

Date(s) o	f Evalua	ation
9/22-29 &	12/5-6,	2011

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

Rev. 1.2 (3rd Release) RF Exposure Category Occupational (Controlled)

DECLARATION OF COMP	LIANCE	SAR RE	EXF	POS	URE	EVAL	JATION		FCC & IC
Test Lab Information	Name	CELLTECH LA	ABS IN	IC.					
rest Lab information	Address	21-364 Loughe	ed Ro	ad, Ke	elowna	, B.C. V1	< 7R8 Cana	ıda	
Test Lab Accreditation(s)	ISO 17025	A2LA Test Lab	Certifi	icate N	No. 247	70.01			
Applicant Information	Name	HARRIS CORI	PORA	TION					
Applicant information	Address	221 Jefferson I	Ridge I	Parkw	ay, Lyı	nchburg, \	/A 24501 U	.S.A.	
Standard(s) Applied	FCC	47 CFR §2.109	93						
Standard(s) Applied	IC	Health Canada	Safety	y Cod	e 6				
Procedure(s) Applied	FCC	OET Bulletin 6	5, Sup	p. C	KDB	447498 D	01v04 I	KDB 643	646 D01v01r01
Procedure(s) Applied	IC	RSS-102 Issue	e 4	IEE	E '	1528-2003	IEC	622	09-2:2010
Device Classification(s)	FCC	Licensed Non-	Broado	cast Ti	ransmi	tter Held t	o Face (TN	F) - FCC	Part 90
Device Classification(s)	IC	Land Mobile R	adio Tı	ransm	itter/Re	eceiver (2	7.41-960 M	Hz) - RS	S-119
Davisa Identificato	FCC ID:	OWDTR-0074-	·E						
Device Identifier(s)	IC:	IC: 3636B-0074							
Application Type(c)	FCC	TCB Certification	on						
Application Type(s)	IC	CB Certification	n						
Date of Sample Receipt	August 30, 2011								
Dates of Evaluation	September 7-	29 & December	5-6, 20	011					
Device Description	Portable 700/	800-Band Digital	l Push-	-To-Ta	alk (PT	T) Radio	Transceiver		
Device Model(s)	XG-75	PN: RU-103895	5-002	MN: EVXG-PF78B System (Blac			ack/Gray) DTMF Keypad	
Device Model(s)	700/800	PN: RU-103895	5-004	MN:	EVXG-	-PF78Y	System (Ye	ellow/Blac	k) DTMF Keypad
Device Model(s) Tested	XG-75 7/800	(System)	S/N:	XG-T2	2-D103	(Identica	l Prototype)	PN:	RU-103895-002
Test Sample Revision No.s	Hardware	Revision -							
rest sample Revision No.5	Firmware	R14B05							
Transmit Frequency Range(s)	FCC/IC	(1) 769-775 MH	Ηz	(2) 79	9-805	MHz	3) 806-824	MHz	(4) 851-869 MHz
Manufacturer's Rated Output Power	700 Band	2.9 Watts Nom	inal (C	onduc	cted)	Upper	Tolerance S	Spec.	+ 0.05 Watts
manaraturar o Ratea Output i Owel	800 Band	3.0 Watts Nom	inal (C	onduc	cted)	Upper	Tolerance S	Spec.	+ 0.23 Watts
Antenna Type(s) Tested	See manufact	turer's accessory	y listing	(Sec	tion 7.0	0)			
Battery Type(s) Tested	See manufact	turer's accessory	y listing	g (Sec	tion 7.0	0)			
Body-worn Accessories Tested		turer's accessory				-			
Audio Accessories Tested		turer's accessory	y listing			-			
Max. SAR Level(s) Evaluated	Face-held	1.85 W/kg	1g	50%	PTT	duty facto	<u> </u>		Controlled Exposure
max. C. at Ector(c) Etalacida	Body-worn	3.33 W/kg	1g	50%	PTT	duty facto			Controlled Exposure
FCC/IC Spatial Peak SAR Limit	Head/Body	8.0 W/kg	1g	50%	PTT	duty facto	Occupa	tional / C	Controlled Exposure

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada Safety Code 6 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 4, IEEE Standard 1528-2003 and IEC International Standard 62209-2:2010. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

The results and statements contained in this report pertain only to the device(s) evaluated.

Sun Johns **Test Report Approved By Sean Johnston Lab Manager** Celltech Labs Inc.

Applicant:	HAF	RRIS Corporation	FCC ID:	FCC ID: OWDTR-0074-E			IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	o Transceiver Model: XG-75 7/			75 7/800	769-805/806-869 MHz	
2011 Celltech La	1 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 1 of 281		

December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M Test Report Issue Date Description of Test(s)

Test Report Revision No. Rev. 1.2 (3rd Release)

RF Exposure Category Occupational (Controlled)

