

Test Report Serial Number: Test Report Date: Project Number: 45461403 R1.0 21 September 2017 1380

SAR Test Report - New Filing

Applicant:

Harris Corporation 221 Jefferson Ridge Parkway Lynchburg, VA, 24501 USA

FCC ID:

OWDTR-0154-E

Product Model Number / HVIN

See Section 2.0

Maximum Reported 1g SAR				
FCC	HEAD:	1.60		
	BODY:	4.97		
ISEDC	HEAD:	1.65	W/kg	
	BODY:	4.99		
General	Pop. Limit:	8.00		

IC Registration Number

3636B-0154

Product Name / PMN

XL-185P C1D1 Rebanded

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: 714830

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

45461403 R1.0 21 September 2017

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION/DATA REUSE	6
3.1 Previous XL-200P Test Data	6
3.2 Previous XL-185P Test Data	7
4.0 NORMATIVE REFERENCES	8
5.0 STATEMENT OF COMPLIANCE	9
6.0 RF CONDUCTED POWER MEASUREMENT	10
Table 6.0 Conducted Power Measurements 7/800 Band	10
7.0 NUMBER OF TEST CHANNELS (N _C)	10
8.0 ACCESSORIES EVALUATED	11
Table 8.0 Manufacturer's Accessory List	11
9.0 SAR MEASUREMENT SUMMARY	13
Table 9.0: Measured Results – BODY	13
Table 9.2: Measured Results - FACE	14
10.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION	15
TABLE 10.0 LIST OF POSSIBLE TRANSMITTERS	15
TABLE 10.1 LIST OF POSSIBLE TRANSMITTERS COMBINATIONS	15
Table 10.2 Analysis of Sum-of-the-Ratios	16
11.0 SCALING OF MAXIMUM MEASURE SAR	17
Table 11.0 SAR Scaling	17
12.0 SAR EXPOSURE LIMITS	19
TABLE 12.0 EXPOSURE LIMITS	19
13.0 DETAILS OF SAR EVALUATION	20
13.1 Day Log	20
13.2 DUT SETUP AND CONFIGURATION	21
13.3 DUT Positioning	22
13.4 GENERAL PROCEDURES AND REPORT	22
13.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK	23
13.6 Scan Resolution 100MHz to 2GHz	23
13.7 Scan Resolution 2GHz to 3GHz	
13.8 Scan Resolution 5GHz to 6GHz	24
14.0 MEASUREMENT UNCERTAINTIES	25
Table 14.0 Measurement Uncertainty	25

7	est	Repor	t S/N
Test Re	port	Issue	Date:

45461403 R1.0

21 September 2017

Table 14.1 Calculation of Degrees of Freedom	26
15.0 FLUID DIELECTRIC PARAMETERS	27
Table 15.0 Fluid Dielectric Parameters 835MHz BODY TSL	27
Table 15.1 Fluid Dielectric Parameters 835MHz HEAD TSL	29
Table 15.2 Fluid Dielectric Parameters 2450MHz BODY TSL	31
TABLE 15.3 FLUID DIELECTRIC PARAMETERS 5250MHz BODY TSL	33
16.0 SYSTEM VERIFICATION TEST RESULTS	35
Table 16.0 System Verification Results 835MHz BODY TSL	35
Table 16.1 System Verification Results 835MHz HEAD TSL	36
Table 16.2 System Verification Results 2450MHz BODY TSL	37
Table 16.3 System Verification Results 5250MHz BODY TSL	38
17.0 MEASUREMENT SYSTEM SPECIFICATIONS	39
Table 17.0 Measurement System Specifications	39
18.0 TEST EQUIPMENT LIST	41
Table 18.0 Equipment List and Calibration	41
19.0 FLUID COMPOSITION	42
TABLE 19.0 FLUID COMPOSITION 835MHz HEAD TSL	42
TABLE 19.1 FLUID COMPOSITION 835MHz BODY TSL	42
TABLE 19.2 FLUID COMPOSITION 2450MHz BODY TSL	42
TABLE 19.3 FLUID COMPOSITION 5250MHz BODY TSL	42
APPENDIX A – SYSTEM VERIFICATION PLOTS	43
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	51
APPENDIX C - SETUP PHOTOS	79
APPENDIX D – DUT PHOTOS	87
APPENDIX E – PROBE CALIBRATION	92
APPENDIX F – DIPOLE CALIBRATION	93
APPENDIX G - PHANTOM	94

45461403 R1.0

21 September 2017

1.0 DOCUMENT CONTROL

Samples Tested By:	Trevor Whillock			
Report Prepared By:	Art Voss			
Report Reviewed By:	Ben Hewson			
Report Issue Number	Description	n	Ву	Report Issue Date
R1.0	Initial Releas	se	Art Voss	21 September 2017

45461403 R1.0 21 September 2017

2.0 CLIENT AND DEVICE INFORMATION

	Client Information				
Applicant Name	Harris Corporation				
	221 Jefferson Ridge Parkway				
Applicant Address	Lynchburg, VA, 24501				
	USA				
	DUT Information				
Device Identifier(s):	FCC ID: OWDTR-0154-E				
Device identifier(s).	IC: 3636B-0154				
	Licensed Non-Broadcast Transmitter Held to Face (TNF) FCC Part 90				
	Land Mobile Radio Transmitter/Receiver (27.41-960MHz) RSS-119				
Type of Equipment:	Digital Transmission System (DTS) FCC Part 15, RSS 247				
	Unlicensed National Information Infrastructure (NII) FCC Part 15				
	Spread Spectrum Transmitter (DSS) FCC Part 15				
	XS-PFS1M-C1D1				
Device Model(s) / HVIN:	XS-PFS1Y-C1D1				
	XL-185P C1D1 Rebanded				
Device Marketing Name / PMN:	A-4193000001				
Test Sample Serial No.:	700 Band: 768-776MHz, 798-806MHz				
	800 Band: 806-816MHz, 851-861MHz				
T	WLAN: 2412-2462MHz, 5180-5825MHz				
Transmit Frequency Range:	BT: 2402-2480MHz				
	Programmable				
Number of Channels:	7/800: 3W / BT: 50mW				
Married Married Britania	WLAN 2.4G: 230mW / WLAN 5G:15mW				
Manuf. Max. Rated Output Power:	LMR: FM				
Modulation:	50% PTT Duty Cycle				
Duty Cycle:	7.2 VDC Li-lon 3100mAh Rechargeable Battery - C1D1				
DUT Power Source:	None				
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

45461403 R1.0

21 September 2017

3.0 SCOPE OF EVALUATION/DATA REUSE

The XL-185P C1D1 Non-Rebanded, FCC ID OWDTR-0154-E, ISEDC ID: 3636B-0154 is a single-band, Push-To-Talk (PTT) Licensed Mobile Radio (LMR) transceiver intended for Occupational Use. It incorporates WiFi and BlueTooth transmitters. The XL-185P C1D1 Rebanded is identical in RF circuitry to the XL-200P (Rebanded), FCC ID OWDTR-0144-E, ISEDC ID: 3636B-0144 with the exception that it has been modified by removing components to make it a single band radio. It includes the addition of a new battery, P/N 14034-4045-01, which has been designed to meet C1D1 Safety Standards. A metal shield is included and is placed between the battery pack and the DUT. The XL-185P C1D1 Rebanded is the System Variant of the XL-200P (Rebanded).

In this document, the following DUT references are made:

The XL-185P C1D1 Rebanded, FCC ID: OWDTR-0154-E, ISEDC ID: 3636B-0154 is referenced in this report as XL-185P

The XL-200P C1D1 (Rebanded), FCC ID: OWDTR-0144-E, ISEDC ID: 3636B-0144 is referenced in this report as XL-200P

The Test Plan developed for this evaluation leverages SAR test data from previous evaluations of the XL-200P System Variant, per FCC KDB 484596, and is based on test channels, configurations and accessories which produced the highest (*worst case*) SAR. The previous *worst case* configurations of the XL-200P were re-evaluated during the course of this investigation to establish a base-line for comparison of test data from the XL-185P. The basis for the worst case configurations of the XL-185P are as follows:

3.1 Previous XL-200P Test Data

Worst Case Test Data from XL-200P - System Variant							
Model:	XL-200P-Non Rebanded						
FCC ID:	OWDTR-0144-E						
Variant:	System Radio						
Date Evaluated:	June 2017						
Reference Report:	45461391 R2.2						
Frequency	Configuration	Antenna	Accessory 1	Accessory 1	SAR (50% PTT)	Band	Spot Check
	Ü			11000001	0741 (00701 117)	2010	oper eneet
768	Head	14035-4000-01	n/a	n/a	1.95		N
768 806	Head Body	14035-4000-01 14035-4420-01			, ,	LMR	
			n/a B1	n/a	1.95		N
806	Body	14035-4420-01	n/a B1	n/a A1	1.95 3.37	LMR Band	N N
806 Frequency	Body Configuration	14035-4420-01 Antenna**	n/a B1 Accessory 1	n/a A1 Accessory 1	1.95 3.37 SAR (100%)	LMR	N N

^{*}The highest <u>reported</u> SAR from this evaluation in the WiFi and BT bands was on the System Variant of the XL-200P in the Body Configuration. As a result spot checks in these bands will be done in the Body configuration.

