			
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices			
Health Canada				
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range			
	from 3kHz to 300GHz			
Industry Canada Spectrum	Management & Telecommunications Policy			
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)			
IEEE International Committ	ee on Electromagnetic Safety			
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR)			
	in the Human Head from Wireless Communications Devices: Measurement Techniques			
IEC International Standard				
IEC 62209-2 2019	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 2			
FCC KDB				
KDB 248227 D01v02r02	SAR Guidance for IEEE 802.11 (WiFi) Transmitters			
FCC KDB				
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies			
FCC KDB	· · · · · · · · · · · · · · · · · · ·			
KDB 643646 D01v01r03	SAR Test Reduction Considerations for Occupational PTT Radios			
	SAIX TEST Neduction Considerations for Occupational F11 Nadios			
FCC KDB				
KDB 690783 D01v01r03	SAR Listings on Equipment Authorization Grants			
FCC KDB				
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz			
* When the issue number	or issue date is omitted, the latest version is assumed.			

4541646 R6.0 5 March 2021

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

ı		
Applicant:	Model Name / PMN:	
Harris Corporation	XL-95	
Standard(s) Applied:	Measurement Procedure(s):	
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FC	C KDB 643646, FCC KDB 941225
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5	
	IEEE Standard 1528-2013, IEC 62209-2	
Reason For Issue:	Use Group:	Limits Applied:
X New Certification	General Population / Uncontrolled	1.6W/kg - 1g Volume
Class I Permissive Change		X 8.0W/kg - 1g Volume
Class II Permissive Change	X Occupational / Controlled	4.0W/kg - 10g Volume
Reason for Change:		Date(s) Evaluated:
Original Filing		12 Jan - 22 Jan, 2021

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Sull Yours

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

26 January 2021

Date

Test Report Issue Date:

4541646 R6.0 5 March 2021

6.0 RF CONDUCTED POWER MEASUREMENT

Conducted Power Measurements							
	Frequency		Measured	asured Rated Rated B		Delta	SAR Test
Channel	Frequency	Mode	Power	Power	Power	Della	Channel
	(MHz)		(dBm)	(dBm)	(W)	(dBm)	(Y/N)
	764.000		33.95	34.30	2.69	-0.35	у
	766.000		33.97	34.30	2.69	-0.33	у
	794.000		33.95	34.30	2.69	-0.35	у
	806.000		34.69	35.10	3.24	-0.41	у
LMRS	812.000	CW	34.70	35.10	3.24	-0.40	у
	824.000		34.68	35.10	3.24	-0.42	у
	851.000		34.76	35.10	3.24	-0.34	у
	861.000		34.75	35.10	3.24	-0.35	у
	869.000		34.77	35.10	3.24	-0.33	у
	2412.000		7.85	9.20	0.0083	-1.35	у
	2437.000	802.11b 11Mbps	9.15	9.20	0.0083	-0.05	у
	2462.000		8.12	9.20	0.0083	-1.08	у
	2412.000	802.11g 24Mbps	7.96	9.20	0.0083	-1.24	
WiFi	2437.000		8.18	9.20	0.0083	-1.02	
	2462.000		8.95	9.20	0.0083	-0.25	
	2412.000	802.11n 19.5Mbps	7.65	9.20	0.0083	-1.55	
	2437.000		7.89	9.20	0.0083	-1.31	
	2462.000		8.00	9.20	0.0083	-1.20	
	2402.000		2.04	2.04	0.0016	0.00	у
	2440.000	GFSK	2.00	2.04	0.0016	-0.04	у
	2480.000		2.03	2.04	0.0016	-0.01	у
	2402.000		-1.59	2.04	0.0016	-3.63	
ВТ	2440.000	2-EDR	-0.20	2.04	0.0016	-2.24	
	2480.000		0.36	2.04	0.0016	-1.68	
	2402.000		-0.98	2.04	0.0016	-3.02	
	2440.000	3-EDR	0.10	2.04	0.0016	-1.94	
	2480.000		0.69	2.04	0.0016	-1.35	
	5180.000		11.18	11.76	0.0150	-0.58	у
U-NII-1	5220.000	802.11a	10.95	11.76	0.0150	-0.81	у
	5260.000		10.35	11.76	0.0150	-1.41	у
	5745.000		2.58	2.60	0.0018	-0.02	у
U-NII-3	5785.000	802.11a	0.65	2.60	0.0018	-1.95	у
	5825.000		0.10	2.60	0.0018	-2.50	у

4541646 R6.0 5 March 2021

7.0 NUMBER OF TEST CHANNELS (Nc)

The number of test channels and test configurations were determined in accordance with FCC KDB 447498, FCC KDB 643646 and FCC KDB 248227. When applicable, SAR Test Reduction was exercised in accordance with FCC KDB 643646 and FCC KDB 248227.

8.0 ACCESSORIES EVALUATED

Table 8.1 Manufacturer's Accessory List

	Manufa	acturer's Accessory List				
Test Report	Manufacturer's	Description	Change	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number		ID ⁽¹⁾	Group ⁽³⁾	Evaluated	Tested
		Antenna				
T1	KRE1011506/1	ANTENNA,806-870 MHZ,FLEX END-FED GAIN,FM	1		Υ	Υ
T2	KRE1011506/2	Antenna,764-870MHz,1/4 Wave Whip	1		Υ	Υ
Т3	14002-0223-01	ANTENNA,764-870 MHZ,1/2 WAVE, WHIP	1		Υ	Υ
T4	14035-4440-01	ANTENNA, WHIP, 1/2 WAVE 762-870MHZ	1	(7)	Υ	N
Т5	14035-4440-02	ANTENNA,WHIP,1/4 WAVE,762-870MHZ	1	(7)	Υ	N

	Manufa	acturer's Accessory List				
Test Report	Manufacturer's	Description	Change	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number	Description	ID ⁽¹⁾	Group ⁽³⁾	Evaluated	Tested
P1	BT-023436-001	Battery,Li-Polymer,3600 mAH	1		Υ	Υ
P2	14002-0199-01	BATTERY,AA CLAMSHELL	1		Υ	Υ
P3	14002-0214-01	BATTERY, LI-ION,21WH	1		Υ	Υ

		Manufacturer's Accessory List				
Test Report	Manufacturer's	Possedation .	Change	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number	Description	ID ⁽¹⁾	Group ⁽³⁾	Evaluated	Tested
		Audio Accessory				
A1	EA-009580-001	Earphone Kit, Black	1	Υ	Υ	N
A2	EA-009580-002	Earphone Kit, Beige	1	Υ	Υ	N
А3	EA-009580-003	2-Wire Kit, Palm mic, Black	1	Υ	Υ	N
A4	EA-009580-004	2-Wire Kit, Palm mic, Beige	1	Υ	Υ	N
A5	EA-009580-005	3-Wire Kit, Mini-Lapel Mic, Black	1	Υ	Υ	N
A6	EA-009580-006	3-Wire Kit, Mini-Lapel Mic, Beige	1	Υ	Υ	N
A7	EA-009580-007	Explorer Headset w / PTT	1	Υ	Υ	N
A8	EA-009580-008	Lightw eight headset single spkr w / PTT	1	Υ	Υ	N
A9	EA-009580-009	Breeze Headset w / PTT	1	Υ	Υ	N
A10	EA-009580-010	Headset, heavy duty, N/C behind the head, w / PTT	1	Υ	Υ	N
A11	EA-009580-011	Ranger Headset w / PTT	1	Υ	Υ	N
A12	EA-009580-012	Skull mic w /body PTT & earcup	1	Υ	Υ	N
A13	EA-009580-013	Headset, heavy duty, N/C over the head, w / PTT	1	Υ	Υ	N
A14	EA-009580-014	Throat mic w/acoustic tube & body PTT	1	Υ	Υ	N
A15	EA-009580-015	Throat mic w/acoustic tube, body PTT, & ring PTT	1	Υ	Υ	N
A16	EA-009580-016	Breeze headset w / PTT & pigtail jack	1	Υ	Υ	N
A17	EA-009580-017	Hurricane headset w / PTT	1	Υ	Υ	N
A18	EA-009580-018	Hurricane headset w / PTT & pigtail jack	1	Υ	Υ	N
A19	EA-009580-031	Tac4 Headset	1	Υ	Υ	N
A20	LS103239V2	Earphone for speaker/mic	1	Υ	Υ	N
A21	LS103239V1	Earphone for Speaker-Mic <is></is>	1	Υ	Υ	N
A22	MC-009104-002	Speaker-Mic, GPS, non-IS	1	Υ	Υ	N
A23	MC-011617-601	Ruggedized Speaker Mic-Coil Cord	1	Υ	Υ	N
A24	MC-011617-611	Speaker-Microphone	1	Υ	Υ	N
A25	MC-011617-701	Standard Speaker Mic - Non Ant	1	Υ	Υ	N
A26	MC-011617-651	Rugged Speaker-Microphone w / man-dow n	1	Υ	Υ	N
A27	MC-023933-001	Speaker-Mic, No Ant. (cc), <is></is>	1	Υ	Υ	N
A28	MC-023933-002	Speaker-Mic, W/ Ant. (cc) provision, <is></is>	1	Υ	Υ	N
A29	12082-0660-02	Push-To-Talk Pushbutton for Hazardous Locations, 60mm, Nexus, Mushroom Top, 4Pin	1	Υ	Υ	N
A30	12082-0660-04	Push-To-Talk Pushbutton for Hazardous Locations, 60mm, Nexus, Flat Top, 4Pin	1	Υ	Υ	N
A31	12150-4001-03	Fire Speaker MIC	1	Υ	Υ	N
A32	12150-4001-04	Fire Speaker MIC	1	Υ	Υ	N
A50	MC-011617-730	Spkrmic,Antenna,Straight,30in	1		Υ	Υ
A51	MC-011617-703	Spkrmic,Straight Cord,25.6in,Antenna	1		Υ	Υ
A52	MC-011617-718	Spkrmic,Antenna,Straight,18in	1		Υ	Υ
A53	MC-011617-606	Spkrmic,Rugged,Coiled Cord,Yellow	1		Υ	Υ
A54	MC-011617-602	Spkrmic,Rugged,Antenna,Straight,P7300	1		Υ	Υ
A55	12150-1000-03	SPKR MIC,PREMIUM,FIRE,XG FAMILY,BLK	1	Υ	Y	N
A56	12150-1000-07	SPKR MIC,PREMIUM,FIRE,XG FAMILY,YLW	1	Υ	Υ	N
A57	12082-0800-02	MIC, WIRELESS, BLUETOOTH, ADV ANCED, NA	1	Υ	Y	N
A58	12082-0684-01	BLUETOOTH, COVERT, EARPIECE /MIC /PTT	1	Υ	Υ	N

		Manufacturer's Accessory List				
Test Report ID Number	Manufacturer's Part Number	Description	Change ID ⁽¹⁾	Type II Group ⁽³⁾	SAR ⁽⁴⁾ Evaluate d	SAR ⁽⁵⁾ Tested
		Below Requires UDC to 6-pin Hirose Adapter				
A33	14002-0197-02	UDC to 6-pin Hirose adapter	1	Υ	Υ	N
A34	V1-10168	1 Wire Earphone Kit Black (Receive only no transmit)	1	Υ	Υ	N
A35	V1-10167	1 Wire Earphone Kit Beige (Receive only no transmit)	1	Υ	Υ	N
A36	V1-10166	2 Wire Palm Microphone Kit Black	1	Υ	Υ	N
A37	V1-10165	2 Wire Palm Microphone Kit Beige	1	Υ	Υ	N
A38	V1-10164	3 Wire Mini Lapel Microphone Kit Black	1	Y	Υ	N
A39	V1-10163	3 Wire Mini Lapel Microphone Kit Beige	1	Υ	Υ	N
A40	V4-BA2MD1	Breeze, lightw eight, behind-the-head, single spkr w ith std PTT	1	Y	Υ	N
A41	V4-BA2MD3B	Breeze, lightw eight, behind-the-head, single spkr w/std. PTT & 2.5mm pigtail for PTT	1	Υ	Υ	N
A42	V4-10190	Lightw eight Single Spkr Padded Headband with std PTT	1	Y	Υ	N
A43	V4-NR2MD1	Ranger Single Speaker behind-the-head with std PTT	1	Y	Υ	N
A44	V4-10148	Over-the-head Dual Speaker Heavy Duty with std PTT	1	Y	Υ	N
A45	V4-10148-S	Over-the-head Dual Speaker Heavy Duty with std PTT-IS/ATEX	1	Y	Υ	N
A46	V4-10001	Behind-the-Head Dual Speaker Heavy Duty with std PTT	1	Υ	Υ	N
A47	V4-10001-S	Behind-the-Head Dual Speaker Heavy Duty with std PTT-IS/ATEX	1	Υ	Υ	N
A48	V1-T12MD137	Professional Throat Mic with Acoustic Tube & 80mm PTT	1	Y	Υ	N
A49	V4-10279	Professional Skull Mic with Earcup, Aviation Quality & 80 MM PTT	1	Y	Υ	N

