

Test Report Issue Date August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s) Specific Absorption Rate Occupational (Controlled)

Rev. 1.0 RF Exposure Category

Test Report Revision No.

DECLARATION OF COMP	LIANCE	SAR RE	EX	POS	URE	EVAL	UATI	ON		FCC & IC
Test Lab Information	Name	CELLTECH LA	ABS II	NC.						
Test Lab information	Address	21-364 Loughe	eed Ro	oad, Ke	elowna	a, B.C. V	1X 7R8	Canada		
Test Lab Accreditation(s)	ISO 17025	A2LA Test Lab	Certi	ficate N	No. 24	70.01				
Applicant Information	Name	HARRIS COR	PORA	TION						
Applicant information	Address	221 Jefferson I	Ridge	Parkw	ay, Ly	nchburg	VA 24	501 U.S.	A.	
Standard(s) Applied	FCC	47 CFR §2.109	93							
Standard(s) Applied	IC	Health Canada	a Safe	ty Cod	e 6					
Procedure(s) Applied	FCC	OET Bulletin 65, Supp. C KDB 447498 D01v06 KDB 643646 D01						646 D01v01r01		
Procedure(s) Applied	IC	RSS-102 Issue	e 5	IEE	E	1528-20	13	IEC		62209-2:2010
Device Classification(s)	FCC	Licensed Non-	Broad	cast T	ransm	itter Helo	l to Fac	e (TNF) -	- FCC	C Part 90
Device Glassification(s)	IC	Land Mobile R	adio T	ransm	itter/R	eceiver (27.41-9	60 MHz)	- RS	SS-119
Device Identifier(s)	FCC ID:	OWDTR-0140-	-E			IC:	36	36B-014	0	
Application Type(s)	FCC	Part 90 Certific	ation							
Application Type(s)	IC	RSS-119 Certi	ficatio	n						
Date of Sample Receipt	August 27, 20	112								
Dates of Evaluation	September 04	September 04-07, 2012								
Device Description	Portable 700/	800-Band Digita	l Push	n-To-Ta	alk (PT	T) Radio	Transo	ceiver wit	th Blu	uetooth
Device Name / Model(s)	XG-25P 7/800 System Model: DP			XG-PF	78B-e1				DTMF Keypad	
Device Name / Model(3)	XG-25P 7/800) Scan	Model: DPXG-PB78B-e1					Limited Keypad		
Test Sample Serial No.(s)	XG-25P Syste	em - S/N: 14 (ide	entical	protot	ype)	XG-25F	Scan -	S/N: 35	35 (identical prototype)	
Test Sample Revision No.s	Hardware	Rev				Firmw	are	R16A10		
Transmit Frequency Range(s)	FCC	764-776 MHz		794-8	05 MH	łz	806-824 MHz			851-869 MHz
Transmit Frequency (tange(s)	IC	768-776 MHz		798-8	05 MH	łz	806-82	24 MHz		851-869 MHz
Manufacturer's Rated Output Power	700 Band	2.9 Watts Nom	ninal (0	Conduc	cted)	Uppe	r Tolera	ance Spe	ec.	+ 0.05 Watts
Manufacturer 3 Nated Output I Ower	800 Band	3.0 Watts Nom	ninal (0	Conduc	cted)	Uppe	r Tolera	nce Spe	ec.	+ 0.23 Watts
Co-located Transmitter(s)	Bluetooth	Nomin	al Ou	tput Po	wer: 1	.0 mW (Cond.)	Freq.	Rang	ge: 2402-2480 MHz
Antenna Type(s) Tested		turer's accessory								
Battery Type(s) Tested		turer's accessor		• •		· ·				
Body-worn Accessories Tested		turer's accessory								
Audio Accessories Tested		turer's accessory	y listin	* ` ` 						
Max. SAR Level(s) Evaluated	Face-held	1.68 W/kg	1g	_		duty fact				Controlled Exposure
• •	Body-worn	3.67 W/kg	1g			duty fact				Controlled Exposure
FCC/IC Spatial Peak SAR Limit	Head/Body	8.0 W/kg	1g	50%	6 PTT	duty fact	or O	ccupation	nal / (Controlled Exposure

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada Safety Code 6 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 5, IEEE Standard 1528-2013 and IEC International Standard 62209-2:2010. All measurements were performed in accordance with the SAR system manufacturer recommendations. (see sec. 1.0 of report)

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the gualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By

Art Voss

Lab Manager

Celltech Labs Inc.

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:		
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 1 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	5
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	6
4.0 NO. OF TEST CHANNELS (N _C)	6
5.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING	7
6.0 FLUID DIELECTRIC PARAMETERS	9
7.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646 D01V01R01)	13
8.0 SAR TEST REDUCTION PROCEDURES - SCAN MODEL (FCC KDB INQ. #235657)	14
9.0 SAR MEASUREMENT SUMMARY	15
10.0 SAR SCALING (TUNE-UP TOLERANCE)	33
11.0 SIMULTANEOUS TRANSMISSION ASSESSMENT	33
12.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	34
13.0 SAR LEVEL CORRECTION FOR FLUID DEVIATION (IC RSS-102 / IEC 62209-2)	35
14.0 DETAILS OF SAR EVALUATION	36
15.0 SAR EVALUATION PROCEDURES	36
16.0 SYSTEM PERFORMANCE CHECK	37
17.0 SIMULATED EQUIVALENT TISSUES	38
18.0 SAR LIMITS	38
19.0 ROBOT SYSTEM SPECIFICATIONS	39
20.0 PROBE SPECIFICATION (ET3DV6)	40
21.0 PHANTOM(S)	40
22.0 DEVICE HOLDER	40
23.0 TEST EQUIPMENT LIST	41
24.0 MEASUREMENT UNCERTAINTIES	42
MEASUREMENT UNCERTAINTIES (CONT.)	43
25.0 REFERENCES	44
APPENDIX A - SAR MEASUREMENT PLOTS	45
APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	147
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	154
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	159
APPENDIX E - DIPOLE CALIBRATION	205
APPENDIX F - PROBE CALIBRATION	206
APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY	207
APPENDIX H - SAM TWIN PHANTOM CERTIFICATE OF CONFORMITY	208
APPENDIX I - AUDIO ACCESSORY COMBINATIONS (FCC KDB 643646 D01V01R01)	209

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P	TT Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 2 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

	REVISION HISTORY									
REVISION NO. DESCRIPTION IMPLEMENTED BY RELEASE DATE										
1.0 1st Release Art Voss 10 August 2016										

	TEST REPORT SIGN-OFF										
REVISION NO BY REPORT PREPARED BY QA REVIEW BY APPROVED BY											
1.0	See Section 1.0	Art Voss	Ben Hewson	Art Voss							

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	: 3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	nsceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	2000 2000
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 3 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the HARRIS Corporation XG-25P 7/800 Portable PTT Radio Transceiver with Bluetooth complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [3]), IC RSS-102 Issue 5 (see reference [4]), IEEE Standard 1528-2013 (see reference [5]) and IEC 62209-2:2010 (see reference [6]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

I have reviewed the changes proposed for this new filing and have determined that these changes will not impact the SAR magnitude or distribution indicated on the original report S/N 082712OWD-T1184-S90M, Revision 1.0 for the original FCC ID: OWDTR-0073-E. The replacement Blue-Tooth module exhibits a lower output power than the original device and is in the same physical location. This report reflects test data and measurement procedures dated September 2012. Although there have been newer releases of the test standards, I have reviewed those changes and revisions in the standards and have determined that they would not impact the measurement procedures undertaken or the SAR results as originally reported during the initial evaluation. As such, the latest releases of those standards have been cited in this report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025

Sull Vass

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

10 August 2016 Date

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	2000 2000	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 4 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

DASY4 SAR Measurement System with Side Planar Phantom

DASY4 Measurement System with Barski Planar Phantom

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:		
2012 Celltech La	012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 5 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

	N	IEASU	IRED RF COND	UCTED OUT	PUT POW	ER LEVEL	S				
Radio	Mode	F	req. Band	Test Freq.	Watts	dBm	Method				
		1	764-776 MHz	764.0	2.90	34.6					
		ı	704-776 WITZ	776.0	2.95	34.7					
		2	794-806 MHz	794.0	2.93	34.7					
System	System CW -	2		805.0	2.90	34.6	Average Conducted				
System		3	806-825 MHz	806.0	3.20	35.1	Average Conducted				
		3	000-023 WIFIZ	824.0	3.20	35.1]				
		4	851-870 MHz	851.0	3.16	35.0					
		7		869.0	3.20	35.1					
		1	764 776 MU-	764.0	2.93	34.7					
		ı	764-776 MHz	776.0	2.96	34.7					
						2	794-806 MHz	794.0	2.90	34.6	
Scan	CW	2	794-600 WIHZ	805.0	2.95	34.7	Average Conducted				
Scari	CVV	3	806-825 MHz	806.0	3.20	35.1	Average Conducted				
)	000-025 WIHZ	824.0	3.19	35.0					
	4	4 054 070 1411		851.0	3.13	35.0					
		4	851-870 MHz	869.0	3.17	35.0					

Notes

4.0 NO. OF TEST CHANNELS (Nc)

A	Antenna Part No.	Antenna Type	Antenna Freq. Range	N _c	Test Frequencies (MHz)
1	KRE 101 506/1	½-wave	764 - 870 MHz	8	764.0, 776.0, 794.0, 805.0, 806.0, 824.0, 851.0, 869.0
2	KRE 101 506/2	Wideband Whip	764 - 870 MHz	8	764.0, 776.0, 794.0, 805.0, 806.0, 824.0, 851.0, 869.0

Note: The number of test channels (*Nc*) were calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [8]).

Applica	nt:	HAR	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Ty	e:	Porta	le 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800						
2012 Cellte	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 6 of 209	

^{1.} The test channels were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [8]).

^{2.} The RF conducted output power levels of the DUT were measured by Celltech Labs prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with requirements of FCC 47 CFR §2.1046 (see reference [14]) and IC RSS-Gen (see reference [15]).

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0

5.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Accessory ID #	ACCESSORY CATEGORY:	ANTENNA	
for Test Report	Part Number	Description	SAR Evaluation
1	KRE 101 1506/1	½ - wave (764-870 MHz), 2 dBi gain	Yes
2	KRE 101 1506/2	Wideband whip (764-870 MHz), 0 dBi gain	Yes
Accessory ID #	ACCESSORY CATEGORY:	BATTERY	
for Test Report	Part Number	Description	SAR Evaluation
а	BT-023406-003	Ni-MH, immersible, non-IS, 7.5V, 2400mAh	Yes
b	BT-023406-004	Ni-MH, immersible, <is> (7.5V, 2400mAh)</is>	Yes
С	BT-023406-005	Li-ion, immersible, non-IS (7.4V, 2000mAh)	Yes
d	BT-023436-001	Lithium-polymer, immersible, non-IS (7.4V, 3000mAh)	Yes
Accessory ID # for Test Report	ACCESSORY CATEGORY:	BODY-WORN	
	Part Number	Description	SAR Evaluation
1	14011-0012-01	Kit containing: 14011-0011-01 BEE Nylon case (Black) (with radio retaining strap) & CC-014527 BEE Leather Belt Loop	Yes
2	14011-0012-02	Kit containing: 14011-0011-02 BEE Nylon case (Orange) (with radio retaining strap) & CC-014527 BEE Leather Belt Loop	No ¹
3	14011-0012-03	Kit contains: 14011-0011-03 BEE Leather Case (with radio retaining strap) w/o Shoulder Strap D-rings, KRY1011608/2 Swivel Mount & CC-014527 BEE Leather Belt Loop	Yes
4	14011-0012-04	Kit contains: 14011-0011-04 BEE Leather Case with Shoulder Strap D-rings (with radio retaining strap), KRY1011608/2 Swivel Mount & CC-014524-001 BEE Shoulder Strap	Yes
5	CC23894	Metal Belt Clip (Standard)	Yes
6	FM-017262-001 CC-014527	Swivel Mount Belt Loop, Leather (BEE)	Yes

See next page for audio accessory listing

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	nsceiver with Bluetooth	DUT Na	me:	2000 2000	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 7 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Accessory ID #	ACCESSORY CA	TEGORY: AUDIO		
for Test Report	Part Number	Description	Audio Accessory Grouping	SAR Evaluation
G1a	EA-009580-010	Headset, heavy duty, N/C behind the head, w/ PTT	Crown 4 (Hanny Duty bandon)	No ³
G1b	EA-009580-013	Headset, heavy duty, N/C over the head, w/ PTT	Group 1 (Heavy Duty headset)	No ³
G2	EA-009580-008	Lightweight headset single spkr w/ PTT	Group 2 (Lightweight headset)	No ³
G3a	EA-009580-009	Breeze Headset w/ PTT	Craup 2 (Progra bandant)	Yes
G3b	EA-009580-016	Breeze headset w/ PTT & pigtail jack	- Group 3 (Breeze headset)	No ³
G4	EA-009580-007	Explorer Headset w/ PTT	Group 4 (Explorer headset)	No ³
G5	EA-009580-011	Ranger Headset w/ PTT	Group 5 (Ranger headset)	No ³
G6a	EA-009580-017	Hurricane headset w/ PTT	Croup & (Hurrisons boadest)	No ³
G6b	EA-009580-018	Hurricane headset w/ PTT & pigtail jack	Group 6 (Hurricane headset)	No ³
G7a	MC-023933-001	Speaker-Mic, No Ant. (cc), <is></is>		No ³
G7b	MC-009104-002	Speaker-Mic, GPS, non-IS	Craup 7 (Speaker Mic)	No ³
G7c	MC-011617-601	Ruggedized Speaker Mic-Coil Cord	- Group 7 (Speaker Mic)	No ³
G7d	MC-011617-701	Standard Speaker Mic - Non Ant		No ³
G8a	EA-009580-003	2-Wire Kit, Palm mic, Black	Croup ((Dolor raio)	No ³
G8b	EA-009580-004	2-Wire Kit, Palm mic, Beige	Group 8 (Palm mic)	No ²
G9a	EA-009580-005	3-Wire Kit, Mini-Lapel Mic, Black	Craup () (Land min)	No ³
G9b	EA-009580-006	3-Wire Kit, Mini-Lapel Mic, Beige	Group 9 (Lapel mic)	No ²
G10	EA-009580-012	Skull mic w/body PTT & earcup	Group 10 (Skull mic)	No ³
G11a	EA-009580-014	Throat mic w/acoustic tube & body PTT	Crown 44 (Throat min)	No ³
G11b	EA-009580-015	Throat mic w/acoustic tube, body PTT, & ring PTT	Group 11 (Throat mic)	No ³
G12a	EA-009580-001	Earphone Kit, Black	Croup 12 (Fambana)	No ³
G12b	EA-009580-002	Earphone Kit, Beige	Group 12 (Earphone)	No ²

Manufacturer's disclosed accessory listing information provided by HARRIS Corporation

Footnotes

- 1. Body-worn accessory #2 is identical to body-worn accessory #1 except for color difference.
- 2. Audio accessories #G8b, #G9b and #G12b are identical to audio accessories #G8a, #G9a and #G12a respectively except for color difference.
- 3. Audio accessories were not evaluated for SAR in accordance with the procedures and provisions of FCC KDB 643646 D01v01r01 (Page 10 Section 1) see reference [9].

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	me:		
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 8 of 209	

Test Report Issue Date
August 10, 2016

Description of Test(s)

Specific Absorption Rate

Occup

Rev. 1.0

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

6.0 FLUID DIELECTRIC PARAMETERS

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/	04/2012	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	56.14	0.86	55.2	0.97	1.70%	-11.34%
0.745	56.01	0.88	55.2	0.97	1.47%	-9.28%
0.755	55.85	0.89	55.2	0.97	1.18%	-8.25%
0.765	55.68	0.91	55.2	0.97	0.87%	-6.19%
0.775	55.79	0.91	55.2	0.97	1.07%	-6.19%
0.776*	55.8	0.911	55.2	0.97	1.09%	-6.08%
0.785	55.7	0.92	55.2	0.97	0.91%	-5.15%
0.794*	55.5	0.92	55.2	0.97	0.54%	-5.15%
0.795	55.49	0.92	55.2	0.97	0.53%	-5.15%
0.805	55.31	0.93	55.2	0.97	0.20%	-4.12%
0.815	55.39	0.94	55.2	0.97	0.34%	-3.09%
0.824*	55.4	0.958	55.2	0.97	0.36%	-1.24%
0.825	55.42	0.96	55.2	0.97	0.40%	-1.03%
0.835	55.21	0.96	55.2	0.97	0.02%	-1.03%
0.845	54.87	0.96	55.2	0.97	-0.60%	-1.03%
0.855	54.95	0.98	55.2	0.97	-0.45%	1.03%
0.865	54.78	1	55.2	0.97	-0.76%	3.09%
0.869*	54.8	1	55.2	0.97	-0.72%	3.09%
0.875	54.83	1.01	55.2	0.97	-0.67%	4.12%
0.885	54.81	1.02	55.2	0.97	-0.71%	5.15%
0.895	54.71	1.03	55.2	0.97	-0.89%	6.19%
0.905	54.39	1.05	55.2	0.97	-1.47%	8.25%
0.915	54.37	1.04	55.2	0.97	-1.50%	7.22%
0.925	54.4	1.06	55.2	0.97	-1.45%	9.28%
0.935	54.43	1.07	55.2	0.97	-1.39%	10.31%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 4	835 Body	23.0°C	22.5°C	≥ 15 cm	101.1 kPa	34%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Name: XG-25P 7/800			
2012 Celltech La	tech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 9 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/05	5-06/2012	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	56.14	0.87	55.2	0.97	1.70%	-10.31%
0.745	56.05	0.89	55.2	0.97	1.54%	-8.25%
0.755	55.66	0.89	55.2	0.97	0.83%	-8.25%
0.765	55.91	0.91	55.2	0.97	1.29%	-6.19%
0.775	55.72	0.91	55.2	0.97	0.94%	-6.19%
0.776*	55.7	0.912	55.2	0.97	0.91%	-5.98%
0.785	55.62	0.93	55.2	0.97	0.76%	-4.12%
0.794*	55.6	0.948	55.2	0.97	0.72%	-2.27%
0.795	55.59	0.95	55.2	0.97	0.71%	-2.06%
0.805	55.11	0.95	55.2	0.97	-0.16%	-2.06%
0.815	55.37	0.96	55.2	0.97	0.31%	-1.03%
0.824*	55.4	0.96	55.2	0.97	0.36%	-1.03%
0.825	55.37	0.96	55.2	0.97	0.31%	-1.03%
0.835	55.3	0.98	55.2	0.97	0.18%	1.03%
0.845	55.18	0.98	55.2	0.97	-0.04%	1.03%
0.855	55.02	1	55.2	0.97	-0.33%	3.09%
0.865	55.08	1	55.2	0.97	-0.22%	3.09%
0.869*	54.9	1	55.2	0.97	-0.54%	3.09%
0.875	54.6	1.01	55.2	0.97	-1.09%	4.12%
0.885	54.7	1.02	55.2	0.97	-0.91%	5.15%
0.895	54.76	1.05	55.2	0.97	-0.80%	8.25%
0.905	54.66	1.05	55.2	0.97	-0.98%	8.25%
0.915	54.55	1.06	55.2	0.97	-1.18%	9.28%
0.925	54.45	1.07	55.2	0.97	-1.36%	10.31%
0.935	54.11	1.08	55.2	0.97	-1.97%	11.34%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 5	835 Body	23.0°C	22.3°C	≥ 15 cm	101.1 kPa	30%	1000
Sep 6	835 Body	23.0°C	21.5°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:		
2012 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 10 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/	07/2012	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	54.88	0.85	55.2	0.97	-0.58%	-12.37%
0.745	55.28	0.88	55.2	0.97	0.14%	-9.28%
0.755	55	0.88	55.2	0.97	-0.36%	-9.28%
0.765	54.83	0.89	55.2	0.97	-0.67%	-8.25%
0.775	54.87	0.9	55.2	0.97	-0.60%	-7.22%
0.785	54.95	0.91	55.2	0.97	-0.45%	-6.19%
0.794*	54.8	0.928	55.2	0.97	-0.72%	-4.33%
0.795	54.8	0.93	55.2	0.97	-0.72%	-4.12%
0.805	54.37	0.94	55.2	0.97	-1.50%	-3.09%
0.815	54.66	0.95	55.2	0.97	-0.98%	-2.06%
0.824*	54.4	0.95	55.2	0.97	-1.45%	-2.06%
0.825	54.37	0.95	55.2	0.97	-1.50%	-2.06%
0.835	54.24	0.96	55.2	0.97	-1.74%	-1.03%
0.845	54.23	0.98	55.2	0.97	-1.76%	1.03%
0.855	53.82	0.98	55.2	0.97	-2.50%	1.03%
0.865	53.93	0.99	55.2	0.97	-2.30%	2.06%
0.875	53.63	1	55.2	0.97	-2.84%	3.09%
0.885	53.66	1.03	55.2	0.97	-2.79%	6.19%
0.895	53.69	1.03	55.2	0.97	-2.74%	6.19%
0.905	53.31	1.03	55.2	0.97	-3.42%	6.19%
0.915	53.66	1.05	55.2	0.97	-2.79%	8.25%
0.925	53.3	1.06	55.2	0.97	-3.44%	9.28%
0.935	53.25	1.06	55.2	0.97	-3.53%	9.28%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 7	835 Body	23.0°C	22.5°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS			
DUT Type:	Porta	ble 700/800-Band P									
2012 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/	07/2012	Freq	uency: 835	MHz	Tissu	e: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	42.95	0.78	41.5	0.9	3.49%	-13.33%
0.745	43.2	8.0	41.5	0.9	4.10%	-11.11%
0.755	43.18	0.81	41.5	0.9	4.05%	-10.00%
0.765	42.59	0.82	41.5	0.9	2.63%	-8.89%
0.775	42.79	0.84	41.5	0.9	3.11%	-6.67%
0.776*	42.8	0.841	41.5	0.9	3.13%	-6.56%
0.785	42.58	0.85	41.5	0.9	2.60%	-5.56%
0.794*	42.5	0.85	41.5	0.9	2.41%	-5.56%
0.795	42.52	0.85	41.5	0.9	2.46%	-5.56%
0.805	42.49	0.87	41.5	0.9	2.39%	-3.33%
0.815	42.57	0.88	41.5	0.9	2.58%	-2.22%
0.824*	42.3	0.88	41.5	0.9	1.93%	-2.22%
0.825	42.24	0.88	41.5	0.9	1.78%	-2.22%
0.835	42.07	0.88	41.5	0.9	1.37%	-2.22%
0.845	41.87	0.91	41.5	0.9	0.89%	1.11%
0.855	41.74	0.92	41.5	0.9	0.58%	2.22%
0.865	41.39	0.92	41.5	0.9	-0.27%	2.22%
0.869*	41.3	0.924	41.5	0.9	-0.48%	2.67%
0.875	41.06	0.93	41.5	0.9	-1.06%	3.33%
0.885	41.44	0.94	41.5	0.9	-0.14%	4.44%
0.895	41.13	0.95	41.5	0.9	-0.89%	5.56%
0.905	41.08	0.95	41.5	0.9	-1.01%	5.56%
0.915	40.97	0.98	41.5	0.9	-1.28%	8.89%
0.925	40.76	0.97	41.5	0.9	-1.78%	7.78%
0.935	40.96	0.98	41.5	0.9	-1.30%	8.89%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 7	835 Head	23.0°C	22.9°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	
2012 Celltech La	bs Inc.	This document is not to	be reproduced in	n whole or in part without the prio	r written peri	mission	of Celltech Labs Inc.	Page 12 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0

RF Exposure Category
Occupational (Controlled)

7.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646 D01v01r01)

- a. Face-held Configuration Default Battery Selection per FCC KDB 643646, Page 2, Section 1) A): "When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements."
- b. Body-worn Configuration Default Battery Selection per FCC KDB 643646, Page 5, Section 1) A): "Start by testing a PTT radio with the thinnest battery and a standard (default) Body-worn accessory that are both supplied with the radio and, if applicable, a default audio accessory......."
- c. Body-worn Configuration Default Body-worn Accessory Selection the belt-clip accessory was selected as the default body-worn accessory based on the smaller separation distance it provides between the radio and the user in comparison to the remaining accessories. Per FCC KDB 643646, Page 5, Section 1) A): "When multiple default Body-worn accessories are supplied with a radio, the standard Body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions is considered the default Body-worn accessory for making Body-worn measurements."
- d. Body-worn Configuration Additional Body-worn Accessories the remaining Body-worn accessories were evaluated based on the "additional Body-worn accessory" guidance provided in FCC KDB 643646, Page 7, Section 4). The remaining Body-worn accessories can be utilized with all the audio accessory options.
- e. Body-worn Configuration Default Audio Accessory Selection According to the manufacturer, the radio is not supplied to the end user with a standard default audio accessory (as referenced in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Body-worn Accessories"); therefore the procedures described in note (h) below were applied in order to establish the default audio accessory.
- f. Body-worn Configuration Selection of Remaining Default Audio Accessories by Category the Remaining Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." Please refer to note (i) below for the procedure implemented to establish the Default Audio Accessory by Category (Grouping). The Remaining Default Audio Accessories by Category were evaluated on the highest SAR channel and antenna combination from the Default Audio Accessory evaluations (see note e.) based on the guidance provided in FCC KDB 643646, Page 10, Section 1) A) thru D).
- g. Body-worn Configuration Selection of Additional Audio Accessories by Category the Additional Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10.
- h. According to the manufacturer, all the optional audio accessories can be used with any accessory combination (antenna, battery & body-worn accessory) see also Appendix I (Audio Accessory Combinations). Therefore, in order to establish the overall default audio accessory and default accessory by category (grouping), preliminary SAR evaluations (area scans with belt-clip and thinnest battery) were performed by Celltech with all of the optional audio accessories connected to the radio consecutively.