TABLE OF CONTENTS

Specific Absorption Rate

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	5
4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ)	5
5.0 NO. OF TEST CHANNELS (N _C)	5
6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	6
7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING	7
8.0 FLUID DIELECTRIC PARAMETERS	9
9.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646 D01V01R01)	23
10.0 SAR MEASUREMENT SUMMARY	24
11.0 SAR SCALING (TUNE-UP TOLERANCE)	42
12.0 DETAILS OF SAR EVALUATION	43
13.0 SAR EVALUATION PROCEDURES	43
14.0 SYSTEM PERFORMANCE CHECK	44
15.0 SIMULATED EQUIVALENT TISSUES	45
16.0 SAR LIMITS	45
17.0 ROBOT SYSTEM SPECIFICATIONS	46
18.0 PROBE SPECIFICATION (ET3DV6)	47
19.0 PHANTOM(S)	47
20.0 DEVICE HOLDER	47
21.0 TEST EQUIPMENT LIST	48
22.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION	48
23.0 MEASUREMENT UNCERTAINTIES	49
24.0 REFERENCES	50
APPENDIX A - SAR MEASUREMENT PLOTS	51
APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	188
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	201
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	216
APPENDIX E - DIPOLE CALIBRATION	277
APPENDIX F - PROBE CALIBRATION	278
APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY	279
APPENDIX H - SAM TWIN PHANTOM CERTIFICATE OF CONFORMITY	280
APPENDIX I - AUDIO ACCESSORY COMBINATIONS (FCC KDB 643646 D01V01R01)	281

Applicant:	HAF	RRIS Corporation	FCC ID:	FCC ID: OWDTR-0074-E			IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	o Transceiver Model: XG-75 7/8		75 7/800			
2011 Celltech La	IT Type: Portable 700/800-Band PTT Radio Transceiver Model: XG-75 7/800 769-805/806-869 MHz 1 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 2 of 281		

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

	REVISION HISTORY			
REVISION NO.	DESCRIPTION	IMPLEMENTED BY	RELEASE DATE	
1.0	1st Release	Jon Hughes	October 14, 2011	
	2nd Release			
1.1	Added "SAR Evaluation" column (Section 7.0)	Jon Hughes	November 01, 2011	
	Corrected body-worn accessory measurement distances to phantom (Section 10.0 & Appendix D)			
	3rd Release			
1.2	Added SAR data for Leather Belt-Loop & Swivel Mount accessory (Section 10.0 & Appendix A)	Jon Hughes	December 14, 2011	
	Revised Body-worn accessory listing (Section 7.0)]		

TEST REPORT SIGN-OFF							
DEVICE TESTED BY	REPORT PREPARED BY	QA REVIEW BY	REPORT APPROVED BY				
Mike Meaker	Cheri Frangiadakis	Jon Hughes	Sean Johnston				

Applicant:	HAF	RRIS Corporation	FCC ID:	DTR-0074-E IC:		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver Model: XG-75 7		(G-75 7/800 769-805/806-869 MHz		/
2011 Celltech La	11 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 3 of 281	

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the HARRIS Corporation Model: XG-75 7/800 Portable 700/800-Band PTT Radio Transceiver (System) complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [3]), IC RSS-102 Issue 4 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]), IEC 62209-1:2005 (see reference [6]) and IEC 62209-2:2010 (see reference [7]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASYTM) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

DASY4 SAR Measurement System with Side Planar Phantom

DASY4 Measurement System with Barski Planar Phantom

Applicant:	HAF	ARRIS Corporation FCC ID: OW			DTR-0074-	R-0074-E IC:		3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	Radio Transceiver Model: XG-75			75 7/800	769-805/806-869 MHz	A	
2011 Celltech La	ıbs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 4 of 281	

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

	MEASURED RF CONDUCTED OUTPUT POWER LEVELS											
N _c	Test Freq.	Freq. Band	Mode	dBm	Watts	Method						
1	770.0	(1) 769-775 MHz	CW	34.5	2.84	Average Conducted						
1	802.0	(2) 799-805 MHz	CW	34.5	2.82	Average Conducted						
2	806.0	(3) 806-824 MHz	CW	34.9	3.10	Average Conducted						
2	824.0	(3) 806-824 MHz	CW	35.0	3.15	Average Conducted						
2	851.0	(4) 851-869 MHz	CW	35.0	3.15	Average Conducted						
2	869.0	(4) 851-869 MHz	CW	35.0	3.15	Average Conducted						

Notes

- 1. The test channels were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [8]).
- 2. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with FCC 47 CFR §2.1046 (see reference [14]) and IC RSS-Gen (see reference [15]).

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES ($f \le 0.5 \text{ GHz}$)

FCC SAR Evaluation Power Thresholds for PTT Devices, $f \le 0.5 \text{ GHz}^{*}$							
Exposure Conditions	P mW (General Population)	P mW (Occupational)					
Held to face, $d \ge 2.5$ cm	250	1250					
Body-worn, $d \ge 1.5$ cm	200	1000					
Body-worn, $d > 1.0 \text{ cm}$	150	750					

- 1. The time-averaged output power, corresponding to the required PTT duty factor, is compared with these thresholds.
- 2. The closest distance between the user and the device or its antenna is used to determine the power thresholds.
- * Per FCC KDB 447498 D01v04 Section 5)b)i) (see reference [8]).

Note: The power thresholds specified in the above table do not apply to this 700/800 MHz band radio ($f \ge 0.5$ GHz). The output power threshold of $\ge 60/f_{\text{(GHz)}}$ mW specified in FCC KDB 447498 (see reference [8]) was applied.