		Manufacturer's Accessory List				
Test Report ID Number	Manufacturer's Part Number	Description	Change ID ⁽¹⁾	Type II Group ⁽³⁾	SAR ⁽⁴⁾ Evaluated	SAR ⁽⁵⁾ Tested
		Body-Worn Accessory				
B1	CC-014527	Belt Loop, Leather (BEE)	1	Υ	Υ	N
B2	CC23894	Metal Belt Clip	1	(6)	Υ	Υ
В3	KT-016201-001 (kit)	Kit containing: FM-016199-001 P7300 BEE Nylon case (Black) (with radio retaining strap) & CC 014527 BEE Leather Belt Loop	1	Y	Y	N
В4	KT-016201-002 (kit)	Kit contains: FM-016199-002 P7300 B旺 Nylon case (Orange) (with radio retaining strap) & CC 014527 B旺 Leather Belt Loop	1	Y	Υ	N
B5	KT-016201-003 (kit)	Kit contains: FM-016199-003 P7300 BEE Leather Case (with radio retaining strap) w/o Shoulder Strap D-rings, KRY1011608/2 Swivel Mount & CC-014527 BEE Leather Belt Loop	1	Υ	Y	N
В6	KT-016201-004 (kit)	Kit contains: FM-016199-004 P7300 BEE Leather Case with Shoulder Strap D-rings (with radio retaining strap), KRY1011608/2 Swivel Mount & CC-014524-001 BEE Shoulder Strap	1	Y	Y	N
B7	FM-017262-001	Sw ivel Mount	1	Υ	Υ	N
B8	14002-0187-09	Premium Leather Case ⊟astic Strap	1	Υ	Υ	N
В9	14002-0215-01	Premium Leather Case Kit containing: 14002-0187-01 Leather case, KRY1011609/1 Leather Belt Loop, FM-017262-001 D-sw ivel.	1	Y	Y	N
B10	14002-0215-02	Premium Shoulder Strap Leather Case Kit containing: 14002-0187-02 Leather case with Drings, CC103333V1 Shoulder strap, FM-017262-001 D-swivel.	1	Y	Υ	N
B11	14002-0215-03	Premium Black Nylon Case Kit containing: 14002-0187-03 black nylon case, KRY1011609/1 Leather Belt Loop.	1	Y	Y	N
B12	14002-0215-04	Premium Orange Nylon Case Kit containing: 14002-0187-04 orange nylon case, KRY1011609/1 Leather Belt Loop.	1	Y	Y	N
B13	14002-0217-01	Olive Drab Nylon Case	1	(6)	Υ	Υ
B14	14002-0218-01	BELT LOOP, LEATHER, PREMIUM	1	Υ	Υ	N
B15	14011-0012-01	Black Nylon Case with Belt Loop Kit (BEE)	1	(6)	Υ	Υ
B16	14011-0012-02	Orange Nylon Case with Belt Loop Kit (BEE)	1	Υ	Υ	N
B17	14011-0012-03	Leather Case with Belt Loop Kit (BEE)	1	Υ	Y	N
B18	14011-0012-04	Leather Case with Shoulder Strap Kit (B⊞)	1	Υ	Y	N
B26	14002-0215-01	CASE,LEATHER,PREMIUM,XG75/25,BELT LOOP	1	Υ	Y	N
B27	CC-014524-002	Strap,Stnd,Retaining,Use w / Shlder Strap	1	Υ	Υ	N

		Manufacturer's Accessory List				
Test Report	Manufacturer's	Paramintian	Change	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number	Description	ID ⁽¹⁾	Group ⁽³⁾	Evaluated	Tested
		Merzon Combinations				
B19	KRY 1011609/1 or 14002-0218-0	Leather Belt Loop	1	Υ	Υ	N
ыэ	FM-017262-001	Swivel Mount	1	Υ	Υ	N
B20	14011-0011-01	Nylon Case (Black)	1	Υ	Υ	N
B20	KRY 1011609/1 or 14002-0218-0	Leather Belt Loop	1	Υ	Y	N
B21	14011-0011-02	Nylon Case (Orange)	1	Υ	Y	N
D2 I	KRY 1011609/1 or 14002-0218-0	Leather Belt Loop	1	Υ	Y	N
	14011-0011-03	Nylon Case	1	Υ	Y	N
B22	KRY 1011609/1 or 14002-0218-0	Leather Belt Loop	1	Υ	Y	N
	FM-017262-001	Swivel Mount	1	Υ	Y	N
B23	FM-016199-001	Nylon Case (Black)	1	Υ	Y	N
B23	KRY1011609/1 or 14002-0218-0	Leather Belt Loop	1	Υ	Y	N
B24	FM-016199-002	Nylon Case (Orange)	1	Υ	Υ	N
D24	KRY1011609/1 or 14002-0218-0	Leather Belt Loop	1	Υ	Y	N
	FM-016199-003	Nylon Case	1	Υ	Υ	N
B25	KRY1011609/1 or 14002-0218-0	Leather Belt Loop	1	Υ	Υ	N
	FM-017262-001	Sw ivel Mount	1	Υ	Υ	N

- (1) Change ID: Indicates the change number in which the accessory was added.
- (3) Type II Group: "y" indicates that this accessory was evaluated with similar devices and found to have no significant contribution to the reported SAR
- (4) SAR Evaluated: Indicates the accessory was visually evaluated and may or may not have tested.
- (5) SAR Tested: Indicates the accessory was SAR tested during the course of this investigation.
- (6) These accessories produced the highest SAR in previous evaluations.
- (7) These antennas are similar physically, electrically and frequency response.

4541646 R6.0

9.0 SAR MEASUREMENT SUMMARY

Table 9.1: Measured Results LMR 7/800 Band - BODY

				Measure	ed SAR Res	ults (1g)	- BODY	Config	guration	ı (FCC	/ISED)				
		DUT	_	Test			Access	ories		DUT	Spacing	Conducted	Measured	I SAR (1g)	SAR
Date	Plot	וטע		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID ⁻	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
12 Jan 2021	B1	XL-95	PTT	764	cw	T2	P1	B2	A53	0	25	33.95	5.710	2.855	-0.230
12 Jan 2021	B2	XL-95	PTT	766	CW	T2	P1	B2	A53	0	25	33.97	6.420	3.210	-0.160
12 Jan 2021	В3	XL-95	PTT	794	cw	T2	P1	B2	A53	0	25	33.95	4.700	2.350	-0.130
12 Jan 2021	B4	XL-95	PTT	806	cw	T2	P1	B2	A53	0	25	34.69	5.010	2.505	-0.260
12 Jan 2021	B5	XL-95	PTT	812	cw	T2	P1	B2	A53	0	25	34.7	4.750	2.375	-0.110
12 Jan 2021	B6	XL-95	PTT	824	cw	T2	P1	B2	A53	0	25	34.68	4.790	2.395	-0.420
12 Jan 2021	B7	XL-95	PTT	851	cw	T2	P1	B2	A53	0	25	34.76	4.130	2.065	-0.240
12 Jan 2021	B8	XL-95	PTT	861	cw	T2	P1	B2	A53	0	25	34.75	4.550	2.275	-0.270
12 Jan 2021	В9	XL-95	PTT	869	cw	T2	P1	B2	A53	0	25	34.77	4.780	2.390	-0.360
12 Jan 2021	B10	XL-95	PTT	764 Low	cw	T1	P1	B2	A53	0	25	33.95	3.770	1.885	-0.480
12 Jan 2021	B11	XL-95	PTT	812 Mid	cw	T1	P1	B2	A53	0	25	34.7	2.150	1.075	0.020
12 Jan 2021	B12	XL-95	PTT	869 High	cw	T1	P1	B2	A53	0	25	34.77	5.040	2.520	-0.220
12 Jan 2021	B13	XL-95	PTT	764 Low	cw	Т3	P1	B2	A53	0	25	33.95	4.280	2.140	-0.510
12 Jan 2021	B14	XL-95	PTT	812 Mid	CW	T3	P1	B2	A53	0	25	34.7	2.300	1.150	0.060
12 Jan 2021	B15	XL-95	PTT	869 High	CW	T3	P1	B2	A53	0	25	34.77	1.870	0.935	-0.030
12 Jan 2021	B16	XL-95	PTT	766 w/c	CW	T2	P4	B2	A53	0	25	33.97	5.640	2.820	-0.260
12 Jan 2021	B17	XL-95	PTT	766 w/c	CW	T2	P3	B2	A53	0	25	33.97	4.040	2.020	-0.180
13 Jan 2021	B18	XL-95	PTT	766 w/c	CW	T2	P2	B2	A53	0	25	33.97	2.890	1.445	-0.430
13 Jan 2021	B19	XL-95	PTT	766 w/c	CW	T2	P1	B13	A53	0	30	33.97	5.570	2.785	-0.170
13 Jan 2021	13 Jan 2021 B20 XL-95 PTT 766 w/c CW T2						P1	B15	A53	0	59	33.97	2.080	1.040	-0.250
_	SAR Limit						Sp	atial Pe	ak	Hea	d/Body	R	F Exposure	Category	
F	FCC 47 CFR 2.1093 Health Canada Safety Code 6					1 Gra	am Aveı	age	8.0	W/kg	Oc	cupational/l	User Aware		

Test Report S/N:

4541646 R6.0

Test Report Issue Date: 5 March 2021

Table 9.1: Measured Results LMR 7/800 Band - BODY (Cont)

				Measure	ed SAR Res	ults (1g)	- BODY	Config	guration	ı (FCC	/ISED)				
		DU	т	Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (1g)	SAR
Date	Plot		•	Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
13 Jan 2021	B21	MC-602	SpMc	766 w/c	CW	T2	P1		A54	0	30	33.97	6.530	3.265	0.070
13 Jan 2021	B22	MC-602	SpMc	764 w/c2	CW	T2	P1		A54	0	30	33.95	6.430	3.215	-0.060
13 Jan 2021	B23	MC-602	SpMc	806 w/c3	cw	T2	P1		A54	0	30	34.69	4.470	2.235	0.000
13 Jan 2021	B24	MC-602	SpMc	869	CW	T1	P1		A54	0	30	34.77	6.470	3.235	0.030
14 Jan 2021	B25	MC-602	SpMc	812	CW	T1	P1		A54	0	30	34.7	6.260	3.130	0.080
13 Jan 2021	B26	MC-602	SpMc	764	CW	T1	P1		A54	0	30	33.95	3.760	1.880	-0.200
13 Jan 2021	B27	MC-602	SpMc	764	CW	T3	P1		A54	0	30	33.95	3.380	1.690	-0.200
13 Jan 2021	B28	MC-602	SpMc	812	CW	T3	P1		A54	0	30	34.7	2.360	1.180	-0.080
13 Jan 2021	B29	MC-602	SpMc	869	CW	T3	P1		A54	0	30	34.77	1.830	0.915	0.180
14 Jan 2021	B30	MC-703	SpMc	812	CW	T1	P1		A51	0	30	34.7	1.910	0.955	-0.090
14 Jan 2021	B31	MC-718	SpMc	812	CW	T1	P1		A52	0	30	34.7	3.780	1.890	-0.340
14 Jan 2021	B32	MC-730	SpMc	812	CW	T1	P1		A50	0	30	34.7	1.580	0.790	-0.020
	SAR Limit						Sp	atial Pe	ak	Hea	d/Body	R	F Exposure	Category	
F	FCC 47 CFR 2.1093 Health Canada Safety Code 6					Code 6	1 Gra	am Avei	age	8.0	W/kg	Occ	cupational/L	Jser Aware	

4541646 R6.0

Table 9.2: Measured Results WLAN 2.4G & BT Band - BODY

				Measure	ed SAR Res	ults (1g)	- BODY	Config	guration	ı (FCC	/ISED)				
		DUT	F	Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (1g)	SAR
Date	Plot	DO		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
19 Jan 2021	B1	XL-95	PTT	2412	DSSS 6Mbps	T2	P1	B2	A53	0		7.85	0.000		0.000
19 Jan 2021	B2	XL-95	PTT	2437	DSSS 6Mbps	T2	P1	B2	A53	0		9.15	0.000		0.000
19 Jan 2021	В3	XL-95	PTT	2462	DSSS 6Mbps	T2	P1	B2	A53	0		8.12	0.000		0.000
19 Jan 2021	B4	XL-95	PTT	2437	HT20 MCS12	T2	P1	B2	A53	0		9.15	0.000		0.000
19 Jan 2021	B5	XL-95	PTT	2437	DSSS 6Mbps	T2	P1	n/a	A53	0		9.15	0.000		0.000
19 Jan 2021	7				GFSK	T2	P1	B2	A53	0		2.1	0.001		0.000
	SAR Limit							atial Pe	ak	Hea	d/Body	R	F Exposure	Category	
F	FCC 47 CFR 2.1093 Health Canada Safety Code						1 Gra	am Aver	age	1.6	W/kg	Genera	l Population	n/User Unaw	vare

Table 9.3: Measured Results WLAN 5G Band - BODY

				Measure	ed SAR Res	ults (1g)	- BODY	Config	guration	ı (FCC	/ISED)				
		DU ⁻	-	Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (1g)	SAR
Date	Plot	БО		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
21 Jan 2021	B1	XL-95	PTT	5220	OFDM 6Mbps	T2	P1	B2	A53	0		11.58	0.000		0.000
21 Jan 2021	112 12 111 111			5785	OFDM 6Mbps	T2	P1	B2	A53	0		4.65	0.000		0.000
	SAR Limit							atial Pe	ak	Hea	d/Body	R	F Exposure	Category	
F	FCC 47 CFR 2.1093 Health Canada Safety (Code 6	1 Gr	am Aveı	rage	1.6	W/kg	Genera	I Population	/User Unav	vare