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

8.0 SAR TEST REDUCTION PROCEDURES - SCAN MODEL (FCC KDB INQ. #235657)

With respect to the SAR results for the *original model*, please test the SAR for *additional models* according to the following where reported and measured should mean the SAR results at 50% duty factor before further scaling or compensation.

- 1. For face exposure, *additional models* should be measured for each of the antennas using the highest SAR configuration reported among the battery configurations for the *base model*; i.e., one SAR per antenna for each additional model.
- 2. For body-worn accessories with the default audio accessory, additional models should be measured for each of the antennas and body-worn accessories using the highest SAR configuration reported among the battery configurations for the base model; i.e., one SAR per antenna and body-worn accessory combination. For each of these configurations, if the measured SAR for the additional models is > 7.0 W/kg repeat all SAR measured for the base model that are > 6.0 W/kg using the additional models. In addition, all SAR measured for the base model > 7.0 W/kg must be repeated for the additional models.
- 3. For the remaining default audio accessories, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the *base model* with SAR >= 7.0 W/kg must be repeated for the *additional models* for such combinations. When the highest SAR measured for a *base model* combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg, measure SAR for the *additional models* using the highest SAR reported for each *base model* combination; i.e., at least one test per combination. However, if the highest reported SAR for a *base model* combination is < 5.0 W/kg, no test is needed for that combination. For each *additional model* combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported *base model* SAR is > 6.0 W/kg.
- 4. For the rest of the additional (non-default) audio accessories tested for the *base model*, apply the same procedures used for the remaining default audio accessories in #3 above. A combination should be determined according to audio accessory part numbers; not by audio category.

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	2000 2000
2012 Celltech La	ibs Inc.	This document is not to	be reproduced in	n whole or in part without the prio	r written peri	mission	of Celltech Labs Inc.	Page 14 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0

9.0 SAR MEASUREMENT SUMMARY

TAI	BLE 1			FAC	E-HEL	D SA	R E	VALU	ATION	RESULT	S					
	Dev	/ice-Und	er-Test	XG-2	5P 7/800	Radio	o Trar	sceive	r (Svsten	n)						
			Date(s)		7, 2012				. (0)010	,						
С				оори.	1	2	2		3	4		5	6		7	8
			Cond.		SAR W/k	g 1g			SAR W/k	g 1g		SAR W/k	g 1g		SAR W/k	g 1g
	Antenna	Test	Power	Batt	tery a (Ad		al)	Bat	tery b (Ac		Bat	tery c (Ad		Ва	attery d ([
R	Accessory ID#	Freq. (MHz)	Before Test	100%	6 ptt d/f	50% p	ott d/f	100%	6 ptt d/f	50% ptt d/f	100%	% ptt d/f	50% ptt d/f	100%	% ptt d/f	50% ptt d/f
		((W)	Drif	ft (dB)	50%+	droop	Dri	ift dB	50%+droop	Dr	ift dB	50%+droop	Dr	ift dB	50%+droop
1		764.0	2.90		N/A				N/A			N/A			N/A	
2															1.14	0.570
3		776.0	2.95		N/A				N/A			N/A		F1	-0.272	0.607
4															1.20	0.600
5		794.0	2.93		N/A				N/A			N/A		F2	-0.463	0.667
6		805.0	2.90		N/A				N/A			N/A			N/A	0.00
7	1	806.0	3.20		N/A				N/A			N/A			N/A	
8		000.0	3.20		19/73				19/74		IN/A				1.23	0.615
9		824.0	3.20		N/A				N/A			N/A		F3	-0.620	
		054.0	0.40		N1/A				N1/A			N1/A				0.709
10		851.0	3.16		N/A				N/A			N/A			N/A	0.074
11		869.0	3.20	N/A					N/A			N/A		F4	0.742	0.371
12															-0.304	0.398
13		764.0	2.90	N/A 3.25 1.6			N/.		T		N/A	T		N/A	ı	
14		776.0	0.05	F9	3.25	1.0	63	F10	3.00	1.50	F11	3.08	1.54	F5	3.01	1.51
15			2.95		-0.168	1.0	69		-0.151	1.55		-0.190	1.61		-0.057	1.53
16		794.0			N/A				N/A			N/A		F6	2.89	1.45
17		704.0	2.93					14// (14/71		10	-0.079	1.47	
18	2	805.0	2.90		N/A				N/A			N/A			N/A	
19	2	806.0	3.20		N/A				N/A			N/A			N/A	
20		004.0	0.00	E40	2.83	1.4	42	E40	3.13	1.57	544	3.08	1.54	F-7	2.97	1.49
21		824.0	3.20	F12	-0.283	1.	51	F13	-0.139	1.62	F14	-0.148	1.59	F7	-0.155	1.54
22		851.0	3.16		N/A				N/A			N/A	•		N/A	
23															1.90	0.950
24		869.0	3.20		N/A				N/A			N/A		F8	-0.330	1.03
		SAF	RLIMITS					HEA	D	SPAT	IAL PE	AK	RF E	XPOSU	RE CATE	GORY
FC	C 47 CFR 2.1	093	Health Ca	anada S	Safety Cod	de 6		8.0 W/	/kg		m aver		1		al / Contr	
Note					0.70:00				D 15	200 007 100			D 1.05	076		
	1 1: 764-776 M Freq.: 776.0 M				2: 794-806 req.: 794.	—				806-825 MH: q.: 824.0 MH			Band 4: 851 Test Freq.: 8			
	Column; R = F				,			Fx (denotes the		onding Fa				endix A
Test	Mode = CW (Unmodula	ted Contir	nuous W	/ave)			Pha	ntom = Si	de Planar Ph	antom					
Fi	ront of DUT D						x D)		Shor	test Antenn	Dista	nce to Pla	nar Phantor	n (see A	Appendix	D)
	(Fron	t of DUT I	Parallel to		Phantom)	Antenna 1 Antenna 2									
			2.5 cm							5.4 cm				5.4	cm	

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS		
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	nsceiver with Bluetooth	me:	XG-25P 7/800	200000000000000000000000000000000000000			
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Test Procedures in accordance with FCC KDB 643646 (see reference [9])

- 1. For face-held configuration, battery "d" was selected as the default battery (highest mAh).
- 2. When the head SAR of an antenna tested on the highest output power channel with the default battery is \leq 3.5 W/kg (F1-F8), testing of all other required channels is not necessary.
- 3. When the SAR for all antennas tested using the default battery is \leq 4.0 W/kg (F1-F8), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (F9-F14). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Subsets of tests were performed for the Scan radio model variant based on re-evaluating the maximum SAR levels per antenna configuration from the System model evaluations.

	FACE-H	IELD SAI	R EVALU	ATIO	N RES	ULTS (Syst	em & Scan	Radio N	lodel	Variant	t Comparis	on)
TAI	BLE 2		XG-25P	7/800 S	CAN Ra	adio Keypad V	ariant Model	XG-2	5P 7/8	00 SYST	EM Radio Ba	se Model
С			01		1	2	3	01		4	5	6
	Antenna	Test	Cond. Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	Cond. Power Before	_	SAR kg (1g)	SAR W/kg (1g)	Battery
R	Accessory ID #	Freq. (MHz)	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	6 ptt d/f	50% ptt d/f	Accessory ID #
		. ,	(,	Dri	ft (dB)	50%+droop		(,	Dri	ift dB	50%+droop	
1		764.0	2.93			N/A		2.90			N/A	
2		776.0	2.96			N/A		2.95			N/A	
3		794.0	2.90			N/A		2.93			N/A	
4		805.0	2.95			N/A		2.90			N/A	
5	1	806.0	3.20			N/A		3.20			N/A	
6		824.0	3.19	F15	1.32	0.660	d	3.20	F3	1.23	0.615	d
7		024.0	3.19	FIS	-0.244	0.698	u	3.20	гэ	-0.620	0.709	u
8		851.0	3.13			N/A		3.16			N/A	
9		869.0	3.17			N/A		3.20		N/A		
10		764.0	2.93			N/A		2.90			N/A	
11		3.23					•	2.95	F9	3.25	1.63	
12		776.0	2.96	F 10	-0.003	1.62	а	2.95	ГЭ	-0.168	1.69	а
13		794.0	2.90			N/A		2.93	N/A			
14	2	805.0	2.95			N/A		2.90			N/A	
15		806.0	3.20			N/A		3.20			N/A	
16		824.0	3.19			N/A		3.20			N/A	
17		851.0	3.13			N/A		3.16			N/A	
18		869.0	3.17			N/A		3.20			N/A	
		SAR LIMI	тѕ			HEAD	SPATIAL	PEAK		RF EXP	OSURE CATE	GORY
FC	C 47 CFR 2.109	3 Health	n Canada Sa	fety Co	de 6	8.0 W/kg	1 gram a	verage		Occup	ational / Contr	olled
Note	es						•					
Test	Mode = CW (U	nmodulated	Continuous V	Vave)		Phantom =	Side Planar Pha	intom				
C = (Column; R = Ro	w		Fx (F = Fac	ce) denotes the c	orrespondi	ng Face	SAR Plot	# as shown in A	Appendix A		
N/A = Not Applicable						Test reduct	ion procedures a	applied for S	Scan mo	odel = FCC	C KDB Inquiry #	235657
Fror						o) Sh	ortest Antenna	Distance t	o Plana	ar Phanto	m (see Append	lix D)
	ront of DUT Distance to Planar Phantom (see Appendix D) (Front of DUT Parallel to Planar Phantom)					Antenna 1				Antenna 2		
	2.5 cm					5.4 cm 5.4 cm						
					1							

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS		
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800			
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

TA	BLE 3			BOD	Y-WOF	RN S	AR E	EVAL	JATION	N RESUL	.TS					
	Dev	vice-Und	er-Test	XG-2	5P 7/800	Radio	o Tran	sceiver	(System	1)						
	Body-worn	Accesso	ory ID #	5 (De	fault)											
	Audio	Accesso	ory ID #	G3a ((Default)											
		Test	Date(s)	Sept.	4, 2012											
С					1	2	2		3	4		5	6		7	8
			Cond.		SAR W/kg	g 1g			SAR W/kg	g 1g		SAR W/k	g 1g		SAR W/k	g 1g
R	Antenna Accessory	Test Freq.	Power Before	Bat	tery a (Ad	dition	al)	Batt	ery b (Add	ditional)	Batt	ery c (Ad	ditional)	В	attery d (I	Default)
, K	ID#	(MHz)	Test	100%	% ptt d/f	50%	ott d/f	100%	ptt d/f	50% ptt d/f	100%	ptt d/f	50% ptt d/f	100	% ptt d/f	50% ptt d/f
			(W)	Dri	ft (dB)	50%+	droop	Dri	ft dB	50%+droop	Dri	ft dB	50%+droop	Dı	rift dB	50%+droop
1		764.0	2.90	N/A N/A N/A N/A N/A N/A				N/A			N/A			N/A		
2		776.0	2.95		NI/A				N/A			N/A		B1	4.95	2.48
3		776.0	2.95		IN/A				IN/A			IN/A		ы	-0.164	2.57
4		7040	0.00		N1/A				N1/A			N1/A		DO	5.38	2.69
5		794.0	2.93		N/A				N/A			N/A		B2	-0.003	2.69
6	4	N/A				N/A			N/A			N/A				
7	1	806.0	3.20		N/A				N/A			N/A			N/A	
8															5.29	2.65
9									N/A			N/A		В3	0.032	n/a
10		851.0	3.16	N/A N/A N/A									N/A			
11					N/A								- ·	3.06	1.53	
12		869.0	3.20									N/A		B4	-0.286	1.63
13		764.0	2.90 N/A						N/A			N/A			N/A	
14		776.0		B9	4.48	2.:	24	B10	5.33	2.67	B11	5.85	2.93	B5	7.18	3.59
15		770.0	2.95	Də	-0.119	2.3	30	ы	-0.196	2.79	D11	-0.154	3.03	БО	-0.163	3.73
16		794.0			N/A				N/A			N/A		В6	6.37	3.19
17		7 34.0	2.93		IN/A				IV/A			IN//A		БО	-0.289	3.40
18	2	805.0	2.90		N/A				N/A			N/A			N/A	
19	_	806.0	3.20		N/A				N/A			N/A			N/A	_
20		824.0	3.20	B12	4.79	2.	40	B13	5.05	2.53	B14	4.31	2.16	B7	5.32	2.66
21		027.0	0.20	D12	-0.195	2.	51	DIO	0.276	n/a	517	-0.325	2.32	5,	-0.149	2.75
22		851.0	3.16		N/A				N/A			N/A			N/A	_
23		869.0	3.20		N/A				N/A			N/A		В8	4.01	2.01
24		009.0	3.20		IN/A				IN/A			IN/A		D6	-0.273	2.14
	SAR LIMITS							BOD	1	SPAT	ΓIAL PE	AK	RF E	XPOSU	RE CATE	GORY
	FCC 47 CFR 2.1093 Health Canada Safety Code 6							8.0 W/	kg	1 gra	m avera	ige	Occ	upatior	nal / Contr	olled
Note	es d 1: 764-776 N	ИНт		Band	2: 794-806	MHz			Rand 3	3: 806-825 N	ИНт		Band 4:	851-87	0 MHz	
Test	Freq.: 776.0 I	ИHz			req.: 794.0				Test F	req.: 824.0 M	ИНz		Test Fre	q.: 869.	.0 MHz	
C = Column; R = Row Test Mode = CW (Unmodulated Continuous Wave)							`	• • • • • • • • • • • • • • • • • • • •		•		dy SAR Plot	# as sh	nown in Ap	pendix A	
							- D)	Phar		rski Planar F			Diamer Dhanton (and American Diamerican			D)
В							(D)				a Distan	ice to Pia	nar Phantor			טן
			1.6 cm	Phantom (see Appendix D) to Planar Phantom) Antenna 1 Antenna 2 1.9 cm 1.9 cm												
							•									

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS			
DUT Type:	Porta	ble 700/800-Band P	T Radio Trar	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	,			
2012 Celltech L	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "d" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B1-B8), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B1-B8), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B9-B14). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G3a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 RF Exposure Category Occupational (Controlled)

Test Report Revision No.

TAI	BLE 4			BOD	Y-WOF	RN S	AR E	EVAL	UATION	N RESUL	.TS					
	Dev	vice-Und	ler-Test	XG-2	5P 7/800	Radio	o Tran	sceiver	(System	1)						
	Body-worn	Accesso	ory ID #	1 (Ad	ditional)					<u> </u>						
	Audio	Accesso	ory ID #	G3a (Default)											
		Test	Date(s)	Sept.	4 & 5, 20)12										
С					1	2	2		3	4		5	6		7	8
			Cond.		SAR W/k	g 1g			SAR W/kg	g 1g		SAR W/k	g 1g		SAR W/k	g 1g
R	Antenna Accessory	Test Freq.	Power Before	Batt	ery a (Ad			Batt	ery b (Ad	ditional)	Batt	ery c (Ad		В	attery d (I	Default)
	ID#	(MHz)	Test		•				ptt d/f	50% ptt d/f		ptt d/f	50% ptt d/f		% ptt d/f	50% ptt d/f
			(W)	Drif	, ,	50%+	droop	Dri	ft dB	50%+droop	Dri	ft dB	50%+droop	Dr	ift dB	50%+droop
1		764.0	2.90		N/A				N/A			N/A			N/A	1
2		776.0	2.95		N/A				N/A			N/A		B15	1.15	0.575
3				SAR W/kg 1g Battery a (Additional) 100% ptt d/f										-0.311	0.618	
4		794.0	2.93		N/A				N/A			N/A		B16	1.04	0.520
5					1 11/1				1471			1 11/1			-0.280	0.555
6	1	805.0	2.90		N/A				N/A			N/A			N/A	
7	•	806.0	3.20	.20 N/A					N/A			N/A			N/A	
8		824.0	2 20		NI/A				N/A			N/A		B17	1.03	0.515
9		024.0	3.20		IN/A				IN/A			IN/A		ы	-0.403	0.565
10		851.0	3.16	6 N/A				N/A			N/A			N/A		
11		000.0	N/A				N1/A			N1/A		D40	0.627	0.314		
12		869.0	3.20		N/A				N/A			N/A		B18	-0.445	0.347
13		764.0	2.90		N/A				N/A			N/A			N/A	•
14		770.0		N/A				.			.		D.10	1.67	0.835	
15		776.0	2.95		N/A			N/A				N/A		B19	-0.127	0.860
16				500	1.09	0.5	545	501	1.29	0.645		1.55	0.775		1.69	0.845
17		794.0	2.93	B23	-0.067	0.5	553	B24	-0.269	0.686	B25	-0.346	0.839	B20	-0.262	0.898
18		805.0	2.90		N/A	1			N/A			N/A			N/A	•
19	2	806.0	3.20		N/A				N/A			N/A			N/A	
20					1.08	0.5	540		1.11	0.555		1.40	0.700		1.55	0.775
21		824.0	3.20	B26	-0.226	0.5	569	B27	-0.225	0.585	B28	-0.321	0.754	B21	-0.274	0.825
22		851.0	3.16		N/A	1			N/A	1		N/A	1		N/A	1
23														_	0.936	0.468
24		869.0	3.20		N/A				N/A			N/A		B22	-0.418	0.515
	SAR LIMITS							BOD	Υ	SPA	TIAL PE	AK	RF E	XPOSU	RE CATE	GORY
FC	C 47 CFR 2.1	093	Health C	anada S	afety Cod	le 6		8.0 W/	kg	1 gra	m avera	ige	Occ	upation	al / Contr	olled
Note				_					1 -							
-	d 1: 764-776 N Freq.: 776.0 N				2: 794-806 req.: 794.0					3: 806-825 N req.: 824.0 f			Band 4: Test Fre			
	Column; R = F							Bx (I				onding Bo	dy SAR Plot			pendix A
Test	Mode = CW (Unmodula	ted Contir	nuous W	ave)			Phar	ntom = Ba	rski Planar F	hantom		,,			
В	ack of DUT D						,						D)			
	(васк	UI KAGIO	Parallel to 4.5 cm		rnantom	')				Antenna 1 4.7 cm					nna 2 cm	
<u> </u>			4.5 CM							4.7 UII				4.7	UIII	

Applicant:	HAF	RRIS Corporation	S Corporation FCC ID: OWDTR-0140-E		IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	nsceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	2000 2000
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "d" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B15-B22), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B15-B22), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B23-B28). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G3a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)

Specific Absorption Rate Occupational (Controlled)

Rev. 1.0 RF Exposure Category

Test Report Revision No.

TAI	BLE 5			BOD	Y-WOI	RN S	AR E	VAL	JATIO	N RESUL	.TS					
		/ice-Und			5P 7/800	Radio	Tran	sceiver	(System	1)						
	Body-worn				ditional)											
	Audio	Accesso			Default)											
		Test	Date(s)	-	5, 2012				_			_			_	_
С					1	. 2	2		3	4		5	6		7	. 8
	Antenna	Test	Cond. Power		SAR W/k		-		SAR W/k			SAR W/k		_	SAR W/k	
R	Accessory	Freq.	Before		ery a (Ad				ery b (Ad			ery c (Ad			attery d (E	· · · · · ·
	ID#	(MHz)	Test (W)		6 ptt d/f	50% p			ptt d/f	50% ptt d/f		ptt d/f	50% ptt d/f		6 ptt d/f	50% ptt d/f
		704.0		Drif	t (dB)	50%+0	aroop	Drii	t dB	50%+droop	Dri	ft dB	50%+droop	Dr	ift dB	50%+droop
1		764.0	2.90		N/A				N/A			N/A			N/A	
2		776.0	2.95		N/A				N/A			N/A		B29	0.704	0.352
3															-0.336	0.380
4		794.0	2.93		N/A				N/A			N/A		B30	0.729	0.365
5														200	-0.334	0.394
6	1	805.0	2.90		N/A				N/A			N/A			N/A	
7	'	806.0	3.20		N/A				N/A			N/A			N/A	
8		0040	0.00		N1/A				N1/A			N1/A		D04	0.793	0.397
9		824.0	3.20		N/A				N/A			N/A		B31	-0.320	0.427
10		851.0	3.16		N/A				N/A			N/A			N/A	•
11								N1/A			N/Δ				0.430	0.215
12		869.0	3.20	N/A					N/A			N/A		B32	-0.359	0.234
13		764.0	2.90		N/A				N/A			N/A			N/A	
14											A1/A				1.09	0.545
15		776.0	2.95		N/A			N/A			N/A			B33	-0.138	0.563
16					1.10	0.5	550		0.835	0.418		1.36	0.680		1.51	0.755
17		794.0	2.93	B37	-0.167		572	B38	-0.162	0.433	B39	-0.375	0.741	B34	-0.273	0.804
18		805.0	2.90		N/A	1			N/A			N/A			N/A	
19	2	806.0	3.20		N/A				N/A			N/A			N/A	
20		000.0	0.20		1.10	0.5	550		1.00	0.500		1.36	0.680		1.40	0.700
21		824.0	3.20	B40	-0.272		586	B41	-0.326	0.539	B42	-0.335	0.735	B35	-0.126	0.700
22		851.0	3.16		-0.272 N/A	0.0	,50		-0.320 N/A	0.000		-0.333 N/A	0.733		N/A	0.721
		001.0	5.10		IN/A				IN/A			IN/A			0.908	0.454
	869.0 3.20 N/A								N/A			N/A		B36		0.454
24												A16		(0.00)	-0.431	0.501
	C 47 CED C 4		LIMITS	on order O	of other Co	do C		BODY			TIAL PE				RE CATE	
Note	C 47 CFR 2.1	093	Health Ca	anada S	arety Coo	ie o		8.0 W/I	\y	i gra	m avera	ige	UCCI	upation	al / Contr	onea
Band	I 1: 764-776 N				2: 794-806			Band 3: 806-825 MHz Band 4: 851-870 MHz								
	Freq.: 776.0 N			Test F	req.: 794.	0 MHz		1		req.: 824.0 I			Test Fre	•		
	$\frac{\text{Column; R = R}}{\text{Mode = CW (I)}}$		ited Contin	IIIONE /V/	ave)					denotes the rski Planar F			ody SAR Plot	# as sh	own in Ap	pendix A
	ack of DUT D					pendix	(D)	i-IIal					nar Phanton	n (see A	Appendix	D)
			Parallel to					D) Shortest Antenna Distance to Planar Phai Antenna 1					Antenna 2			
	5.4 cm							5.6 cm 5.6 cm								

Applicant:	HAF	RRIS Corporation	Corporation FCC ID: OWDTR-0140-E		IC:		3636B-0140	HARRIS		
DUT Type:	Porta	ble 700/800-Band P	e 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800							
2012 Celltech La	abs Inc.	This document is not to	of Celltech Labs Inc.	Page 22 of 209						

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "d" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B29-B36), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B29-B36), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B37-B42). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G3a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)

Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Test Report Revision No.