Note: The highest <u>reported</u> SAR in the 5GHz WiFi band occurred at 5260MHz which is not supported by this device. SAR was measured on supported channels in the 5GHz during this evaluation. The highest <u>reported</u> SAR from all variants from all previous evaluations in the WiFi and BlueTooth bands will be used for the purposes of simultaneous transmission.

^{**} The WiFi and BT transmitters do not share the same antenna as the LMR antennas. It has been demostrated on evaluations of similar variants that the LMR antennas have no impact on the WiFi or BT SAR.

45461403 R1.0

21 September 2017

3.2 Previous XL-185P Test Data

	Worst Case Test Data from XL-185P - System Variant						
Model:	XL-185P						
FCC ID:	OWDTR-0151-E						
Variant:	System Radio						
Date Evaluated:	September 2017						
Reference Report:	45461402 R1.0						
Frequency	Configuration	Antenna	Accessory 1	Accessory 1	SAR (50% PTT)	Band	Spot Check
806	Head	14035-4440-02	n/a	n/a	1.55	LMR	Υ
806	Body	14035-4440-02	B1	A1	4.92	LIVIT	Υ
Frequency	Configuration	Antenna**	Accessory 1	Accessory 1	SAR (100%)	Band	Spot Check
2412	Body	14035-4440-01	B1	A1	0.000		Υ
2437	Body	14035-4440-01	B1	A1	0.001		Υ
2462	Body	14035-4440-01	B1	A1	0.000	Wifi	Υ
5180	Body	14035-4440-01	B1	A1	0.001	VVIII	Υ
5240	Body	14035-4440-01	B1	A1	0.000		Υ
5260*		14035-4440-01					N
2480	Body	14035-4440-01	B1	A1	0.000	BT	Υ

^{*}The highest <u>reported</u> SAR from this evaluation in the WiFi and BT bands was on the System Variant of the XL-185P in the Body Configuration. As a result spot checks in these bands will be done in the Body configuration.

Note: The highest <u>reported</u> SAR in the 5GHz WiFi band occurred at 5260MHz which is not supported by this device. SAR was measured on supported channels in the 5GHz during this evaluation. The highest <u>reported</u> SAR from all variants from all previous evaluations in the WiFi and BlueTooth bands will be used for the purposes of simultaneous transmission.

Note: The four single band C1D1 variants of the XL-185P, FCC IDs: OWDTR-0151-E, -0152-E, -0153-E and -0154-E, ISED IDs: 3636B-0151, -1052, -0153, -0154, were all evaluate at the same time. They are identical in all aspects, including RF circuitry, PCB layout and form factor with the exception of component population options to operate in different LMR bands. The WiFi and BlueTooth circuitry, PCB and antenna layouts are identical on all variants. Measurements performed in the WiFi and BlueTooth bands were performed on the LX-185P Non-Rebanded variant, FCC ID OWDTR-0151-E, ISED ID: 3636B-0151, and are valid for the other three variants evaluated. Additionally, the Non-Rebanded and Rebanded variants, -0151 and -0154 respectively, are identical with the exception of component changes in the receiver section. SAR measurements conducted on the Non-Rebanded variant (-0151) are applicable to this Rebanded variant (-0154).

^{**} The WiFi and BT transmitters do not share the same antenna as the LMR antennas. It has been demostrated on evaluations of similar variants that the LMR antennas have no impact on the WiFi or BT SAR.

45461403 R1.0

21 September 2017

4.0 NORMATIVE REFERENCES

	Normative References*
ANSI / ISO 17025:2005	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3kHz to 300GHz
Industry Canada Spectrum	Management & Telecommunications Policy
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEEE International Committee	ee on Electromagnetic Safety
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC International Standard	
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 2
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 643646 D01v01r03	SAR Test Reduction Considerations for Occupational PTT Radios
* When the issue number	or issue date is omitted, the latest version is assumed.

45461403 R1.0

21 September 2017

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Model / HVIN:	
Harris Corporation	XL-185P C1D1 Rebanded	
Standard(s) Applied:	Measurement Procedure(s):	
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FC	C KDB 643646
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5	
	IEEE Standard 1528-2013, IEC 62209-2	
Reason For Issue:	Use Group:	Limits Applied:
X New Certification	General Population / Uncontrolled	1.6W/kg - 1g Volume
Class I Permissive Change		X 8.0W/kg - 1g Volume
Class II Permissive Change	X Occupational / Controlled	4.0W/kg - 10g Volume
Reason for Change:	•	Date(s) Evaluated:
Original Filing		September 7 to 11, 2017

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

21 September 2017 Date

45461403 R1.0

21 September 2017

6.0 RF CONDUCTED POWER MEASUREMENT

Table 6.0 Conducted Power Measurements 7/800 Band

	Measured Conduced Power							
	Measured	Rated	Rated		SAR Test			
Frequency	Power	Power	Power	Delta	Channel			
(MHz)	(dBm)	(dBm)	(W)	(dBm)	(Y/N)			
768.0000	34.75	34.80	3.00	-0.05	N			
769.0000	34.74	34.80	3.00	-0.06	N			
771.0000	34.71	34.80	3.00	-0.09	N			
775.0000	34.75	34.80	3.00	-0.05	N			
776.0000	34.73	34.80	3.00	-0.07	N			
798.0000	34.75	34.80	3.00	-0.05	N			
801.0125	34.73	34.80	3.00	-0.07	N			
805.0000	34.75	34.80	3.00	-0.05	Υ			
806.0000	35.46	34.80	3.00	0.66	Υ			
815.0000	35.50	34.80	3.00	0.70	Υ			
824.0000	35.46	34.80	3.00	0.66	Υ			
851.0000	35.43	34.80	3.00	0.63	N			
860.0000	35.44	34.80	3.00	0.64	N			
869.0000	35.44	34.80	3.00	0.64	N			

7.0 NUMBER OF TEST CHANNELS (Nc)

This device is identical to the XL-200P (Rebanded), FCC ID OWDTR-0144-E, ISEDC ID: 3636B-0144 with the exception that this device has been modified removing components to make it a single band radio. The number of channels and channel frequencies tested are based on *worst case* configurations from previous test data from the original filing of this device. Reference **Section 3.0 Scope of Evaluation.**

45461403 R1.0 21 September 2017

8.0 ACCESSORIES EVALUATED

Table 8.0 Manufacturer's Accessory List

Change History				
Change ID	Date	Change Type	Description of Change	
1	15 June 2017	Initial	Initial Filing	

	Man	ufacturer's Accessory List					
Test Report	Manufacturer's	Description	Change	UDC	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number	Description	ID ⁽¹⁾	Group ⁽²⁾	Group ⁽³⁾	Evaluated	Tested
		Antenna					
T4	14035-4000-01	Full Spectrum Whip Antenna	1			Υ	Υ
T5	14035-4420-01	Wideband Whip, UHF, 7/800 MHz	5			Υ	Υ
T6	14035-4440-01	1/2 Wave Whip Antenna, 7/800 MHz	4			Υ	Υ
T7	14035-4440-02	1/4 Wave Stub Antenna, 7/800 MHz	4			Υ	Υ
		Battery					
P3	14035-4045-01	Li-lon Battery 7.2VDC, 3100mAh C1D1	1			Υ	Υ