4541646 R6.0

Table 9.4: Measured Results LMR 7/800 Band - FACE

				Measure	ed SAR Res	ults (1g)	- FACE	Config	juration	(FCC	/ISED)				
		DUT	-	Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (1g)	SAR
Date	Plot	D01		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
13 Jan 2021	F1	XL-95	PTT	764	CW	T2	P1	n/a	n/a	25	50	33.95	2.300	1.150	-0.180
13 Jan 2021	F2	XL-95	PTT	766	CW	T2	P1	n/a	n/a	25	50	33.97	2.340	1.170	-0.340
13 Jan 2021	F3	XL-95	PTT	794	CW	T2	P1	n/a	n/a	25	50	33.95	2.290	1.145	-0.340
13 Jan 2021	F4	XL-95	PTT	806	CW	T2	P1	n/a	n/a	25	50	34.69	2.820	1.410	0.060
13 Jan 2021	F5	XL-95	PTT	812	cw	T2	P1	n/a	n/a	25	50	34.7	2.410	1.205	-0.310
13 Jan 2021	F6	XL-95	PTT	824	cw	T2	P1	n/a	n/a	25	50	34.68	2.520	1.260	-0.120
13 Jan 2021	F7	XL-95	PTT	851	cw	T2	P1	n/a	n/a	25	50	34.76	2.180	1.090	-0.090
13 Jan 2021	F8	XL-95	PTT	861	CW	T2	P1	n/a	n/a	25	50	34.75	1.840	0.920	0.030
13 Jan 2021	F9	XL-95	PTT	869	CW	T2	P1	n/a	n/a	25	50	34.77	1.960	0.980	-0.180
14 Jan 2021	F10	XL-95	PTT	764	cw	T1	P1	n/a	n/a	25	50	33.95	0.830	0.415	-0.560
14 Jan 2021	F11	XL-95	PTT	812	CW	T1	P1	n/a	n/a	25	50	34.7	1.410	0.705	0.090
14 Jan 2021	F12	XL-95	PTT	869	CW	T1	P1	n/a	n/a	25	50	34.77	1.010	0.505	0.390
14 Jan 2021	F13	XL-95	PTT	764	CW	T3	P1	n/a	n/a	25	50	33.95	0.844	0.422	-0.520
14 Jan 2021	F14	XL-95	PTT	812	CW	T3	P1	n/a	n/a	25	50	34.7	0.499	0.250	0.050
14 Jan 2021	F15	XL-95	PTT	869	CW	T3	P1	n/a	n/a	25	50	34.77	0.360	0.180	0.320
14 Jan 2021	F16	XL-95	PTT	806	CW	T2	P2	n/a	n/a	25	50	34.69	4.290	2.145	-0.280
14 Jan 2021	F17	XL-95	PTT	806	CW	T2	P4	n/a	n/a	25	50	34.69	2.680	1.340	-0.010
14 Jan 2021	F18	XL-95	PTT	806	CW	T2	P3	n/a	n/a	25	50	34.69	3.160	1.580	-0.320
	SAR Limit						Sp	atial Pe	ak	Hea	d/Body	R	F Exposure	Category	
F	FCC 47 CFR 2.1093 Health Canada Safety Code				Code 6	1 Gra	am Aveı	rage	8.0	W/kg	Oc	cupational/l	Jser Aware		

Test Report S/N:

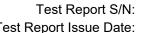
4541646 R6.0

Test Report Issue Date: 5 March 2021

Table 9.4: Measured Results LMR 7/800 Band – FACE (Cont)

				Measure	ed SAR Res	ults (1g)	- FACE	Config	juration	(FCC	(ISED)				
		DU.	Т	Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (1g)	SAR
Date	Plot	БО	!	Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
14 Jan 2021	F19	MC-602	SpMc	w/c 806	cw	T2	P1	n/a	A54	25	55	34.69	1.410	0.705	0.100
14 Jan 2021	F20	MC-602	SpMc	w/c 812	CW	T1	P1	n/a	A54	25	55	34.7	0.785	0.393	-0.360
14 Jan 2021	F21	MC-602	SpMc	w/c 764	CW	T3	P1	n/a	A54	25	55	33.95	0.818	0.409	-0.180
15 Jan 2021	F22	MC-703	SpMc	w/c 806	CW	T2	P1	n/a	A51	25	55	34.69	2.690	1.345	-0.120
15 Jan 2021	F23	MC-703	SpMc	w/c 812	CW	T1	P1	n/a	A51	25	55	34.7	2.810	1.405	0.100
15 Jan 2021	F24	MC-703	SpMc	w/c 764	CW	T3	P1	n/a	A51	25	55	33.95	1.240	0.620	-0.430
15 Jan 2021	F25	MC-718	SpMc	w/c 812	CW	T1	P1	n/a	A52	25	55	34.7	3.430	1.715	-0.070
15 Jan 2021	F26	MC-718	SpMc	w/c 764	CW	T3	P1	n/a	A52	25	55	33.95	1.300	0.650	-0.290
15 Jan 2021	F27	MC-718	SpMc	w/c 806	CW	T2	P1	n/a	A52	25	55	34.69	2.740	1.370	-0.250
15 Jan 2021	F28	MC-730	SpMc	w/c 806	CW	T2	P1	n/a	A50	25	55	34.69	2.290	1.145	-0.140
15 Jan 2021	F29	MC-730	SpMc	w/c 812	CW	T1	P1	n/a	A50	25	55	34.7	1.110	0.555	0.000
15 Jan 2021	F30	MC-730	SpMc	w/c 764	CW	T3	P1	n/a	A50	25	55	33.95	1.740	0.870	-0.230
	SAR Limit						Sp	atial Pe	ak	Hea	d/Body	R	F Exposure	Category	
F	FCC 47 CFR 2.1093 Health Canada Safety Code 6					Code 6	1 Gra	am Aveı	rage	8.0	W/kg	Oc	cupational/l	Jser Aware	

4541646 R6.0


Table 9.5: Measured Results WLAN 2.4G & BT Band - FACE

	Measured SAR Results (1g) - FACE Configuration (FCC/ISED)														
		DU	г	Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (1g)	SAR
Date	Plot	DO1		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
19 Jan 2021	F1	XL-95	PTT	2437	DSSS 6Mbps	T2	P1	n/a	n/a	25		9.15	0.000		0.000
19 Jan 2021	F2*	XL-95	PTT	2437	DSSS 6Mbps	T2	P1	n/a	n/a	0		9.15	0.010		0.000
19 Jan 2021	F3	XL-95	PTT	2402	GFSK	T2	P1	n/a	n/a	25		2.1	0.000		0.000
19 Jan 2021				2402	GFSK	T2	P1	n/a	n/a	0		2.1	0.004		0.000
	SAR Limit							atial Pe	ak	Hea	d/Body	R	F Exposure	Category	
F	FCC 47 CFR 2.1093 Health Canada Safety					Code 6	1 Gra	am Aver	age	1.6	W/kg	Genera	l Population	/User Unav	vare

Table 9.6: Measured Results WLAN 5G Band - FACE

	Measured SAR Results (1g) - FACE Configuration (FCC/ISED)														
	_		r	Test		Accessories			DUT	Spacing	Conducted	Measured	SAR (1g)	SAR	
Date	Plot	DU-	•	Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
20 Jan 2021	F1*	XL-95	PTT	5220	OFDM 6Mbps	T2	P1	n/a	n/a	0		11.58	0.166		0.000
20 Jan 2021	F2	XL-95	PTT	5220	OFDM 6Mbps	T2	P1	n/a	n/a	25		11.58	0.013		0.000
21 Jan 2021	F3	XL-95	PTT	5180	OFDM 6Mbps	T2	P1	n/a	n/a	25		10.95	0.017		0.000
21 Jan 2021	F4	XL-95	PTT	5260	OFDM 6Mbps	T2	P1	n/a	n/a	25		10.35	0.015		0.000
21 Jan 2021	F5*	XL-95	PTT	5180	OFDM 6Mbps	T2	P1	n/a	n/a	0		10.95	0.145		0.000
21 Jan 2021	F1*	XL-95	PTT	5785	OFDM 6Mbps	T2	P1	n/a	n/a	0		4.65	0.069		0.000
21 Jan 2021	F2	XL-95	PTT	5785	OFDM 6Mbps	T2	P1	n/a	n/a	25		4.65	0.016		0.000
21 Jan 2021	F3	XL-95	PTT	5745	OFDM 6Mbps	T2	P1	n/a	n/a	25		3.52	0.018		0.000
21 Jan 2021	F4	XL-95	PTT	5825	OFDM 6Mbps	T2	P1	n/a	n/a	25		2.18	0.001		0.000
21 Jan 2021	F5*	XL-95	PTT	5745	OFDM 6Mbps	T2	P1	n/a	n/a	0		3.52	0.084		0.000
	SAR Limit			Sp	atial Pe	ak	Hea	d/Body	R	F Exposure	Category				
F	FCC 47 CFR 2.1093		Health Ca	anada Safety	Safety Code 6 1 Gram Average			1.6	W/kg	Genera	I Population	n/User Unav	vare		

^{*} Due to the low conducted power and the extremely low SAR, these measurements were made with a 0mm separation as verification of DUT operation. Since this was an exceptional test configuration, these measurement values will not be used as the reported SAR.

4541646 R6.0 5 March 2021

10.0 SCALING OF MAXIMUM MEASURE SAR

Table 10.1 SAR Scaling – LMR

	Scaling of Ma	aximum Meası	red SAR (1g)					
R/	Incoured Devemptors	Configuration						
Measured Parameters		Face	Body	Head				
	Plot ID	F16	B21					
Max	ximum Measured SAR _M	2.145	3.265		(W/k			
	Frequency	806	766		(MHz			
	Power Drift	-0.280	0.070 (1)		(dB)			
Conducted Power		34.690	33.970		(dBm			
	Fluid	Deviation from	Target					
Δe	Permitivity	- 0.65% (2)	-0.77% (2)					
Δσ	Conductivity	-1.00% (2)	-4 .60% (2)					

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Note(2): Fluid Dielectric Parameters are Within 5% of Targets. SAR Adjustment for Fluid Sensitivity is not Required.

Flu	id Sensitivity Calculation	IEC 62209-2 Annex F				
	Delta SAR = Ce * Δ e + C σ * $\Delta\sigma$ Ce = (-0.0007854*f ³) + (0.009402*f ²) - (0.02742*f) - 0.2026 C σ = (0.009804*f ³) - (0.08661*f ²) + (0.02981*f) + 0.7829					
f	Frequency (GHz)	0.806	0.766			
	Ce	-0.219	-0.218			
	Сσ	0.756	0.759			
	Ce * ∆e	0.001	0.002			
	Cσ * Δσ	-0.008	-0.035			
	ΔSAR	-0.006	-0.033			

Manufacturer's Tuneup Tolerance						
Measured Conducted Power 34.690 33.970						
Rated Conducted Power	35.100	34.300		(dBm)		
ΔΡ	-0.410	-0.330		(dB)		

SAR Adju	SAR Adjustment for Fluid Sensitivity						
$SAR_1 = SAR_M * \Delta SAR$	2.145	3.265	(W/kg				
SAR Adju	stment for Tuneu	p Tolerance					
$SAR_2 = SAR_1 + [\Delta P]$	2.357	3.522	(W/kg				
SA	R Adjustment for	· Drift					
SAR ₃ = SAR ₂ + Drift	2.513	3.522	(W/kg				
	reported SAR						
FCC = SAR ₂	2.36	3.52	(W/kg				
ISED = SAR ₃	2.51	3.52	(W/kg				

4541646 R6.0 5 March 2021

NOTES to Table

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face, Body and/or Head SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 3. The Plot ID is for indentification of the SAR Measurement Plots in the Annexes of this report.

NOTE: Some of the scaling factors in Steps 1 through 3 may not apply and are identified by grayed fields.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported.

Step 4

The Reported SAR is the Maximum Final Adjusted SAR from the applicable Steps 1 through 3 and are reported on Page 1 of this report.

4541646 R6.0 5 March 2021

11.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION

Simultaneous Transmission Analysis

The XL-95P employs Wi-Fi and BlueTooth capable of simultaneously transmitting with the LMR transmitter. The Wi-Fi and BlueTooth transmitters share the same antenna and the transmissions are interleaved such that only one transmitter is transmitting at a time. As per FCC KDB 447498, simultaneous transmission analysis is required for devices capable of simultaneous transmission. The Wi-Fi and BT SAR are subject to General Population limits of 1.6W/kg. The LMR SAR is subject to Occupational limits of 8.0W/kg. To determine Simultaneous Transmission SAR Test Exclusion when different SAR limits are applied to the different transmit modes, the Sum-of-the-Ratios of the SAR to the respective SAR limit is applied. When the Sum-of-the-Ratios is ≤ 1.0, Simultaneous Transmission SAR Test Exclusion may be applied.

When the Sum-of-the-Ratios exceeds 1.0, the SAR to Peak Location Separation Ration (SPLSR) may be used to determine simultaneous transmission SAR test exclusion. However, the equation for determining this exclusion applies to General Population limits only. Reference Operation Description Part 2. When mixed Occupational and General Population exposure limits are used, the SAR of the Occupational configuration is normalize to the General Population limit. For example if $SAR_{Occupational} = 6.4W/kg$ and $SAR_{GenPop} = 0.65W/kg$, normalizing the Occupational SAR to General Population limits yields $SAR_{OccNorm} = 1.28W/kg$. The SPLSR equation of KDB 447498 4.3.2 c) becomes

$$(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04 = (SAR_{OccNorm} + SAR_{GenPop})^{1.5}/R_i = (1.28 + 0.65)^{1.5}/R_i \le 0.04$$

SAR for each transmission band, transmission mode and/or equipment class was evaluated with Body-Worn and Audio Accessories in the BODY configuration and with no Accessories in the HEAD configurations. The DUT was configured with the maximum Transmit Time Invertal (TTI) at 100% trasmit duty cycle. Only the Maximum <u>reported</u> SAR for BODY and HEAD configuration is used in the Sum-of-the-Ratios or SPLSR calculation and the worst case of all possible combinations is considered.