Rev. 1.0

TA	BLE 6			BOD	Y-WOF	RN S	AR I	EVAL	JATION	I RESUL	.TS					
	Dev	vice-Und	er-Test	XG-2	5P 7/800	Radio	o Trar	nsceiver	(System)						
	Body-worn	Accesso	ory ID #	4 (Ad	ditional)											
	Audio	Accesso	ory ID #	G3a (Default)											
		Test	Date(s)	Sept.	5 & 6, 20)12										
С					1	2	2		3	4		5	6		7	8
			Cond.		SAR W/kg	g 1g			SAR W/kg	յ 1g		SAR W/k	g 1g		SAR W/k	g 1g
R	Antenna Accessory	Test Freq.	Power Before	Batt	ery a (Ad	dition	al)	Batt	ery b (Add	ditional)	Batt	ery c (Ad	lditional)	В	attery d ([Default)
	ID#	(MHz)	Test	100%	ptt d/f	50%	ptt d/f	100%	ptt d/f	50% ptt d/f	100%	ptt d/f	50% ptt d/f	1009	% ptt d/f	50% ptt d/f
			(W)	Drif	t (dB)	50%+	droop	Dri	ft dB	50%+droop	Dri	ft dB	50%+droop	Dr	ift dB	50%+droop
1		764.0	2.90		N/A				N/A			N/A			N/A	
2		776.0	2.95		N/A				N/A			N/A		B43	2.69	1.35
3															-0.361	1.46
4		794.0	2.93		N/A				N/A			N/A		B44	3.06	1.53
5															-1.74	2.28
6	1	805.0	2.90		N/A				N/A			N/A			N/A	
7		806.0	3.20		N/A				N/A			N/A			N/A	
8		824.0	3.20		N/A				N/A			N/A		B45	1.96	0.980
9															0.708	n/a
10		851.0	3.16	N/A					N/A			N/A			N/A	
11		869.0	3.20		N/A			N/A				N/A		B46	1.11 -0.100	0.555 0.568
13		764.0	2.90		N/A				N/A			N/A			N/A	
14		776.0	2.95		N/A			N/A				N/A		B47	6.46	3.23
15		770.0	2.00		11// (,			N/A			14// (T	D-17	-0.113	3.32
16		794.0	2.93	B51	4.88	2.	44	B52	5.64	2.82	B53	6.68	3.34	B48	7.23	3.62
17					-0.343	2.	64		-0.475	3.15		-0.329	3.60		-0.247	3.83
18	2	805.0	2.90		N/A				N/A			N/A			N/A	
19		806.0	3.20		N/A				N/A	1		N/A	1		N/A	
20		824.0	3.20	B54	4.80		40	B55	4.37	2.19	B56	5.65	2.83	B49	6.28	3.14
21					-0.350	2.	60		-0.359	2.37		-0.357	3.07		-0.194	3.28
22		851.0	3.16		N/A				N/A			N/A			N/A	0.04
23		869.0	3.20		N/A				N/A			N/A		B50	4.42	2.21
24		0.45	LIMITO					BODY	,	00.43	FIAL DE	A 1/	DE E	VD00U	-0.333	2.39
FC	CC 47 CFR 2.1		R LIMITS Health C	anada S	afety Cod	le 6		8.0 W/			m avera				RE CATE	
Note								5.5 .77	-5	. 514						
-	d 1: 764-776 N Freq.: 776.0 N				2: 794-806 req.: 794.0								Band 4:			
	Column; R = F			I COLF	154 194.l	ν ινιι⊐Ζ	•	Test Freq.: 824.0 MHz Test Freq.: 824.0 MHz Bx (B = Body) denotes the corresponding Body SAR Plot # a					•		pendix A	
	Mode = CW (ted Contir	nuous W	ave)					ski Planar F					<u></u>	
В	Back of DUT D						(D)					nar Phantor	<u> </u>		D)	
	(Back	ot Kadio	Parallel to 3.2 cm		Pnantom)	Antenna 1 Antenna 2 3.3 cm 3.3 cm									
<u> </u>			J.Z GII					3.3 cm					3.3 cm			

Applicant:	HAF	RRIS Corporation	n FCC ID: OWDTR-0140-E		IC:		3636B-0140	HARRIS	
DUT Type:	Porta	ble 700/800-Band P1	XG-25P 7/800						
2012 Celltech La	ibs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "d" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B43-B50), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B43-B50), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B51-B56). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G3a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 RF Exposure Category Occupational (Controlled)

Test Report Revision No.

TAI	BLE 7			BOD	Y-WOI	RN S	AR E	VAL	JATIO	N RESUL	.TS					
		vice-Und		XG-2	5P 7/800	Radio	Trans	sceiver	(System	۱)						
	Body-worn			<u> </u>	ditional)											
	Audio	Accesso			Default)											
		Test	Date(s)	•	6, 2012				•			-	•		_	
С					1	2			3	4		5	6		7	8
	Antenna	Test	Cond. Power		SAR W/k		- 10		SAR W/k			SAR W/k			SAR W/k	
R	Accessory	Freq.	Before		t <mark>ery a (Ad</mark> % ptt d/f	50% p			ery b (Ad ptt d/f	50% ptt d/f		ery c (Ad b ptt d/f	50% ptt d/f		<mark>attery d (</mark> [6 ptt d/f	50% ptt d/f
	ID#	(MHz)	Test (W)		t (dB)	50% p			ft dB	50% ptt d/l		ft dB	50% ptt d/l		ift dB	50% ptt d/l
1		764.0	2.90	Dill	N/A	30 /0+0	ЛООР	Dill	N/A	30 /0+4100р	Dii	N/A	30 /0+41 00р	, Di	N/A	30 /0тагоор
2		704.0	2.90		11//		1		19/7			19/7			1.51	0.755
3		776.0	2.95		N/A				N/A			N/A		B57	-0.193	0.789
_																
4		794.0	2.93		N/A				N/A			N/A		B58	1.76	0.880
5															-0.279	0.938
6	1	805.0	2.90		N/A				N/A			N/A			N/A	
7		806.0	3.20		N/A				N/A			N/A			N/A	
8		824.0	3.20		N/A				N/A			N/A		B59	1.63	0.815
9															-0.093	0.833
10		851.0	3.16		N/A				N/A			N/A			N/A	
11		869.0	3.20		N/A				N/A			N/A		B60	0.913	0.457
12			0.20		N/A									500	-0.270	0.486
13		764.0	2.90		N/A			N/A			N/A				N/A	
14		776.0			N/A			N/A			N/A			B61	2.72	1.36
15		770.0	2.95		IN/A				IN/A			IV/A		D01	-0.149	1.41
16		794.0		B65	1.73	0.8	865	B66	2.29	1.15	B67	2.51	1.26	B62	2.80	1.40
17		794.0	2.93	В03	-0.272	0.9	21	ВОО	-0.241	1.21	B01	-0.241	1.33	D02	-0.225	1.47
18	0	805.0	2.90		N/A				N/A			N/A			N/A	
19	2	806.0	3.20		N/A				N/A			N/A			N/A	
20		004.0	0.00	Doo	1.60	0.8	00	Doo	1.60	0.800	D70	1.99	0.995	Doo	2.35	1.18
21		824.0	3.20	B68	-0.194	0.8	37	B69	-0.057	0.811	B70	-0.310	1.07	B63	-0.127	1.21
22		851.0	3.16		N/A	•			N/A	•		N/A	-		N/A	•
23		000.0	0.00											Do.	1.37	0.685
24	24 869.0 3.20 N/A								N/A			N/A		B64	-0.399	0.751
	SAR LIMITS							BODY	/	SPA	TIAL PE	AK	RF EX	KPOSU	RE CATE	GORY
FC	C 47 CFR 2.1	093	Health Ca	anada S	afety Cod	de 6		8.0 W/I	kg	1 gra	ım avera	ige	Occi	upation	al / Contr	olled
Note													1.			
	l 1: 764-776 N Freq.: 776.0 N				2: 794-806 req.: 794.			Band 3: 806-825 MHz Test Freq.: 824.0 MHz Band 4: 851-870 MHz Test Freq.: 869.0 MHz								
	Column; R = R							Bx (E		•		onding Bo	dy SAR Plot	•		pendix A
Test	Mode = CW (Unmodula	ted Contin	nuous W	ave)			Phar	ntom = Ba	ırski Planar F	hantom					
В	ack of DUT D						(D)	,				nar Phanton	` ' ' '			
	(Back of Radio Parallel to Planar Phantom)							Antenna 1 Antenna 2 3.7 cm 3.7 cm								
<u> </u>	3.5 cm									J., Jiii				0.7	U (1)	

Applicant:	HAF	RRIS Corporation	FCC ID: OWDTR-0140-E		IC:		3636B-0140	HARRIS	
DUT Type:	Porta	ble 700/800-Band P1							
2012 Celltech La	ibs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "d" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B57-B64), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B57-B64), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B65-B70). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G3a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Serial No. 46451355-1R1.1

Test Report Issue Date Description of Test(s) August 10, 2016 Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Rev. 1.0

	BODY-V	VORN SA	R EVAL	JATIO	N RES	ULTS (Sys	tem & Scan	Radio I	/lodel	Varian	t Comparis	son)
TAE	BLE 8		XG-25P 7	7/800 S	CAN Rad	lio Keypad V	ariant Model	XG-2	5P 7/8	00 SYST	EM Radio Ba	se Model
Bod	y-worn Acces	ssory ID#	5 (Default	t)								
Aud	io Accessor	y ID #	G3a (Defa	ault)								
С					1	2	3			4	5	6
R	Antenna Accessory	Test Freg.	Cond. Power Before Test	W/k	AR g (1g)	SAR W/kg (1g)	Battery Accessory	Cond. Power Before Test	W/k	SAR kg (1g)	SAR W/kg (1g)	Battery Accessory
	ID#	(MHz)	(W)		ptt d/f (dB)	50% ptt d/f 50%+droop	ID#	(W)		6 ptt d/f ift dB	50% ptt d/f 50%+droop	ID#
1		764.0	2.93		<u> </u>	N/A		2.90			N/A	
2		776.0	2.96			N/A		2.95			N/A	
3		794.0	2.90	B71	5.25	2.63	d	2.93	B2	5.38	2.69	d
4				J	0.001	n/a	4			-0.003	2.69	_
5	1	805.0	2.95			N/A		2.90			N/A	
6		806.0	3.20			N/A		3.20			N/A	
7		824.0	3.19			N/A		3.20			N/A	
8		851.0	3.13			N/A		3.16			N/A	
9		869.0	3.17			N/A					N/A	
10		764.0	2.93			N/A		2.90			N/A	
11		776.0	2.96	B72 -	4.49	2.25	d	2.95	B5	7.18	3.59	d
12				3.2	0.066	n/a				-0.163	3.73	_
13		794.0	2.90			N/A		2.93	N/A			
14	2	805.0	2.95			N/A		2.90			N/A	
15		806.0	3.20			N/A		3.20			N/A	
16		824.0	3.19			N/A		3.20			N/A	
17		851.0	3.13			N/A		3.16			N/A	
18		869.0	3.17			N/A		3.20			N/A	
		SAR LIM	ITS			BODY	SPATIAL	PEAK		RF EXP	OSURE CATE	GORY
FCC	47 CFR 2.109	93 Healtl	h Canada Sa	fety Cod	de 6	8.0 W/kg	1 gram av	verage		Occup	ational / Contr	olled
Note	s											
Test	Mode = CW (U	Inmodulated	Continuous V	Vave)		Phantom =	Barski Planar Pl	nantom				
C = 0	Column; R = Ro	ow				Bx (B = Boo	dy) denotes the o	correspondi	ng Body	/ SAR Plot	t # as shown in	Appendix A
N/A =	Not Applicabl	e				Test reduction procedures applied for Scan model = FCC KDB Inquiry #235657					235657	
Bac	Back of DUT Distance to Planar Phantom (see Appendix D)					Shortest Antenna Distance to			stance to Planar Phantom (see Appendix D)			
	(Back of Radio Parallel to Planar Phantom)					Antenna 1				Antenna 2		
		1.6	cm	1.9 cm 1.9 cm								

Applicant:	HAF	RRIS Corporation	FCC ID:	IC:		3636B-0140	HARRIS			
DUT Type:	Porta	ble 700/800-Band P1	700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800							
2012 Celltech La	ibs Inc.	This document is not to	Page 28 of 209							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0

RF Exposure Category

BODY-WORN SAR EVALUATION RESULTS (System & Scan Radio Model Variant Comparison)

	BODY-V	VUKN SA	1			• • •	tem & Scan	Radio	vioaei	varian	t Comparis	son)
	BLE 9		XG-25P	7/800 SC	CAN Rad	io Keypad V	ariant Model	XG-2	5P 7/80	00 SYST	EM Radio Ba	se Model
Bod	y-worn Acce	ssory ID#	1 (Additio	nal)								
Aud	io Accessor	y ID #	G3a (Defa	ault)								
С			Comid	1	1	2	3	Cond		4	5	6
R	Antenna Accessory	Test Freq.	Cond. Power Before Test	W/kg	AR g (1g)	SAR W/kg (1g)	Battery Accessory	Cond. Power Before Test	W/k	AR g (1g)	SAR W/kg (1g)	Battery Accessory
••	ID #	(MHz)	(W)		ptt d/f	50% ptt d/f	ID#	(W)		ptt d/f	50% ptt d/f	ID#
				Drift	(dB)	50%+droop			Dri	ft dB	50%+droop	
1		764.0	2.93			N/A		2.90			N/A	
3		776.0	2.96	B73	1.21 -0.273	0.605 0.644	d	2.95	B15	1.15 -0.311	0.575 0.618	d
4		794.0	2.90			N/A		2.93			N/A	
5	1	805.0	2.95			N/A		2.90			N/A	
6		806.0	3.20			N/A		3.20			N/A	
7		824.0	3.19			N/A		3.20			N/A	
8		851.0	3.13			N/A		3.16			N/A	
9		869.0	3.17			N/A		3.20			N/A	
10		764.0	2.93			N/A		2.90			N/A	
11		776.0	2.96			N/A		2.95			N/A	
12		704.0	0.00	D74	1.94	0.970		0.00	DOO	1.69	0.845	-1
13		794.0	2.90	B74 -	-0.022	0.975	d	2.93	B20	-0.262	0.898	d
14	2	805.0	2.95			N/A		2.90	N/A			
15		806.0	3.20			N/A		3.20			N/A	
16		824.0	3.19			N/A		3.20			N/A	
17		851.0	3.13			N/A		3.16			N/A	
18		869.0	3.17			N/A		3.20			N/A	
		SAR LIMI	TS			BODY	SPATIAL	PEAK		RF EXP	OSURE CATE	GORY
FC	C 47 CFR 2.109	93 Health	n Canada Sa	fety Cod	le 6	8.0 W/kg	1 gram av	verage		Occup	ational / Contr	olled
Note	s											
Test Mode = CW (Unmodulated Continuous Wave)						Phantom = Barski Planar Phantom						
C = (Column; R = Ro	ow				Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix A						
N/A	= Not Applicabl	е				Test reduction procedures applied for Scan model = FCC KDB Inquiry #235657						
Bac	Back of DUT Distance to Planar Phantom (see Appendix D)					Shortest Antenna Distance to Planar F				ar Phantom (see Appendix D)		
	(Back of Radio Parallel to Planar Phantom)					Antenna 1				Antenna 2		
		4.5	cm		4.7 cm				4.7 cm			

Applicant:	HAF	RRIS Corporation	·				3636B-0140	HARRIS		
DUT Type:	Porta	ble 700/800-Band P1	e 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800							
2012 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

	BODY-V	VORN SA	R EVAL	JATIC	N RES	ULTS (Sys	tem & Scan	Radio I	/lodel	Varian	t Comparis	son)
TAI	3LE 10		XG-25P	7/800 S	CAN Ra	dio Keypad V	ariant Model	XG-2	5P 7/80	OO SYSTI	EM Radio Ba	se Model
Bod	y-worn Acces	ssory ID#	3 (Additio	nal)								
Aud	io Accessor	y ID #	G3a (Defa	ault)						_		
С					1	2	3			4	5	6
	Antenna	Test	Cond. Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	Cond. Power Before		AR g (1g)	SAR W/kg (1g)	Battery
R	Accessory ID #	Freq. (MHz)	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	b ptt d/f	50% ptt d/f	Accessory ID #
		((**)	Drif	ft (dB)	50%+droop		(**)	Dri	ft dB	50%+droop	
1		764.0	2.93			N/A		2.90			N/A	
2		776.0	2.96			N/A		2.95			N/A	
3		794.0	2.90			N/A		2.93			N/A	
4		805.0	2.95			N/A		2.90			N/A	
5	1	806.0	3.20			N/A		3.20			N/A	
6		004.0	2.40	B75	0.804	0.402	d	3.20	B31	0.793	0.397	
7		824.0	3.19	Б/3	-0.259	0.427	0.427			-0.320	0.427	d
8		851.0	3.13			N/A		3.16			N/A	
9		869.0	3.17			N/A	N/A				N/A	
10		764.0	2.93			N/A	2.90			N/A		
11		776.0	2.96			N/A	2.95			N/A		
12		704.0	2.00	B76	1.54	0.770	d	2.93	B34	1.51	0.755	4
13		794.0	2.90	Б/0	0.026	n/a	d	2.93	D34	-0.273	0.804	d
14	2	805.0	2.95			N/A		2.90	N/A			
15		806.0	3.20			N/A		3.20			N/A	
16		824.0	3.19			N/A		3.20			N/A	
17		851.0	3.13			N/A		3.16			N/A	
18		869.0	3.17			N/A		3.20			N/A	
		SAR LIMI	TS	•		BODY	SPATIAL	PEAK		RF EXP	OSURE CATE	GORY
FCC	47 CFR 2.109	Health	n Canada Sa	fety Co	de 6	8.0 W/kg	1 gram av	/erage		Occup	ational / Contr	olled
Note	s				•							
Test	Mode = CW (U	Inmodulated	Continuous V	Vave)		Phantom =	Barski Planar Pl	nantom				
C = (Column; R = Ro	DW DW				Bx (B = Boo	dy) denotes the	correspondi	ng Body	SAR Plot	# as shown in	Appendix A
N/A =	Not Applicabl	е				Test reduct	ion procedures a	applied for S	can mo	del = FCC	KDB Inquiry #	235657
Bacl	Back of DUT Distance to Planar Phantom (see Appendix D)					Sh	Distance t	o Plana	r Phantor	m (see Append	lix D)	
	(Back of Radio Parallel to Planar Phantom)					Antenna 1			a 1 Antenna 2			
		5.4	cm	5.6 cm 5.6 cm								

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	able 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800						
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

	BODY-V	VORN SA	R EVAL	JATIO	N RES	ULTS (Sys	tem & Scan	Radio I	l odel	Varian	t Comparis	son)
TAE	3LE 11		XG-25P	7/800 S	CAN Rad	dio Keypad V	ariant Model	XG-2	5P 7/80	OO SYSTI	EM Radio Ba	se Model
Bod	y-worn Acce	ssory ID#	4 (Additio	nal)								
Aud	io Accessor	y ID #	G3a (Defa	ault)								
С				1		2	3			4	5	6
	Antenna	Test	Cond. Power Before		AR g (1g)	SAR W/kg (1g)	Battery	Cond. Power Before		AR g (1g)	SAR W/kg (1g)	Battery
R	Accessory ID #	Freq. (MHz)	Test (W)	100%	ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	ptt d/f	50% ptt d/f	Accessory ID #
	.5	((**)	Drif	t (dB)	50%+droop	1	(**)	Dri	ft dB	50%+droop	
1		764.0	2.93			N/A		2.90			N/A	
2		776.0	2.96			N/A		2.95			N/A	
3		704.0	0.00	D.7.7	2.21	1.11		0.00	B44 3.06 1.53			-
4		794.0	2.90	B77	-0.071	1.12	d	2.93	B44	-1.74	2.28	d
5	1	805.0	2.95			N/A		2.90			N/A	
6		806.0	3.20			N/A		3.20			N/A	
7		824.0	3.19			N/A		3.20	N/A			
8		851.0	3.13			N/A		3.16	N/A			
9		869.0	3.17			N/A		3.20	N/A			
10		764.0	2.93	N/A 2.90 N/A								
11		776.0	2.96			N/A		2.95			N/A	
12		704.0	0.00	D70	5.24	2.62		0.00	7.23 3.62		-	
13		794.0	2.90	B78	-0.001	2.62	d	2.93	B48	-0.247	3.83	d
14	2	805.0	2.95			N/A		2.90			N/A	
15		806.0	3.20			N/A		3.20	N/A			
16		824.0	3.19			N/A		3.20			N/A	
17		851.0	3.13			N/A		3.16			N/A	
18		869.0	3.17			N/A		3.20			N/A	
		SAR LIMI	TS			BODY	SPATIAL	PEAK		RF EXP	OSURE CATE	GORY
FCC	47 CFR 2.109	93 Health	n Canada Sa	fety Co	de 6	8.0 W/kg	1 gram av	/erage		Occup	ational / Contr	olled
Note	s	,										
Test	Mode = CW (L	Inmodulated	Continuous \	Nave)		Phantom =	Barski Planar Ph	nantom				
C = (C = Column; R = Row						dy) denotes the o	correspondi	ng Body	SAR Plot	# as shown in	Appendix A
N/A =	N/A = Not Applicable					Test reduct	ion procedures a	pplied for S	can mo	del = FCC	KDB Inquiry #2	235657
Bacl	k of DUT Dista					Sh	ortest Antenna	Distance t	o Plana	r Phantor	n (see Append	ix D)
	(Back of F	Radio Paralle	el to Planar F	hanton	1)		Antenna 1				Antenna 2	
		3.2	cm				3.3 cm				3.3 cm	

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800						
2012 Celltech La	1012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