	Man	ufacturer's Accessory List					
Test Report	Manufacturer's	Description	Change	UDC	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number	Description	ID ⁽¹⁾	Group ⁽²⁾	Group ⁽³⁾	Evaluated	Tested
		Audio Accessory					
A1	12082-0600-01	Standard Speaker Microphone	1	7A	PB	Υ	Υ
A2	12082-0600-02	Storm Speaker Microphone	1	7A	PB	Υ	Υ
A28	12082-0600-03	Storm Speaker Microphone, 18"	6	7A	PB	Υ	Υ
A16	12082-0650-13	Headset, Heavy Duty, BTH, w/PTT, XG-100P	3	7A	IL	Υ	Υ
A17	12082-0650-14	Headset, Heavy Duty, OTH, w/PTT, XG-100P	3	7A	IL	Υ	-
A26	LS103239V1	Earphone, Lapel MIC, 2.5mm	3	n/a	n/a	Υ	Υ
A27	LS103239V2	Earphone, Lapel MIC, 2.5mm, Right Angle	4	n/a	n/a	Υ	-
A29	12082-0600-04	Storm Speaker Microphone 25.6"	1	7A	PB	Υ	Υ
A30	12082-0600-05	Storm Speaker Microphone, 30"	6	7A	PB	Υ	Υ

45461403 R1.0

21 September 2017

	Manı	ıfacturer's Accessory List					
Test Report	Manufacturer's	Description	Change	UDC	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number	Description	ID ⁽¹⁾	Group ⁽²⁾	Group ⁽³⁾	Evaluated	Tested
		Body-Worn Accessory					
B1	12082-1290-01	Metal Belt Clip	1			Y	Υ
B2	12082-3230-01	D-Swivel (Used w / 14002-0218-01 and KRY 1011609/1)	1			Y	Υ
B3	14002-0218-01	Premium Belt Loop	1			Y	Υ
	12082-1398-01	Side Connector Cover	3			Υ	Υ
B15 KRY 1011609/1 Leather Belt Loop			1			Υ	Υ

⁽¹⁾ From Table 6.0 - Indicates which change the item was introduced or tested. A "**" in this column indicates these accessories were evaluated on similar product and are deemed compliant.

- (2) UDC Group: 9 = 9 Pin, 7A = 7 Pin, 7B = 7 Pin Modified
- (3) Type II Group: PB = Palm Button, IL = In-Line Pushbutton, PT = Pigtail Pushbutton, RB = Ring Pushbutton, BB = Body Button, BT = BlueTooth
- (4) Accessories are categorized into groups of similar design and construction. Samples of individual groups are SAR Tested and the SAR results apply to ALL members of the Accessory Group. A "Y" in this column indicates the accessory is deemed acceptable.
- (5) Accessories and/or Accessory Group members SAR Tested.

Test Report S/N: Test Report Issue Date: 21 September 2017

45461403 R1.0

9.0 SAR MEASUREMENT SUMMARY

Table 9.0: Measured Results - BODY

				Measured	I SAR Resu	lts (1g) -	BODY (Configu	uration	(FCC/I	SEDC)				
		DUT		Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (10g)	SAR
Date	Plot	וטע		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
						7/8	00 BODY								
07 Sep 2017	B1*	XL-200P C1D1	0146-E	806	CW	4045-01	4440-02	B1	A1	0	30	35.30	9.120	4.560	-0.209
07 Sep 2017	B2*	XL-200P C1D1	0151-E	806	CW	4045-01	4000-01	B1	A1	0	22	35.46	6.680	3.340	-0.141
07 Sep 2017	В3	XL-185P C1D1	0151-E	806	CW	4045-01	4420-01	B1	A1	0	30	35.46	5.940	2.970	-0.299
07 Sep 2017	B4	XL-185P C1D1	0151-E	806	CW	4045-01	4440-01	B1	A1	0	30	35.46	5.190	2.595	-0.110
08 Sep 2017	B5	XL-185P C1D1	0151-E	806	CW	4045-01	4440-02	B1	A1	0	30	35.46	9.830	4.915	-0.231
08 Sep 2017	B6**	XL-185P C1D1	0151-E	805	CW	4045-01	4440-02	B1	A1	0	30	34.75	7.500	3.750	-0.224
08 Sep 2017	B7**	XL-185P C1D1	0151-E	815	CW	4045-01	4440-02	B1	A1	0	30	35.50	8.830	4.415	-0.298
08 Sep 2017	B8	XL-185P C1D1	0151-E	824	CW	4045-01	4440-02	B1	A1	0	30	35.46	7.430	3.715	-0.129
						2.4GH	z WiFi BO	DY							
13 Sep 2017	B9	XL-185P C1D1	0151-E	2412	CW	4045-01	4440-01	B1	A1	0	30	24	0.000	n/a	(a)
13 Sep 2017	B10	XL-185P C1D1	0151-E	2437	CW	4045-01	4440-01	B1	A1	0	30	24	0.001	n/a	(a)
13 Sep 2017	B11	XL-185P C1D1	0151-E	2462	CW	4045-01	4440-01	B1	A1	0	30	24	0.000	n/a	(a)
						2.4GH	Iz BT BOI	YC							
12 Sep 2017	B12*	XL-200P C1D1	0144-E	2480	CW	4045-01	4440-01	B1	A1	0	30	17	0.000	n/a	(a)
12 Sep 2017	B13*	XL-200P C1D1	0146-E	2480	CW	4045-01	4440-01	B1	A1	0	30	17	0.000	n/a	(a)
12 Sep 2017	B14	XL-185P C1D1	0151-E	2480	CW	4045-01	4440-01	B1	A1	0	30	17	0.000	n/a	(a)
						5GHz	z BT BOD	Υ							
14 Sep 2017	B15*	XL-200P C1D1	0144-E	5180	CW	4045-01	4440-01	B1	A1	0	30	12	0.001	n/a	(a)
14 Sep 2017	B16*	XL-200P C1D1	0146-E	5180	CW	4045-01	4440-01	B1	A1	0	30	12	0.001	n/a	(a)
14 Sep 2017	B17	XL-185P C1D1	0151-E	5180	CW	4045-01	4440-01	B1	A1	0	30	12	0.001	n/a	(a)
14 Sep 2017	B18	XL-185P C1D1	0151-E	5240	CW	4045-01	4440-01	B1	A1	0	30	12	0.000	n/a	(a)
	SAR Limit				Sp	atial Pe	ak	Hea	d/Body		F Exposure				
F	CC 47 (CFR 2.1093		Health Ca	anada Safety	Code 6	1 Gr	am Aveı	age	8.0	W/kg	Oc	cupational/l	Jser Aware	

45461403 R1.0

21 September 2017

	Measured SAR Results (1g) - FACE Configuration (FCC/ISEDC)														
		DUT		Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (10g)	SAR
Date	Plot	D01		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
						7/8	00 FACE								
08 Sep 2017	F1*	XL-200P C1D1	0146-E	806	CW	4045-01	4440-02	n/a	n/a	25	55	35.30	2.970	1.485	-0.578
08 Sep 2017	F2*	XL-200P C1D1	0151-E	806	CW	4045-01	4000-01	n/a	n/a	25	52	35.46	2.110	1.055	0.077
08 Sep 2017	F3	XL-185P C1D1	0151-E	806	CW	4045-01	4420-01	n/a	n/a	25	55	35.46	1.900	0.950	-0.420
11 Sep 2017	F4	XL-185P C1D1	0151-E	806	CW	4045-01	4440-01	n/a	n/a	25	55	35.46	2.320	1.160	-0.111
11 Sep 2017	F5	XL-185P C1D1	0151-E	806	CW	4045-01	4440-02	n/a	n/a	25	55	35.46	3.100	1.550	-0.133
11Sep 2017	F6	XL-185P C1D1	0151-E	815	CW	4045-01	4440-02	n/a	n/a	25	55	35.50	2.990	1.495	-0.272
	SAR Limit						Sp	atial Pea	ak	Hea	d/Body	R	F Exposure	Category	
FCC 47 CFR 2.1093				Health Ca	anada Safety	Code 6	1 Gra	am Aver	age	8.0	W/kg	Oce	cupational/l	Jser Aware	

^{*} Baseline Measurements

(a) The BlueTooth and WiFi antennas are located on the side of the DUT. Due to the location of the BlueTooth and WiFi antennas, the minimum phantom separation distance in the BODY or FACE configurations that could be achieved is greater than 30mm. The measured SAR values approximated noise floor measurements resulting in inconsistent power drift measurements and are omitted in this table.