Table 11.1 List of Possible Transmitters

List of Possible Transmitters								
		Frequen	Rated Output					
Type	Class	Lower	Upper	Power				
		(MHz)	(MHz)	(dBm)				
LMR 700	TNF	764.0	806.0	34.30				
LMR 800	TINI	806.0	869.0	35.10				
BlueTooth	DSS	2402.0	2480.0	2.04				
WiFi 2.4	DTS	2412.0	2462.0	9.20				
WiFi 5	NII	5150.0	5240.0	11.76				
WiFi 5	NII	5745.0	5825.0	4.77				

4541646 R6.0 5 March 2021

Table 11.2 List of Possible Transmitters Combinations

	Simultaneous Transmitter Combinations									
n		Transmitter								
Configuration Number	LMR 7/800	BlueTooth	WiFi 2.4	WiFi 5						
1	Х	X								
2	X		X							
3	X			Х						

Indicates this configuration is not supported

4541646 R6.0 5 March 2021

Table 11.3 Analysis of Sum-of-the-Ratios

Analysis of Sum-of-the-Ratios For All Transmitters and Configurations **Transmitter Type Configuration Number** Sum Sum WiFi 2.4 **LMR Band BlueTooth** WiFi 5 Configuration of of stand-alone Ratio stand-alone Ratio stand-alone Ratio stand-alone Ratio SAR to SAR to SAR to SAR to **Ratios SARs** (W/kg) Limit (W/kq)Limit (W/kg) Limit (W/kg) Limit SAR Limit = 8.0W/kg SAR Limit = 1.6W/kg (General Population) (W/kg) (Occupational) 1 0.000 0.000 0.314 2.510 2 **HEAD** 0.314 2.510 2.510 0.314 0.000 0.000 0.017 0.011 0.324 2.527 1 3.520 0.001 0.001 0.441 2 **BODY** 3.520 0.440 3.520 0.000 0.000 0.440 0.018 0.011 0.451 3.538

Indicates this combination is not supported

4541646 R6.0

5 March 2021

Simultaneous Transmission SAR Test Exclusion may be determined by applying the Sum-of-the-Ratios for the worst case combinations of all simultaneously transmitting transmitters. From the above table, none of the stand-alone transmitters exceed their respective limit. Additionally, the Sum-of-the-Ratios for the worst case combinations of the transmitters with General Population limits do not exceed 1.0.

4541646 R6.0 5 March 2021

12.0 SAR EXPOSURE LIMITS

Table 12.1 Exposure Limits

SAR RF EXPOSURE LIMITS							
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /				
		Uncontrolled Exposure (4)	Controlled Exposure ⁽⁵⁾				
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg				
(averaged	over the whole body)	0.00 W/Ng	0.4 W /Ng				
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg				
(Head and Trunk av	eraged over any 1 g of tissue)	1.0 W/kg	0.0 W/kg				
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg				
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/Ng				

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

4541646 R6.0 5 March 2021

13.0 DETAILS OF SAR EVALUATION

Table 13.1 Day Log

DAY LOG					Dielectric			
	Ambient	Fluid	Relative	Barometric				
Date	Temp	Temp	Humidity	Pressure	Fluid	ပ	ş	
	(° C)	(° C)	(%)	(kPa)	FIU	SPC	Test	Task
Jan 11 2021	24.9	23.8	27%	102.1	х	х		835H Fluids and SPC
Jan 12 2021	23.8	24.1	27%	100.7			х	835H NA Body SAR Testing
Jan 13 2021	23.5	23.3	27%	100.4			х	835H NA Body/Face SAR Testing
Jan 14 2021	24.3	23.3	23%	103.7			Х	835H NA SAR Face Testing
Jan 14 2021	24.8	24.2	22%	103.5	Х	Х		835H Fluids and SPC
Jan 15 2021	23.9	23.2	23%	102.9			х	835H NA SAR Face Testing
Jan 18 2021	24.5	24.1	24%	103.5	Х	Х		2450H Fluids and SPC
Jan 19 2021	25	24.4	19%	102.4			х	2450H NA SAR Testing
Jan 20 2021	25.7	22.2	22%	102.3		х	х	5250H & 5750H Fluids and SPC
Jan 21 2021	26.3	24.0	18%	102.5			х	5250H & 5750H NA SAR Testing

4541646 R6.0 5 March 2021

Table 13.2 DUT Positioning

DUT Positioning

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

The DUT was securely clamped into the device holder with the surface of the DUT normally held to the user's face facing the phantom. The device holder was adjusted to ensure that the horizontal axis of the DUT was parallel to the bottom of the phantom. A 25mm spacer block was used to set the separation distance between the DUT and the phantom to 25mm. When applicable and unless by design, the antenna of the DUT was prevented from sagging away from the phantom. The spacer block was removed before testing.

BODY Configuration

Body-Worn and Audio Accessories were affixed to the DUT in the manner in which they are intended to be used. The DUT, with its accessories, were securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUT's accessory to the phantom. Body-Worn Accessory straps, linkages, etc. were positioned in a fashion resembling that for which they were intended to be used. Audio Accessory cables, etc., were positioned in a fashion resembling that for which they were intended to be used.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

Table 13.3 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 1.0^{\circ}$ C throughout the test series. TSL analysis and SPC were repeated when the Active TSL use exceeded 84 hours.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the <u>Maximum Distance</u> to Phantom Surface to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. The SAR values in the 50% DC column have been scaled by 50% for 50% Push-To-Talk duty cycle compensation. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY and FACE configurations, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are <u>ONLY</u> scaled up, not down. The final results of this scaling is the *reported SAR* which appears on the Cover Page of this report.

4541646 R6.0 5 March 2021

Table 13.4 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC OET Bulletin 65 Supplement C targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

Table 13.5 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz					
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm				
(Geometric Center of Probe Center)	4 1 1 111111				
Maximum probe angle normal to phantom surface.	5° ± 1°				
(Flat Section ELI Phantom)	5° ± 1°				
Area Scan Spatial Resolution ΔX, ΔY	15 mm				
Zoom Scan Spatial Resolution ΔX , ΔY	7.5 mm				
Zoom Scan Spatial Resolution ∆Z	Emm				
(Uniform Grid)	5 mm				
Zoom Scan Volume X, Y, Z	30 mm				
Phantom	ELI				
Fluid Depth	150 ± 5 mm				
An Area Scan with an area extending beyond the device was used to locate the candi within 2dB of the global maxima.	date maximas				

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used

to determine the 1-gram and 10-gram peak spatial-average SAR

4541646 R6.0 5 March 2021

Table 13.6 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz					
Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center)	4 ± 1 mm				
Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom)	5° ± 1°				
Area Scan Spatial Resolution ΔX, ΔY	12 mm				
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm				
Zoom Scan Spatial Resolution ∆Z (Uniform Grid)	5 mm				
Zoom Scan Volume X, Y, Z	30 mm				
Phantom	ELI				
Fluid Depth	150 ± 5 mm				

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

Table 13.7 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz					
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm				
(Geometric Center of Probe Center)	4 1 111111				
Maximum probe angle normal to phantom surface.	5° ± 1°				
(Flat Section ELI Phantom)	3 I I				
Area Scan Spatial Resolution ΔX, ΔΥ	10 mm				
Zoom Scan Spatial Resolution ΔX, ΔΥ	4 mm				
Zoom Scan Spatial Resolution ∆Z	2 mm				
(Uniform Grid)	2 111111				
Zoom Scan Volume X, Y, Z	22 mm				
Phantom	ELI				
Fluid Depth	100 ± 5 mm				

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

4541646 R6.0 5 March 2021

14.0 MEASUREMENT UNCERTAINTIES

Table 14.1 Measurement Uncertainty

IEEE 1528 Table E.9										
UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEEE 1528-2013 Table 9)										
Source of Uncertainty	IEEE 1528 Section	Toler ±%	Prob Dist	Div	Div	Ci	Ci	Stand Unct ±%	Stand Unct ±%	V _i or V _{eff}
Measurement System						(1g)	(10g)	(1g)	(10g)	
EX3DV4 Probe Calibration** (k=1)	E.2.1	6.7	N	1.00	1	1	1	6.7	6.7	∞
Axial Isotropy** (<i>k</i> =1)	E.2.2	0.6	R	1.73	√3	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy** (k=1)	E.2.2	3.2	R	1.73	√3	0.7	0.7	1.3	1.3	∞
Boundary Effect*	E.2.3	1.0	R	1.73	√3	1	1	0.6	0.6	∞
Linearity** (k=1)	E.2.4	0.5	R	1.73	√3	1	1	0.3	0.3	∞
System Detection Limits*	E.2.4	1.0	R	1.73	√3	1	1	0.6	0.6	∞
Modulation Response** (k=1)	E.2.5	8.3	R	1.73	√3	1	1	4.8	4.8	∞
Readout Electronics*	E.2.6	0.3	N	1.00	1	1	1	0.3	0.3	∞
Response Time*	E.2.7	0.8	R	1.73	√3	1	1	0.5	0.5	∞
Integration Time*	E.2.8	2.6	R	1.73	√3	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	0.0	R	1.73	√3	1	1	0.0	0.0	10
RF Ambient Conditions - Reflection	E.6.1	0.0	R	1.73	√3	1	1	0.0	0.0	10
Probe Positioner Mechanical Tolerance*	E.6.2	0.0	R	1.73	√3	1	1	0.0	0.0	∞
Probe Positioning wrt Phantom Shell*	E.6.3	0.4	R	1.73	√3	1	1	0.2	0.2	∞
Post-processing*	E.5	2.0	R	1.73	√3	1	1	1.2	1.2	∞
Test Sample Related										
Test Sample Positioning	E.4.2	2.2	N	1.00	1	1	1	2.2	2.2	5
Device Holder Uncertainty*	E.4.1	3.6	N	1.00	1	1	1	3.6	3.6	∞
SAR Drift Measurement ⁽²⁾	E.2.9	0.0	R	1.73	√3	1	1	0.0	0.0	∞
SAR Power Scaling ⁽³⁾	E.6.5	0.0	R	1.73	√3	1	1	0.0	0.0	∞
Phantom and Tissue Parameters										
Phantom Uncertainty*	E.3.1	6.1	R	1.73	√3	1	1	3.5	3.5	∞
SAR Correction Uncertainty	E.3.2	1.6	N	1.00	1	1	0.84	1.6	1.3	∞
Liquid Conductivity (measurement)	E.3.3	5.0	N	1.00	1	0.78	0.71	3.9	3.6	10
Liquid Permittivity (measurement)	E.3.3	5.0	N	1.00	1	0.23	0.26	1.2	1.3	10
Liquid Conductivity (Temperature)	E.3.2	0.4	R	1.73	√3	0.78	0.71	0.2	0.2	10
Liquid Permittivity Temperature)	E.3.2	0.2	R	1.73	√3	0.23	0.26	0.0	0.0	10
Effective Degrees of Freedom							V _{eff} =	1141		
Combined Standard Uncertainty			RSS					11.1	11.0	
Expanded Uncertainty (95% Confidence Interval)			k=2					22.2	21.9	
Measuremen		y Table i	n accord	ance wit	h IEEE	Standard	d 1528-2	003		

⁽¹⁾ The Effective Degrees of Freedom is > 30

Therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

⁽²⁾ The SAR Value is compensated for Drift

⁽³⁾ SAR Power Scaling not Required

^{*} Provided by SPEAG for DASY4

^{**} Standard Uncertainty Calibration Data Provided by SPEAG for EX3DEV4 Probe

4541646 R6.0 5 March 2021

Table 14.2 Calculation of Degrees of Freedom

Table 14.2							
Calculation of the Degrees and Effective Degrees of Freedom							
	_	4					
	v _{eff} =	т					
$v_i = n - 1$		ζ-	cí^uí^				
		_	Vi				
		<i>i</i> =1					

4541646 R6.0 5 March 2021

15.0 FLUID DIELECTRIC PARAMETERS

Note: Effective February 19, 2019 TCB Workshop: FCC has permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests.TSL can be changed in a Permissive Change. If SAR increased and Original SAR > 1.2W/kg, additional SAR measurements will be required.

Table 15.1 Fluid Dielectric Parameters 835MHz HEAD TSL, 11 Jan 2021

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Mon 11/Jan/2021 13:47:59
Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test s Sigma of UIM

******	*****		******	******
Freq	FCC_eH	FCC_sl	-l Test_e	Test_s
0.7350	42.02	0.89	41.72	0.81
0.7450	41.97	0.89	41.86	0.83
0.7550	41.92	0.89	41.75	0.84
0.7650	41.86	0.89	41.57	0.85
0.7750	41.81	0.90	41.20	0.85
0.7850	41.76	0.90	41.29	0.85
0.7950	41.71	0.90	41.19	0.88
0.8050	41.66	0.90	41.43	0.89
0.8150	41.60	0.90	40.95	0.90
0.8250	41.55	0.90	40.78	0.90
0.8350	41.50	0.90	40.89	0.90
0.8450	41.50	0.91	40.55	0.91
0.8550	41.50	0.92	40.60	0.92
0.8650	41.50	0.93	40.15	0.93
0.8750	41.50	0.94	40.09	0.95
0.8850	41.50	0.95	39.96	0.96
0.8950	41.50	0.96	39.89	0.97
0.9050	41.50	0.97	39.88	0.98
0.9150	41.50	0.98	39.63	0.99
0.9250	41.48	0.98	39.67	1.01
0.9350	41.46	0.99	39.65	1.01