5.0 NO. OF TEST CHANNELS (N_c)

	Antenna Part No.	ntenna Part No. Antenna Type Test F		Band	N _c	Test Frequencies (MHz)
(1) KRE 101 506/1	High Gain	769 - 869 MHz	FCC/IC	6	770.0, 802.0, 806.0, 824.0, 851.0, 869.0
(2) KRE 101 506/2	1/4-wave Whip	769 - 869 MHz	FCC/IC	6	770.0, 802.0, 806.0, 824.0, 851.0, 869.0

Note: The number of test channels (Nc) were calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [8]).

Applicant:	HAF	HARRIS Corporation F		FCC ID: OWDTR-0074-E		IC:	3636B-0074	HARRIS	
DUT Type:	Porta	rtable 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	A
2011 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 5 of 281

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ±50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ±100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ±25 MHz < 300 MHz and ±50 MHz ≥300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [10]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+50</u> MHz <u>></u> 300 MHz
	770 MHz	65 MHz	> 50 MHz ²
	802 MHz	33 MHz	< 50 MHz ¹
835 MHz	806 MHz	29 MHz	< 50 MHz ¹
OSS WITZ	824 MHz	11 MHz	< 50 MHz ¹
	851 MHz	16 MHz	< 50 MHz ¹
	869 MHz	34 MHz	< 50 MHz ¹

- 1. The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.
- 2. The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01 v01r01): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in ε_r computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity data is per SPEAG DASY4 Manual (see reference [16]).

Probe	Calibrati	ion Frequ	ency = 83	5 MHz	Targ	et Parameters	s: Head 41.5 ε	_r / 0.9 σ ~ Bo	dy 55.2	2 ε _r / 0.97 σ
Test Freq.	Date	Tissue	σ	Sensitivity	ε _r	Sensitivity	% Change	Compensa	ted SA	R Level W/kg
770 MHz	Sep 7	Body	-2.27%	0.59	4.35%	-0.57	3.82%	3.46	1g	50% ptt d/f
770 MHz	Sep 8	Body	-5.67% ²	0.59	3.80%	-0.57	5.52%	3.04	1g	50% ptt d/f
770 MHz	Sep 12	Body	-5.15% ²	0.59	3.99%	-0.57	5.31%	1.97	1g	50% ptt d/f
770 MHz	Sep 22	Body	-4.64%	0.59	4.17%	-0.57	5.12%	2.85	1g	50% ptt d/f
770 MHz	Sep 23	Body	-2.58%	0.59	3.99%	-0.57	3.79%	2.47	1g	50% ptt d/f
770 MHz	Sep 26	Body	-3.61%	0.59	4.35%	-0.57	4.61%	3.18	1g	50% ptt d/f
770 MHz	Sep 27	Body	-5.15%	0.59	3.80%	-0.57	5.21%	3.23	1g	50% ptt d/f
770 MHz	Sep 28	Head	-5.00%	0.59	4.34%	-0.57	5.42%	1.52	1g	50% ptt d/f
770 MHz	Sep 29	Head	-4.44%	0.59	4.82%	-0.57	5.37%	0.969	1g	50% ptt d/f
770 MHz	Dec 6	Body	-5.15%	0.59	1.81%	-0.57	4.07%	1.17	1g	50% ptt d/f

Parameter	ϵ	σ	ρ	
f=800 MHz, d=15 mm				
$(\epsilon_r = 41.5, \ \sigma = 0.90 \text{S/m})$				
SAR Peak	- 0.70	+ 0.86	-	
SAR~1g	- 0.57	+ 0.59	0.10	
SAR 10g	- 0.45	+ 0.35	0.18	

Notes

- 1. The above sensitivity formula (Head) from the DASY4 manual (see reference [12]) can be applied to Body tissue parameters (per SPEAG SAR system manufacturer).
- 2. FCC KDB 450824 refers to probe calibrations with fluid parameter tolerances +/- 5%; SPEAG's current probe calibration is valid for fluid parameter tolerances of +/- 10% (See Appendix F). We have accounted for the > 5% measured fluid parameter tolerance in the measurement uncertainty table (see Section 23) and have still applied the same sensitivity calculation adjustment to the SAR levels as shown in the above table.

Applicant:	HAF	ARRIS Corporation FCC ID: C			VDTR-0074-E IC:			3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	/800-Band PTT Radio Transceiver			XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	bs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 6 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