Note: The highest BlueTooth and WiFi SAR, when previously measured on the BlueTooth and WiFi channels of the XL-200P, was produced in the BODY configuration.

Note: This device does not support BlueTooth (voice) activated transmission devices therefore 50% PTT is applied.

^{**}Adjacent channels tested KDB 64364 D01

45461403 R1.0

21 September 2017

10.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION

Simultaneous Transmission Analysis

Introduction

The XL-185P incorporates integrated WiFi and BlueTooth transmitters capable of simultaneously transmitting, in any combination, with the LMR transmitter. As per FCC KDB 447498, simultaneous transmission analysis is required for devices capable of simultaneous transmission. The WiFi and BT 1g SAR are subject to General Population limits of 1.6W/kg. The LMR 1g SAR is subject to Occupational of 8.0W/kg. To determine compliance when different SAR limits are applied to the different transmit modes, the Sum-of-the-Ratios of the SAR to the respective SAR limit is applied. When the Sum-of-the-Ratios is ≤ 1.0, simultaneous SAR test exclusion may be applied.

SAR for each transmission band, transmission mode and/or equipment class was evaluated with Body-Worn and Audio Accessories in the BODY and HEAD configurations. Only the Maximum maximum <u>reported</u> SAR for each is used in the Sum-of-the-Ratios calculation and the worst case of all possible combinations is considered.

Table 10.0 List of Possible Transmitters

	List of Po	ssible Tra	ansmitters	3
		Frequen	cy Range	Rated Output
Туре	Class	Lower	Power	
		(MHz)	(dBm)	
LMR 7/800	TNF	768.0	861.0	34.8
BlueTooth	DSS	2402.0	2480.0	17.0
BLE	DTS	2402.0	2480.0	8.5
WiFi 2.4	DTS	2412.0	2462.0	24.0
WiFi 5	NII	5150.0	5850.0	12.0

Table 10.1 List of Possible Transmitters Combinations

Si	multane	ous Tran	smitter (Combina	tions
uc			Transmitte	•	
Configuration Number	LMR	BlueTooth	BLE	WiFi 2.4	WiFi 5
1	Χ	Х			
2	Χ		Х		
3	Х		Х		
4	Х				X

Indicates this configuration is not supported

Note: The WiFi and BlueTooth transmitters share the same antenna and cannot simultaneously transmit.

45461403 R1.0 21 September 2017

Table 10.2 Analysis of Sum-of-the-Ratios

					Ana	alvsis of Su	Analysis of Sum-of-the-Ratios							
						•		Configuratio	ne					
						Transmitte		Jonnigaratio						
Number		LMR Ba	n d	PhysTer	- 4h	BLE	Туре	WiFi 2	4	WiFi s	=	Sum	Sum	
[토	Ē	LIVIK Da	mu	Diue i o							,			
	ţi	stand-alone	Ratio	stand-alone	Ratio	stand-alone	Ratio	stand-alone	Ratio	stand-alone	Ratio	of	of	
ion	anra	SAR	to	SAR	to	SAR	to	SAR	to	SAR	to	Ratios	SARs	
urat	Configuration	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	Ratios	SARS	
Configuration	၀၁	SAR Limit = ((Occupati	U			SAR Limit =	1.6W/kg	(General Poρι	ulation)				(W/kg)	
1		1.550	0.404		0.004		ummummumm.							
			0.194	0.006	0.004							0.198	1.556	
2	LIEAD	1.550	0.194	0.006	0.004	0.048	0.030					0.198 0.224	1.556 1.598	
3	HEAD			0.006	0.004	0.048	0.030	0.005	0.003					
	HEAD	1.550	0.194	0.006	0.004	0.048	0.030	0.005	0.003	0.031	0.019	0.224	1.598	
3	HEAD	1.550 1.550	0.194 0.194	0.006	0.004	0.048	0.030	0.005	0.003	0.031	0.019	0.224 0.197	1.598 1.555	
3		1.550 1.550 1.550	0.194 0.194 0.194			0.048	0.030	0.005	0.003	0.031	0.019	0.224 0.197 0.213	1.598 1.555 1.581	
3 4 1	HEAD	1.550 1.550 1.550 4.915	0.194 0.194 0.194 0.614					0.005	0.003	0.031	0.019	0.224 0.197 0.213 0.618	1.598 1.555 1.581 4.921	

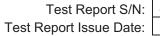
Indicates this combination is not supported

Test Exclusion of the BlueTooth Low Energy (BLE) transmitter is evaluated using Max Power = 8.4dBm (7mW), Separation Distance = 30mm*, Transmit Frequency = 2.480GHz.

Per KDB 447498 D01v06 [4.3.1(a)], SAR Test Exclusion is given by:

[(Max Power, mW) / (Separation Distance, mm)] * [\sqrt{f} , GHz] \leq 3.0 for 1g SAR [(7)/(30)] * [($\sqrt{2}$.480)] = 0.362 \leq 3.0

Therefore the BlueTooth transmitter meets the SAR Test Exclusion criteria.


For reference only, per KDB 447498 D01v06 [4.3.2(b)], the estimated BlueTooth SAR is given by:

[(Max Power, mW) / (Separation Distance, mm)] * [(\sqrt{f} , GHz) / (x)], where x = 7.5 for 1g SAR [(7)/(30)] * [($\sqrt{2}.480$) / (7.5)] = 0.048W/kg

From Table 10.2, the Sum-of-the-Ratios for any given simultaneous transmission combination, when applied to their respective SAR limit, does not exceed 1.0. No further analysis is required.

Note: The WiFi and BlueTooth SAR values shown in this table are the highest <u>worst case</u> SAR values from all configurations and transmission modes from all variants of the XL-185P series of radios. They are applied in this table to illustrate the most conservative ratio.

* Due to the location of the BlueTooth and WiFi antennas, the minimum phantom separation distance in the BODY or FACE configurations that could be achieved is greater than 30mm.

45461403 R1.0

21 September 2017

11.0 SCALING OF MAXIMUM MEASURE SAR

Table 11.0 SAR Scaling

			Scali	ng of Ma	ximum M	easured	SAR (1)			
			Meas	sured			Measured	Mea	sured	Measured
		Freq	Fluid D	eviation		С	onducted Pov	ver D	rift	SAR (1g)
Plot ID	Configuration	(MHz)	Permittivity	Cond	luctivity		(dBm)	(0	dB)	(W/kg)
F5	Face	806	-1.29%	0.	81%		35.5	-0	.133	1.550
B5	Body	806	-4.58%	-3.	.92%		35.5	-0.	.231	4.915
					Step 1					
				Fluid	Sensitivity Adj	ustment				
		Scal	9				Measured			Step 1 Adjusted
		Facto	or			SAR				SAR (1g)
Plot ID		(%)		х			(W/kg)		=	(W/kg)
F5		1.000	%	Х			1.550		=	1.550
B5		1.000	%	Х			4.915		=	4.915
					Step 2					
				Manufac	cturer's Tune-U	p Tolerance				
	Measu Conducted	7.7		ted wer		Delta		Step 1 Adjusted SAR		Step 2 Adjusted SAR (1g)
Plot ID	(dBm		(dE	3m)		(dB) + (W/kg)			=	(W/kg)
F5	35.5		•	1.8		-0.11	+	1.550	=	1.550
B5	35.5	5	34	1.8		-0.11	+	4.915	=	4.915
					Step 3					
			Sim	ultaneous Tra	ansmission - B	luetooth and/o	or WiFi			
	Rated Output		Separation		Estin	nated		04 04 11 4 1040		Step 3 Adjusted
	Power (Pmax)	Freq	Distance		S	AR		Step 2 Adjusted SAR		SAR (1g)
Plot ID	(mW)	(MHz)	(mm)		(W	/kg)	+	(W/kg)	† =	(W/kg)
F5	, i		, ,			05	+	1.550	=	1.600
B5					0.	05	+	4.915	=	4.965
					Step 4					
					Drift Adjustme	ent				
		Measu	red			Cto	2 Adimeted	CAD		Step 4 Adjusted
		Drift				Ste	p 3 Adjusted	SAR		SAR (1g)
Plot ID		(dB)		+			(W/kg)		=	(W/kg)
F5		-0.13	3	+		1.600			=	1.650
B5		-0.02	3	+			4.965		=	4.991
					Step 5					
					Reported SA	R				
			FCC					IC		
	From Steps 1 through 3							From Steps 1 through	n 4	
Plot ID	1g SAR (W/kg)						1g SAR (W/kg)			
F5	1.60					1.65				
B5			4.97			4.99				

45461403 R1.0

21 September 2017

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors.