4541646 R6.0 5 March 2021

Table 15.2 Fluid Dielectric Analysis 835MHz HEAD TSL, 11 Jan 2021

	FLUID DIELECTRIC PARAMETERS								
Date: 2021 Fluid Temp: 23.8		emp: 23.8	Frequency:	835MHz	Tissue:	Head			
Freq	(MHz)	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
735.0000		41.7200	0.8100	42.0200	0.89	-0.71%	-8.99%		
745.0000		41.8600	0.8300	41.9700	0.89	-0.26%	-6.74%		
755.0000		41.7500	0.8400	41.9200	0.89	-0.41%	-5.62%		
764.0000	*	41.5880	0.8490	41.8660	0.89	-0.66%	-4.61%		
765.0000		41.5700	0.8500	41.8600	0.89	-0.69%	-4.49%		
766.0000	*	41.5330	0.8500	41.8550	0.89	-0.77%	-4.60%		
775.0000		41.2000	0.8500	41.8100	0.90	-1.46%	-5.56%		
785.0000		41.2900	0.8500	41.7600	0.90	-1.13%	-5.56%		
794.0000	*	41.2000	0.8770	41.7150	0.90	-1.23%	-2.56%		
795.0000		41.1900	0.8800	41.7100	0.90	-1.25%	-2.22%		
805.0000		41.4300	0.8900	41.6600	0.90	-0.55%	-1.11%		
806.0000	*	41.3820	0.8910	41.6540	0.90	-0.65%	-1.00%		
812.0000	*	41.0940	0.8970	41.6180	0.90	-1.26%	-0.33%		
815.0000		40.9500	0.9000	41.6000	0.90	-1.56%	0.00%		
824.0000	*	40.7970	0.9000	41.5550	0.90	-1.82%	0.00%		
825.0000		40.7800	0.9000	41.5500	0.90	-1.85%	0.00%		
835.0000		40.8900	0.9000	41.5000	0.90	-1.47%	0.00%		
845.0000		40.5500	0.9100	41.5000	0.91	-2.29%	0.00%		
851.0000	*	40.5800	0.9160	41.5000	0.92	-2.22%	0.00%		
855.0000		40.6000	0.9200	41.5000	0.92	-2.17%	0.00%		
861.0000	*	40.3300	0.9260	41.5000	0.93	-2.82%	0.00%		
865.0000		40.1500	0.9300	41.5000	0.93	-3.25%	0.00%		
869.0000	*	40.1260	0.9380	41.5000	0.93	-3.31%	0.43%		
875.0000		40.0900	0.9500	41.5000	0.94	-3.40%	1.06%		
885.0000		39.9600	0.9600	41.5000	0.95	-3.71%	1.05%		
895.0000		39.8900	0.9700	41.5000	0.96	-3.88%	1.04%		
905.0000		39.8800	0.9800	41.5000	0.97	-3.90%	1.03%		
915.0000		39.6300	0.9900	41.5000	0.98	-4.51%	1.02%		
925.0000		39.6700	1.0100	41.4800	0.98	-4.36%	3.06%		
935.0000		39.6500	1.0100	41.4600	0.99	-4.37%	2.02%		

*Channel Frequency Tested

4541646 R6.0

5 March 2021

Table 15.3 Fluid Dielectric Parameters 835MHz HEAD TSL, 14 Jan 2021

Aprel Laboratory
Test Result for UIM Dielectric Parameter

Thu 14/Jan/2021 18:18:01

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq	FCC_el-	IFCC_sh	HTest_e	Test_s
0.7350	42.02	0.89	41.18	0.83
0.7450	41.97	0.89	40.71	0.84
0.7550	41.92	0.89	40.51	0.85
0.7650	41.86	0.89	40.75	0.87
0.7750	41.81	0.90	40.31	0.89
0.7850	41.76	0.90	40.72	0.89
0.7950	41.71	0.90	40.39	0.92
0.8050	41.66	0.90	40.24	0.93
0.8150	41.60	0.90	40.73	0.93
0.8250	41.55	0.90	40.50	0.95
0.8350	41.50	0.90	40.06	0.94
0.8450	41.50	0.91	39.80	0.95
0.8550	41.50	0.92	39.70	0.94
0.8650	41.50	0.93	39.22	0.95
0.8750	41.50	0.94	39.23	0.95
0.8850	41.50	0.95	39.01	0.97
0.8950	41.50	0.96	38.86	0.99
0.9050	41.50	0.97	38.56	1.01
0.9150	41.50	0.98	39.00	1.01
0.9250	41.48	0.98	38.79	1.04
0.9350	41.46	0.99	38.97	1.05

4541646 R6.0 5 March 2021

Table 15.4 Fluid Dielectric Analysis 835MHz HEAD TSL, 14 Jan 2021

	FLUID DIELECTRIC PARAMETERS								
Date:	14 Jan 2021	Fluid Te	emp: 24.2	Frequency:	835MHz	Tissue:	Head		
Freq	Freq (MHz)		Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
735.0000		41.1800	0.8300	42.0200	0.89	-2.00%	-6.74%		
745.0000		40.7100	0.8400	41.9700	0.89	-3.00%	-5.62%		
755.0000		40.5100	0.8500	41.9200	0.89	-3.36%	-4.49%		
764.0000	*	40.7260	0.8680	41.8660	0.89	-2.72%	-2.47%		
765.0000		40.7500	0.8700	41.8600	0.89	-2.65%	-2.25%		
766.0000	*	40.7060	0.8720	41.8550	0.89	-2.75%	-2.13%		
775.0000		40.3100	0.8900	41.8100	0.90	-3.59%	-1.11%		
785.0000		40.7200	0.8900	41.7600	0.90	-2.49%	-1.11%		
794.0000	*	40.4230	0.9170	41.7150	0.90	-3.10%	1.89%		
795.0000		40.3900	0.9200	41.7100	0.90	-3.16%	2.22%		
805.0000		40.2400	0.9300	41.6600	0.90	-3.41%	3.33%		
806.0000	*	40.2890	0.9300	41.6540	0.90	-3.28%	3.33%		
812.0000	*	40.5830	0.9300	41.6180	0.90	-2.49%	3.33%		
815.0000		40.7300	0.9300	41.6000	0.90	-2.09%	3.33%		
824.0000	*	40.5230	0.9480	41.5550	0.90	-2.48%	5.33%		
825.0000		40.5000	0.9500	41.5500	0.90	-2.53%	5.56%		
835.0000		40.0600	0.9400	41.5000	0.90	-3.47%	4.44%		
845.0000		39.8000	0.9500	41.5000	0.91	-4.10%	4.40%		
851.0000	*	39.7400	0.9440	41.5000	0.92	-4.24%	3.06%		
855.0000		39.7000	0.9400	41.5000	0.92	-4.34%	2.17%		
861.0000	*	39.4120	0.9460	41.5000	0.93	-5.03%	2.16%		
865.0000		39.2200	0.9500	41.5000	0.93	-5.49%	2.15%		
869.0000	*	39.2240	0.9500	41.5000	0.93	-5.48%	1.71%		
875.0000		39.2300	0.9500	41.5000	0.94	-5.47%	1.06%		
885.0000		39.0100	0.9700	41.5000	0.95	-6.00%	2.11%		
895.0000		38.8600	0.9900	41.5000	0.96	-6.36%	3.13%		
905.0000		38.5600	1.0100	41.5000	0.97	-7.08%	4.12%		
915.0000		39.0000	1.0100	41.5000	0.98	-6.02%	3.06%		
925.0000		38.7900	1.0400	41.4800	0.98	-6.49%	6.12%		
935.0000		38.9700	1.0500	41.4600	0.99	-6.01%	6.06%		

*Channel Frequency Tested

4541646 R6.0 5 March 2021

Table 15.5 Fluid Dielectric Parameters 2450MHz HEAD TSL, 18 Jan 2021

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Mon 18/Jan/2021 11:42:51

Freq Frequency(GHz)
FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

*******	*******	*****	******	******
Freq	FCC_eH	FCC_sh	lTest_e	Test_s
2.3500	39.38	1.71	36.75	1.69
2.3600	39.36	1.72	36.73	1.68
2.3700	39.34	1.73	36.62	1.71
2.3800	39.32	1.74	36.56	1.72
2.3900	39.31	1.75	36.72	1.72
2.4000	39.29	1.76	36.55	1.72
2.4100	39.27	1.76	36.42	1.73
2.4200	39.25	1.77	36.26	1.75
2.4300	39.24	1.78	36.35	1.73
2.4400	39.22	1.79	36.03	1.76
2.4500	39.20	1.80	36.21	1.76
2.4600	39.19	1.81	36.10	1.81
2.4700	39.17	1.82	36.07	1.81
2.4800	39.16	1.83	36.14	1.82
2.4900	39.15	1.84	36.13	1.85
2.5000	39.14	1.85	36.04	1.87
2.5100	39.12	1.87	36.01	1.85
2.5200	39.11	1.88	35.99	1.86
2.5300	39.10	1.89	36.08	1.85
2.5400	39.09	1.90	35.95	1.89
2.5500	39.07	1.91	35.96	1.89

4541646 R6.0 5 March 2021

Table 15.6 Fluid Dielectric Analysis 2450MHz HEAD TSL, 18 Jan 2021

	FLUID DIELECTRIC PARAMETERS								
Date: 18 Jar	20	21 Fluid Te	emp: 24.1	Frequency:	2450MHz	Tissue:	Head		
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
2350.0000		36.7500	1.6900	39.3800	1.71	-6.68%	-1.17%		
2360.0000		36.7300	1.6800	39.3600	1.72	-6.68%	-2.33%		
2370.0000		36.6200	1.7100	39.3400	1.73	-6.91%	-1.16%		
2380.0000		36.5600	1.7200	39.3200	1.74	-7.02%	-1.15%		
2390.0000		36.7200	1.7200	39.3100	1.75	-6.59%	-1.71%		
2400.0000		36.5500	1.7200	39.2900	1.76	-6.97%	-2.27%		
2410.0000		36.4200	1.7300	39.2700	1.76	-7.26%	-1.70%		
2412.0000	*	36.3880	1.7340	39.2660	1.76	-7.33%	-1.59%		
2420.0000		36.2600	1.7500	39.2500	1.77	-7.62%	-1.13%		
2430.0000		36.3500	1.7300	39.2400	1.78	-7.36%	-2.81%		
2437.0000	*	36.1260	1.7510	39.2260	1.79	-7.90%	-2.01%		
2440.0000		36.0300	1.7600	39.2200	1.79	-8.13%	-1.68%		
2450.0000		36.2100	1.7600	39.2000	1.80	-7.63%	-2.22%		
2460.0000		36.1000	1.8100	39.1900	1.81	-7.88%	0.00%		
2462.0000	*	36.0940	1.8100	39.1860	1.81	-7.89%	-0.11%		
2470.0000		36.0700	1.8100	39.1700	1.82	-7.91%	-0.55%		
2480.0000		36.1400	1.8200	39.1600	1.83	-7.71%	-0.55%		
2490.0000		36.1300	1.8500	39.1500	1.84	-7.71%	0.54%		
2500.0000		36.0400	1.8700	39.1400	1.85	-7.92%	1.08%		
2510.0000		36.0100	1.8500	39.1200	1.87	-7.95%	-1.07%		
2520.0000		35.9900	1.8600	39.1100	1.88	-7.98%	-1.06%		
2530.0000		36.0800	1.8500	39.1000	1.89	-7.72%	-2.12%		
2540.0000		35.9500	1.8900	39.0900	1.90	-8.03%	-0.53%		
2550.0000		35.9600	1.8900	39.0700	1.91	-7.96%	-1.05%		

*Channel Frequency Tested

4541646 R6.0 5 March 2021

Table 15.5 Fluid Dielectric Parameters 5250MHz HEAD TSL, 20 Jan 2021

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Wed 20/Jan/2021 11:50:56

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	*******	*******	******
Freq	FCC_el-	IFCC_sh	lTest_e	Test_s
5.1500	36.04	4.60	34.27	4.79
5.1600	36.03	4.61	34.30	4.77
5.1700	36.02	4.62	34.28	4.80
5.1800	36.01	4.63	34.05	4.88
5.1900	36.00	4.64	34.17	4.76
5.2000	35.99	4.65	34.23	4.82
5.2100	35.97	4.67	34.20	4.89
5.2200	35.96	4.68	34.11	4.91
5.2300	35.95	4.69	34.16	4.91
5.2400	35.94	4.70	34.15	4.80
5.2500	35.93	4.71	34.15	4.85
5.2600	35.92	4.72	34.27	4.92
5.2700	35.91	4.73	33.94	4.93
5.2800	35.89	4.74	34.00	4.96
5.2900	35.88	4.75	34.10	4.95
5.3000	35.87	4.76	34.24	4.98
5.3100	35.86	4.77	34.15	4.93
5.3200	35.85	4.78	34.32	5.02
5.3300	35.84	4.79	34.11	4.97
5.3400	35.83	4.80	34.02	5.04
5.3500	35.81	4.81	33.89	4.98

4541646 R6.0 5 March 2021

Table 15.6 Fluid Dielectric Analysis 5250MHz HEAD TSL, 20 Jan 2021

	FLUID DIELECTRIC PARAMETERS								
Date: 20 Jan	202	21 Fluid Te	emp: 22.2	Frequency:	5250MHz	Tissue:	Head		
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
5150.0000		34.2700	4.7900	36.0400	4.60	-4.91%	4.13%		
5160.0000		34.3000	4.7700	36.0300	4.61	-4.80%	3.47%		
5170.0000		34.2800	4.8000	36.0200	4.62	-4.83%	3.90%		
5180.0000	*	34.0500	4.8800	36.0100	4.63	-5.44%	5.40%		
5190.0000		34.1700	4.7600	36.0000	4.64	-5.08%	2.59%		
5200.0000		34.2300	4.8200	35.9900	4.65	-4.89%	3.66%		
5210.0000		34.2000	4.8900	35.9700	4.67	-4.92%	4.71%		
5220.0000	*	34.1100	4.9100	35.9600	4.68	-5.14%	4.91%		
5230.0000		34.1600	4.9100	35.9500	4.69	-4.98%	4.69%		
5240.0000		34.1500	4.8000	35.9400	4.70	-4.98%	2.13%		
5250.0000		34.1500	4.8500	35.9300	4.71	-4.95%	2.97%		
5260.0000	*	34.2700	4.9200	35.9200	4.72	-4.59%	4.24%		
5270.0000		33.9400	4.9300	35.9100	4.73	-5.49%	4.23%		
5280.0000		34.0000	4.9600	35.8900	4.74	-5.27%	4.64%		
5290.0000		34.1000	4.9500	35.8800	4.75	-4.96%	4.21%		
5300.0000		34.2400	4.9800	35.8700	4.76	-4.54%	4.62%		
5310.0000		34.1500	4.9300	35.8600	4.77	-4.77%	3.35%		
5320.0000		34.3200	5.0200	35.8500	4.78	-4.27%	5.02%		
5330.0000		34.1100	4.9700	35.8400	4.79	-4.83%	3.76%		
5340.0000		34.0200	5.0400	35.8300	4.80	-5.05%	5.00%		
5350.0000		33.8900	4.9800	35.8100	4.81	-5.36%	3.53%		