O

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certif

7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Accessory ID #	ACCESSORY CATEGORY:	ANTENNA	
for Test Report	Part Number	Description	SAR Evaluation
1	KRE 101 1506/1	High gain, flexible construction (764-870 MHz), 2 dBi gain spec.	Yes
2	KRE 101 1506/2	1/4 wave whip, wide bandwidth (764-870 MHz), 0 dBi gain spec.	Yes
Accessory ID #	ACCESSORY CATEGORY:	BATTERY	
for Test Report	Part Number	Description	SAR Evaluation
а	BT-023406-003	Ni-MH, immersible, non-IS (7.5V, 2400mAh)	Yes
b	BT-023406-004	Ni-MH, immersible, <is> (7.5V, 2400mAh)</is>	Yes
С	BT-023406-005	Li-lon, immersible, non-IS (7.4V, 2000mAh)	Yes
d	BT-023436-001	Lithium-polymer, immersible, non-IS (7.4V, 3000mAh)	Yes
е	BT-023406-103	Ni-MH, immersible, Goldpeak cells, non-IS (7.5V, 2400mAh)	No ¹
Accessory ID #	ACCESSORY CATEGORY:	BODY-WORN	
for Test Report	Part Number	Description	SAR Evaluation
1	KT-016201-001 (kit)	Kit containing: FM-016199-001 P7300 BEE Nylon case (Black) (with radio retaining strap) & CC-014527 BEE Leather Belt Loop	Yes
2	KT-016201-002 (kit)	Kit contains: FM-016199-002 P7300 BEE Nylon case (Orange) (with radio retaining strap) & CC-014527 BEE Leather Belt Loop	No ²
3	KT-016201-003 (kit)	Kit contains: FM-016199-003 P7300 BEE Leather Case (with radio retaining strap) w/o Shoulder Strap D-rings, KRY1011608/2 Swivel Mount & CC-014527 BEE Leather Belt Loop	Yes
4	KT-016201-004	Kit contains: FM-016199-004 P7300 BEE Leather Case with Shoulder Strap D-rings (with radio retaining strap), KRY1011608/2 Swivel Mount & CC-014524-001 BEE Shoulder Strap	Yes
5	CC23894	Metal Belt Clip	Yes
6	FM-017262-001 CC-014527	Swivel Mount Belt Loop, Leather (BEE)	Yes

See next page for audio accessory listing

Applicant:	HAF	HARRIS Corporation FCC ID:		OW	OWDTR-0074-E IC:			OWDTR-0074-E IC: 3636B-0074		3636B-0074	HARRIS
DUT Type:	Porta	table 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz			
2011 Celltech La	bs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 7 of 281		

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Accessory ID #	ACCESSORY CA	TEGORY: AUDIO		
for Test Report	Part Number	Description	Audio Accessory Grouping	SAR Evaluation
G7a	MC-023933-001	Speaker-Mic, No Ant. (cc), <is></is>	Group 7	Yes
n/a	MC-023933-002	Speaker-Mic, W/ Ant. (cc) provision, <is></is>	n/a (contains integral antenna)	Yes
G7b	MC-009104-002	Speaker-Mic, GPS, non-IS	Group 7	No ⁴
n/a	LS103239V1	Earphone for Speaker-Mic <is></is>	n/a (accessory to Group 7)	Yes
G7c	MC-011617-601	Ruggedized Speaker Mic-Coil Cord	Group 7	No ⁴
G7d	MC-011617-701	Standard Speaker Mic - Non Ant	Group 7	No ⁴
G12a	EA-009580-001	Earphone Kit, Black	Group 12	Yes
G12b	EA-009580-002	Earphone Kit, Beige	Group 12	No ³
G8a	EA-009580-003	2-Wire Kit, Palm mic, Black	Group 8	Yes
G8b	EA-009580-004	2-Wire Kit, Palm mic, Beige	Group 8	No ³
G9a	EA-009580-005	3-Wire Kit, Mini-Lapel Mic, Black	Group 9	Yes
G9b	EA-009580-006	3-Wire Kit, Mini-Lapel Mic, Beige	Group 9	No ³
G4	EA-009580-007	Explorer Headset w/ PTT	Group 4	Yes
G2	EA-009580-008	Lightweight headset single spkr w/ PTT	Group 2	Yes
G3a	EA-009580-009	Breeze Headset w/ PTT	Group 3	No ⁴
G1a	EA-009580-010	Headset, heavy duty, N/C behind the head, w/ PTT	Group 1	Yes
G5	EA-009580-011	Ranger Headset w/ PTT	Group 5	Yes
G10	EA-009580-012	Skull mic w/body PTT & earcup	Group 10	Yes
G1b	EA-009580-013	Headset, heavy duty, N/C over the head, w/ PTT	Group 1	No ⁴
G11a	EA-009580-014	Throat mic w/acoustic tube & body PTT	Group 11	No ⁴
G11b	EA-009580-015	Throat mic w/acoustic tube, body PTT, & ring PTT	Group 11	Yes
G3b	EA-009580-016	Breeze headset w/ PTT & pigtail jack	Group 3	Yes
G6a	EA-009580-017	Hurricane headset w/ PTT	Group 6	No ⁴
G6b	EA-009580-018	Hurricane headset w/ PTT & pigtail jack	Group 6	Yes

Manufacturer's disclosed accessory listing information provided by HARRIS Corporation

Footnotes

- 1. Goldpeak cells are the same physical form factor as the Sanyo cells used in battery "a".
- 2. The orange nylon case is identical to body-worn accessory #1 except for color difference only.
- 3. Audio accessories #G8b, #G9b and #G12b are identical to audio accessories #G8a, #G9a and #G12a respectively except for color difference only.
- 4. Audio accessories not evaluated for SAR in accordance with the procedures and provisions of FCC KDB 643646 D01v01r01 Page 10 Section 1).