Step 4

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

I attest that the data reported herein is true and accurate w ithin the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance w ith accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Trevor Whillock
Test Lab Engineer
Celltech Labs Inc.

21 September 2017

Date

45461403 R1.0

21 September 2017

12.0 SAR EXPOSURE LIMITS

Table 12.0 Exposure Limits

	SAR RF EXP	OSURE LIMITS	
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /
FCC 47 CFRg2.1093	Health Canada Salety Code 0	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg
(averaged	over the whole body)	0.00 W/Kg	0. 4 W/Ng
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg
(Head and Trunk ave	eraged over any 1 g of tissue)	1.0 W/kg	0.0 W/kg
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	7.0 W/Ng	20.0 W/kg

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

45461403 R1.0

21 September 2017

13.0 DETAILS OF SAR EVALUATION

13.1 Day Log

	Day Log										
Date	Ambient	Fluid	Humidity	TSL	Fluid	SPC	DUT				
Date	Temp °C	Temp °C	Trainfacty	5	Param	310	Test				
7 Sep 2017	26	23.1	31%	835B	X	X	X				
8 Sep 2017	28	23.7	37%	835B			Х				
8 Sep 2017	28	22.1	37%	835H	Х	Х					
11 Sep 2017	28	22.0	37%	835H			Х				

45461403 R1.0

21 September 2017

13.2 DUT Setup and Configuration

DUT Setup and Configuration

Overview

The XL-185P is identical in electronic circuitry to the XL-200P with the exception that it had been designed to be a Single Band Radio.

The number of test channels and test configurations performed on this device were based on the antenna and accessory combinations which produced the highest, or worst case, SAR from previous SAR evaluations of the XL-200P, FCC ID: OWDTR-0144-E, ISEDC ID: 3636B-0144. Section 3.0 identifies those test channels and each channel was tested in the BODY and FACE configuration.

Sample measurements of the original XL-200P in the worst case configurations were made and compared to previous measurement data taken from the same XL-200P in the same configurations from the original filing and used to establish a base-line. Measurements from the XL-185P in the same configurations were compared to the base-line measurements and were found to be within 5% of the base-line. From this, justification is made for the determination of test channels, configurations and accessory combinations.

The XL-185P was evaluated at the maximum conducted output power level, preset by the manufacturer, with a fully charged battery in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key continuously depressed. For a Push-To-Talk (PTT) device with a manually operated transmit pushbutton, a 50% duty cycle compensation for the <u>reported SAR</u> was used, as per FCC KDB 447498 (6.1). This was applied only to the LMR bands.

The test procedures outlined in FCC KDB 643646 "SAR Test Reduction Considerations for Occupational PTT Radios" as well as FCC KDB 865664, ISEDC RSS-102 and IEEE 1528 were used throughout the evaluation of this device in the LMR bands.

45461403 R1.0

21 September 2017

13.3 DUT Positioning

DUT Positioning

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

The DUT was securely clamped into the device holder with the surface of the DUT normally held to the user's face facing the phantom. The device holder was adjusted to ensure that the horizontal axis of the DUT was parallel to the bottom of the phantom. A 25mm spacer block was used to set the separation distance between the DUT and the phantom to 25mm. When applicable and unless by design, the antenna of the DUT was prevented from sagging away from the phantom. The spacer block was removed before testing.

BODY Configuration

Body-Worn and Audio Accessories were affixed to the DUT in the manner in which they are intended to be used. The DUT, with its accessories, were securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUT's accessory to the phantom. Body-Worn Accessory straps, linkages, etc. were positioned in a fashion resembling that for which they were intended to be used. Audio Accessory cables, etc., were positioned in a fashion resembling that for which they were intended to be used.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

13.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to \pm 0.5°C. The Active TSL temperature was maintained to within \pm 1.0°C throughout the test series. TSL analysis and SPC were repeated when the Active TSL use exceeded 84 hours.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the Maximum Distance to Phantom Surface to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. The SAR values in the 50% DC column have been scaled by 50% for 50% Push-To-Talk duty cycle compensation. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY and FACE configurations, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the <u>reported SAR</u> which appears on the Cover Page of this report.

45461403 R1.0 21 September 2017

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of \pm 100MHz for frequencies > 300MHz and \pm 50MHz for frequencies \leq 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC OET Bulletin 65 Supplement C targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to \leq 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz	
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm
(Geometric Center of Probe Center)	4 1 1 111111
Maximum probe angle normal to phantom surface.	5° ± 1°
(Flat Section ELI Phantom)	2 I 1
Area Scan Spatial Resolution ΔX , ΔY	15 mm
Zoom Scan Spatial Resolution ΔX, ΔY	7.5 mm
Zoom Scan Spatial Resolution ∆Z	5 mm
(Uniform Grid)	5 mm
Zoom Scan Volume X, Y, Z	30 mm
Phantom	ELI
Fluid Depth	150 ± 5 mm
	•

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461403 R1.0

21 September 2017

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)	4 1 1 111111					
Maximum probe angle normal to phantom surface.	5° + 1°					
(Flat Section ELI Phantom)	5° ± 1°					
Area Scan Spatial Resolution ΔX, ΔΥ	12 mm					
Zoom Scan Spatial Resolution ΔX, ΔY	5 mm					
Zoom Scan Spatial Resolution ∆Z	5 mm					
(Uniform Grid)	o mm					
Zoom Scan Volume X, Y, Z	30 mm					
Phantom	ELI					
Fluid Depth	150 ± 5 mm					

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz					
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm				
(Geometric Center of Probe Center)					
Maximum probe angle normal to phantom surface.	5° ± 1°				
(Flat Section ELI Phantom)	2 1				
Area Scan Spatial Resolution ΔX , ΔY	10 mm				
Zoom Scan Spatial Resolution ΔX, ΔY	4 mm				
Zoom Scan Spatial Resolution ∆Z	2 mm				
(Uniform Grid)	Z 111111				
Zoom Scan Volume X, Y, Z	22 mm				
Phantom	ELI				
Fluid Depth	100 ± 5 mm				

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461403 R1.0 21 September 2017

14.0 MEASUREMENT UNCERTAINTIES

Table 14.0 Measurement Uncertainty

UNCERTAI	NTY BUD	GET FOR D	EVICE EVA	LUATION (IE	EE 15	28-20	13 Table 9)		
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration*	E.2.1	6.6	Normal	1	1	1	6.60	6.60	occ
Axial Isotropy*	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy*	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
Boundary Effect*	E.2.3	8.3	Rectangular	1.732050808	1	1	4.8	4.8	oc
Linearity*	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
System Detection Limits*	E.2.4	1.0	Rectangular	1.732050808	1	1	0.6	0.6	oc
Modulation Response	E.2.5	4.0	Rectangular	1.732050808	1	1	2.3	2.3	∞
Readout Electronics*	E.2.6	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time*	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time*	E.2.8	1.4	Rectangular	1.732050808	1	1	0.8	0.8	∞
RF Ambient Conditions - Noise	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	∞
RF Ambient Conditions - Reflection	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	∞
Probe Positioner Mechanical Tolerance*	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell*	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation*	E.5	3.9	Rectangular	1.732050808	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	0.3	Normal	1	1	1	0.3	0.3	5
Device Holder Uncertainty*	E.4.1	3.6	Normal	1	1	1	3.6	3.6	∞
SAR Drift Measurement**	E.2.9	0.0	Rectangular	1.732050808	1	1	0.0	0.0	∞
SAR Scaling***	E.6.5	2.0	Rectangular	1.732050808	1	1	1.2	1.2	- oo
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	4.0	Rectangular	1.732050808	1	1	2.3	2.3	- oo
SAR Correction Uncertainty	E.3.2	1.2	Normal	1	1	0.84	1.2	1.0	∞
Liquid Conductivity (measurement)	E.3.3	6.8	Normal	1	0.78	0.71	5.3	4.8	10
Liquid Permittivity (measurement)	E.3.3	5.3	Normal	1	0.23	0.26	1.2	1.4	10
Liquid Conductivity (Temperature)	E.3.2	0.1	Rectangular	1.732050808	0.78	0.71	0.1	0.0	∞
Liquid Permittivity Temperature)	E.3.2	0.0	Rectangular	1.732050808	0.23	0.26	0.0	0.0	∞
Effective Degrees of Freedon	n ⁽¹⁾							V _{eff} =	873.2
Combined Standard Uncertainty			RSS				12.59	12.40	
Expanded Uncertainty (95% Confident	k=2				25.18	24.80			