*Channel Frequency Tested

4541646 R6.0 5 March 2021

Table 15.7 Fluid Dielectric Parameters 5750MHz HEAD TSL, 20 Jan 2021

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Wed 20/Jan/2021 12:40:36

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******		*****	******	*****
Freq	FCC_eH	IFCC_sh	lTest_e	Test_s
5.6500	35.47	5.12	33.21	5.38
5.6600	35.46	5.13	33.13	5.43
5.6700	35.45	5.14	33.21	5.38
5.6800	35.44	5.15	33.24	5.38
5.6900	35.43	5.16	33.12	5.40
5.7000	35.41	5.17	33.24	5.34
5.7100	35.40	5.18	33.26	5.38
5.7200	35.39	5.19	33.25	5.42
5.7300	35.38	5.20	33.12	5.38
5.7400	35.37	5.21	33.30	5.43
5.7500	35.36	5.22	33.21	5.48
5.7600	35.35	5.23	33.16	5.46
5.7700	35.33	5.24	33.11	5.54
5.7800	35.32	5.25	33.11	5.53
5.7900	35.31	5.26	33.20	5.54
5.8000	35.30	5.27	33.25	5.57
5.8100	35.29	5.28	33.10	5.59
5.8200	35.28	5.29	33.16	5.61
5.8300	35.27	5.30	32.92	5.53
5.8400	35.25	5.31	33.19	5.60
5.8500	35.24	5.32	33.16	5.60

4541646 R6.0 5 March 2021

Table 15.8 Fluid Dielectric Analysis 5750MHz HEAD TSL, 20 Jan 2021

FLUID DIELECTRIC PARAMETERS								
Date: 20 Jan	20	21 Fluid Te	emp: 22.2	Frequency:	575MHz	Tissue:	Head	
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	
5650.0000		33.2100	5.3800	35.4700	5.12	-6.37%	5.08%	
5660.0000		33.1300	5.4300	35.4600	5.13	-6.57%	5.85%	
5670.0000		33.2100	5.3800	35.4500	5.14	-6.32%	4.67%	
5680.0000		33.2400	5.3800	35.4400	5.15	-6.21%	4.47%	
5690.0000		33.1200	5.4000	35.4300	5.16	-6.52%	4.65%	
5700.0000		33.2400	5.3400	35.4100	5.17	-6.13%	3.29%	
5710.0000		33.2600	5.3800	35.4000	5.18	-6.05%	3.86%	
5720.0000		33.2500	5.4200	35.3900	5.19	-6.05%	4.43%	
5730.0000		33.1200	5.3800	35.3800	5.20	-6.39%	3.46%	
5740.0000		33.3000	5.4300	35.3700	5.21	-5.85%	4.22%	
5745.0000	*	33.2550	5.4550	35.3650	5.22	-5.97%	4.60%	
5750.0000		33.2100	5.4800	35.3600	5.22	-6.08%	4.98%	
5760.0000		33.1600	5.4600	35.3500	5.23	-6.20%	4.40%	
5770.0000		33.1100	5.5400	35.3300	5.24	-6.28%	5.73%	
5780.0000		33.1100	5.5300	35.3200	5.25	-6.26%	5.33%	
5785.0000	*	33.1550	5.5350	35.3150	5.26	-6.12%	5.33%	
5790.0000		33.2000	5.5400	35.3100	5.26	-5.98%	5.32%	
5800.0000		33.2500	5.5700	35.3000	5.27	-5.81%	5.69%	
5810.0000		33.1000	5.5900	35.2900	5.28	-6.21%	5.87%	
5820.0000		33.1600	5.6100	35.2800	5.29	-6.01%	6.05%	
5825.0000	*	33.0400	5.5700	35.2750	5.30	-6.34%	5.19%	
5830.0000		32.9200	5.5300	35.2700	5.30	-6.66%	4.34%	
5840.0000		33.1900	5.6000	35.2500	5.31	-5.84%	5.46%	
5850.0000		33.1600	5.6000	35.2400	5.32	-5.90%	5.26%	

*Channel Frequency Tested

4541646 R6.0

5 March 2021

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.1 System Verification Results 835MHz HEAD TSL, 11 Jan 2021

System Verification Test Results							
	.4.	Frequency	V	Validation Source			
Da	ate	(MHz)	P	/N	S/N		
Jan 1	1 2021	835	D83	5V2	4d075		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)		
Head	23.8	25	27%	250	15		
		Fluid Pa	rameters				
	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
40.89	41.50	-1.47%	0.90	0.90	0.00%		
		Measur	ed SAR				
	1 gram		10 gram				
Measured	Target	Deviation	Measured	Target	Deviation		
2.23	2.41	-7.47%	1.44	1.55	-7.10%		
	Me	asured SAR No	ormalized to 1.	0W			
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
8.92	9.45	-5.61%	5.76	6.11	-5.73%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

4541646 R6.0

5 March 2021

Table 16.2 System Verification Results 835MHz HEAD TSL, 14 Jan 2021

System Verification Test Results							
Date		Frequency	Valid	dation Sour	ce		
Date		(MHz)	P/N		S/N		
Jan 14 20	21	835	D835\	/2	4d075		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)		
Head	24.2	25	22%	250	15		
	Fluid Parameters						
P	ermittivity	1	C	onductivity			
Measured	Target	Deviation	Measured	Target	Deviation		
40.06	41.50	-3.47%	0.94	0.90	4.44%		
		Measu	red SAR				
	1 gram		10 gram				
Measured	Target	Deviation	Measured	Target	Deviation		
2.49	2.41	3.32%	1.61	1.55	3.87%		
	Mo	easured SAR N	ormalized to 1.0	W			
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
9.96	9.45	5.40%	6.44	6.11	5.40%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

4541646 R6.0 5 March 2021

Table 16.3 System Verification Results 2450MHz HEAD TSL, 18 Jan 2021

System Verification Test Results								
D	ate	Frequency	V	alidation Sour	се			
Da	ate	(MHz)	P/N		S/N			
Jan 1	8 2021	2450	D24	50V2	825			
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Forward Humidity Power (%) (mW)		Source Spacing (mm)			
Head	24.1	25	24%	250	10			
	Fluid Parameters							
	Permittivity		Conductivity					
Measured	Target	Deviation	Measured	Target	Deviation			
36.21	39.20	-7.63%	1.76	1.80	-2.22%			
		Measur	red SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
13.90	13.30	4.51%	6.63	6.16	7.63%			
	Me	asured SAR N	ormalized to 1.	0W				
	1 gram			10 gram				
Normalized	Target	Deviation	Normalized	Target	Deviation			
55.60	52.10	6.72%	26.52	24.30	9.14%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

4541646 R6.0 5 March 2021

Table 16.4 System Verification Results 5250MHz HEAD TSL, 20 Jan 2021

System Verification Test Results								
Date		Frequency	V	alidation Sour	се			
Di	ate	(MHz)	P/N		S/N			
Jan 2	0 2021	5250	D5G	HzV2	1031			
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)			
Head	22.2	26	22%	55	10			
Fluid Parameters								
	Permittivity		Conductivity					
Measured	Target	Deviation	Measured	Target	Deviation			
34.15	35.93	-4.95%	4.85	4.71	2.97%			
		Measur	ed SAR					
	1 gram		10 gram					
Measured	Target	Deviation	Measured	Target	Deviation			
4.28	4.39	-2.61%	1.25	1.26	-0.75%			
	Measured SAR Normalized to 1.0W							
	1 gram			10 gram				
Normalized	Target	Deviation	Normalized	Target	Deviation			
77.82	80.00	-2.73%	22.73	22.90	-0.75%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

4541646 R6.0 5 March 2021

Table 16.5 System Verification Results 5750MHz HEAD TSL, 20 Jan 2021

System Verification Test Results							
Date		Frequency	Validation Sour		се		
D.	ite	(MHz)	P/N		S/N		
Jan 2	0 2021	5750	D5G	HzV2	1031		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)		
Head	22.2	26	22%	55	10		
Fluid Parameters							
	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
33.21	35.36	-6.08%	5.48	5.22	4.98%		
		Measur	ed SAR				
	1 gram		10 gram				
Measured	Target	Deviation	Measured	Target	Deviation		
4.36	4.42	-1.36%	1.26	1.25	0.80%		
Measured SAR Normalized to 1.0W							
	1 gram 10 gram						
Normalized	Target	Deviation	Normalized	Target	Deviation		
79.27	80.40	-1.41%	22.90	22.80	0.44%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

4541646 R6.0

5 March 2021

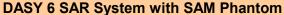

17.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 17.1 Measurement System

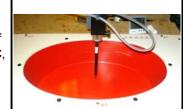
SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 Measurement Controller

4541646 R6.0 5 March 2021

Table 17.2 Measurement System Specifications


Measurement System Specification				
Specifications				
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL			
Repeatability	+/- 0.035 mm			
No. of axis	6.0			
Data Acquisition Electronic (DAE) S	ystem			
Cell Controller				
Processor	Intel(R) Core(TM) i7-7700			
Clock Speed	3.60 GHz			
Operating System	Windows 10 Professional			
Data Converter				
Features	Signal Amplifier, multiplexer, A/D converter, and control logic			
Software	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V10.2(1504)			
Software	Postprocessing Software: SEMCAD X, V14.6.12(7470)			
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock			
DASY Measurement Server				
Function	Real-time data evaluation for field measurements and surface detection			
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM			
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface			
E-Field Probe				
Model	EX3DV4			
Serial No.	3600			
Construction	Triangular core fiber optic detection system			
Frequency	10 MHz to 6 GHz			
Linearity	±0.2 dB (30 MHz to 3 GHz)			
Phantom				
Туре	ELI Elliptical Planar Phantom			
Shell Material	Fiberglass			
Thickness	2mm +/2mm			
Volume	> 30 Liter			

4541646 R6.0 5 March 2021

	Measurement System Specification					
Probe Specification						
	Symmetrical design with triangular core;					
Construction:	Built-in shielding against static charges					
	PEEK enclosure material (resistant to organic solvents, glycol)					
	In air from 10 MHz to 2.5 GHz					
Calibration:	In head simulating tissue at frequencies of 900 MHz					
	and 1.8 GHz (accuracy \pm 8%)					
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)					
Directivity:	±0.2 dB in head tissue (rotation around probe axis)					
Directivity.	±0.4 dB in head tissue (rotation normal to probe axis)					
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB					
Surface Detect:	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces					
	Overall length: 330 mm; Tip length: 16 mm;					
Dimensions:	Body diameter: 12 mm; Tip diameter: 6.8 mm					
	Distance from probe tip to dipole centers: 2.7 mm					
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe				
	Phantom Specification					

The SAM V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.

ELI Phantom

Device Positioner Specification

The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner

4541646 R6.0 5 March 2021

18.0 TEST EQUIPMENT LIST

Table 18.1 Equipment List and Calibration

Test Equipment List						
DESCRIPTION ASSET SERIAL NO. DATE CAI						
DESCRIPTION	NO.	SERIAL NO.	CALIBRATED	DUE		
Schmid & Partner DASY 6 System	-	-	-	•		
-DASY Measurement Server	00158	1078	CNR	CNR		
-Robot	00046	599396-01	CNR	CNR		
-DAE4	00019	353	17-Mar-20	17-Mar-23		
-EX3DV4 E-Field Probe	00213	3600	25-Mar-20	25-Mar-23		
-CLA 30 Validation Dipole	00300	1005	18-Mar-20	18-Mar-23		
-CLA150 Validation Dipole	00251	4007	18-Mar-20	18-Mar-23		
-D450V3 Validation Dipole	00221	1068	23-Apr-18	23-Apr-21		
-D750V3 Validation Dipole	00238	1061	21-Mar-19	21-Mar-22		
-D835V2 Validation Dipole	00217	4D075	20-Apr-18	20-Apr-21		
-D900V2 Validation Dipole	00020	54	16-Mar-20	16-Mar-23		
-D2450V2 Validation Dipole**	00219	825	24-Apr-18	24-Apr-21		
-D5GHzV2 Validation Dipole	00126	1031	26-Apr-18	26-Apr-21		
ELI Phantom	00247	1234	CNR	CNR		
SAM Phantom	00154	1033	CNR	CNR		
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR		
Gigatronics 8652A Power Meter	00007	1835801	26-Mar-19	26-Mar-22		
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU		
Gigatronics 80334A Power Sensor	00237	1837001	26-Mar-19	26-Mar-22		
HP 8753ET Network Analyzer	00134	US39170292	6-Jan-21	6-Jan-24		
Rohde & Schwarz SMR20 Signal Generator	00006	100104	11-Aug-20	11-Aug-23		
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR		
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR		
Narda Directional Coupler 3020A	00064	-	CNR	CNR		
Traceable VWR Thermometer	00334	192385455	6-Aug-19	6-Aug-21		
Kangaroo VWR Humidity/Thermometer	00334	192385455	5-Aug-19	6-Aug-22		
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR		
DC-18G 10W 30db Attenuator	00102	-	COU	COU		
R&S FSP40 Spectrum Analyzer	00241	100500	15-May-18	15-May-21		
RF Cable-SMA	00311	-	CNR	CNR		
HP Calibration Kit	00145	-	CNR	CNR		

CNR = Calibration Not Required

SB=Stand By

COU = Calibrate on Use

When applicable, reference Appendix $\ensuremath{\mathsf{F}}$

Note: Per KDB 865664, Dipoles are evaluated annually for return loss and impedance. The dipole's SAR target can only be assessed by the SAR equipment manufacturer and remains the target until the dipole is recalibrated by the manufacturer. The dipole's SAR is evaluated and compared to this target during each and every System Verification which is performed prior to and/or during each DUT SAR evaluation. The results of these verifications are shown in Section 16.

^{*}Verifed and Extended

 $^{^{\}star}$ *Per KDB 865664 3.2.2; Supporting documentation is included in the report for validation dipoles exceeding the recommended anual calibration cycle.