Applicant:	HAF	HARRIS Corporation FCC ID:			OWDTR-0074-E IC:			3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	/
2011 Celltech La	bs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 8 of 281

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

8.0 FLUID DIELECTRIC PARAMETERS

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	-
Date: 09/	07/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.77	0.88	55.2	0.97	4.66%	-9.28%
0.745	57.99	0.9	55.2	0.97	5.05%	-7.22%
0.755	57.89	0.9	55.2	0.97	4.87%	-7.22%
0.765	57.63	0.91	55.2	0.97	4.40%	-6.19%
0.770*	57.6	0.948	55.2	0.97	4.35%	-2.27%
0.775	57.55	0.95	55.2	0.97	4.26%	-2.06%
0.785	57.83	0.93	55.2	0.97	4.76%	-4.12%
0.795	57.34	0.96	55.2	0.97	3.88%	-1.03%
0.802*	57.5	0.953	55.2	0.97	4.17%	-1.75%
0.805	57.55	0.95	55.2	0.97	4.26%	-2.06%
0.815	57.49	0.96	55.2	0.97	4.15%	-1.03%
0.824*	57.4	0.969	55.2	0.97	3.99%	-0.10%
0.825	57.42	0.97	55.2	0.97	4.02%	0.00%
0.835	57.41	0.99	55.2	0.97	4.00%	2.06%
0.845	57.26	1	55.2	0.97	3.73%	3.09%
0.855	57.02	1	55.2	0.97	3.30%	3.09%
0.865	57.15	1	55.2	0.97	3.53%	3.09%
0.875	56.9	1.03	55.2	0.97	3.08%	6.19%
0.885	56.95	1.03	55.2	0.97	3.17%	6.19%
0.895	56.72	1.03	55.2	0.97	2.75%	6.19%
0.905	56.8	1.04	55.2	0.97	2.90%	7.22%
0.915	56.67	1.07	55.2	0.97	2.66%	10.31%
0.925	56.56	1.07	55.2	0.97	2.46%	10.31%
0.935	56.66	1.08	55.2	0.97	2.64%	11.34%

^{*}interpolated using DASY4 software

Test Dat	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 7	835 Body	23.0°C	23.5°C	≥ 15 cm	101.1 kPa	32%	1000

Applicant:	HAF	HARRIS Corporation FCC ID: OW			DTR-0074-E IC:			3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz	A 2.2	
2011 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 9 of 281

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u>
Specific Absorption Rate O

Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/0	08/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.48	0.88	55.2	0.97	4.13%	-9.28%
0.745	57.61	0.89	55.2	0.97	4.37%	-8.25%
0.755	57.29	0.91	55.2	0.97	3.79%	-6.19%
0.765	57.35	0.91	55.2	0.97	3.89%	-6.19%
0.770*	57.3	0.915	55.2	0.97	3.80%	-5.67%
0.775	57.32	0.92	55.2	0.97	3.84%	-5.15%
0.785	57.38	0.92	55.2	0.97	3.95%	-5.15%
0.795	57.18	0.93	55.2	0.97	3.59%	-4.12%
0.805	57.06	0.94	55.2	0.97	3.37%	-3.09%
0.815	56.99	0.94	55.2	0.97	3.24%	-3.09%
0.824*	57.1	0.967	55.2	0.97	3.44%	-0.31%
0.825	57.07	0.97	55.2	0.97	3.39%	0.00%
0.835	56.93	0.97	55.2	0.97	3.13%	0.00%
0.845	56.59	0.97	55.2	0.97	2.52%	0.00%
0.851*	56.8	0.982	55.2	0.97	2.90%	1.24%
0.855	56.89	0.99	55.2	0.97	3.06%	2.06%
0.865	56.75	1	55.2	0.97	2.81%	3.09%
0.875	56.54	1.02	55.2	0.97	2.43%	5.15%
0.885	56.47	1.03	55.2	0.97	2.30%	6.19%
0.895	56.67	1.05	55.2	0.97	2.66%	8.25%
0.905	56.44	1.04	55.2	0.97	2.25%	7.22%
0.915	56.24	1.06	55.2	0.97	1.88%	9.28%
0.925	56.32	1.06	55.2	0.97	2.03%	9.28%
0.935	56.32	1.08	55.2	0.97	2.03%	11.34%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 8	835 Body	23.0°C	22.5°C	≥ 15 cm	101.1 kPa	32%	1000

	Applicant:	HAF	HARRIS Corporation FCC ID: OV		ow	DTR-0074-	E	IC:	3636B-0074	HARRIS
Ī	DUT Type:	Porta	table 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	A
Ī	2011 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 10 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/	09/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.34	0.87	55.2	0.97	3.88%	-10.31%
0.745	57.05	0.87	55.2	0.97	3.35%	-10.31%
0.755	57.16	0.89	55.2	0.97	3.55%	-8.25%
0.765	56.85	0.89	55.2	0.97	2.99%	-8.25%
0.775	56.98	0.9	55.2	0.97	3.22%	-7.22%
0.785	56.84	0.92	55.2	0.97	2.97%	-5.15%
0.795	56.48	0.93	55.2	0.97	2.32%	-4.12%
0.802*	56.7	0.93	55.2	0.97	2.72%	-4.12%
0.805	56.83	0.93	55.2	0.97	2.95%	-4.12%
0.815	56.72	0.95	55.2	0.97	2.75%	-2.06%
0.824*	56.5	0.959	55.2	0.97	2.36%	-1.13%
0.825	56.46	0.96	55.2	0.97	2.28%	-1.03%
0.835	56.4	0.96	55.2	0.97	2.17%	-1.03%
0.845	56.31	0.98	55.2	0.97	2.01%	1.03%
0.851*	56.3	0.986	55.2	0.97	1.99%	1.65%
0.855	56.35	0.99	55.2	0.97	2.08%	2.06%
0.865	56.33	1	55.2	0.97	2.05%	3.09%
0.875	56.01	1.01	55.2	0.97	1.47%	4.12%
0.885	56.01	1	55.2	0.97	1.47%	3.09%
0.895	55.72	1.03	55.2	0.97	0.94%	6.19%
0.905	55.83	1.04	55.2	0.97	1.14%	7.22%
0.915	55.76	1.07	55.2	0.97	1.01%	10.31%
0.925	55.66	1.05	55.2	0.97	0.83%	8.25%
0.935	55.62	1.07	55.2	0.97	0.76%	10.31%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 9	835 Body	23.0°C	23.4°C	≥ 15 cm	101.1 kPa	32%	1000