	BODY-V	VORN SA	R EVAL	JATIO	N RES	ULTS (Sys	tem & Scan	Radio I	l odel	Varian	t Comparis	son)	
TAE	3LE 12		XG-25P	7/800 S	CAN Ra	dio Keypad V	ariant Model	XG-2	5P 7/80	OO SYSTI	EM Radio Ba	se Model	
Bod	y-worn Acce	ssory ID#	6 (Additio	nal)									
Aud	io Accessor	y ID #	G3a (Defa	ault)									
С				1		2	3			4	5	6	
	Antenna	Test	Cond. Power Before		AR g (1g)	SAR W/kg (1g)	Battery	Cond. Power Before		AR g (1g)	SAR W/kg (1g)	Battery	
R	Accessory ID #	Freq. (MHz)	Test (W)	100%	b ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	ptt d/f	50% ptt d/f	Accessory ID #	
		()	(**)	Drif	t (dB)	50%+droop		(**)	Dri	ft dB	50%+droop		
1		764.0	2.93			N/A		2.90		N/A			
2		776.0	2.96		N/A 2.95 N/A								
3		704.0	2.00	D70	1.78	0.890		2.02	B58 1.76 0.880				
4		794.0	2.90	B79	-0.241	0.941	d	2.93	B58	-0.279	0.938	d	
5	1	805.0	2.95			N/A		2.90			N/A		
6		806.0	3.20			N/A		3.20			N/A		
7		824.0	3.19			N/A		3.20			N/A		
8		851.0	3.13			N/A		3.16	N/A				
9		869.0	3.17			N/A		3.20	N/A				
10		764.0	2.93	N/A 2.90 N/A						N/A			
11		776.0	2.96			N/A		2.95			N/A		
12		704.0	0.00	DOO	2.90	1.45		0.00	2.80 1.40		-1		
13		794.0	2.90	B80	-0.168	1.51	d	2.93	B62	-0.225	1.47	d	
14	2	805.0	2.95			N/A		2.90			N/A		
15		806.0	3.20			N/A		3.20	N/A				
16		824.0	3.19			N/A		3.20			N/A		
17		851.0	3.13			N/A		3.16			N/A		
18		869.0	3.17			N/A		3.20			N/A		
		SAR LIMI	TS	<u> </u>		BODY	SPATIAL	PEAK		RF EXP	OSURE CATE	GORY	
FCC	47 CFR 2.109	93 Health	n Canada Sa	fety Co	de 6	8.0 W/kg	1 gram av	/erage		Occup	ational / Contr	olled	
Note	s												
Test	Mode = CW (L	Inmodulated	Continuous \	Nave)		Phantom =	Barski Planar Ph	nantom					
C = (C = Column; R = Row						dy) denotes the o	correspondi	ng Body	SAR Plot	# as shown in	Appendix A	
N/A =	N/A = Not Applicable					Test reduct	ion procedures a	pplied for S	can mo	del = FCC	KDB Inquiry #2	235657	
Bacl	k of DUT Dista) Sh	ortest Antenna	Distance t	o Plana	r Phantor	n (see Append	ix D)	
	(Back of F	Radio Paralle	el to Planar F	Phanton	n)		Antenna 1				Antenna 2		
		3.5	cm				3.7 cm				3.7 cm		

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS	
DUT Type:	Porta	able 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800							
2012 Celltech La	ibs Inc.	os Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.0

10.0 SAR SCALING (TUNE-UP TOLERANCE)

SCALING	OF MA	XIMUM SA	R LEVELS T	O MANUFA	CTURER'S 1	TUNE-UP	TOLEF	RANCE SPEC	CIFICATION
Test Config.	Test Freq. (MHz)	Antenna Accessory ID #	Battery Accessory ID #	Body-worn Accessory ID #	Conducted Power Before Test	SAR Le (50% P		Scaling up to Manuf. Upper Tol.	Scaled SAR (50% PTT d/f) 1g (W/kg)
	(1411 12)	ID #	ID #	15 #	Watts	W/kg Plot #		Power Spec.	ig (W/Kg)
Body-worn	794.0	2	d	4	2.93	3.62	B48	+0.03 dB	3.65
SAR LIMITS					BODY	SPATIAL	PEAK	RF EXPOSUE	RE CATEGORY
FCC 47 CFR 2.1093 Health Canada Safety Code 6				ty Code 6	8.0 W/kg	1 gram a	verage	Occupation	al / Controlled

Manufacturer's Rated Output Power Specification inc. Upper Tolerance

700 Band = 2.95 Watts

11.0 SIMULTANEOUS TRANSMISSION ASSESSMENT

The BlueTooth transmitter has a measured conducted output power of 0.0011W (0.4dBm) which meets the SAR Test Exclusion Threshold as per FCC KDB 447498 4.3.1. The simultaneous transmission estimated SAR per 447498 4.3.2 is given by:

SAR = $[P/d] * [\sqrt{f/x}] = 0.046W/kg$

Where:

P = Maximum Channel Power (mW) = 1.1 d = Minimum Test Separation Distance (mm) = 5 f = Maximum Transmit Frequency (GHz) = 2.48 x = 7.5 for 1g SAR

This is the most conservative SAR estimation and will be applied to BOTH Face and Body configurations. Adding the Estimated SAR to the measured SAR gives:

Face-Held: 1.63 + 0.046 = 1.676W/kg Body-Worn: 3.62 + 0.046 = 3.666W/kg

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s) R
Specific Absorption Rate Oc

Rev. 1.0

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

12.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ±50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ±100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ±25 MHz < 300 MHz and ±50 MHz ≥300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [10]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+50</u> MHz <u>></u> 300 MHz
	764 MHz	71 MHz	> 50 MHz ²
	776 MHz	59 MHz	> 50 MHz ²
	794 MHz	41 MHz	< 50 MHz ¹
OOE MUL	805 MHz	50 MHz	< 50 MHz ¹
835 MHz	806 MHz	29 MHz	< 50 MHz ¹
	824 MHz	11 MHz	< 50 MHz ¹
	851 MHz	16 MHz	< 50 MHz ¹
	869 MHz	34 MHz	< 50 MHz ¹

- 1. The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.
- 2. The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01 v01r01): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in σ , computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness.

% Change 4.21%	Compensa 3.74	ted SAF	R Level (W/kg) 50% ptt d/f						
4.21%	3.74	1a	50% ntt d/f						
			30 /0 ptt u/i						
4.05%	3.36	1g	50% ptt d/f						
5.65%	1.72	1g	50% ptt d/f						
Parameter ϵ σ ρ $= 800 \text{MHz}, d=15 \text{mm}$									
_									

Notes

- 1. The above sensitivity formula (Head) from the DASY4 manual (see reference [17]) can be applied to Body tissue parameters (per SPEAG SAR system manufacturer).
- 2. The highest measured SAR level configurations are reported.
- 3. FCC KDB 450824 refers to probe calibrations with fluid parameter tolerances +/- 5%; SPEAG's current probe calibration is valid for fluid parameter tolerances of +/- 10% (See Appendix F). We have accounted for the > 5% measured fluid parameter tolerance in the measurement uncertainty table (see Section 24.0) and have still applied the same sensitivity calculation adjustment to the SAR levels as shown in the above table.

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	table 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800						
2012 Celltech La	O12 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 34 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

13.0 SAR LEVEL CORRECTION FOR FLUID DEVIATION (IC RSS-102 / IEC 62209-2)

The SAR levels are corrected for deviation of complex permittivity in accordance with Section 6.1.1 of IEC 62209-2:2010 (see reference [5]) as shown below.

Test Config.	Date	Test Freq. (GHz)	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity	Measured SAR Level 50% d/f (W/kg)	Corrected SAR Level 50% d/f (W/kg)
Body	9/4	0.776*	55.8	0.911	55.2	0.97	1.09%	-6.08%	3.59	3.76
Body	9/4	0.794*	55.5	0.92	55.2	0.97	0.54%	-5.15%	3.19	3.32
Body	9/5	0.776*	55.7	0.912	55.2	0.97	0.91%	-5.98%	3.23	3.38
Face	9/7	0.776*	42.8	0.841	41.5	0.9	3.13%	-6.56%	1.63	1.72
Face	9/7	0.794*	42.5	0.85	41.5	0.9	2.41%	-5.56%	1.45	1.52

*interpolated using DASY4 software

SAR Correction Formula (IEC 62209-2:2010 Section 6.1.1)

$$\Delta SAR = c_{\epsilon} \Delta \varepsilon_r + c_{\sigma} \Delta \sigma \qquad (F.1)$$

where

 $c_{\rm s} = \partial(\Delta {\sf SAR})/\partial(\Delta \varepsilon)$ is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power;

 $c_0 = \partial(\Delta SAR)/\partial(\Delta\sigma)$ is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power.

The values of $c_{\rm e}$ and $c_{\rm g}$ have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR $c_{\rm e}$ and $c_{\rm g}$ are given by

$$c_s = -7,854 \times 10^{-4} f^3 + 9,402 \times 10^{-3} f^2 - 2,742 \times 10^{-2} f - 0,2026$$
 (F.2)

$$c_a = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$$
 (F.3)

where

f is the frequency in GHz.

SAR Correction Calculation

Date	04-Sep	04-Sep	05-Sep	07-Sep	07-Sep
Frequency (GHz)	0.776	0.794	0.776	0.776	0.794
Ce	-0.2186	-0.2188	-0.2186	-0.2186	-0.2188
Сσ	0.7585	0.7569	0.7585	0.7585	0.7569
ΔΕ	1.09%	0.54%	0.91%	3.13%	2.41%
Δσ	-6.08%	-5.15%	-5.98%	-6.56%	-5.56%
ΔSAR	-4.85%	-4.02%	-4.73%	-5.66%	-4.74%

Conclusion

The correction ΔSAR has a negative sign; therefore correction is applied to the measured SAR level.

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	nsceiver with Bluetooth	DUT Name: XG-25P 7/800			,
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 35 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

14.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels selected for the SAR evaluations are in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [8]).
- 2. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 (see reference [9]).
- 3. The SAR evaluations were performed with a fully charged battery.
- 4. The SAR drift of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was performed and is shown in Appendix A.
- 5. The fluid temperature remained within +/-2°C from the fluid dielectric parameter measurement to the completion of the SAR evaluation.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was evaluated for SAR at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 8. The face-held SAR evaluations were performed with the UDC Weatherproof Cover accessory (Harris P/N: FM-014712) attached to the accessory connector on the DUT. The accessory cover was removed for the body-worn SAR evaluations, in order for the DUT to accommodate the audio accessories.

15.0 SAR EVALUATION PROCEDURES

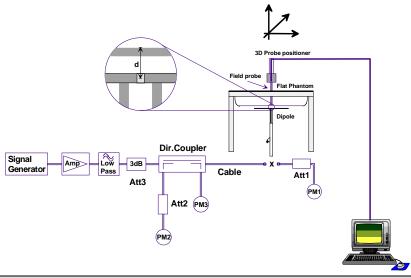
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices, a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

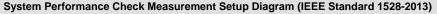
Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	: 3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	sceiver with Bluetooth	DUT Na	me:		
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 36 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0


RF Exposure Category
Occupational (Controlled)



16.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, system checks were performed with a planar phantom and an 835 MHz SPEAG validation dipole (see Appendix B for system performance check test plots) in accordance with the procedures described in IEEE Standard 1528-2013 (see reference [5]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

				SY	STEM F	PERFO	RMAN	ICE CHE	ECK E	VALUA	ATIONS	3				
Test	Equiv. Tissue		AR 1g W/kg)		Dielec	tric Cons ε _r	tant		Conductivity σ (mho/m)			Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	Target	Target	Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)				
Sept. 4	Body 835	2.47 ±10%	2.42	-2.8%	55.2 ±5%	55.2	0.0%	0.97 ±5%	0.96	-1.0%	1000	23	22.5	≥ 15	34	101.1
Sept. 7	Body 835	2.47 ±10%	2.36	-5.2%	55.2 ±5%	-1.8%	-1.0%	1000	23	22.5	≥ 15	30	101.1			
Sept. 7	Head 835	2.36 ±10%	2.24	-4.7%	41.5 ±5%	42.1	+1.4%	0.90 ±5%	0.88	-2.2%	1000	23	22.9	≥ 15	30	101.1
	1.	The target	SAR valu	es are th	e measured	d values s	pecified	by the SAR	system n	nanufact	urer in the	dipole ca	alibration	documen	t (see App	endix E).
	2.	The target fluid dielectric parameters are the nominal values specified by the SAR system manufacturer in the dipole calibration document (see Appendix E) and specified in IEEE Standard 1528-2013 (Head) and IC RSS-102 Issue 5 (Body).														
	3.	The fluid temperature remained within +/-2°C from the fluid dielectric parameter measurement to the completion of the system performance check.														
Notes	4.	The dielect and a Netw					mixture	were meası	ıred prior	to the sy	/stem per	formance	check us	ing a Die	lectric Pro	be Kit
	System Performance Checks were not performed for all the SAR evaluation test dates based on compliance with the following provision as per the TCBC Workshop Presentation April 5-7, 2011 (Kwok Chan Presentation File 04-06-2011-FCC 4 RF Exposure Guidance 040611- KC): SAR System Verification when head and body tissue dielectric parameters are required to test a device, separate SAR system verifications are required - daily verification of each liquid is usually not necessary when liquid parameter tolerances are maintained in a controlled environment - typically every few days is sufficient or when liquid is changed															

835 MHz SPEAG Validation Dipole Setup

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	sceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	2000 2000
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 37 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

17.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [11] and [12]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2013 (see reference [5]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

		SIMULATED TI	SSUE MIXTURES		
	Water		40.71 %		53.79 %
	Sugar		56.63 %		45.13 %
INGREDIENT	Salt	835 MHz Head Tissue Mixture	1.48 %	835 MHz Body Tissue Mixture	0.98 %
	HEC		0.99 %		
	Bactericide		0.19 %		0.10 %

18.0 SAR LIMITS

	SAR RF EXPOSURE LIMITS									
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)							
•	ial Average ver the whole body)	0.08 W/kg	0.4 W/kg							
•	atial Peak er any 1 g of tissue)	1.6 W/kg	8.0 W/kg							
	atial Peak ınkles averaged over 10 g)	4.0 W/kg	20.0 W/kg							

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P	T Radio Trar	sceiver with Bluetooth	DUT Na	ıme:	,	
2012 Celltech L	h Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

19.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE)) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Johnware	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	± 0.2 dB (30 MHz to 3 GHz)
Phantom 1	
Туре	SAM V4.0C
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 25 liters
Phantom 2	
Туре	Side Planar Phantom
Shell Material	Plexiglass
Bottom Thickness	2.0 mm ± 0.1 mm
Inner Dimensions	72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)
Phantom 3	
Туре	Barski Planar Phantom
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 70 liters
	ER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	2000 25 78 78	
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permis					mission	of Celltech Labs Inc.	Page 39 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

20.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

 \pm 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe

21.0 PHANTOM(S)

The Side Planar Phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

The Barski Planar Phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom is used for SAR evaluations and system performance check evaluations. See Appendix G for dimensions and specifications of the Barski planar phantom.

Barski Planar Phantom

The SAM Twin Phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections. See Appendix H for specifications of the SAM Twin Phantom V4.0C.

SAM Twin Phantom V4.0C

22.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	nsceiver with Bluetooth	DUT Na	ıme:	2000 25 78 78	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 40 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

23.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	ASSET NO.	SERIAL NO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	19-Apr-12	Biennial
х	-ET3DV6 E-Field Probe	00017	1590	24-Apr-12	Annual
х	-D835V2 Validation Dipole	00217	4d075	20-Apr-12	Triennial
х	Side Planar Phantom	00156	161	CNR	CNR
х	Barski Planar Phantom	00155	03-01	CNR	CNR
х	SPEAG SAM Twin Phantom V4.0C	00154	1033	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	03-May-12	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833542	03-May-12	Biennial
	Gigatronics 80334A Power Sensor	-	1837001	03-May-12	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	26-Apr-12	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	02-May-12	Biennial
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	nsceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	2000 2000
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 41 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0

RF Exposure Category
Occupational (Controlled)

24.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEEE 1528-2013)											
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}		
Measurement System											
Probe Calibration (835 MHz)	E.2.1	6.0	Normal	1	1	1	6.0	6.0	8		
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	oc		
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	8		
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	8		
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	oc		
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞		
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	oc		
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞		
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞		
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞		
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞		
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞		
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞		
Test Sample Related											
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12		
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8		
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	8		
Phantom and Tissue Parameters											
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	8		
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	∞		
Liquid Conductivity (measured)	E.3.3	6.56	Normal	1	0.64	0.43	4.2	2.8	× ×		
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	×		
Liquid Permittivity (measured)	E.3.3	3.13	Normal	1	0.6	0.49	1.9	1.5	∞		
Combined Standard Uncertainty	•		RSS				11.58	10.97			
Expanded Uncertainty (95% Confidence Interval) k=2 23.16 21.94											
Measurement Uncertainty Table in accordance with IEEE Standard 1528-2013											
This uncertainty represents an ex								e factor of k=2			

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	TT Radio Tran	sceiver with Bluetooth	DUT Na	ıme:		
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 42 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. Rev. 1.0

RF Exposure Category
Occupational (Controlled)

MEASUREMENT UNCERTAINTIES (CONT.)

UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEC 62209-2:2010)											
Source of Uncertainty	IEC 62209-2 Section	Tolerance / Uncertainty ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Standard Uncertainty ±% (1g)	Standard Uncertainty ±% (10g)	V _i or V _{eff}		
Measurement System											
Probe Calibration (835 MHz)	7.2.2.1	6.0	Normal	1	1	1	6.0	6.0	8		
Isotropy	7.2.2.2	4.7	Rectangular	1.732050808	1	1	2.7	2.7	œ		
Boundary Effect	7.2.2.6	1	Rectangular	1.732050808	1	1	0.6	0.6	8		
Linearity	7.2.2.3	4.7	Rectangular	1.732050808	1	1	2.7	2.7	8		
Detection Limits	7.2.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	8		
Readout Electronics	7.2.2.7	0.3	Normal	1	1	1	0.3	0.3	×		
Response Time	7.2.2.8	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞		
Integration Time	7.2.2.9	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞		
RF Ambient Conditions	7.2.4.5	3	Rectangular	1.732050808	1	1	1.7	1.7	∞		
Probe Positioner Mechanical Restrictions	7.2.3.1	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞		
Probe Positioning wrt Phantom Shell	7.2.3.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞		
Post-processing	7.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	8		
Test Sample Related											
Test Sample Positioning	7.2.3.4.3	2.9	Normal	1	1	1	2.9	2.9	12		
Device Holder Uncertainty	7.2.3.4.2	3.6	Normal	1	1	1	3.6	3.6	8		
Drift of Output Power (meas. SAR drift)	7.2.2.10	5	Rectangular	1.732050808	1	1	2.9	2.9	∞		
Phantom and Tissue Parameters											
Phantom Uncertainty	7.2.3.2	4	Rectangular	1.732050808	1	1	2.3	2.3	8		
SAR Correction Algorithm for deviations in permittivity and conductivity	7.2.4.3	1.2	Normal	1	1	0.81	1.2	0.97	8		
Liquid Conductivity (measured)	7.2.4.3	6.56	Normal	1	0.78	0.71	5.1	4.7	∞		
Liquid Permittivity (measured)	7.2.4.3	3.13	Normal	1	0.23	0.26	0.7	0.8	8		
Liquid Permittivity - temp. uncertainty	7.2.4.4	0.27	Rectangular	1.732050808	0.78	0.71	0.1	0.1	∞		
Liquid Conductivity - temp. uncertainty	7.2.4.4	0.84	Rectangular	1.732050808	0.23	0.26	0.1	0.1	<u>∞</u>		
Combined Standard Uncertainty	7.3.1	3.04	RSS	02300000	0.20	0.20	11.11	10.89	~		
Expanded Uncertainty (95% Confidence Interval)	7.3.2		k=2				22.21	21.77			
Measurement	Uncertainty	Table in acco	ordance with Ir	nternational Sta	andard	IEC 622	209-2:2010				

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

25.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 2015.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 5: March 2015.
- [5] IEEE Standard 1528-2013 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [7] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [8] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v06: October 2015.
- [9] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01r01: April 2011.
- [10] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [11] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [12] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [13] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [14] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [15] Industry Canada "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 4: November 2014.
- [16] Federal Communications Commission, Office of Engineering and Technology "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", KDB 648474 D01v01r01: Sept. 2008.
- [17] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 22 Application Note, SAR Sensitivities: Sept. 2005.