⁽¹⁾ The Effective Degrees of Freedom is > 30 therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

^{*} Provided by SPEAG

45461403 R1.0

21 September 2017

Table 14.1 Calculation of Degrees of Freedom

Table 13.1							
Calculation of the Degrees and Effective Degrees of Freedom							
v _i = <i>n</i> - 1	V _{eff} =	$\sum_{i=1}^{m} \frac{c_i^4 u_i^4}{v_i}$					

45461403 R1.0

21 September 2017

15.0 FLUID DIELECTRIC PARAMETERS

Table 15.0 Fluid Dielectric Parameters 835MHz BODY TSL

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Thu 07/Sep/2017 14:04:28
Freq Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test s Sigma of UIM

FCC eBFCC sBTest e Test s Freq 55.59 0.96 53.21 0.88 0.7350 0.7450 55.55 0.96 53.45 0.88 53.56 0.89 0.7550 55.51 0.96 0.7650 55.47 0.96 53.05 0.91 55.43 0.97 53.04 0.91 0.7750 0.7850 55.39 0.97 53.22 0.92 0.94 0.7950 55.36 0.97 52.71 0.8050 52.82 0.93 55.32 0.97 0.8150 55.28 0.97 52.47 0.95 0.8250 55.24 0.97 52.77 0.97 0.8350 55.20 0.97 52.40 0.96 0.8450 55.17 0.98 52.57 0.97 0.8550 55.14 0.99 52.19 0.98 0.8650 55.11 1.01 51.95 0.99 52.04 0.8750 55.08 1.02 1.00 52.16 0.8850 55.05 1.03 1.03 55.02 0.8950 1.04 51.66 1.03 0.9050 55.00 1.05 51.66 1.04 0.9150 55.00 1.06 51.99 1.06 0.9250 54.98 1.06 51.57 1.05 0.9350 54.96 1.07 51.66 1.07

45461403 R1.0

21 September 2017

FLUID DIELECTRIC PARAMETERS

FLUID DIELECTRIC PARAIMETERS							
Date:	7 Sep 2017	Fluid T	emp: 23.1	Frequency:	835MHz	Tissue:	Body
Freq	(MHz)	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
735.0000		53.2100	0.8800	55.5900	0.96	-4.28%	-8.33%
745.0000		53.4500	0.8800	55.5500	0.96	-3.78%	-8.33%
755.0000		53.5600	0.8900	55.5100	0.96	-3.51%	-7.29%
765.0000		53.0500	0.9100	55.4700	0.96	-4.36%	-5.21%
775.0000		53.0400	0.9100	55.4300	0.97	-4.31%	-6.19%
785.0000		53.2200	0.9200	55.3900	0.97	-3.92%	-5.15%
795.0000		52.7100	0.9400	55.3600	0.97	-4.79%	-3.09%
805.0000	*	52.8200	0.9300	55.3200	0.97	-4.52%	-4.12%
806.0000	*	52.7850	0.9320	55.3160	0.97	-4.58%	-3.92%
815.0000	*	52.4700	0.9500	55.2800	0.97	-5.08%	-2.06%
824.0000	*	52.7400	0.9680	55.2440	0.97	-4.53%	-0.21%
825.0000		52.7700	0.9700	55.2400	0.97	-4.47%	0.00%
835.0000		52.4000	0.9600	55.2000	0.97	-5.07%	-1.03%
845.0000		52.5700	0.9700	55.1700	0.98	-4.71%	-1.02%
855.0000		52.1900	0.9800	55.1400	0.99	-5.35%	-1.01%
865.0000		51.9500	0.9900	55.1100	1.01	-5.73%	-1.98%
875.0000		52.0400	1.0000	55.0800	1.02	-5.52%	-1.96%
885.0000		52.1600	1.0300	55.0500	1.03	-5.25%	0.00%
895.0000		51.6600	1.0300	55.0200	1.04	-6.11%	-0.96%
905.0000		51.6600	1.0400	55.0000	1.05	-6.07%	-0.95%
915.0000		51.9900	1.0600	55.0000	1.06	-5.47%	0.00%
925.0000		51.5700	1.0500	54.9800	1.06	-6.20%	-0.94%
935.0000		51.6600	1.0700	54.9600	1.07	-6.00%	0.00%

45461403 R1.0

21 September 2017

Table 15.1 Fluid Dielectric Parameters 835MHz HEAD TSL

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Fri 08/Sep/2017 13:16:35

Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM

*****	******	******	******
FCC_eF	IFCC_sh	-HTest_e	Test_s
42.02	0.89	42.22	0.84
41.97	0.89	42.16	0.83
41.92	0.89	42.24	0.85
41.86	0.89	41.73	0.88
41.81	0.90	41.69	0.86
41.76	0.90	41.76	0.88
41.71	0.90	41.23	0.90
41.66	0.90	41.40	0.90
41.60	0.90	41.02	0.90
41.55	0.90	40.91	0.92
41.50	0.90	41.09	0.92
41.50	0.91	40.97	0.93
41.50	0.92	40.66	0.96
41.50	0.93	40.58	0.94
41.50	0.94	40.56	0.97
41.50	0.95	40.60	0.99
41.50	0.96	40.14	1.00
41.50	0.97	39.87	1.00
41.50	0.98	39.97	1.01
41.48	0.98	39.89	1.01
41.46	0.99	39.49	1.03
	FCC_el- 42.02 41.97 41.92 41.86 41.81 41.76 41.71 41.66 41.55 41.50 41.48	FCC_eHFCC_standard PCC_eHFCC_standard PCC_eHFCC_standard PCC_standard PCC_standard PCC_standard PCC_eHFCC_standard PCC_standard PCC_sta	41.97 0.89 42.16 41.92 0.89 42.24 41.86 0.89 41.73 41.81 0.90 41.69 41.76 0.90 41.76 41.71 0.90 41.23 41.60 0.90 41.02 41.55 0.90 40.91 41.50 0.90 41.09 41.50 0.91 40.97 41.50 0.92 40.66 41.50 0.93 40.58 41.50 0.94 40.56 41.50 0.96 40.14 41.50 0.97 39.87 41.48 0.98 39.89

925.0000

935.0000

39.8900

39.4900

1.0100

1.0300

Test Report S/N: Test Report Issue Date:

45461403 R1.0

21 September 2017

3.06%

4.04%

FLUID DIELECTRIC PARAMETERS Date: 8 Sep 2017 Fluid Temp: 22.1 Frequency: 835MHz Tissue: Head **Deviation Deviation** Freq (MHz) Test_e Test_s Target_e Target_s **Permittivity** Conductivity 735.0000 42.2200 0.8400 42.0200 0.89 0.48% -5.62% 745.0000 42.1600 0.8300 41.9700 0.89 0.45% -6.74% 755.0000 42.2400 0.8500 41.9200 0.89 0.76% -4.49% 765.0000 41.7300 0.8800 41.8600 0.89 -0.31% -1.12% 775.0000 41.6900 0.8600 41.8100 0.90 -0.29% -4.44% 785.0000 41.7600 0.8800 41.7600 0.90 0.00% -2.22% 795.0000 41.2300 0.9000 41.7100 0.90 -1.15% 0.00% 805.0000 0.9067 0.90 -1.28% 0.74% 41.1233 41.6567 806.0000 41.1127 0.9073 0.90 -1.29% 0.81% 41.6513 815.0000 41.0167 0.9133 41.6033 0.90 -1.41% 1.48% 824.0000 40.9207 0.9193 41.5553 0.90 -1.53% 2.15% 0.9200 825.0000 40.9100 41.5500 0.90 -1.54% 2.22% 835.0000 41.0900 0.9200 0.90 41.5000 -0.99% 2.22% 845.0000 40.9700 0.9300 41.5000 0.91 -1.28% 2.20% 855.0000 40.6600 0.9600 41.5000 0.92 4.35% -2.02% 865.0000 40.5800 0.9400 41.5000 0.93 -2.22% 1.08% 875.0000 40.5600 0.9700 0.94 41.5000 -2.27% 3.19% 885.0000 40.6000 0.9900 41.5000 0.95 -2.17% 4.21% 895.0000 40.1400 1.0000 41.5000 0.96 -3.28% 4.17% 905.0000 39.8700 1.0000 41.5000 0.97 -3.93% 3.09% 41.5000 915.0000 39.9700 1.0100 0.98 -3.69% 3.06%