4541646 R6.0

19.0 SYSTEM VALIDATION SUMMARY

	System Validation Summary											
Frequency	Validation	Probe	Probe	Validation	Source	Tissue Tissue		Tissue Dielectrics		Validation Results		
(MHz)	Date	Model	S/N	Source	S/N	iissue	Permitivity	Conductivity	Sensitivity	Linearity	Isotropy	
30	31-May-20	EX3DV4	3600	CLA-30	1005	Head	52.40	0.75	Pass	Pass	Pass	
150	20-May-20	EX3DV4	3600	CLA-150	4007	Head	52.59	0.76	Pass	Pass	Pass	
450	12-Aug-20	EX3DV4	3600	D450V3	1068	Head	43.64	0.84	Pass	Pass	Pass	
750	20-Jun-19	EX3DV4	3600	D750V3	1061	Head	44.27	0.83	Pass	Pass	Pass	
835	17-Aug-20	EX3DV4	3600	D835V2	4d075	Head	40.60	0.87	Pass	Pass	Pass	
900	20-Aug-20	EX3DV4	3600	D900V2	045	Head	39.09	0.94	Pass	Pass	Pass	
1640	5-Jul-18	EX3DV4	3600	1620-S-2	207-00102	Head	39.87	1.27	Pass	Pass	Pass	
1800	18-Jun-19	EX3DV4	3600	D1800V2	247	Head	54.77	1.53	Pass	Pass	Pass	
2450	27-May-20	EX3DV4	3600	D2450V2	825	Head	37.21	1.95	Pass	Pass	Pass	
5250	29-May-20	EX3DV4	3600	D5GHzV2	1031	Head	34.44	5.07	Pass	Pass	Pass	
5750	28-May-20	EX3DV4	3600	D5GHzV2	1031	Head	35.16	5.56	Pass	Pass	Pass	

4541646 R6.0 5 March 2021

20.0 FLUID COMPOSITION

Table 20.1 Fluid Composition 835MHz HEAD TSL

835		835MHz Head					
Tissue Simulating Liquid (TSL) Composition							
	Component by Percent Weight						
Water Sugar Salt ⁽¹⁾ HEC ⁽²⁾ Bacteriacide ⁽³⁾							
40.71	56.63	1.48 0.99 0.19					

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 20.2 Fluid Composition 2450MHz HEAD TSL

2450			2450MHz Head				
Tissue Simulating Liquid (TSL) Composition							
	Component by Percent Weight						
Water Glycol Salt ⁽¹⁾ HEC ⁽²⁾ Bacteriacide ⁽³⁾							
52.0	48.0	0.0 0.0 0.0					

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 20.3 Fluid Composition 5250MHz Head TSL

This is a proprietary composition by SPEAG.

4541646 R6.0

5 March 2021

APPENDIX A - SYSTEM VERIFICATION PLOTS

Plot A.1 System Verification Plot, 835MHz, 11 January 2021

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d075 Procedure Name: SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 40.89$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

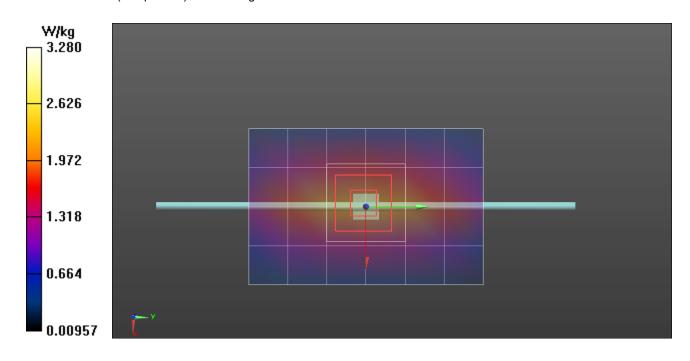
DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.17, 8.17, 8.17) @ 835 MHz; Calibrated: 3/25/2020
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.39 W/kg

SPC/SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

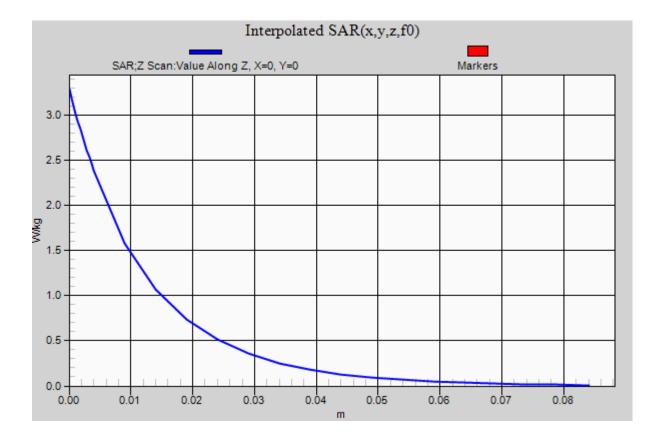
Reference Value = 51.58 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.40 W/kg


SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.44 W/kg

Ratio of SAR at M2 to SAR at M1 = 65.8%

Maximum value of SAR (measured) = 2.41 W/kg

SPC/SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW/Z Scan (1x1x28): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 12.76 (12.06, 13.41) [mm]


Maximum value of SAR (interpolated) = 3.28 W/kg

ort S/N: **4541646 R6.0** e Date: **5 March 2021**

4541646 R6.0 5 March 2021

Plot A.2 System Verification Plot, 835MHz, 14 January 2021

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d075 Procedure Name: SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.94 S/m; ϵ_r = 40.06; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.17, 8.17, 8.17) @ 835 MHz; Calibrated: 3/25/2020
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

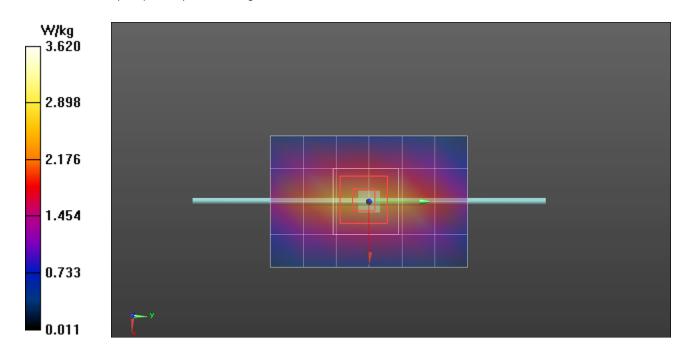
SPC/SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.69 W/kg

SPC/SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm,

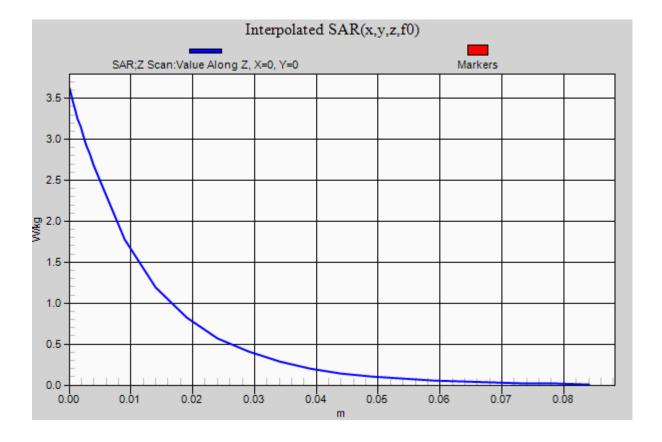
dz=5mm

Reference Value = 53.57 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.78 W/kg


SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.61 W/kg

Ratio of SAR at M2 to SAR at M1 = 66%


Maximum value of SAR (measured) = 2.68 W/kg

SPC/SPC 835H,Target=2.41W/kg,1.55W/kg,Input 250mW/Z Scan (1x1x28): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 12.66 (12.12, 13.44) [mm]

Maximum value of SAR (interpolated) = 3.62 W/kg

4541646 R6.0

5 March 2021

Plot A.3 System Verification Plot, 2450MHz, 18 January 2021

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825 Procedure Name: SPC 2450H Input=250mw, Target=[14.63][13.3][11.97]W/kg 2

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.76 S/m; ϵ_r = 36.21; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.45, 6.45, 6.45) @ 2450 MHz; Calibrated: 3/25/2020
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 2450H Input=250mw, Target=[14.63][13.3][11.97]W/kg 2/Area Scan (4x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 13.9 W/kg

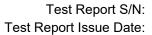
SPC/SPC 2450H Input=250mw, Target=[14.63][13.3][11.97]W/kg 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

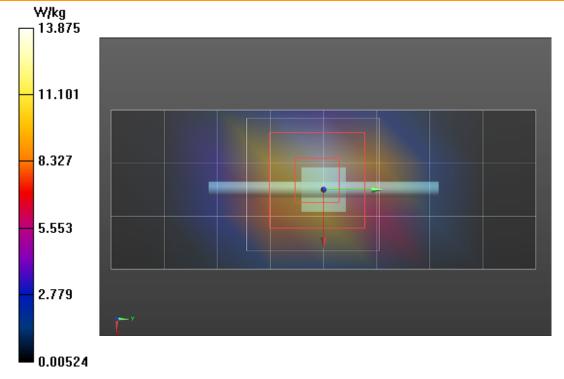
Reference Value = 92.39 V/m; Power Drift = 0.08 dB

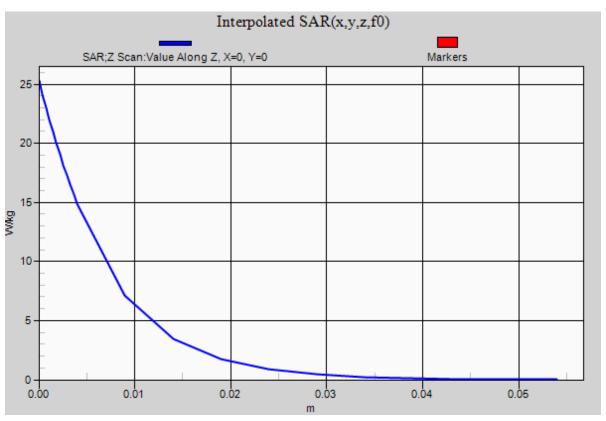
Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.27 W/kg


Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 47.5%


Maximum value of SAR (measured) = 15.5 W/kg


SPC/SPC 2450H Input=250mw, Target=[14.63][13.3][11.97]W/kg 2/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Penetration depth = 6.996 (6.786, 7.136) [mm] Maximum value of SAR (interpolated) = 25.3 W/kg

4541646 R6.0 5 March 2021

Plot A.4 System Verification Plot, 5250MHz, 20January 2021

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Procedure Name: SPC 5250H Input=55 mw, Target= [3.96][4.4][4.83], Target=7.99W/kg@100mw

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.85$ S/m; $\epsilon_r = 34.15$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(4.47, 4.47, 4.47) @ 5250 MHz; Calibrated: 3/25/2020

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn353; Calibrated: 3/17/2020

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5250H Input=55 mw, Target= [3.96][4.4][4.83], Target=7.99W/kg@100mw/Area Scan (4x7x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 7.01 W/kg

SPC/SPC 5250H Input=55 mw, Target= [3.96][4.4][4.83], Target=7.99W/kg@100mw/Zoom Scan (7x7x6)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=2mm

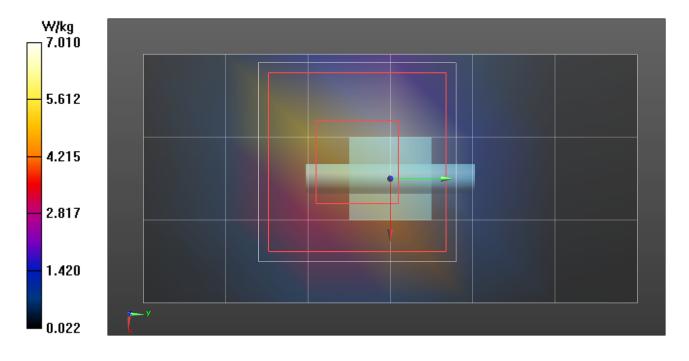
Reference Value = 29.21 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 17.0 W/kg

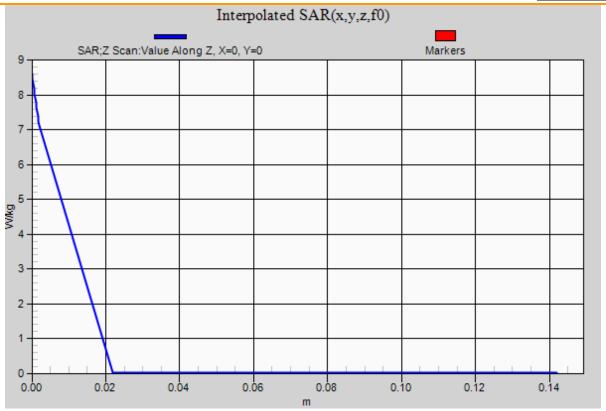
SAR(1 g) = 4.28 W/kg; SAR(10 g) = 1.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 54.8%


Maximum value of SAR (measured) = 8.83 W/kg

SPC/SPC 5250H Input=55 mw, Target= [3.96][4.4][4.83], Target=7.99W/kg@100mw/Z Scan (1x1x19): Measurement grid:


dx=20mm, dy=20mm, dz=20mm

Penetration depth = n/a (n/a, 2.782) [mm]

Maximum value of SAR (interpolated) = 8.60 W/kg

4541646 R6.0 5 March 2021

Plot A.5 System Verification Plot, 5750MHz, 18 January 2021

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:xxx

Procedure Name: SPC 5750H Input=55 mw, Target=[3.978][4.42][4.862], Target=8.04W/kg@100mw

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.48$ S/m; $\epsilon_r = 33.21$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.12, 4.12, 4.12) @ 5750 MHz; Calibrated: 3/25/2020
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5750H Input=55 mw, Target=[3.978][4.42][4.862], Target=8.04W/kg@100mw/Area Scan (4x7x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 6.26 W/kg