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

APPENDIX A - SAR MEASUREMENT PLOTS

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P	TT Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 45 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F1

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

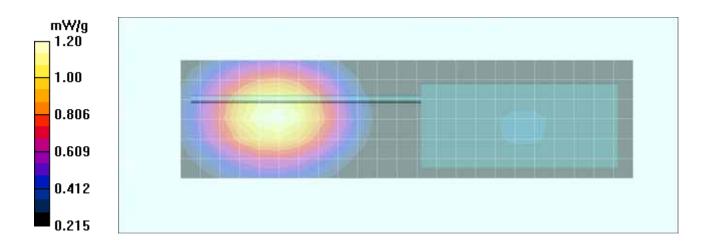
Medium: HSL835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.841 mho/m; ϵ_r = 42.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.18 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.4 V/m; Power Drift = -0.272 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.862 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.20 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F2

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz: Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 794 MHz; $\sigma = 0.85$ mho/m; $\varepsilon_r = 42.5$; $\rho = 1000$ kg/m³

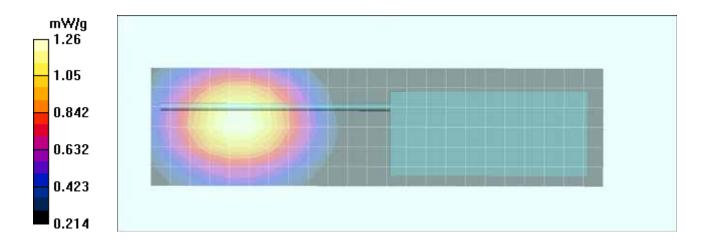
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.24 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.15 V/m; Power Drift = -0.463 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.905 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.26 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F3

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

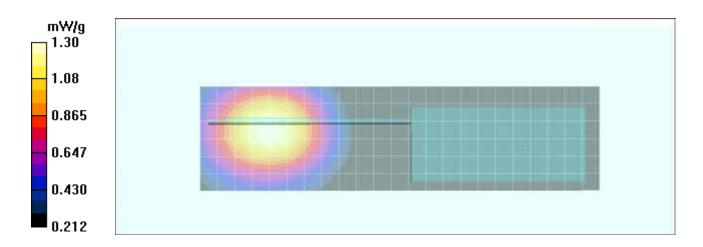
Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.29 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.75 V/m; Power Drift = -0.620 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.922 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.30 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F4

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 869 MHz; $\sigma = 0.924 \text{ mho/m}$; $\epsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$

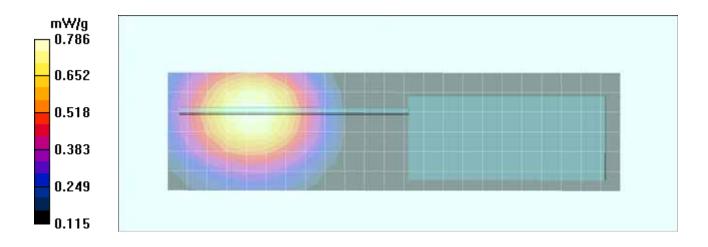
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.794 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 6.08 V/m; Power Drift = -0.304 dB

Peak SAR (extrapolated) = 0.938 W/kg

SAR(1 g) = 0.742 mW/g; SAR(10 g) = 0.551 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.786 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F5

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

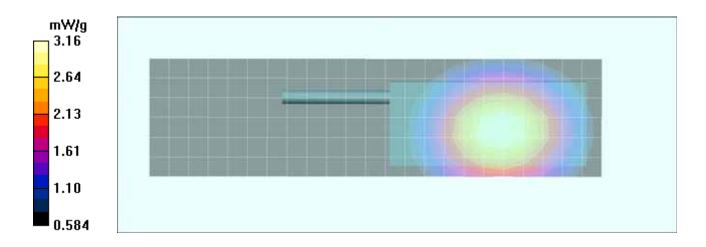
Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.841$ mho/m; $\varepsilon_r = 42.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.16 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.6 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 3.70 W/kg

SAR(1 g) = 3.01 mW/g; SAR(10 g) = 2.29 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F6

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 794 MHz; $\sigma = 0.85$ mho/m; $\varepsilon_r = 42.5$; $\rho = 1000$ kg/m³

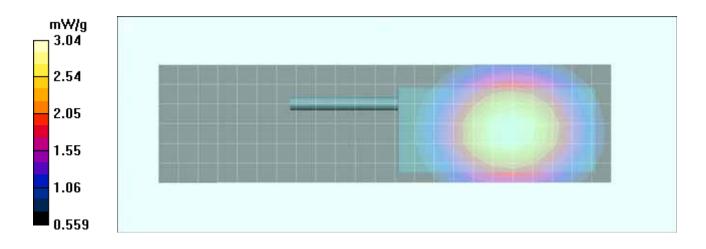
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.05 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 27.2 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.89 mW/g; SAR(10 g) = 2.2 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.04 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F7

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

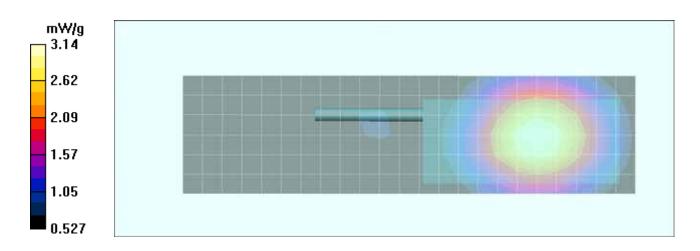
Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.17 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 26.9 V/m; Power Drift = -0.155 dB

Peak SAR (extrapolated) = 3.74 W/kg

SAR(1 g) = 2.97 mW/g; SAR(10 g) = 2.22 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.14 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F8

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 869 MHz; σ = 0.924 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³

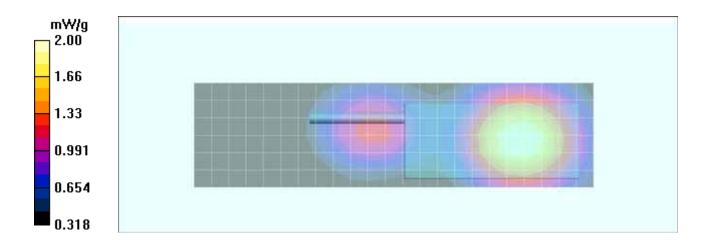
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.04 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 32.7 V/m; Power Drift = -0.330 dB

Peak SAR (extrapolated) = 2.38 W/kg

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.41 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.00 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F9

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

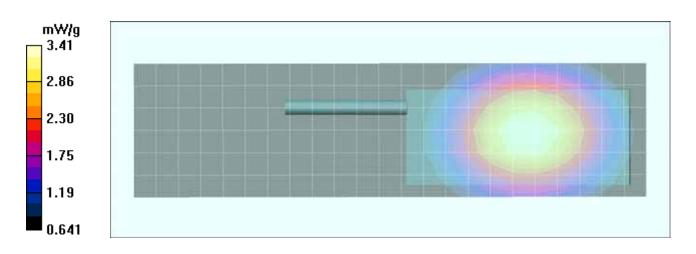
Medium: HSL835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.841$ mho/m; $\varepsilon_r = 42.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.47 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 28.0 V/m; Power Drift = -0.168 dB

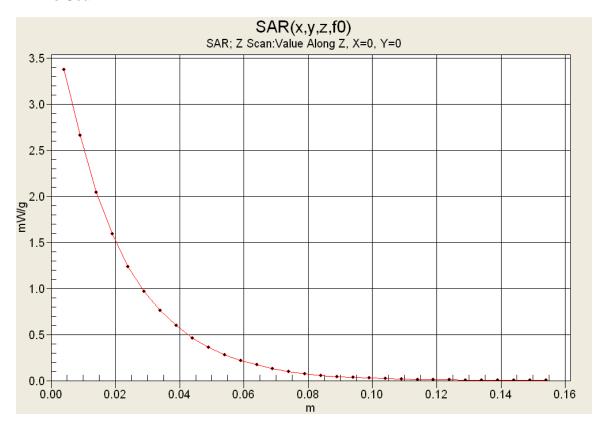
Peak SAR (extrapolated) = 3.99 W/kg

SAR(1 g) = 3.25 mW/g; SAR(10 g) = 2.47 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.41 mW/g

Test Report Issue Date
August 10, 2016


Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS	
DUT Type:	Porta	ble 700/800-Band P	T Radio Trar	nsceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	2000 100 70000	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 55 of 209		

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F10

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.841 mho/m; ϵ_r = 42.8; ρ = 1000 kg/m³

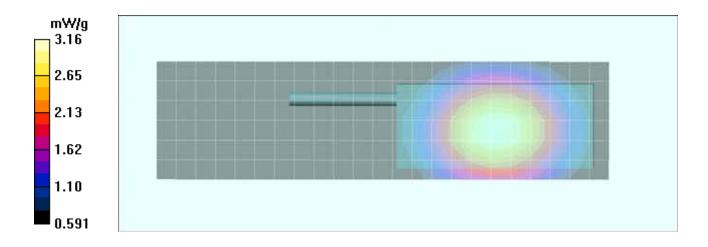
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.10 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 29.7 V/m; Power Drift = -0.151 dB

Peak SAR (extrapolated) = 3.70 W/kg

SAR(1 g) = 3 mW/g; SAR(10 g) = 2.28 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.16 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F11

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.841 mho/m; ϵ_r = 42.8; ρ = 1000 kg/m³

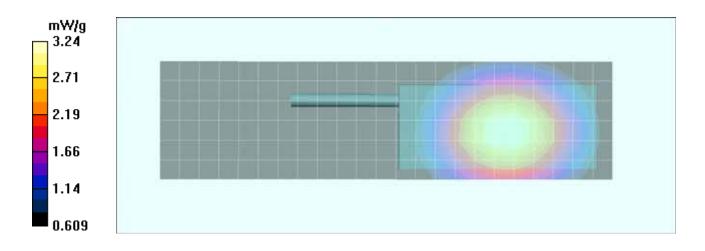
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.22 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 27.1 V/m; Power Drift = -0.190 dB

Peak SAR (extrapolated) = 3.78 W/kg

SAR(1 g) = 3.08 mW/g; SAR(10 g) = 2.35 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.24 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F12

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

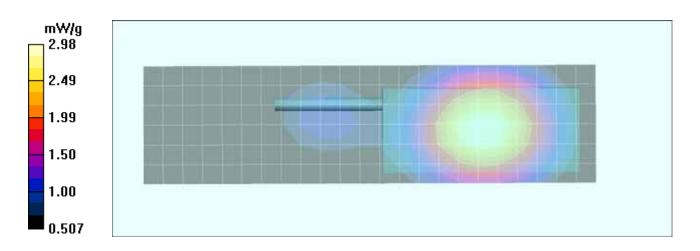
Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.02 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 31.1 V/m; Power Drift = -0.283 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.83 mW/g; SAR(10 g) = 2.12 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.98 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F13

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 42.3$; $\rho = 1000$ kg/m³

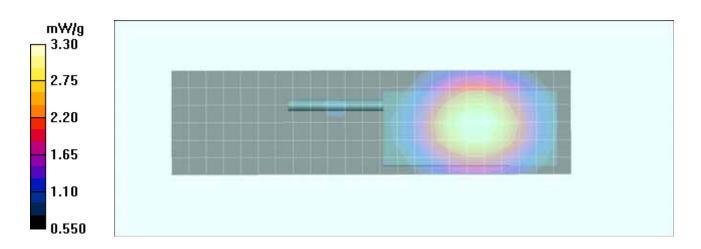
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.32 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 28.2 V/m; Power Drift = -0.139 dB

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 3.13 mW/g; SAR(10 g) = 2.35 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.30 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F14

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

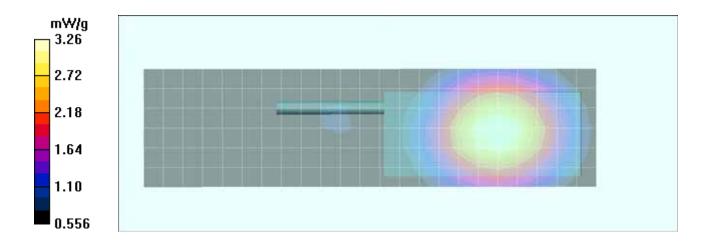
- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.32 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 27.7 V/m; Power Drift = -0.148 dB

Peak SAR (extrapolated) = 3.87 W/kg

SAR(1 g) = 3.08 mW/g; SAR(10 g) = 2.3 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.26 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Face SAR Plot F15

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

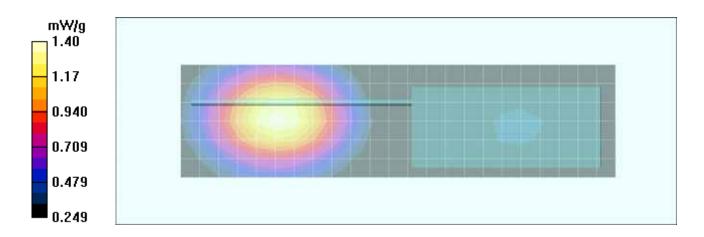
Medium: HSL835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.37 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.1 V/m; Power Drift = -0.244 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 1.32 mW/g; SAR(10 g) = 0.999 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.40 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0

RF Exposure Category

Face SAR Plot F16

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

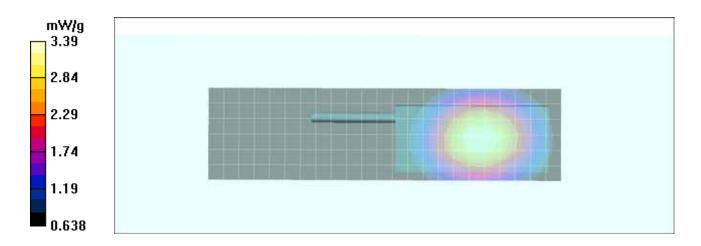
Medium: HSL835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.841$ mho/m; $\varepsilon_r = 42.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.38 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 27.8 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 3.95 W/kg

SAR(1 g) = 3.23 mW/g; SAR(10 g) = 2.46 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.39 mW/g

Test Report Issue Date
August 10, 2016

Specific Absorption Rate

Description of Test(s) RF E

Test Report Revision No.
Rev. 1.0

RF Exposure Category

Occupational (Controlled)

Body SAR Plot B1

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

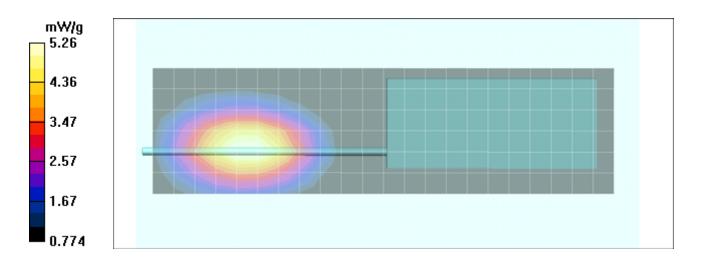
Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.911 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.42 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 13.7 V/m; Power Drift = -0.164 dB

Peak SAR (extrapolated) = 6.49 W/kg

SAR(1 g) = 4.95 mW/g; SAR(10 g) = 3.57 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.26 mW/g

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	sceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	
2012 Celltech La	ibs Inc.	This document is not to	be reproduced in	n whole or in part without the prio	r written pen	mission	of Celltech Labs Inc.	Page 63 of 209

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B2

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated); f = 794 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$ kg/m³

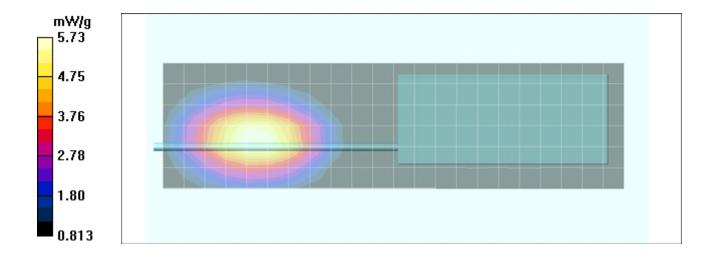
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.79 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.2 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 7.01 W/kg

SAR(1 g) = 5.38 mW/g; SAR(10 g) = 3.88 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.73 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B3

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

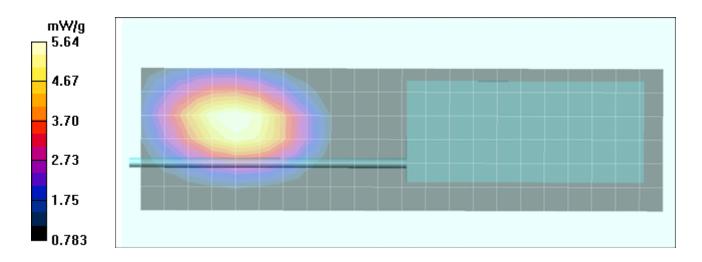
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.958$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.68 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 18.9 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 6.82 W/kg

SAR(1 g) = 5.29 mW/g; SAR(10 g) = 3.81 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.64 mW/g

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B4

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

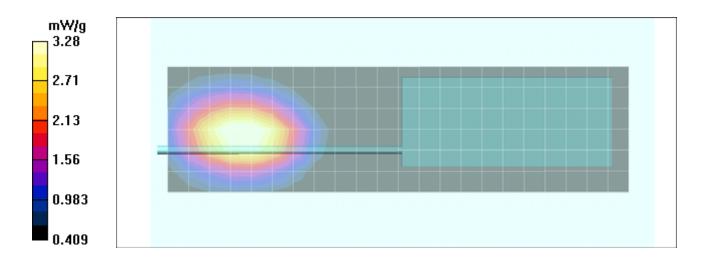
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.47 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 22.6 V/m; Power Drift = -0.286 dB

Peak SAR (extrapolated) = 3.97 W/kg

SAR(1 g) = 3.06 mW/g; SAR(10 g) = 2.18 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.28 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B5

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

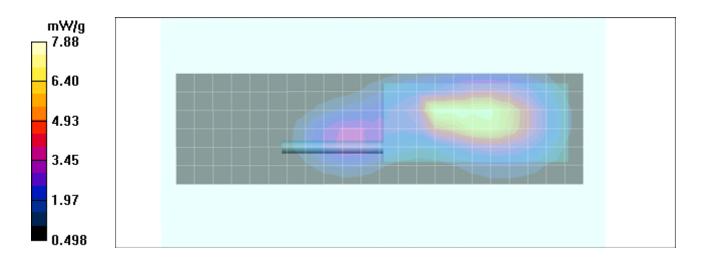
Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.911 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 7.24 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 55.2 V/m; Power Drift = -0.163 dB

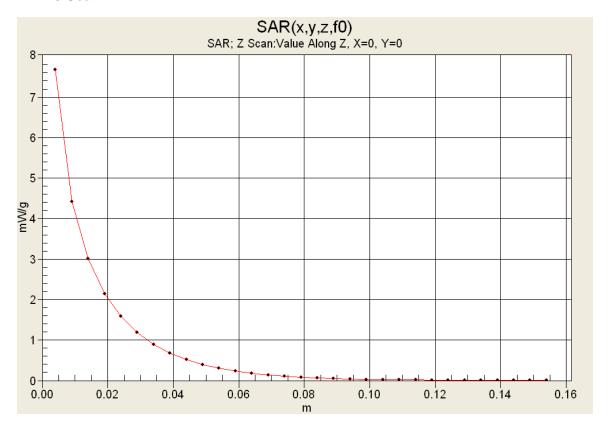
Peak SAR (extrapolated) = 15.6 W/kg

SAR(1 g) = 7.18 mW/g; SAR(10 g) = 4.42 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 7.88 mW/g

Test Report Issue Date
August 10, 2016


Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	ame: XG-25P 7/800		
2012 Celltech La	ibs Inc.	This document is not to	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B6

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated); f = 794 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$ kg/m³

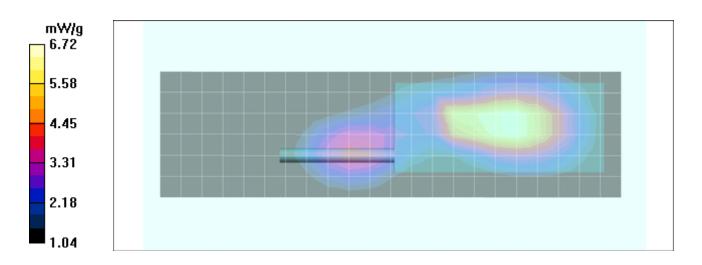
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 55.1 V/m; Power Drift = -0.289 dB

Peak SAR (extrapolated) = 7.95 W/kg

SAR(1 g) = 6.37 mW/g; SAR(10 g) = 4.77 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.72 mW/g

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B7

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 824 MHz: Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.958$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

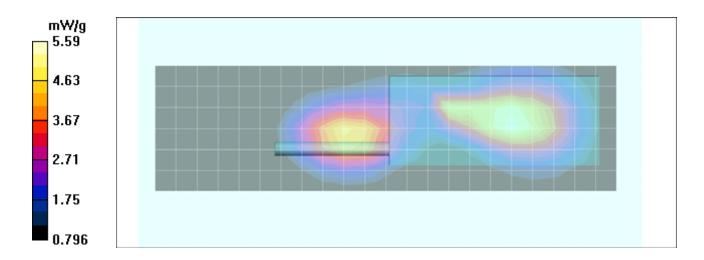
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 57.7 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 6.51 W/kg

SAR(1 g) = 5.32 mW/g; SAR(10 g) = 3.97 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.59 mW/g

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)
Test Lab Cert

Test Lab Certificate No. 2470.01

Body SAR Plot B8

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

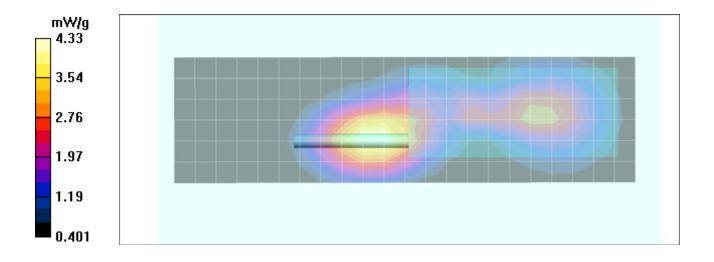
Medium: M835 Medium parameters used (interpolated): f = 869 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.38 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 53.7 V/m; Power Drift = -0.273 dB

Peak SAR (extrapolated) = 5.42 W/kg

SAR(1 g) = 4.01 mW/g; SAR(10 g) = 2.75 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.33 mW/g

Test Report Issue Date August 10, 2016

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0

RF Exposure Category Occupational (Controlled)

Body SAR Plot B9

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

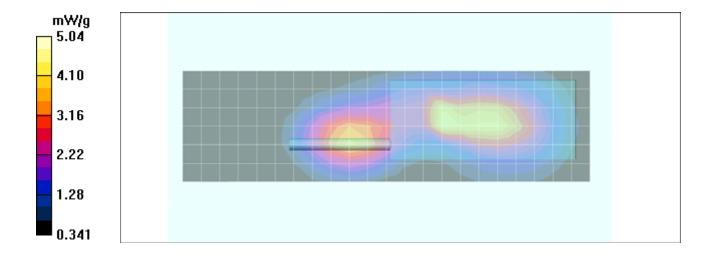
Frequency: 776 MHz: Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.911$ mho/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.27 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 54.1 V/m; Power Drift = -0.119 dB

Peak SAR (extrapolated) = 9.83 W/kg

SAR(1 g) = 4.48 mW/g; SAR(10 g) = 2.71 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.04 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B10

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

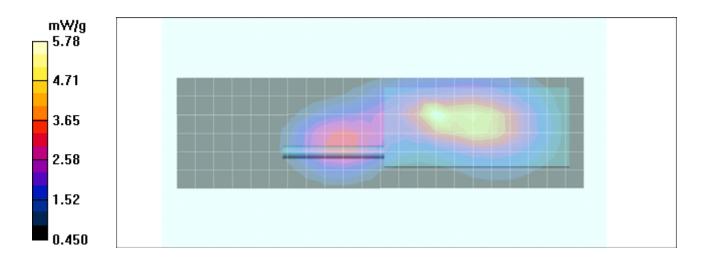
Medium: M835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.911$ mho/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.74 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 53.6 V/m; Power Drift = -0.196 dB

Peak SAR (extrapolated) = 11.2 W/kg

SAR(1 g) = 5.33 mW/g; SAR(10 g) = 3.28 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.78 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B11

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 776 MHz: Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.911$ mho/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

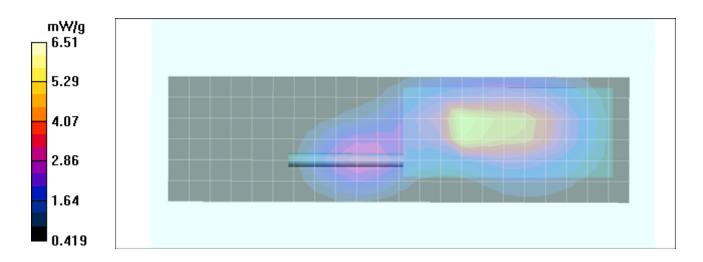
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.71 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 51.0 V/m; Power Drift = -0.154 dB

Peak SAR (extrapolated) = 12.1 W/kg

SAR(1 g) = 5.85 mW/g; SAR(10 g) = 3.58 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.51 mW/g

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B12

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

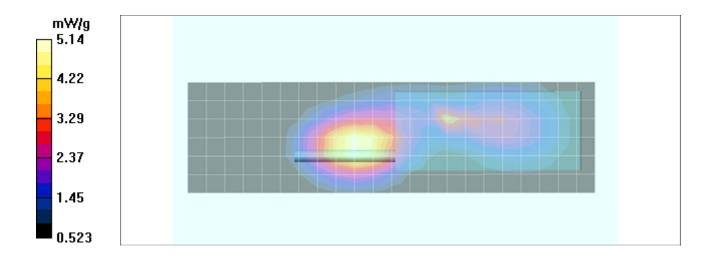
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.958$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.91 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 57.7 V/m; Power Drift = -0.195 dB

Peak SAR (extrapolated) = 6.38 W/kg

SAR(1 g) = 4.79 mW/g; SAR(10 g) = 3.33 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.14 mW/g

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	IC: 3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	me:		
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 75 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B13