Applicant:	HAF	RRIS Corporation	FCC ID: OW		OWDTR-0074-E IC:		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 11 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/	12/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	58.14	0.87	55.2	0.97	5.33%	-10.31%
0.745	57.43	0.88	55.2	0.97	4.04%	-9.28%
0.755	57.86	0.89	55.2	0.97	4.82%	-8.25%
0.765	57.84	0.92	55.2	0.97	4.78%	-5.15%
0.770*	57.4	0.92	55.2	0.97	3.99%	-5.15%
0.775	57.01	0.92	55.2	0.97	3.28%	-5.15%
0.785	57.26	0.92	55.2	0.97	3.73%	-5.15%
0.795	57.28	0.93	55.2	0.97	3.77%	-4.12%
0.802*	57.1	0.93	55.2	0.97	3.44%	-4.12%
0.805	57.02	0.93	55.2	0.97	3.30%	-4.12%
0.815	57.06	0.94	55.2	0.97	3.37%	-3.09%
0.825	57.14	0.96	55.2	0.97	3.51%	-1.03%
0.824*	57.1	0.958	55.2	0.97	3.44%	-1.24%
0.835	57.11	0.96	55.2	0.97	3.46%	-1.03%
0.845	57.3	0.96	55.2	0.97	3.80%	-1.03%
0.855	56.78	0.96	55.2	0.97	2.86%	-1.03%
0.865	56.71	0.98	55.2	0.97	2.74%	1.03%
0.875	56.91	0.99	55.2	0.97	3.10%	2.06%
0.885	56.62	1.02	55.2	0.97	2.57%	5.15%
0.895	56.6	1.02	55.2	0.97	2.54%	5.15%
0.905	56.45	1.03	55.2	0.97	2.26%	6.19%
0.915	56.29	1.04	55.2	0.97	1.97%	7.22%
0.925	56.3	1.05	55.2	0.97	1.99%	8.25%
0.935	56.12	1.06	55.2	0.97	1.67%	9.28%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m ³)
Sep 12	835 Body	23.0°C	24.0°C	≥ 15 cm	101.1 kPa	34%	1000

Applicant:	HAF	HARRIS Corporation FCC ID: OW		DTR-0074-	OTR-0074-E IC:		3636B-0074	HARRIS	
DUT Type:	Porta	ble 700/800-Band PT	and PTT Radio Transceiver			XG-7	75 7/800	769-805/806-869 MHz	A 2.2
2011 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 12 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Rev. 1.2 (3rd Release)

RF Exposure Category

Test Report Revision No.

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/	13/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.76	0.87	55.2	0.97	4.64%	-10.31%
0.745	57.83	0.88	55.2	0.97	4.76%	-9.28%
0.755	57.57	0.88	55.2	0.97	4.29%	-9.28%
0.765	57.48	0.9	55.2	0.97	4.13%	-7.22%
0.775	57.52	0.9	55.2	0.97	4.20%	-7.22%
0.785	57.27	0.91	55.2	0.97	3.75%	-6.19%
0.795	57.14	0.92	55.2	0.97	3.51%	-5.15%
0.802*	57.2	0.934	55.2	0.97	3.62%	-3.71%
0.805	57.28	0.94	55.2	0.97	3.77%	-3.09%
0.815	57.14	0.94	55.2	0.97	3.51%	-3.09%
0.824*	57.3	0.94	55.2	0.97	3.80%	-3.09%
0.825	57.27	0.94	55.2	0.97	3.75%	-3.09%
0.835	56.81	0.95	55.2	0.97	2.92%	-2.06%
0.845	57.09	0.98	55.2	0.97	3.42%	1.03%
0.851*	57.1	0.986	55.2	0.97	3.44%	1.65%
0.855	57.17	0.99	55.2	0.97	3.57%	2.06%
0.865	56.88	1	55.2	0.97	3.04%	3.09%
0.875	56.85	1	55.2	0.97	2.99%	3.09%
0.885	56.71	1.01	55.2	0.97	2.74%	4.12%
0.895	56.45	1.02	55.2	0.97	2.26%	5.15%
0.905	56.86	1.03	55.2	0.97	3.01%	6.19%
0.915	56.45	1.04	55.2	0.97	2.26%	7.22%
0.925	56.39	1.05	55.2	0.97	2.16%	8.25%
0.935	56.51	1.06	55.2	0.97	2.37%	9.28%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 13	835 Body	23.0°C	23.1°C	≥ 15 cm	101.1 kPa	36%	1000