SPC/SPC 5750H Input=55 mw, Target=[3.978][4.42][4.862], Target=8.04W/kg@100mw/Zoom Scan (7x7x6)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=2mm

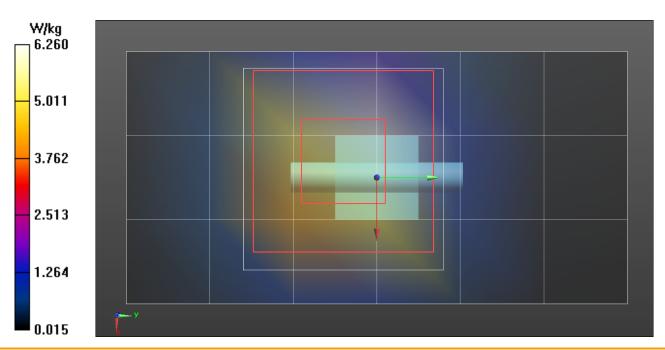
Reference Value = 27.03 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 19.0 W/kg

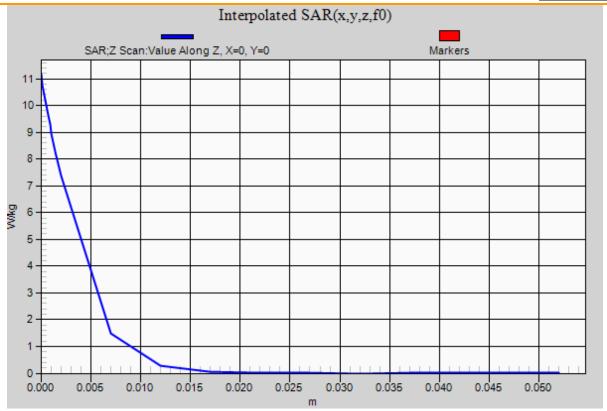
SAR(1 g) = 4.36 W/kg; SAR(10 g) = 1.26 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 51.6%


Maximum value of SAR (measured) = 9.10 W/kg

SPC/SPC 5750H Input=55 mw, Target=[3.978][4.42][4.862], Target=8.04W/kg@100mw/Z Scan (1x1x22): Measurement grid:


dx=20mm, dy=20mm, dz=5mm

Penetration depth = 2.917 (3.116, 2.754) [mm]

Maximum value of SAR (interpolated) = 11.2 W/kg

4541646 R6.0 5 March 2021

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

Plot B2

DUT: Harris XL-95; Type: PTT;

Procedure Name: B2-Harris XL-95, 766MHz Body Config, Ant 506/2,bat Li Poly, Audio MC-606

Communication System: UID 0, CW (0); Frequency: 766 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 766 MHz; σ = 0.85 S/m; ε_r = 41.533; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(8.28, 8.28, 8.28) @ 766 MHz; Calibrated: 3/25/2020

 Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 3/17/2020

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

835H/B2-Harris XL-95, 766MHz Body Config, Ant 506/2,bat Li Poly, Audio MC-606/Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.64 W/kg

835H/B2-Harris XL-95, 766MHz Body Config, Ant 506/2,bat Li Poly, Audio MC-606/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 51.27 V/m; Power Drift = -0.17 dB

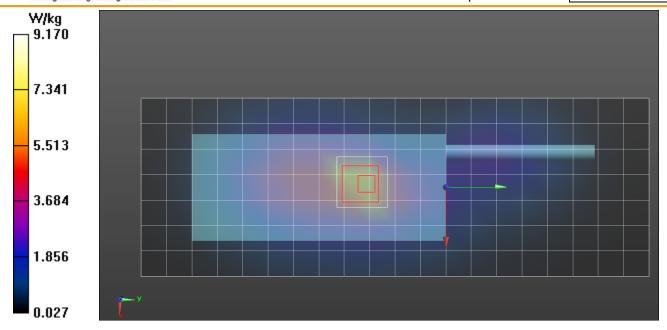
Peak SAR (extrapolated) = 10.5 W/kg

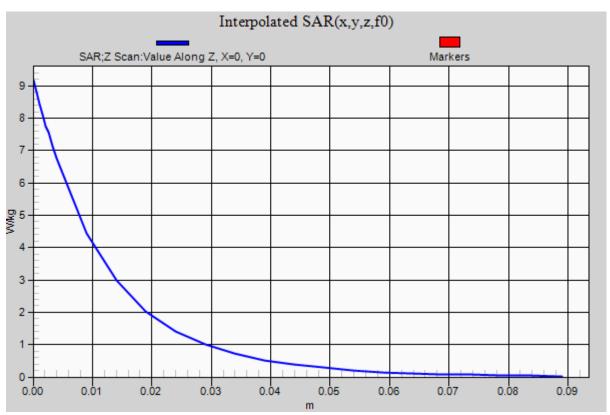
SAR(1 g) = 6.42 W/kg; SAR(10 g) = 4.02 W/kg

Smallest distance from peaks to all points 3 dB below = 17.1 mm

Ratio of SAR at M2 to SAR at M1 = 65.8%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 6.81 W/kg


835H/B2-Harris XL-95, 766MHz Body Config, Ant 506/2,bat Li Poly, Audio MC-606/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = 12.47 (11.92, 13.06) [mm] Maximum value of SAR (interpolated) = 9.17 W/kg

4541646 R6.0 5 March 2021

Plot B21

DUT: Harris XL-95; Type: PTT;

Procedure Name: B21-Harris XL-95, 766MHz, Ant 506/2,bat Li Poly, Audio MC-011617-602 w/ Ant

Communication System: UID 0, CW (0); Frequency: 766 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 766 MHz; $\sigma = 0.85 \text{ S/m}$; $\varepsilon_r = 41.533$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(8.28, 8.28, 8.28) @ 766 MHz; Calibrated: 3/25/2020

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

835H/B21-Harris XL-95, 766MHz, Ant 506/2,bat Li Poly, Audio MC-011617-602 w/ Ant/Area Scan (8x16x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 7.65 W/kg

835H/B21-Harris XL-95, 766MHz, Ant 506/2,bat Li Poly, Audio MC-011617-602 w/ Ant/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 86.02 V/m; Power Drift = 0.07 dB

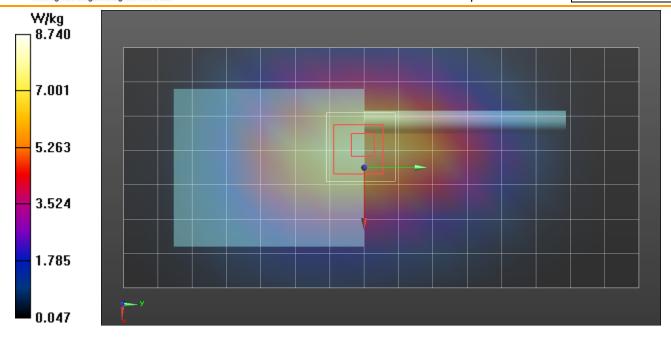
Peak SAR (extrapolated) = 8.87 W/kg

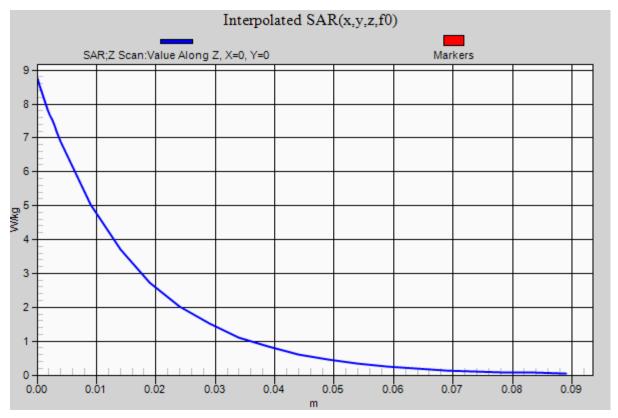
SAR(1 g) = 6.53 W/kg; SAR(10 g) = 4.67 W/kg

Ratio of SAR at M2 to SAR at M1 = 73%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.92 W/kg


835H/B21-Harris XL-95, 766MHz, Ant 506/2,bat Li Poly, Audio MC-011617-602 w/ Ant/Z Scan (1x1x29): Measurement grid:


dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = 16.27 (15.86, 16.48) [mm] Maximum value of SAR (interpolated) = 8.74 W/kg

4541646 R6.0

5 March 2021

Plot F16

DUT: Harris XL-95; Type: PTT;

Procedure Name: F16-Harris XL-95, 806MHz Face Config, Ant 506/2,bat Clam Shell

Communication System: UID 0, CW (0); Frequency: 806 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806 MHz; σ = 0.891 S/m; ε_r = 41.382; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(8.28, 8.28, 8.28) @ 806 MHz; Calibrated: 3/25/2020

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

835H/F16-Harris XL-95, 806MHz Face Config, Ant 506/2,bat Clam Shell/Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.55 W/kg

835H/F16-Harris XL-95, 806MHz Face Config, Ant 506/2,bat Clam Shell/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

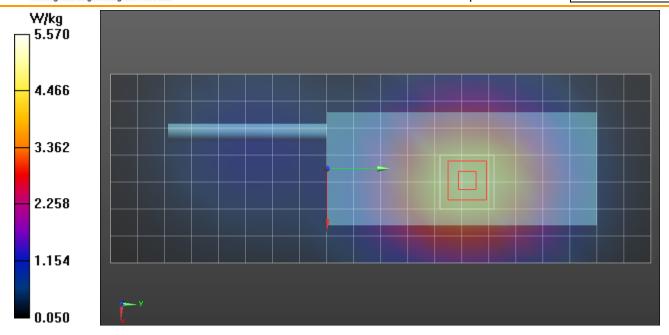
Reference Value = 32.22 V/m; Power Drift = -0.28 dB

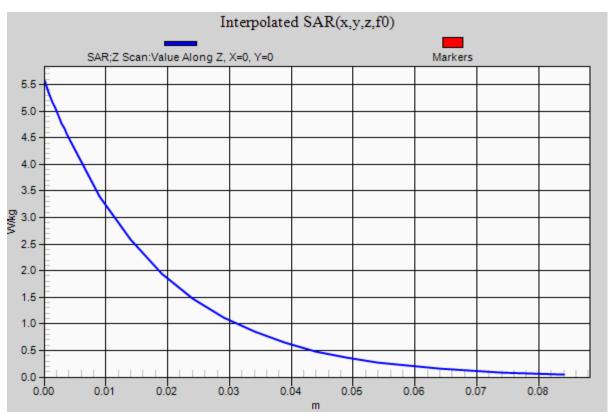
Peak SAR (extrapolated) = 5.57 W/kg

SAR(1 g) = 4.29 W/kg; SAR(10 g) = 3.18 W/kg

Ratio of SAR at M2 to SAR at M1 = 75.6%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 4.52 W/kg


835H/F16-Harris XL-95, 806MHz Face Config, Ant 506/2,bat Clam Shell/Z Scan (1x1x28): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = 18.08 (17.83, 17.95) [mm] Maximum value of SAR (interpolated) = 5.57 W/kg

4541646 R6.0 5 March 2021

Plot F25

DUT: Harris XL-95; Type: PTT;

Procedure Name: F25-Harris XL-95, 812MHz, Ant 506/1,bat Li Poly SpMc MC-718

Communication System: UID 0, CW (0); Frequency: 812 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 812 MHz; $\sigma = 0.93 \text{ S/m}$; $\epsilon_r = 40.583$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3600; ConvF(8.17, 8.17, 8.17) @ 812 MHz; Calibrated: 3/25/2020

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 3/17/2020
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

835H/F25-Harris XL-95, 812MHz, Ant 506/1,bat Li Poly SpMc MC-718/Area Scan (8x22x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.51 W/kg

835H/F25-Harris XL-95, 812MHz, Ant 506/1,bat Li Poly SpMc MC-718/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

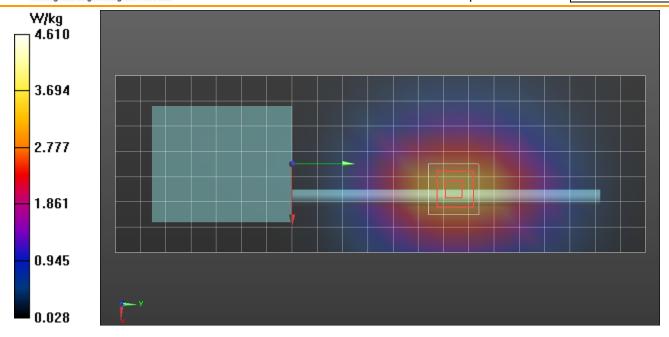
Reference Value = 11.04 V/m; Power Drift = -0.07 dB

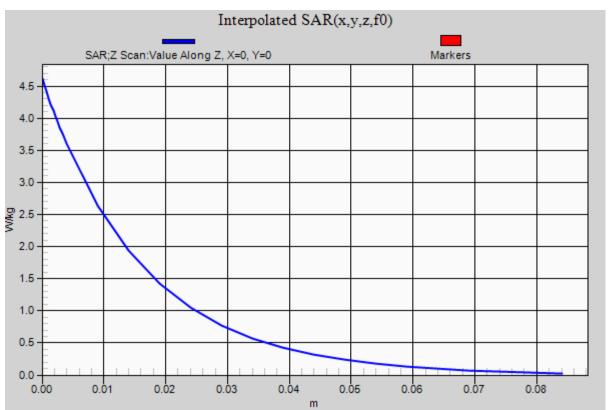
Peak SAR (extrapolated) = 4.62 W/kg

SAR(1 g) = 3.43 W/kg; SAR(10 g) = 2.46 W/kg

Ratio of SAR at M2 to SAR at M1 = 73.1%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 3.64 W/kg


835H/F25-Harris XL-95, 812MHz, Ant 506/1,bat Li Poly SpMc MC-718/Z Scan (1x1x28): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = 16.27 (16.02, 16.24) [mm] Maximum value of SAR (interpolated) = 4.61 W/kg