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 824 MHz: Duty Cycle: 1:1

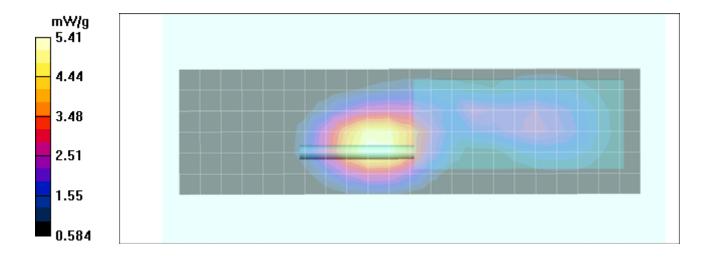
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.958$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.34 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 57.0 V/m; Power Drift = 0.276 dB

Peak SAR (extrapolated) = 6.66 W/kg

SAR(1 g) = 5.05 mW/g; SAR(10 g) = 3.52 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.41 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B14

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.958$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

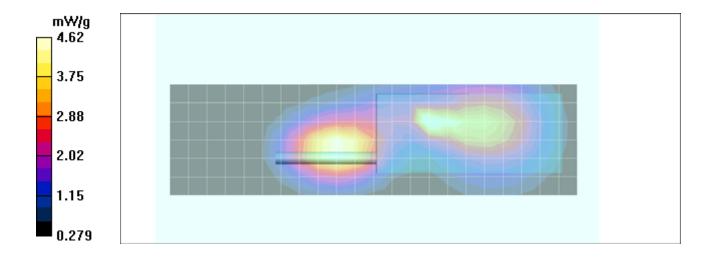
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.44 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 54.2 V/m; Power Drift = -0.325 dB

Peak SAR (extrapolated) = 10.7 W/kg

SAR(1 g) = 4.31 mW/g; SAR(10 g) = 2.48 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.62 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B15

Date Tested: 09/04/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

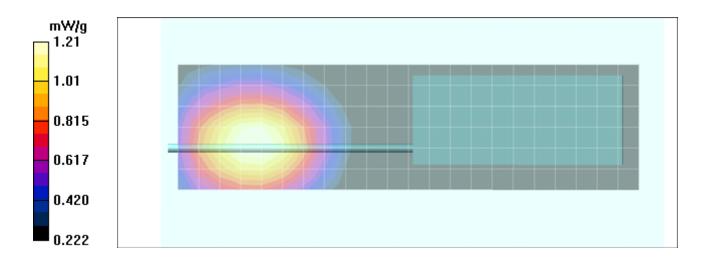
Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.911 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.24 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.42 V/m; Power Drift = -0.311 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.866 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.21 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category

Occupational (Controlled)

Body SAR Plot B16

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 794 MHz; Duty Cycle: 1:1

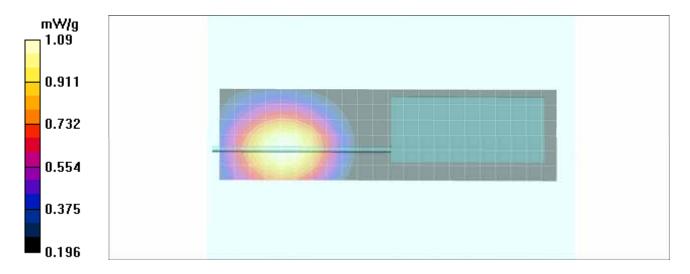
Medium: M835 Medium parameters used (interpolated): f = 794 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.13 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 7.83 V/m; Power Drift = -0.280 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.781 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.09 mW/g

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B17

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

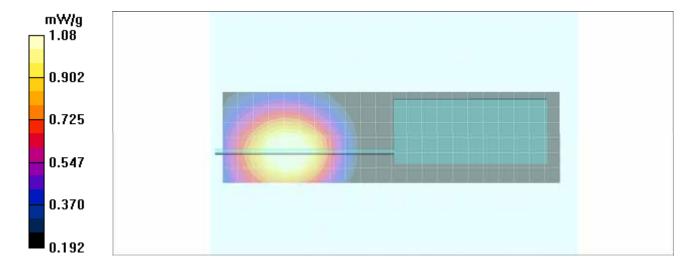
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.18 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.72 V/m; Power Drift = -0.403 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.783 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.08 mW/g

Test Report Issue Date
August 10, 2016

Specific Absorption Rate

Description of Test(s) RF Ex

Rev. 1.0

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Body SAR Plot B18

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

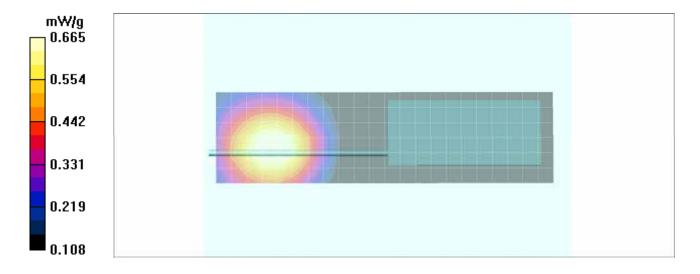
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.713 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 7.79 V/m; Power Drift = -0.445 dB

Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.627 mW/g; SAR(10 g) = 0.467 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.665 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B19

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.912 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

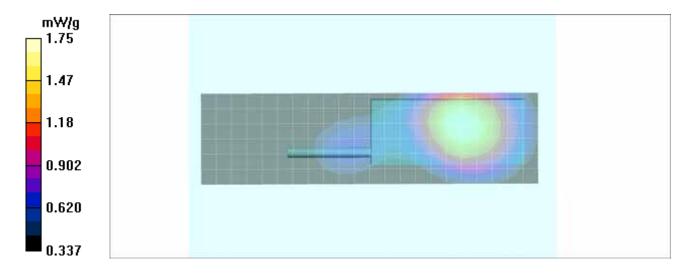
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.79 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 26.0 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 1.67 mW/g; SAR(10 g) = 1.28 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.75 mW/g

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B20

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

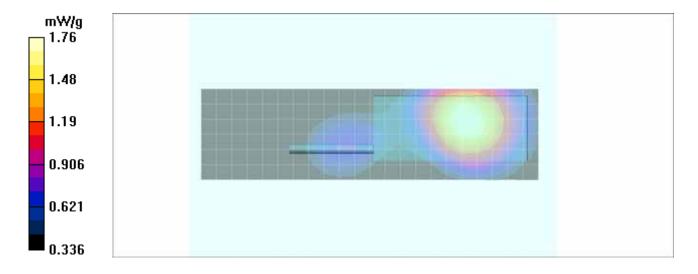
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.79 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 25.4 V/m; Power Drift = -0.262 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 1.69 mW/g; SAR(10 g) = 1.29 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.76 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B21

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

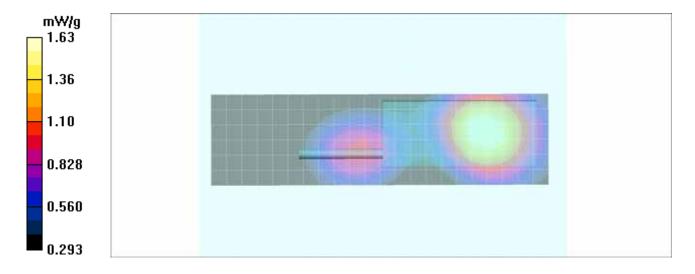
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.66 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 28.8 V/m; Power Drift = -0.274 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 1.55 mW/g; SAR(10 g) = 1.19 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.63 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B22

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

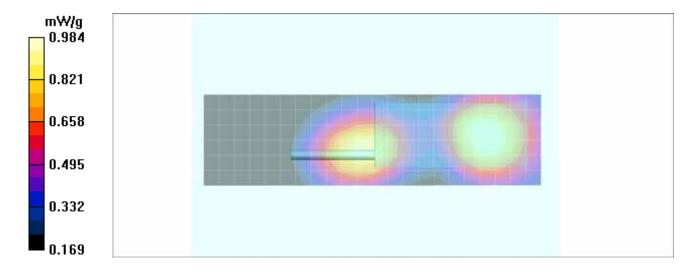
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.02 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 30.0 V/m; Power Drift = -0.418 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.936 mW/g; SAR(10 g) = 0.710 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.984 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B23

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

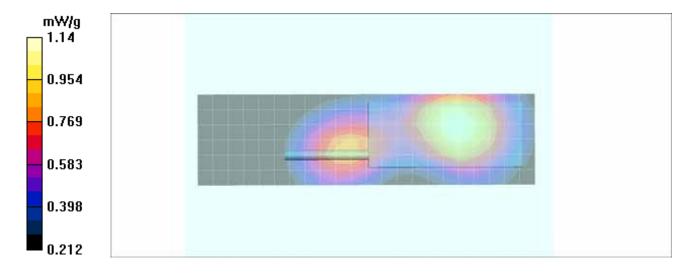
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.16 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 28.1 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.828 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.14 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B24

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

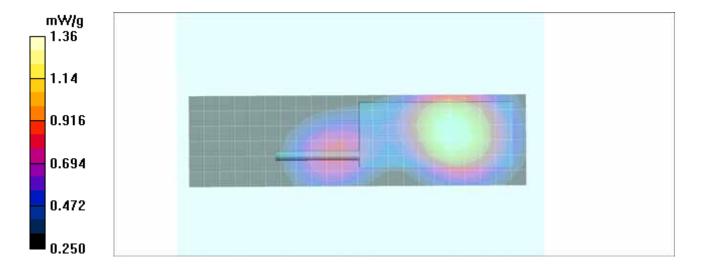
Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.36 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.0 V/m; Power Drift = -0.269 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.994 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B25

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 794 MHz; Duty Cycle: 1:1

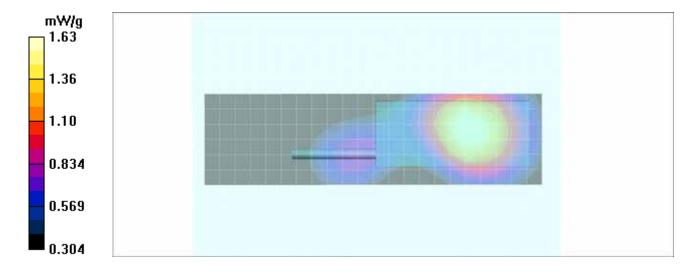
Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.67 mW/g **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


Poforonce Value = 26.1 V/m: Power Drift = 0.246 dP

Reference Value = 26.1 V/m; Power Drift = -0.346 dB Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 q) = 1.55 mW/q; SAR(10 q) = 1.19 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.63 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B26

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated); f = 824 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

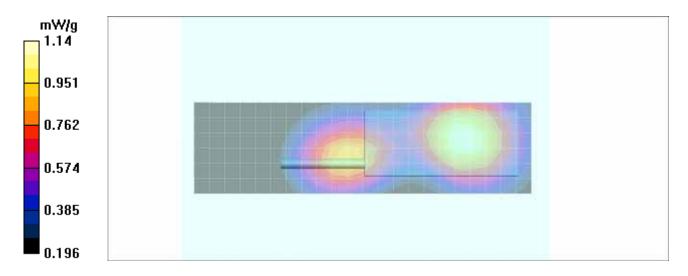
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.11 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 30.1 V/m; Power Drift = -0.226 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.828 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.14 mW/g

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	IC: 3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	nsceiver with Bluetooth	DUT Na	me:		
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 89 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B27

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

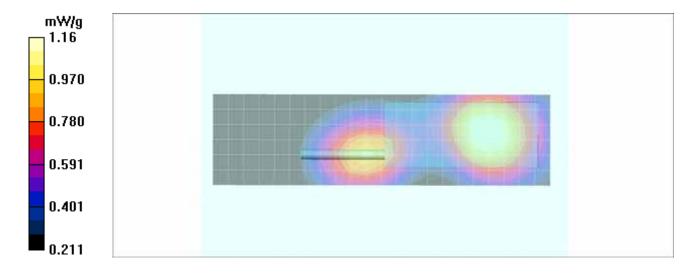
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.19 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 29.3 V/m; Power Drift = -0.225 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.851 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.16 mW/g

Test Report Issue Date
August 10, 2016

Specific Absorption Rate

Description of Test(s)

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B28

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

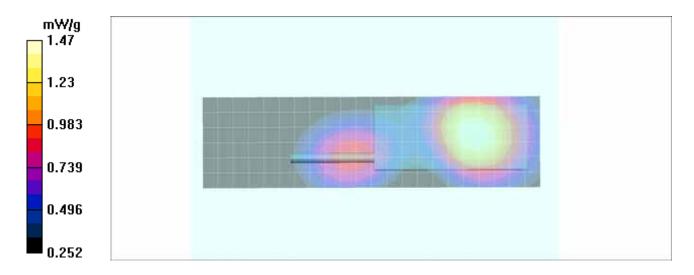
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.47 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.3 V/m; Power Drift = -0.321 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.4 mW/g; SAR(10 g) = 1.07 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B29

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

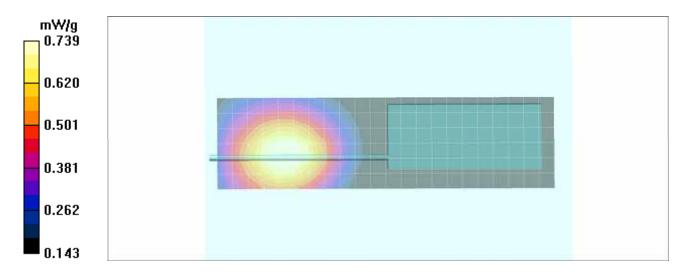
Medium: M835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 55.7$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.763 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.11 V/m; Power Drift = -0.336 dB

Peak SAR (extrapolated) = 0.873 W/kg

SAR(1 g) = 0.704 mW/g; SAR(10 g) = 0.537 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.739 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B30

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

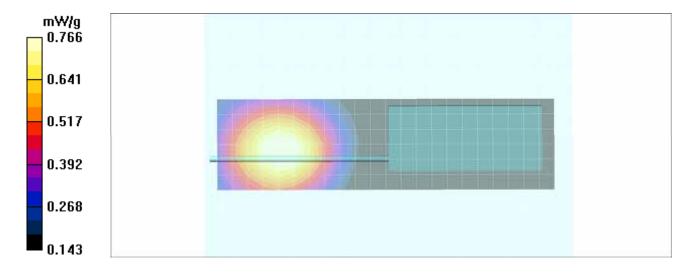
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.787 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.82 V/m; Power Drift = -0.334 dB

Peak SAR (extrapolated) = 0.911 W/kg

SAR(1 g) = 0.729 mW/g; SAR(10 g) = 0.555 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.766 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B31

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

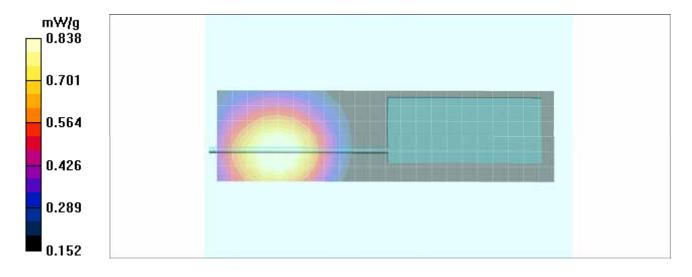
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.896 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.08 V/m; Power Drift = -0.320 dB

Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.793 mW/g; SAR(10 g) = 0.598 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.838 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B32

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

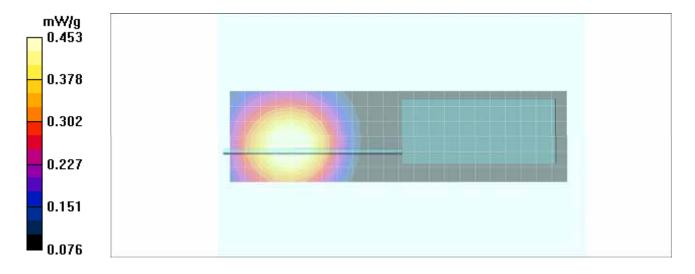
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.485 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.78 V/m; Power Drift = -0.359 dB

Peak SAR (extrapolated) = 0.532 W/kg

SAR(1 g) = 0.430 mW/g; SAR(10 g) = 0.323 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.453 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B33

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.912 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

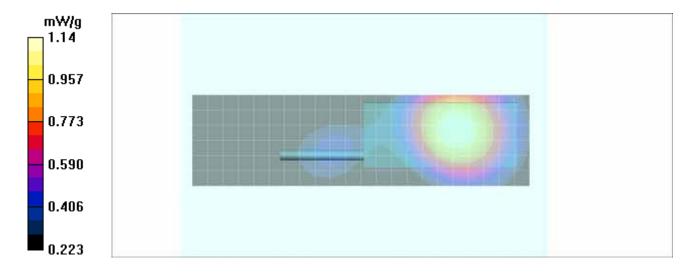
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.17 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 18.4 V/m; Power Drift = -0.138 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.836 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.14 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B34

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

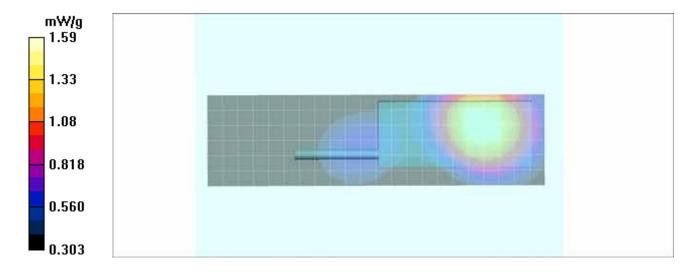
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.65 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 24.7 V/m; Power Drift = -0.273 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 1.51 mW/g; SAR(10 g) = 1.16 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.59 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B35

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

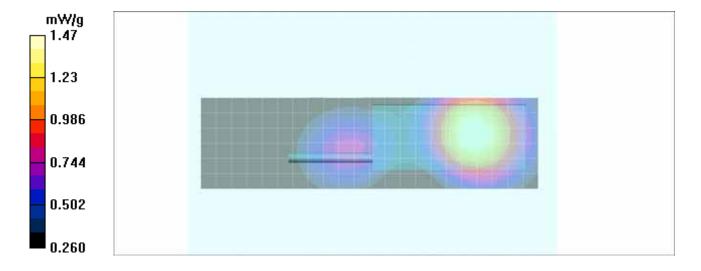
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 25.0 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 1.4 mW/g; SAR(10 g) = 1.07 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.47 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B36

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

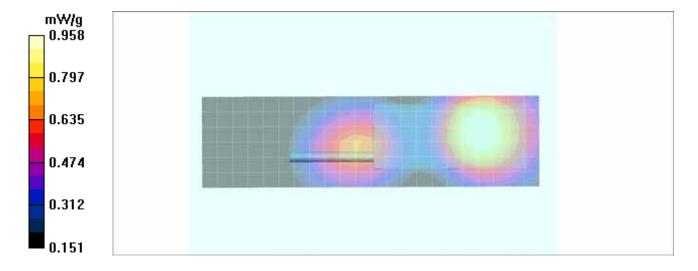
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.993 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 25.8 V/m; Power Drift = -0.431 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.908 mW/g; SAR(10 g) = 0.685 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.958 mW/g

Test Report Issue Date
August 10, 2016

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B37

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

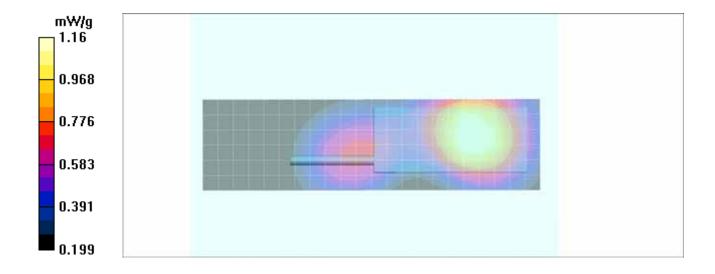
Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.16 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.7 V/m; Power Drift = -0.167 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.846 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B38

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

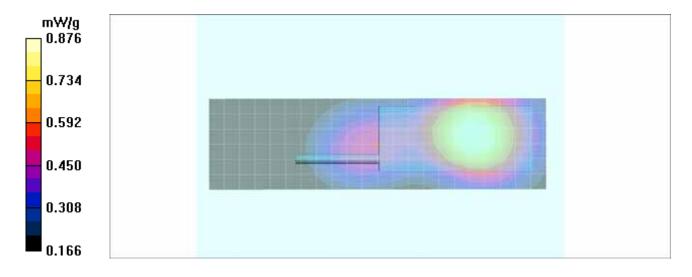
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.891 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 22.8 V/m; Power Drift = -0.162 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.640 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.876 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B39

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

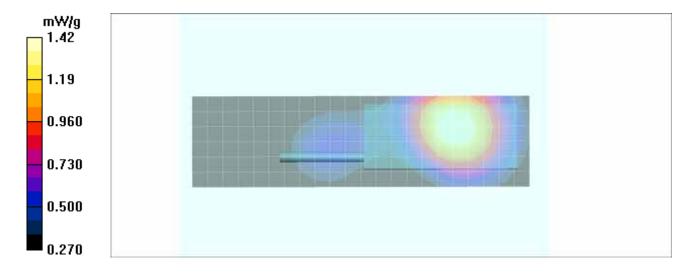
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 22.1 V/m; Power Drift = -0.375 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.36 mW/g; SAR(10 g) = 1.05 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.42 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B40

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

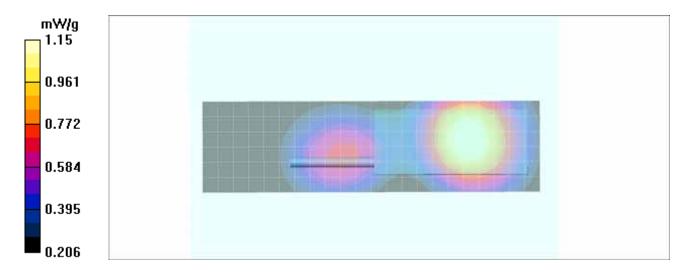
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.19 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 23.6 V/m; Power Drift = -0.272 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 q) = 1.1 mW/q; SAR(10 q) = 0.842 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.15 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B41

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

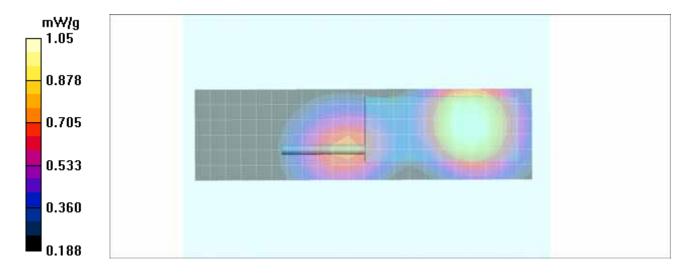
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.09 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 26.3 V/m; Power Drift = -0.326 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 1.000 mW/g; SAR(10 g) = 0.768 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.05 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B42

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

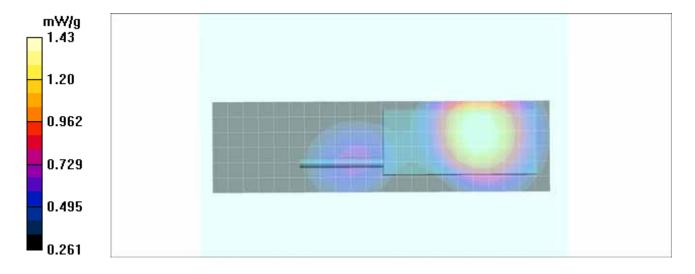
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.48 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 22.4 V/m; Power Drift = -0.335 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.36 mW/g; SAR(10 g) = 1.04 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.43 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B43