0.98

0.99

-3.83%

-4.75%

41.4800

41.4600

^{*}Channel Frequency Tested

45461403 R1.0

21 September 2017

Table 15.2 Fluid Dielectric Parameters 2450MHz BODY TSL

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Mon 11/Sep/2017 13:44:13

Freq Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

******	******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
2.3500	52.83	1.85	49.94	1.82
2.3600	52.82	1.86	50.13	1.86
2.3700	52.81	1.87	50.00	1.84
2.3800	52.79	1.88	49.83	1.86
2.3900	52.78	1.89	49.70	1.88
2.4000	52.77	1.90	49.82	1.89
2.4100	52.75	1.91	49.69	1.90
2.4200	52.74	1.92	49.59	1.92
2.4300	52.73	1.93	49.71	1.92
2.4400	52.71	1.94	49.34	1.98
2.4500	52.70	1.95	49.50	1.97
2.4600	52.69	1.96	49.47	2.00
2.4700	52.67	1.98	49.48	2.00
2.4800	52.66	1.99	49.54	1.98
2.4900	52.65	2.01	49.39	2.02
2.5000	52.64	2.02	49.25	2.04
2.5100	52.62	2.04	49.29	2.04
2.5200	52.61	2.05	49.35	2.07
2.5300	52.60	2.06	49.29	2.09
2.5400	52.59	2.08	49.31	2.10
2.5500	52.57	2.09	49.28	2.11

45461403 R1.0

21 September 2017

FLUID DIELECTRIC PARAMETERS Fluid Temp: Date: 11 Sep 2017 23.1 Frequency: 2450MHz Tissue: Body **Deviation Deviation** Freq (MHz) Test e Test s Target_e Target_s **Permittivity** Conductivity 2350.0000 49.9400 52.8300 -5.47% -1.62% 1.8200 1.85 2360.0000 50.1300 1.8600 52.8200 1.86 -5.09% 0.00% 2370.0000 50.0000 1.8400 52.8100 1.87 -5.32% -1.60% 2380.0000 52.7900 -5.61% -1.06% 49.8300 1.8600 1.88 2390.0000 49.7000 1.8800 52.7800 1.89 -5.84% -0.53% 2400.0000 49.8200 1.8900 52.7700 1.90 -5.59% -0.53% 2410.0000 52.7500 49.6900 1.9000 1.91 -5.80% -0.52% 2420.0000 49.5900 1.9200 52.7400 1.92 -5.97% 0.00% 2430.0000 52.7300 -5.73% 49.7100 1.9200 1.93 -0.52% 2440.0000 49.3400 1.9800 52.7100 1.94 -6.39% 2.06% 2450.0000 49.5000 1.9700 52.7000 1.95 -6.07% 1.03% 2460.0000 49.4700 2.0000 52.6900 1.96 -6.11% 2.04% 2470.0000 49.4800 2.0000 52.6700 1.98 -6.06% 1.01% 2480.0000 49.5400 52.6600 1.99 -0.50% 1.9800 -5.92% 2490.0000 49.3900 2.0200 52.6500 2.01 -6.19% 0.50% 2500.0000 49.2500 2.0400 52.6400 2.02 -6.44% 0.99% 2510.0000 49.2900 2.0400 52.6200 2.04 -6.33% 0.00% 2520.0000 49.3500 2.0700 52.6100 2.05 -6.20% 0.98% 2530.0000 49.2900 2.0900 52.6000 2.06 -6.29% 1.46% 2540.0000 52.5900 2.08 -6.24% 49.3100 2.1000 0.96% 2550.0000 49.2800 2.09 -6.26% 0.96% 2.1100 52.5700

*Channel Frequency Tested

45461403 R1.0

21 September 2017

Table 15.3 Fluid Dielectric Parameters 5250MHz BODY TSL

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Wed 13/Sep/2017 14:13:43
Freq Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
5.1500	49.08	5.24	48.11	5.64
5.1600	49.07	5.25	48.59	5.66
5.1700	49.06	5.26	48.33	5.72
5.1800	49.04	5.28	48.41	5.66
5.1900	49.03	5.29	48.14	5.73
5.2000	49.01	5.30	48.38	5.70
5.2100	49.00	5.31	48.03	5.72
5.2200	48.99	5.32	48.17	5.71
5.2300	48.97	5.33	48.41	5.71
5.2400	48.96	5.35	48.09	5.81
5.2500	48.95	5.36	48.06	5.73
5.2600	48.93	5.37	48.01	5.85
5.2700	48.92	5.38	48.16	5.85
5.2800	48.91	5.39	47.95	5.86
5.2900	48.89	5.40	48.01	5.92
5.3000	48.88	5.42	47.92	5.82
5.3100	48.87	5.43	47.91	5.94
5.3200	48.85	5.44	47.71	5.93
5.3300	48.84	5.45	47.66	5.91
5.3400	48.82	5.46	47.71	5.96
5.3500	48.81	5.47	47.95	5.94

45461403 R1.0

21 September 2017

FLUID DIELECTRIC PARAMETERS							
Date:	13 Sep 2017	Fluid Te	mp: 23	Frequency:	5250MHz	Tissue:	Body
Freq	(MHz)	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
5150.0000		48.1100	5.6400	49.0800	5.24	-1.98%	7.63%
5160.0000		48.5900	5.6600	49.0700	5.25	-0.98%	7.81%
5170.0000		48.3300	5.7200	49.0600	5.26	-1.49%	8.75%
5180.0000		48.4100	5.6600	49.0400	5.28	-1.28%	7.20%
5190.0000		48.1400	5.7300	49.0300	5.29	-1.82%	8.32%
5200.0000		48.3800	5.7000	49.0100	5.30	-1.29%	7.55%
5210.0000		48.0300	5.7200	49.0000	5.31	-1.98%	7.72%
5220.0000		48.1700	5.7100	48.9900	5.32	-1.67%	7.33%
5230.0000		48.4100	5.7100	48.9700	5.33	-1.14%	7.13%
5240.0000		48.0900	5.8100	48.9600	5.35	-1.78%	8.60%
5250.0000		48.0600	5.7300	48.9500	5.36	-1.82%	6.90%
5260.0000		48.0100	5.8500	48.9300	5.37	-1.88%	8.94%
5270.0000		48.1600	5.8500	48.9200	5.38	-1.55%	8.74%
5280.0000		47.9500	5.8600	48.9100	5.39	-1.96%	8.72%
5290.0000		48.0100	5.9200	48.8900	5.40	-1.80%	9.63%
5300.0000		47.9200	5.8200	48.8800	5.42	-1.96%	7.38%
5310.0000		47.9100	5.9400	48.8700	5.43	-1.96%	9.39%
5320.0000		47.7100	5.9300	48.8500	5.44	-2.33%	9.01%
5330.0000		47.6600	5.9100	48.8400	5.45	-2.42%	8.44%
5340.0000		47.7100	5.9600	48.8200	5.46	-2.27%	9.16%
5350.0000		47.9500	5.9400	48.8100	5.47	-1.76%	8.59%

*Channel Frequency Tested

45461403 R1.0

21 September 2017

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.0 System Verification Results 835MHz BODY TSL

System Verification Test Results						
	4.	Frequency	Validation Source			
Da	ate	(MHz)	P	/N	S/N	
7 Sep	2017	835	D83	5V2	4d075	
	Fluid	Ambient	Ambient	Forward	Source	
Fluid Type	Temp	Temp	Humidity	Power	Spacing	
	°C	°C	(%)	(mW)	(mm)	
Body	23.1	26	31%	250	15	
		Fluid Pa	rameters			
	Permittivity		Conductivity			
Measured	Target	Deviation	Measured	Target	Deviation	
52.40	55.20	-5.07%	0.96	0.97	-1.03%	
		Measur	ed SAR			
	1 gram		10 gram			
Measured	Target	Deviation	Measured	Target	Deviation	
2.56	2.42	5.79%	1.66	1.59	4.40%	
	Ме	asured SAR No	ormalized to 1.	.0W		
	1 gram			10 gram		
Normalized	Target	Deviation	Normalized	Target	Deviation	
10.24	9.40	8.94%	6.64	6.21	6.92%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