Applicant:	HAF	RRIS Corporation	FCC ID: OW		OWDTR-0074-E IC:		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 13 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/2	22/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.77	0.88	55.2	0.97	4.66%	-9.28%
0.745	57.56	0.9	55.2	0.97	4.28%	-7.22%
0.755	57.28	0.92	55.2	0.97	3.77%	-5.15%
0.765	57.64	0.92	55.2	0.97	4.42%	-5.15%
0.770*	57.5	0.925	55.2	0.97	4.17%	-4.64%
0.775	57.3	0.93	55.2	0.97	3.80%	-4.12%
0.785	57.4	0.94	55.2	0.97	3.99%	-3.09%
0.795	57.17	0.96	55.2	0.97	3.57%	-1.03%
0.802*	57.2	0.953	55.2	0.97	3.62%	-1.75%
0.805	57.26	0.95	55.2	0.97	3.73%	-2.06%
0.815	56.55	0.97	55.2	0.97	2.45%	0.00%
0.824*	56.7	0.979	55.2	0.97	2.72%	0.93%
0.825	56.7	0.98	55.2	0.97	2.72%	1.03%
0.835	56.95	0.99	55.2	0.97	3.17%	2.06%
0.845	56.93	0.98	55.2	0.97	3.13%	1.03%
0.855	56.55	1	55.2	0.97	2.45%	3.09%
0.865	56.6	1.01	55.2	0.97	2.54%	4.12%
0.875	56.58	1.04	55.2	0.97	2.50%	7.22%
0.885	56.28	1.04	55.2	0.97	1.96%	7.22%
0.895	56.35	1.05	55.2	0.97	2.08%	8.25%
0.905	56.2	1.06	55.2	0.97	1.81%	9.28%
0.915	56.37	1.06	55.2	0.97	2.12%	9.28%
0.925	56.1	1.08	55.2	0.97	1.63%	11.34%
0.935	56.11	1.09	55.2	0.97	1.65%	12.37%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m ³)
Sep 22	835 Body	23.0°C	23.3°C	≥ 15 cm	101.1 kPa	36%	1000

Applicant:	HAF	RRIS Corporation	FCC ID: OW		OWDTR-0074-E		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver N			75 7/800	769-805/806-869 MHz	
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 14 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

Description of Test(s) RF
Specific Absorption Rate Occur

Rev. 1.2 (3rd Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/2	23/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.57	0.9	55.2	0.97	4.29%	-7.22%
0.745	57.53	0.91	55.2	0.97	4.22%	-6.19%
0.755	57.5	0.93	55.2	0.97	4.17%	-4.12%
0.765	57.28	0.93	55.2	0.97	3.77%	-4.12%
0.770*	57.4	0.945	55.2	0.97	3.99%	-2.58%
0.775	57.5	0.96	55.2	0.97	4.17%	-1.03%
0.785	57.64	0.95	55.2	0.97	4.42%	-2.06%
0.795	57.02	0.97	55.2	0.97	3.30%	0.00%
0.802*	57.1	0.97	55.2	0.97	3.44%	0.00%
0.805	57.17	0.97	55.2	0.97	3.57%	0.00%
0.815	57.17	0.98	55.2	0.97	3.57%	1.03%
0.824*	57.1	0.998	55.2	0.97	3.44%	2.89%
0.825	57.08	1	55.2	0.97	3.41%	3.09%
0.835	56.91	0.99	55.2	0.97	3.10%	2.06%
0.845	56.95	1.01	55.2	0.97	3.17%	4.12%
0.851*	56.9	1.01	55.2	0.97	3.08%	4.12%
0.855	56.94	1.01	55.2	0.97	3.15%	4.12%
0.865	56.64	1.02	55.2	0.97	2.61%	5.15%
0.875	56.41	1.02	55.2	0.97	2.19%	5.15%
0.885	56.53	1.03	55.2	0.97	2.41%	6.19%
0.895	56.23	1.07	55.2	0.97	1.87%	10.31%
0.905	56.19	1.07	55.2	0.97	1.79%	10.31%
0.915	56.31	1.07	55.2	0.97	2.01%	10.31%
0.925	56.1	1.09	55.2	0.97	1.63%	12.37%
0.935	55.93	1.11	55.2	0.97	1.32%	14.43%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Sep 23	835 Body	23.0°C	23.3°C	≥ 15 cm	101.1 kPa	33%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:	FCC ID: OWE		OWDTR-0074-E		3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver M			75 7/800	769-805/806-869 MHz	A
2011 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 15 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/2	26/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	58.07	0.89	55.2	0.97	5.20%	-8.25%
0.745	57.89	0.9	55.2	0.97	4.87%	-7.22%
0.755	57.59	0.92	55.2	0.97	4.33%	-5.15%
0.765	57.61	0.92	55.2	0.97	4.37%	-5.15%
0.770*	57.6	0.935	55.2	0.97	4.35%	-3.61%
0.775	57.62	0.95	55.2	0.97	4.38%	-2.06%
0.785	57.4	0.95	55.2	0.97	3.99%	-2.06%
0.795	57.5	0.95	55.2	0.97	4.17%	-2.06%
0.802*	57.4	0.957	55.2	0.97	3.99%	-1.34%
0.805	57.34	0.96	55.2	0.97	3.88%	-1.03%
0.815	57.15	0.97	55.2	0.97	3.53%	0.00%
0.824*	57	0.979	55.2	0.97	3.26%	0.93%
0.825	57.01	0.98	55.2	0.97	3.28%	1.03%
0.835	56.78	0.99	55.2	0.97	2.86%	2.06%
0.845	56.79	1.01	55.2	0.97	2.88%	4.12%
0.851*	57	1.01	55.2	0.97	3.26%	4.12%
0.855	57.1	1.01	55.2	0.97	3.44%	4.12%
0.865	56.7	1.03	55.2	0.97	2.72%	6.19%
0.875	56.69	1.03	55.2	0.97	2.70%	6.19%
0.885	56.68	1.05	55.2	0.97	2.68%	8.25%
0.895	56.71	1.04	55.2	0.97	2.74%	7.22%
0.905	56.43	1.07	55.2	0.97	2.23%	10.31%
0.915	56.18	1.07	55.2	0.97	1.78%	10.31%
0.925	56.25	1.08	55.2	0.97	1.90%	11.34%
0.935	56.14	1.1	55.2	0.97	1.70%	13.40%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m ³)
Sep 26	835 Body	23.0°C	23.9°C	≥ 15 cm	101.1 kPa	31%	1000