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 55.7$; $\rho = 1000$ kg/m³

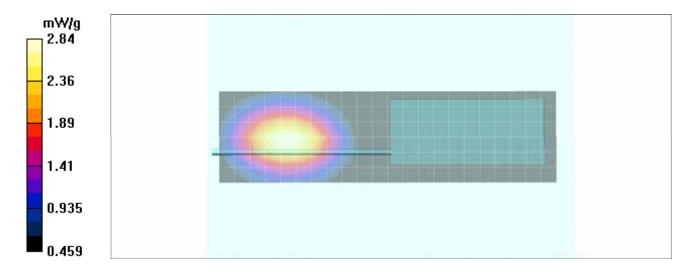
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.86 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.8 V/m; Power Drift = -0.361 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.69 mW/g; SAR(10 g) = 1.99 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.84 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B44

Date Tested: 09/05/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

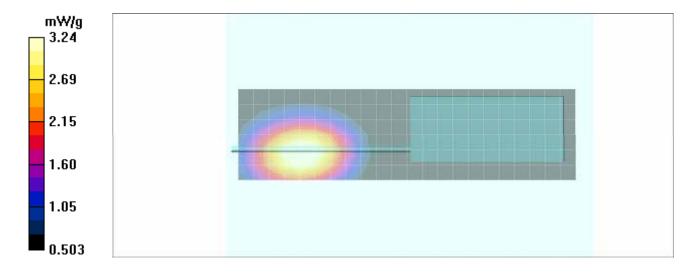
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.48 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 14.1 V/m; Power Drift = -1.74 dB

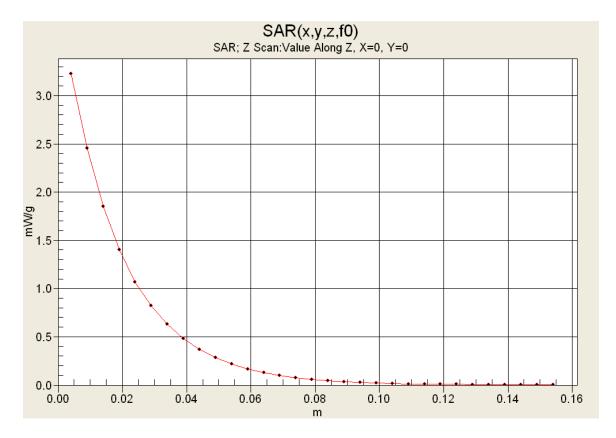
Peak SAR (extrapolated) = 3.91 W/kg

SAR(1 g) = 3.06 mW/g; SAR(10 g) = 2.26 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.24 mW/g

Test Report Issue Date
August 10, 2016


Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS		
DUT Type:	Porta	ortable 700/800-Band PTT Radio Transceiver with Bluetooth				DUT Name: XG-25P 7/800		700 TO TOTAL		
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 108 of 209			

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B45

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

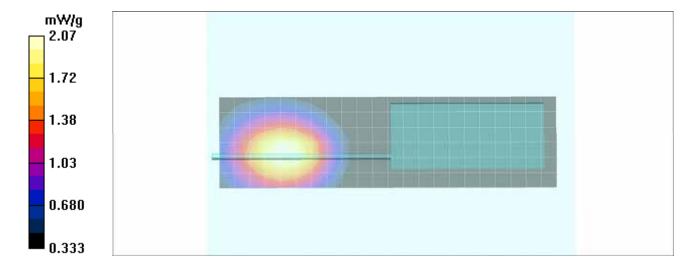
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.14 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 12.6 V/m; Power Drift = 0.708 dB

Peak SAR (extrapolated) = 2.43 W/kg

SAR(1 q) = 1.96 mW/q; SAR(10 q) = 1.45 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.07 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B46

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

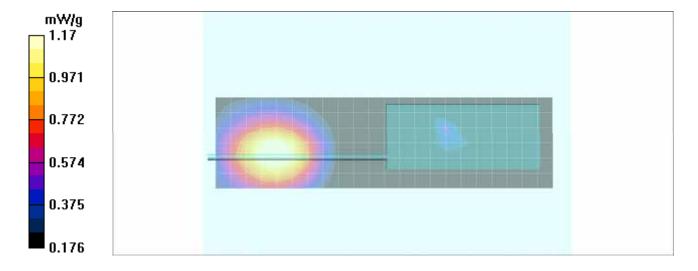
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.24 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 13.4 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.815 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.17 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B47

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

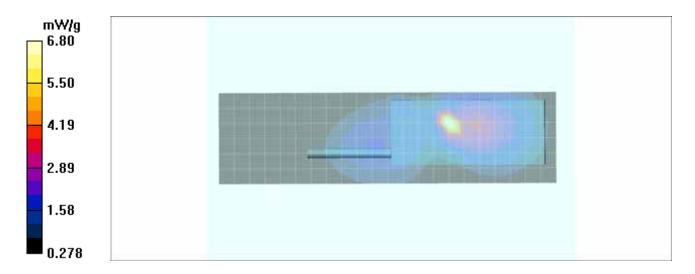
Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.912 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 7.31 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 41.1 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 6.46 mW/g; SAR(10 g) = 2.82 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.80 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B48

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

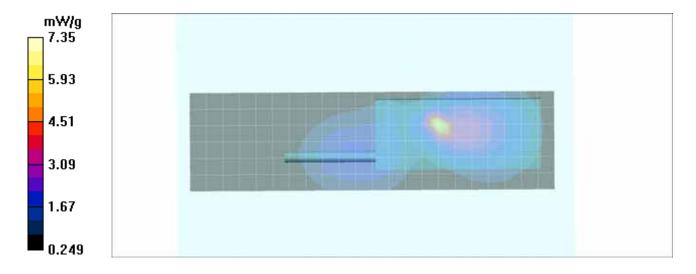
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.60 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 40.6 V/m; Power Drift = -0.247 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.23 mW/g; SAR(10 g) = 2.99 mW/g

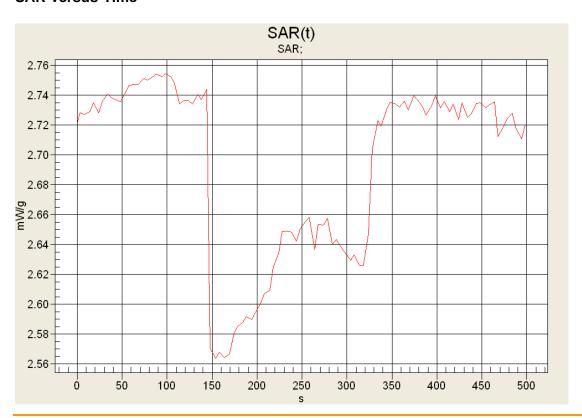
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 7.35 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0


RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

SAR-versus-Time

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	Portable 700/800-Band PTT Radio Transceiver with Bluetooth DUT Name: XG-25P 7/800						70 FETTS
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 113 of 209

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B49

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

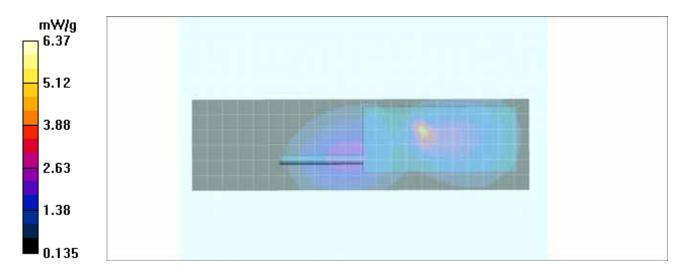
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.65 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 43.7 V/m; Power Drift = -0.194 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 q) = 6.28 mW/q; SAR(10 q) = 2.38 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.37 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B50

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

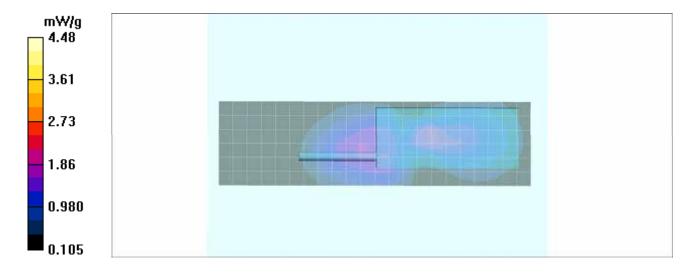
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.03 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 41.0 V/m; Power Drift = -0.333 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 4.42 mW/g; SAR(10 g) = 1.67 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.48 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B51

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 794 MHz; Duty Cycle: 1:1

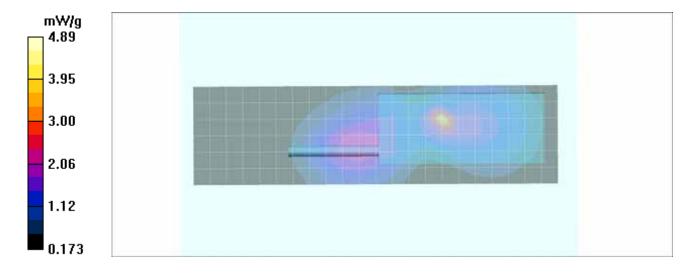
Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.65 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 43.5 V/m; Power Drift = -0.343 dB

Peak SAR (extrapolated) = 22.2 W/kg

SAR(1 q) = 4.88 mW/q; SAR(10 q) = 1.91 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.89 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B52

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

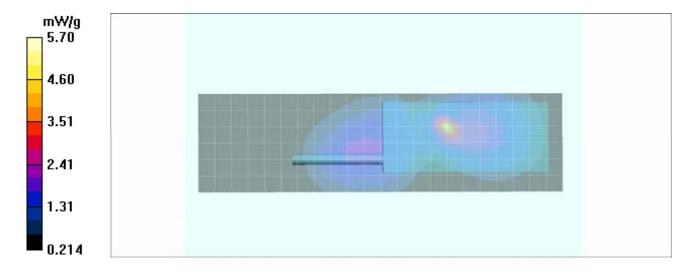
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.39 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 43.2 V/m; Power Drift = -0.475 dB

Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 5.64 mW/g; SAR(10 g) = 2.28 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.70 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B53

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

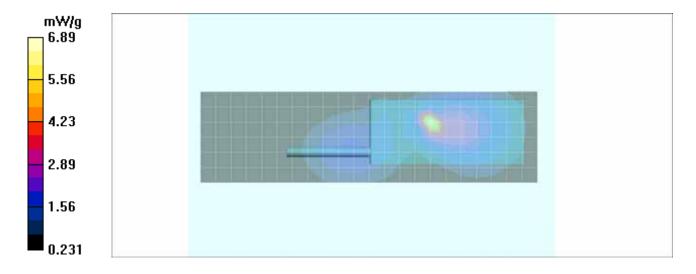
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 38.5 V/m; Power Drift = -0.329 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 6.68 mW/g; SAR(10 g) = 2.75 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.89 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B54

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

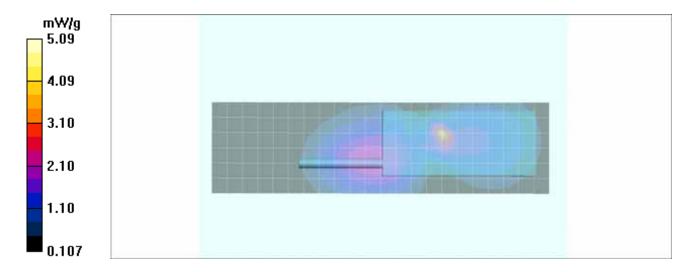
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.70 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 43.7 V/m; Power Drift = -0.350 dB

Peak SAR (extrapolated) = 21.2 W/kg

SAR(1 q) = 4.8 mW/q; SAR(10 q) = 1.81 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.09 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B55

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

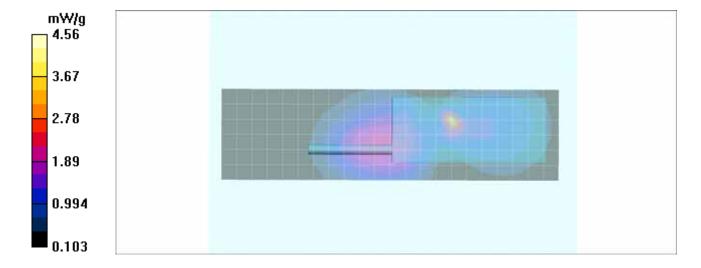
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.40 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 44.8 V/m; Power Drift = -0.359 dB

Peak SAR (extrapolated) = 20.7 W/kg

SAR(1 g) = 4.37 mW/g; SAR(10 g) = 1.59 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.56 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B56

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

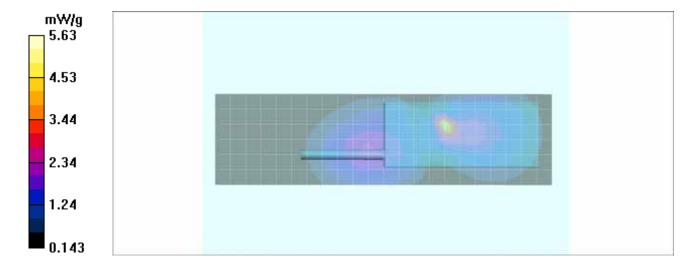
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.51 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 44.2 V/m; Power Drift = -0.357 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 5.65 mW/g; SAR(10 g) = 2.14 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.63 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B57

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 776 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; $\sigma = 0.912$ mho/m; $\varepsilon_r = 55.7$; $\rho = 1000$ kg/m³

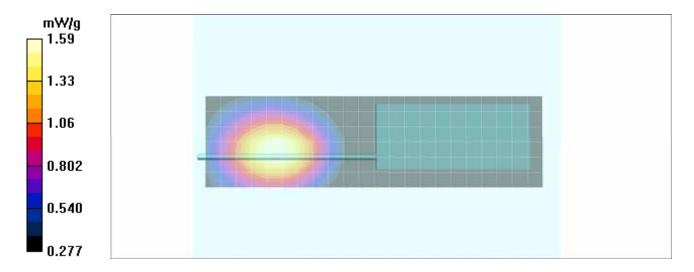
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.61 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.96 V/m; Power Drift = -0.193 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 1.51 mW/g; SAR(10 g) = 1.14 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.59 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B58

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

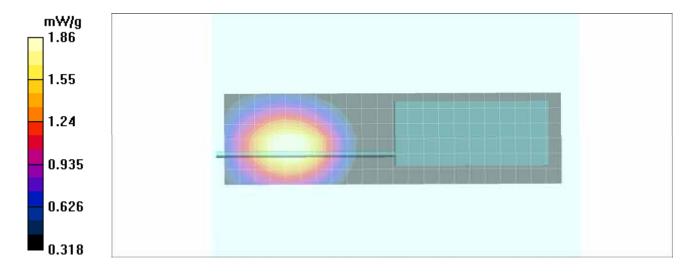
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.91 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.34 V/m; Power Drift = -0.279 dB

Peak SAR (extrapolated) = 2.23 W/kg

SAR(1 g) = 1.76 mW/g; SAR(10 g) = 1.32 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.86 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B59

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

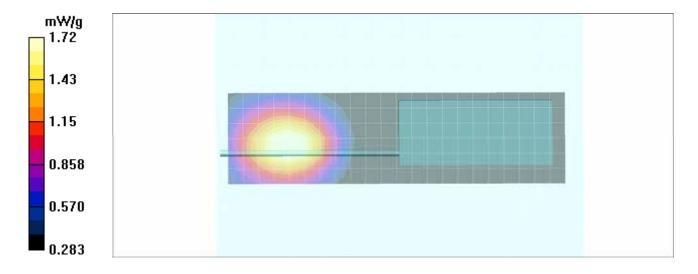
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.77 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.49 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 1.63 mW/g; SAR(10 g) = 1.22 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.72 mW/g

Test Report Issue Date
August 10, 2016

Specific Absorption Rate

Description of Test(s) RF Expo

Rev. 1.0

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Body SAR Plot B60

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

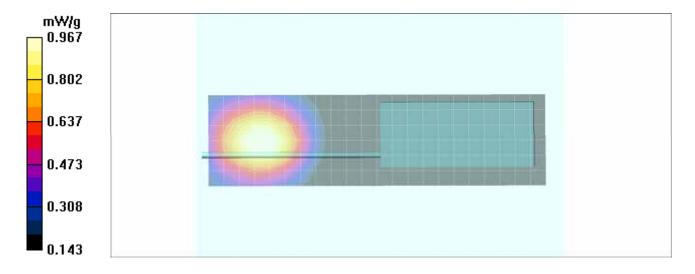
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.01 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.3 V/m; Power Drift = -0.270 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.913 mW/g; SAR(10 g) = 0.674 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.967 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B61

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.912 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

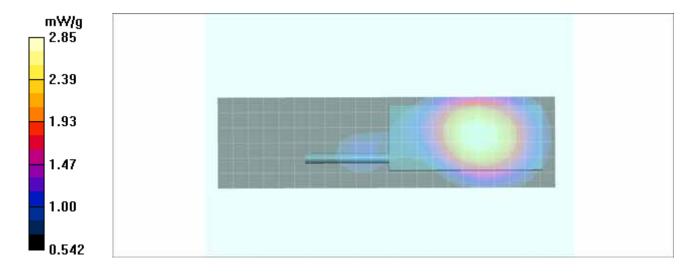
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.89 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 29.6 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.72 mW/g; SAR(10 g) = 2.07 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.85 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B62

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

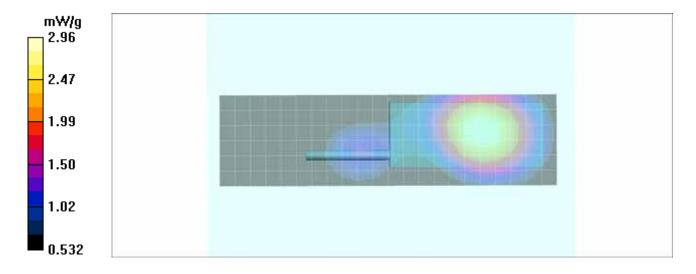
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.98 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 31.1 V/m; Power Drift = -0.225 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.8 mW/g; SAR(10 g) = 2.13 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.96 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B63

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

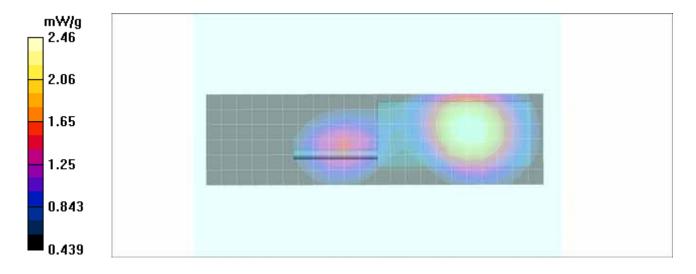
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 31.8 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.79 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.46 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B64

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 869 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 869 MHz; σ = 1 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³

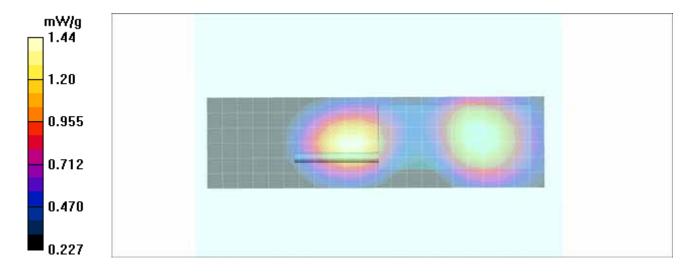
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 34.8 V/m; Power Drift = -0.399 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 1.03 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.44 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B65

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

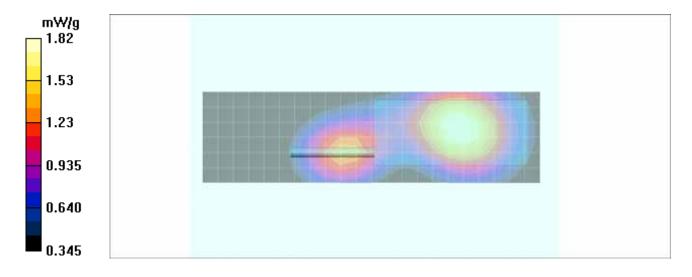
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.80 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 33.6 V/m; Power Drift = -0.272 dB

Peak SAR (extrapolated) = 2.16 W/kg

SAR(1 g) = 1.73 mW/g; SAR(10 g) = 1.32 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.82 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B66

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

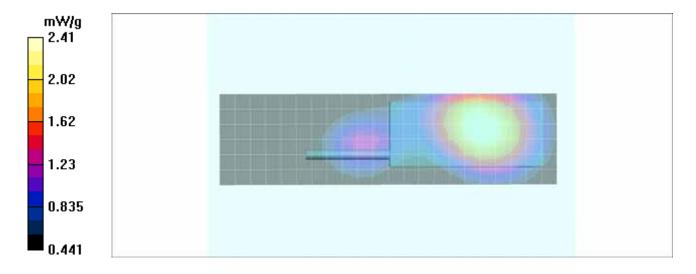
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.49 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 32.3 V/m; Power Drift = -0.241 dB

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.74 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.41 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B67

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

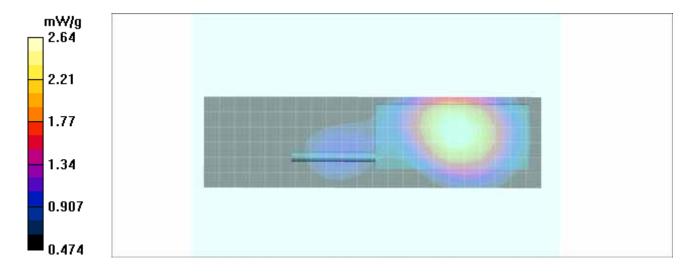
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.69 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 29.4 V/m; Power Drift = -0.241 dB

Peak SAR (extrapolated) = 3.12 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.91 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.64 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B68

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

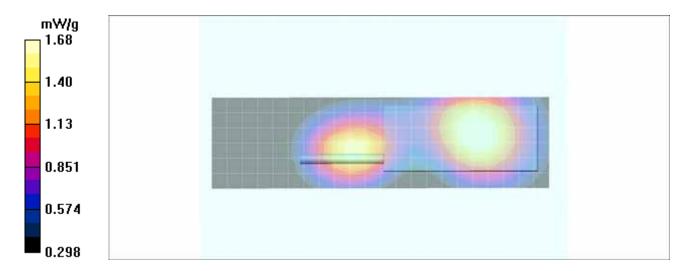
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.74 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 35.1 V/m; Power Drift = -0.194 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 q) = 1.6 mW/q; SAR(10 q) = 1.23 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.68 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B69

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

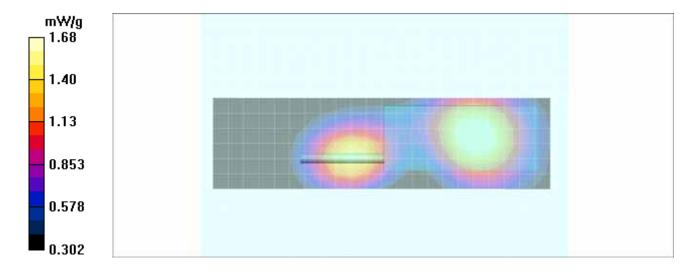
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.74 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 31.8 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 1.6 mW/g; SAR(10 g) = 1.23 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.68 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B70

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 14

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 824 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