45461403 R1.0 21 September 2017

Table 16.1 System Verification Results 835MHz HEAD TSL

System Verification Test Results							
D	ate	Frequency	V	alidation Sour	ce		
D.	ate	(MHz)	P	/N	S/N		
08 Se	р 2017	835	D83	5V2	4d075		
	Fluid	Ambient	Ambient	Forward	Source		
Fluid Type	Temp	Temp	Humidity	Power	Spacing		
	°C	°C	(%)	(mW)	(mm)		
Head	22.1	28	37%	250	15		
		Fluid Pa	rameters				
	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
41.09	41.50	-0.99%	0.92	0.90	2.22%		
		Measur	ed SAR				
	1 gram		10 gram				
Measured	Target	Deviation	Measured	Target	Deviation		
2.28	2.41	-5.39%	1.46	1.56	-6.41%		
Measured SAR Normalized to 1.0W							
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
9.12	9.30	-1.94%	5.84	6.07	-3.79%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

45461403 R1.0

21 September 2017

Table 16.2 System Verification Results 2450MHz BODY TSL

System Verification Test Results							
	Frequency	Validation Source					
	(MHz)	P/N		S/N			
017	2450	D2450	V2	825			
Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)			
23.3	27	33%	250	10			
	Fluid Pa	rameters					
ermittivity	/	Conductivity					
Target	Deviation	Measured	Target	Deviation			
52.70	-6.07%	1.97	1.95	1.03%			
	Measur	ed SAR					
1 gram			10 gram				
Target	Deviation	Measured	Target	Deviation			
13.00	-4.62%	5.64	6.05	-6.78%			
Measured SAR Normalized to 1.0W							
1 gram			10 gram				
Target	Deviation	Normalized	Target	Deviation			
50.70	-2.17%	22.56	23.80	-5.21%			
	Fluid Temp °C 23.3 ermittivity Target 52.70 1 gram Target 13.00 Met 1 gram Target 50.70	Frequency (MHz) 017 2450 Fluid Ambient Temp °C °C 23.3 27 Fluid Pa ermittivity Target Deviation 52.70 -6.07% Measur 1 gram Target Deviation 13.00 -4.62% Measured SAR Notes and the second seco	Frequency (MHz) P/N 2450 D2450 Fluid Ambient Humidity °C °C (%) 23.3 27 33% Fluid Parameters ermittivity Co Target Deviation Measured 52.70 -6.07% 1.97 Measured SAR 1 gram Target Deviation Measured 13.00 -4.62% 5.64 Measured SAR Normalized to 1.1 1 gram Target Deviation Normalized 50.70 -2.17% 22.56	Frequency (MHz)			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

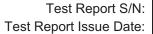
The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

45461403 R1.0

21 September 2017

Table 16.3 System Verification Results 5250MHz BODY TSL

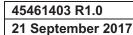

System Verification Test Results						
Dete		Frequency	Validation Source			
Date	Date		P/N		S/N	
13 Sep 2	017	5250	D5GHzV2		1031	
	Fluid	Ambient	Ambient	Forward	Source	
Fluid Type	Temp	Temp	Humidity	Power	Spacing	
	°C	°C	(%)	(mW)	(mm)	
Body	23.0	28	32% 100		10	
	Fluid Parameters					
P	ermittivity	/	Conductivity			
Measured	Target	Deviation	Measured Target		Deviation	
48.06	48.95	-1.82%	5.73 5.36		6.90%	
Measured SAR						
1 gram 10 gram						
Measured	Target	Deviation	Measured	Target	Deviation	
7.10	7.26	-2.20%	1.96	2.04	-3.92%	
Measured SAR Normalized to 1.0W						
1 gram			10 gram			
Normalized	Target	Deviation	Normalized Target De		Deviation	
71.00	72.20	-1.66%	19.60	20.30	-3.45%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

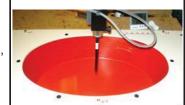
The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.


45461403 R1.0 21 September 2017

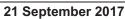
17.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 17.0 Measurement System Specifications


Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: RX60L				
Repeatability	0.02 mm				
No. of axis	6				
Data Acquisition Electronic (DAE)	System				
Cell Controller					
Processor	AMD Athlon XP 2400+				
Clock Speed	2.0 GHz				
Operating System	Windows XP Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Coffeen	Measurement Software: DASY				
Software	Postprocessing Software: SEMCAD, V1.8 Build 186				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	EX3DV4				
Serial No.	3600				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom					
Туре	ELI Elliptical Planar Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				

Measurement System Specification					
	Probe Specification				
	Symmetrical design with triangular core;				
Construction:	Built-in shielding against static charges				
	PEEK enclosure material (resistant to organic solvents, glycol)				
	In air from 10 MHz to 2.5 GHz				
Calibration:	In head simulating tissue at frequencies of 900 MHz				
	and 1.8 GHz (accuracy \pm 8%)				
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)				
Directivity:	\pm 0.2 dB in head tissue (rotation around probe axis)				
Directivity.	\pm 0.4 dB in head tissue (rotation normal to probe axis)				
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB				
Surface Detect:	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces				
	Overall length: 330 mm; Tip length: 16 mm;				
Dimensions:	Body diameter: 12 mm; Tip diameter: 6.8 mm				
	Distance from probe tip to dipole centers: 2.7 mm				
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe			
Phantom Specification					

The SAM V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.


ELI Phantom

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner

18.0 TEST EQUIPMENT LIST

Table 18.0 Equipment List and Calibration

Test Equipment List					
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION INTERVAL	
Schmid & Partner DASY System	-	-	-	-	
-DASY Measurement Server	158	1078	CNR	CNR	
-Robot	46	599396-01	CNR	CNR	
-DAE4	19	353	24-Apr-17	Annual	
-EX3DV4 E-Field Probe	213	3600	27-Apr-17	Annual	
-CLA150 Validation Source	251	4007	27-Apr-17	Triennial	
-D835V2 Validation Dipole	217	4D075	23-Apr-15	Triennial	
-D450V3 Validation Dipole	221	1068	21-Apr-15	Triennial	
-D2450V2 Validation Dipole	25	825	23-Apr-15	Triennial	
-D5GHzV2 Validation Dipole	126	1031	20-Apr-15	Triennial	
ELI Phantom	247	-	CNR	CNR	
HP 85070C Dielectric Probe Kit	33	none	CNR	CNR	
Gigatronics 8652A Power Meter	110	1835801	29-Feb-16	Triennial	
Gigatronics 80701A Power Sensor	248	1833687	29-Feb-16	Triennial	
HP 8753ET Network Analyzer	134	US39170292	22-Oct-14	Triennial	
Generator	6	100104	29-May-17	Triennial	
Amplifier	106	26235	CNR	CNR	

CNR = Calibration Not Required

45461403 R1.0 21 September 2017

19.0 FLUID COMPOSITION

Table 19.0 Fluid Composition 835MHz HEAD TSL

835		835MHz Head			
Tissue Simulating Liquid (TSL) Composition					
Component by Percent Weight					
Water Sugar Salt ⁽¹⁾ HEC ⁽²⁾ Bacteriacide ⁽³⁾					
40.71	56.63	1.48	0.99	0.19	

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 19.1 Fluid Composition 835MHz BODY TSL

835]	835MHz Body				
	Tissue Simulating Liquid (TSL) Composition					
Component by Percent Weight						
Water	Water Sugar Salt ⁽¹⁾		HEC ⁽²⁾	Bacteriacide ⁽³⁾		
53.79	45.13	0.98	0.0	0.1		

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 19.2 Fluid Composition 2450MHz BODY TSL

2450		2450MHz Body			
Tissue Simulating Liquid (TSL) Composition					
Component by Percent Weight					
Water Glycol Salt ⁽¹⁾ HEC ⁽²⁾ Bacteria				Bacteriacide ⁽³⁾	
69.98	30.0	0.02	0.0	0.0	

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 19.3 Fluid Composition 5250MHz BODY TSL

This is a proprietary composition by SPEAG.