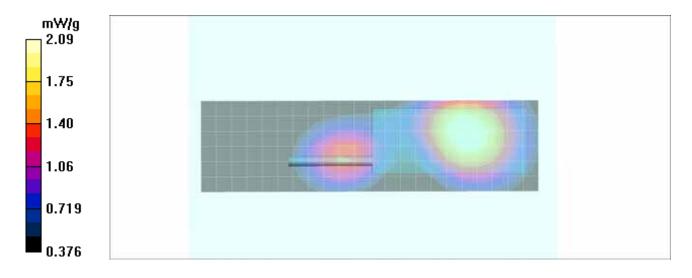
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.19 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 32.6 V/m; Power Drift = -0.310 dB

Peak SAR (extrapolated) = 2.40 W/kg

SAR(1 g) = 1.99 mW/g; SAR(10 g) = 1.52 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.09 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B71

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

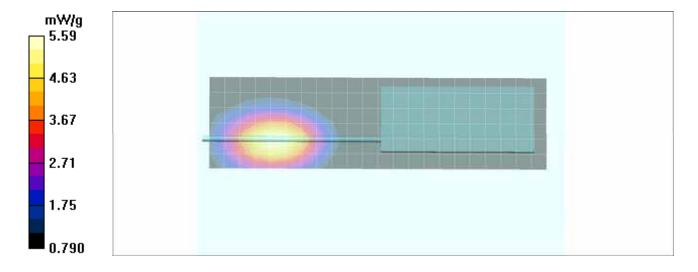
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.67 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.4 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 6.87 W/kg

SAR(1 q) = 5.25 mW/q; SAR(10 q) = 3.78 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.59 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B72

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.912 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

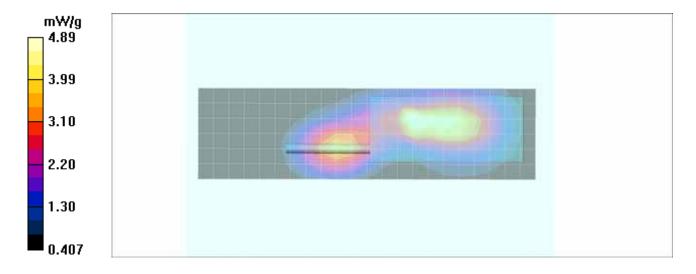
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.68 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 54.1 V/m; Power Drift = 0.066 dB

Peak SAR (extrapolated) = 9.43 W/kg

SAR(1 g) = 4.49 mW/g; SAR(10 g) = 2.78 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.89 mW/g

Test Report Issue Date
August 10, 2016

Description of Test(s)

Specific Absorption Rate

Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Body SAR Plot B73

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 776 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 776 MHz; σ = 0.912 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

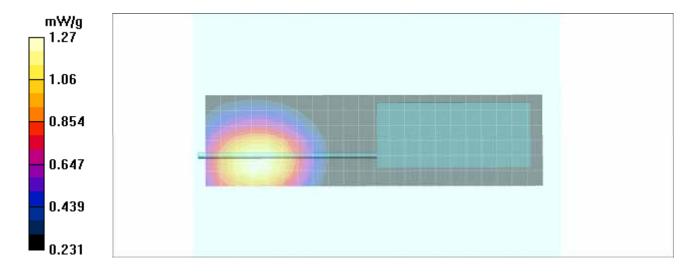
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.24 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.35 V/m; Power Drift = -0.273 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.912 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.27 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B74

Date Tested: 09/06/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 21.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.948 mho/m; ϵ_r = 55.6; ρ = 1000 kg/m³

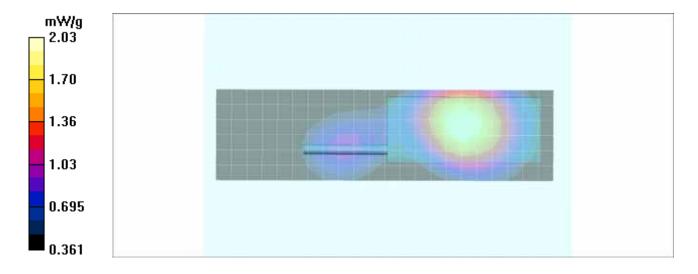
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.06 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 26.6 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.38 W/kg

SAR(1 g) = 1.94 mW/g; SAR(10 g) = 1.48 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.03 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B75

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Frequency: 824 MHz; Duty Cycle: 1:1

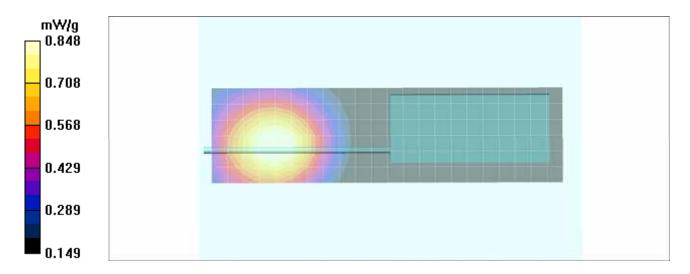
Medium: M835 Medium parameters used (interpolated): f = 824 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 54.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.877 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 7.29 V/m; Power Drift = -0.259 dB

Peak SAR (extrapolated) = 0.992 W/kg

SAR(1 q) = 0.804 mW/q; SAR(10 q) = 0.605 mW/q

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.848 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B76

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

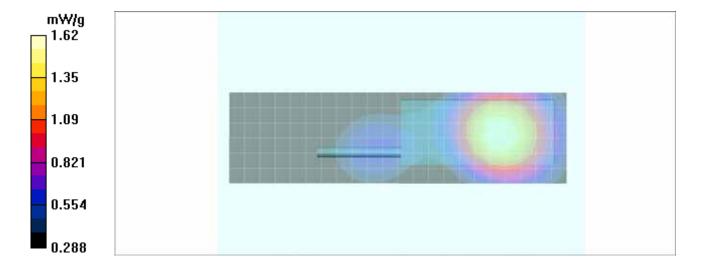
Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.928 mho/m; ϵ_r = 54.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.62 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 1.54 mW/g; SAR(10 g) = 1.17 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B77

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.928 mho/m; ϵ_r = 54.8; ρ = 1000 kg/m³

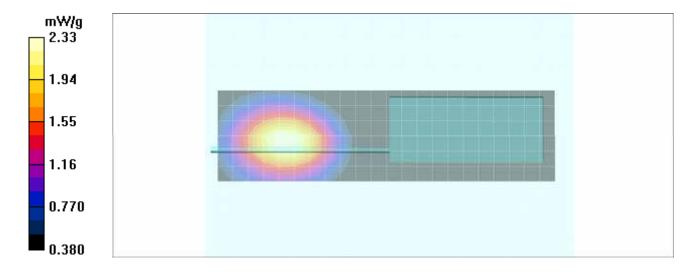
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.31 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.7 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 2.80 W/kg

SAR(1 g) = 2.21 mW/g; SAR(10 g) = 1.64 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.33 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B78

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.928 mho/m; ϵ_r = 54.8; ρ = 1000 kg/m³

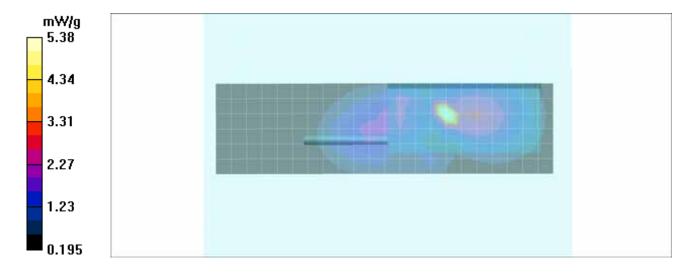
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 6.55 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 44.7 V/m; Power Drift = -0.001 dB

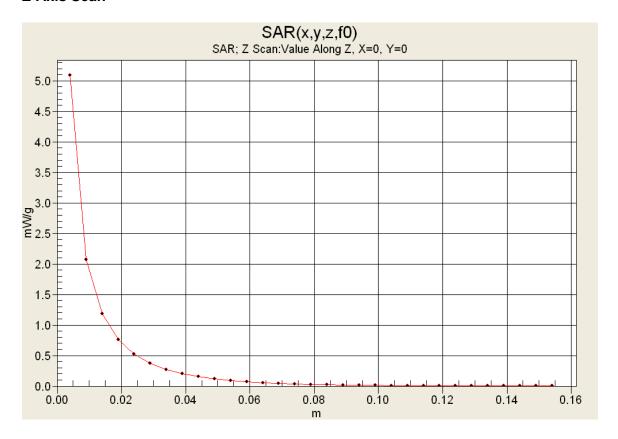
Peak SAR (extrapolated) = 21.4 W/kg

SAR(1 g) = 5.24 mW/g; SAR(10 g) = 2.2 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.38 mW/g

Test Report Issue Date
August 10, 2016


Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS	
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Name: XG-25P 7/800		700 TO TO TO		
2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 144 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B79

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.928 mho/m; ϵ_r = 54.8; ρ = 1000 kg/m³

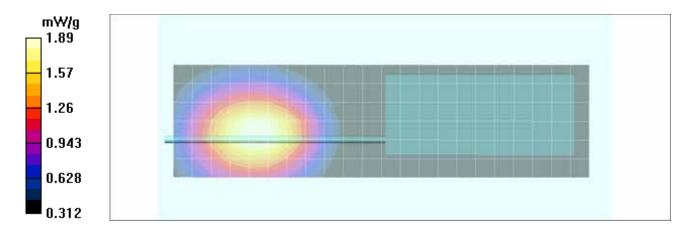
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.92 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.37 V/m; Power Drift = -0.241 dB

Peak SAR (extrapolated) = 2.27 W/kg

SAR(1 g) = 1.78 mW/g; SAR(10 g) = 1.33 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.89 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Body SAR Plot B80

Date Tested: 09/07/2012

DUT: Harris XG-25P; Type: Portable 700/800 MHz PTT Radio Transceiver; Serial: 35

Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 794 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 794 MHz; σ = 0.928 mho/m; ϵ_r = 54.8; ρ = 1000 kg/m³

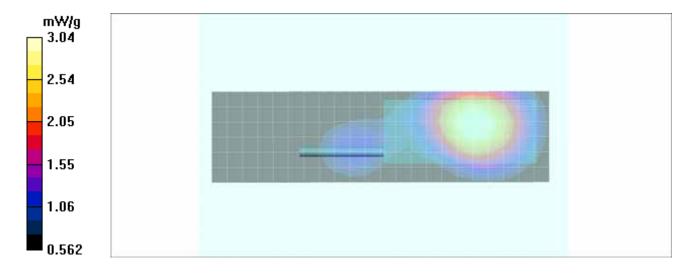
- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (7x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.17 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 31.7 V/m; Power Drift = -0.168 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.9 mW/g; SAR(10 g) = 2.21 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.04 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS	
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Name: XG-25P 7/800				
2012 Celltech La	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 147 of 209		

Test Report Issue Date
August 10, 2016

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Date Tested: 09/04/2012

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2012

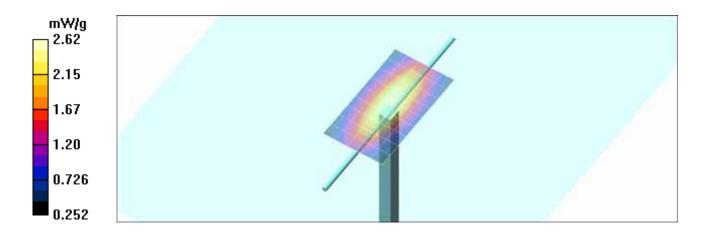
Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.96 mho/m; ε_r = 55.2; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.48 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

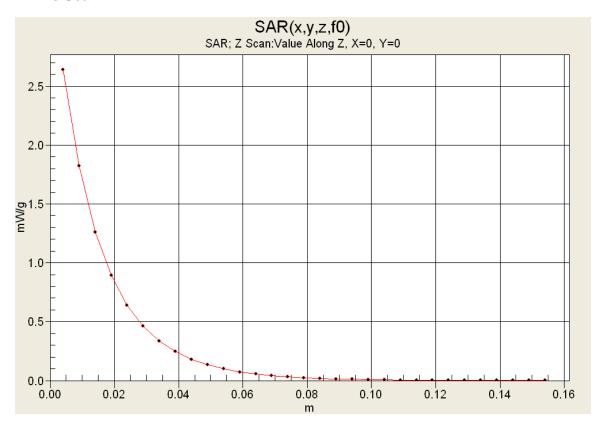
Reference Value = 54.2 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.6 mW/g Maximum value of SAR (measured) = 2.62 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1


<u>Description of Test(s)</u> <u>RF Exposure Category</u> Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.0

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	200 TO 18 TO
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 149 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Date Tested: 09/07/2012

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2012

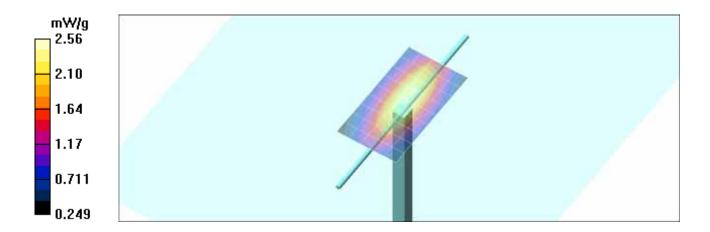
Ambient Temp: 23C; Fluid Temp: 22.5C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.96 mho/m; ε_r = 54.2; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.41 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

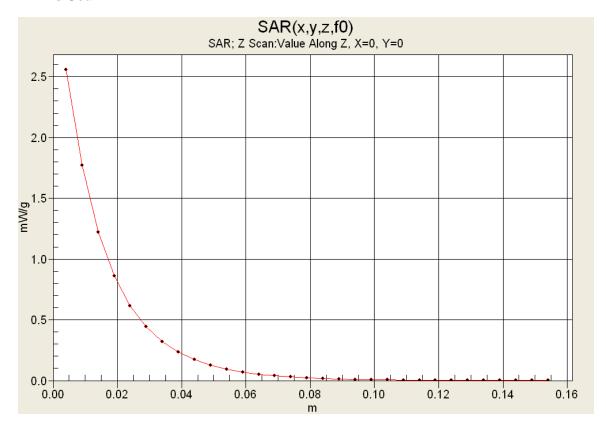
Reference Value = 53.2 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.56 mW/gMaximum value of SAR (measured) = 2.56 mW/g

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1


Description of Test(s) R
Specific Absorption Rate Oc

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	sceiver with Bluetooth	DUT Na	me:	,	
2012 Celltech La	12 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 151 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

Date Tested: 09/07/2012

System Performance Check - 835 MHz Dipole - Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2012

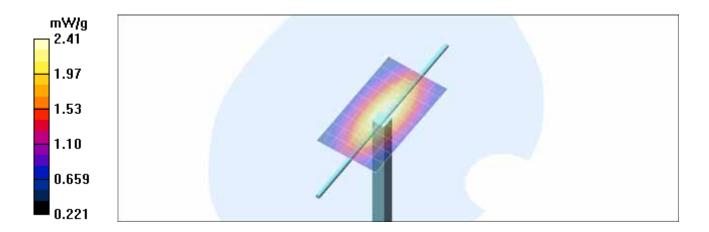
Ambient Temp: 23C; Fluid Temp: 22.9C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.77, 6.77, 6.77); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Head d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.37 mW/q

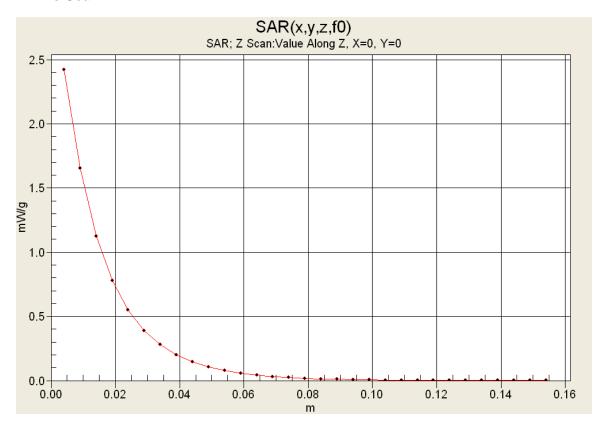
Head d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.6 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.24 mW/g; SAR(10 g) = 1.47 mW/g Maximum value of SAR (measured) = 2.41 mW/g

Test Report Issue Date
August 10, 2016


Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> <u>RF Exposure Category</u> Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	
2012 Celltech La	2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 153 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P1	T Radio Trar	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	
2012 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 154 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
04/Sep/2012
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	56.14	0.86
0.7450	55.55	0.96	56.01	0.88
0.7550	55.51	0.96	55.85	0.89
0.7650	55.47	0.96	55.68	0.91
0.7750	55.43	0.97	55.79	0.91
0.7850	55.39	0.97	55.70	0.92
0.7950	55.36	0.97	55.49	0.92
0.8050	55.32	0.97	55.31	0.93
0.8150	55.28	0.97	55.39	0.94
0.8250	55.24	0.97	55.42	0.96
0.8350	55.20	0.97	55.21	0.96
0.8450	55.17	0.98	54.87	0.96
0.8550	55.14	0.99	54.95	0.98
0.8650	55.11	1.01	54.78	1.00
0.8750	55.08	1.02	54.83	1.01
0.8850	55.05	1.03	54.81	1.02
0.8950	55.02	1.04	54.71	1.03
0.9050	55.00	1.05	54.39	1.05
0.9150	55.00	1.06	54.37	1.04
0.9250	54.98	1.06	54.40	1.06
0.9350	54.96	1.07	54.43	1.07

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	
2012 Celltech La	12 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 155 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
05&06/Sep/2012
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	******	******
Freq	FCC_eE	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	56.14	0.87
0.7450	55.55	0.96	56.05	0.89
0.7550	55.51	0.96	55.66	0.89
0.7650	55.47	0.96	55.91	0.91
0.7750	55.43	0.97	55.72	0.91
0.7850	55.39	0.97	55.62	0.93
0.7950	55.36	0.97	55.59	0.95
0.8050	55.32	0.97	55.11	0.95
0.8150	55.28	0.97	55.37	0.96
0.8250	55.24	0.97	55.37	0.96
<mark>0.8350</mark>	55.20	0.97	55.30	0.98
0.8450	55.17	0.98	55.18	0.98
0.8550	55.14	0.99	55.02	1.00
0.8650	55.11	1.01	55.08	1.00
0.8750	55.08	1.02	54.60	1.01
0.8850	55.05	1.03	54.70	1.02
0.8950	55.02	1.04	54.76	1.05
0.9050	55.00	1.05	54.66	1.05
0.9150	55.00	1.06	54.55	1.06
0.9250	54.98	1.06	54.45	1.07
0.9350	54.96	1.07	54.11	1.08

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:		3636B-0140	HARRIS
DUT Type:	Porta	ble 700/800-Band P	T Radio Tran	sceiver with Bluetooth	DUT Na	ıme:	XG-25P 7/800	
2012 Celltech La	2 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 156 of 209	

Test Report Issue Date
August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
07/Sep/2012
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	******	******
Freq	_	FCC_sE	_	Test_s
0.7350	55.59	0.96	54.88	0.85
0.7450	55.55	0.96	55.28	0.88
0.7550	55.51	0.96	55.00	0.88
0.7650	55.47	0.96	54.83	0.89
0.7750	55.43	0.97	54.87	0.90
0.7850	55.39	0.97	54.95	0.91
0.7950	55.36	0.97	54.80	0.93
0.8050	55.32	0.97	54.37	0.94
0.8150	55.28	0.97	54.66	0.95
0.8250	55.24	0.97	54.37	0.95
0.8350	55.20	0.97	54.24	0.96
0.8450	55.17	0.98	54.23	0.98
0.8550	55.14	0.99	53.82	0.98
0.8650	55.11	1.01	53.93	0.99
0.8750	55.08	1.02	53.63	1.00
0.8850	55.05	1.03	53.66	1.03
0.8950	55.02	1.04	53.69	1.03
0.9050	55.00	1.05	53.31	1.03
0.9150	55.00	1.06	53.66	1.05
0.9250	54.98	1.06	53.30	1.06
0.9350	54.96	1.07	53.25	1.06

Test Report Issue Date August 10, 2016

Test Report Serial No. 46451355-1R1.1

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0

RF Exposure Category Occupational (Controlled)

835 MHz Head

Celltech Labs

Test Result for UIM Dielectric Parameter 07/Sep/2012

Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

*******	******	*****	******	******
Freq	_	_	_	Test_s
0.7350	42.02	0.89	42.95	0.78
0.7450	41.97	0.89	43.20	0.80
0.7550	41.92	0.89	43.18	0.81
0.7650	41.86	0.89	42.59	0.82
0.7750	41.81	0.90	42.79	0.84
0.7850	41.76	0.90	42.58	0.85
0.7950	41.71	0.90	42.52	0.85
0.8050	41.66	0.90	42.49	0.87
0.8150	41.60	0.90	42.57	0.88
0.8250	41.55	0.90	42.24	0.88
0.8350	41.50	0.90	42.07	0.88
0.8450	41.50	0.91	41.87	0.91
0.8550	41.50	0.92	41.74	0.92
0.8650	41.50	0.93	41.39	0.92
0.8750	41.50	0.94	41.06	0.93
0.8850	41.50	0.95	41.44	0.94
0.8950	41.50	0.96	41.13	0.95
0.9050	41.50	0.97	41.08	0.95
0.9150	41.50	0.98	40.97	0.98
0.9250	41.48	0.98	40.76	0.97
0.9350	41.46	0.99	40.96	0.98
	Freq 0.7350 0.7450 0.7450 0.7550 0.7650 0.7750 0.7850 0.8050 0.8150 0.8250 0.8350 0.8450 0.8550 0.8650 0.8750 0.8850 0.8950 0.9950 0.9150 0.9250	Freq FCC_eH 0.7350 42.02 0.7450 41.97 0.7550 41.92 0.7650 41.86 0.7750 41.81 0.7850 41.76 0.7950 41.71 0.8050 41.66 0.8150 41.60 0.8250 41.55 0.8350 41.50 0.8650 41.50 0.8650 41.50 0.8650 41.50 0.8750 41.50 0.8850 41.50 0.8950 41.50 0.8950 41.50 0.9050	Freq FCC_eHFCC_sl- 0.7350 42.02 0.89 0.7450 41.97 0.89 0.7550 41.92 0.89 0.7650 41.86 0.89 0.7750 41.81 0.90 0.7850 41.76 0.90 0.7950 41.71 0.90 0.8050 41.66 0.90 0.8250 41.55 0.90 0.8350 41.50 0.90 0.8450 41.50 0.91 0.8550 41.50 0.93 0.8750 41.50 0.93 0.8750 41.50 0.95 0.8950 41.50 0.95 0.8950 41.50 0.96 0.9050 41.50 0.98 0.9250 41.48 0.98	0.7350 42.02 0.89 42.95 0.7450 41.97 0.89 43.20 0.7550 41.92 0.89 43.18 0.7650 41.86 0.89 42.59 0.7750 41.81 0.90 42.79 0.7850 41.76 0.90 42.58 0.7950 41.71 0.90 42.52 0.8050 41.66 0.90 42.49 0.8150 41.60 0.90 42.57 0.8250 41.55 0.90 42.24 0.8350 41.50 0.90 42.07 0.8450 41.50 0.91 41.87 0.8550 41.50 0.92 41.74 0.8650 41.50 0.93 41.39 0.8750 41.50 0.94 41.06 0.8850 41.50 0.95 41.44 0.8950 41.50 0.96 41.13 0.9050 41.50 0.98 40.97 0.9250 4

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0140-E	IC:	3636B-0140		HARRIS
DUT Type:	Porta	ble 700/800-Band P	T Radio Trar	sceiver with Bluetooth	DUT Na	me:	XG-25P 7/800	
2012 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 158 of 209	