Applicant:	HAF	RRIS Corporation	FCC ID: OW		OWDTR-0074-E		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver N			75 7/800	769-805/806-869 MHz	
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 16 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/2	27/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.92	0.88	55.2	0.97	4.93%	-9.28%
0.745	57.53	0.88	55.2	0.97	4.22%	-9.28%
0.755	57.33	0.91	55.2	0.97	3.86%	-6.19%
0.765	57.47	0.9	55.2	0.97	4.11%	-7.22%
0.770*	57.3	0.92	55.2	0.97	3.80%	-5.15%
0.775	57.17	0.94	55.2	0.97	3.57%	-3.09%
0.785	57.14	0.94	55.2	0.97	3.51%	-3.09%
0.795	57.16	0.95	55.2	0.97	3.55%	-2.06%
0.805	57.39	0.97	55.2	0.97	3.97%	0.00%
0.815	57.19	0.95	55.2	0.97	3.61%	-2.06%
0.824*	57.2	0.977	55.2	0.97	3.62%	0.72%
0.825	57.16	0.98	55.2	0.97	3.55%	1.03%
0.835	56.99	0.99	55.2	0.97	3.24%	2.06%
0.845	56.61	1.01	55.2	0.97	2.55%	4.12%
0.855	56.44	1.01	55.2	0.97	2.25%	4.12%
0.865	56.3	1.02	55.2	0.97	1.99%	5.15%
0.875	56.69	1.04	55.2	0.97	2.70%	7.22%
0.885	56.36	1.04	55.2	0.97	2.10%	7.22%
0.895	56.45	1.06	55.2	0.97	2.26%	9.28%
0.905	56.67	1.06	55.2	0.97	2.66%	9.28%
0.915	55.98	1.07	55.2	0.97	1.41%	10.31%
0.925	56.31	1.07	55.2	0.97	2.01%	10.31%
0.935	56.06	1.09	55.2	0.97	1.56%	12.37%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m ³)
Sep 27	835 Body	22.0°C	22.1°C	≥ 15 cm	101.1 kPa	34%	1000

Applicant:	HAF	RRIS Corporation	FCC ID: OW		OWDTR-0074-E		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver Mo			75 7/800	769-805/806-869 MHz	
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 17 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/	28/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	57.83	0.89	55.2	0.97	4.76%	-8.25%
0.745	57.74	0.9	55.2	0.97	4.60%	-7.22%
0.755	57.62	0.9	55.2	0.97	4.38%	-7.22%
0.765	57.5	0.91	55.2	0.97	4.17%	-6.19%
0.775	57.41	0.95	55.2	0.97	4.00%	-2.06%
0.785	57.33	0.93	55.2	0.97	3.86%	-4.12%
0.795	57.28	0.96	55.2	0.97	3.77%	-1.03%
0.805	57.1	0.99	55.2	0.97	3.44%	2.06%
0.815	56.96	0.98	55.2	0.97	3.19%	1.03%
0.824*	56.9	0.989	55.2	0.97	3.08%	1.96%
0.825	56.85	0.99	55.2	0.97	2.99%	2.06%
0.835	56.67	0.99	55.2	0.97	2.66%	2.06%
0.845	56.74	1.01	55.2	0.97	2.79%	4.12%
0.855	56.59	1.01	55.2	0.97	2.52%	4.12%
0.865	56.63	1.02	55.2	0.97	2.59%	5.15%
0.875	56.43	1.02	55.2	0.97	2.23%	5.15%
0.885	56.34	1.04	55.2	0.97	2.07%	7.22%
0.895	56.37	1.06	55.2	0.97	2.12%	9.28%
0.905	55.98	1.06	55.2	0.97	1.41%	9.28%
0.915	56.23	1.09	55.2	0.97	1.87%	12.37%
0.925	56.05	1.07	55.2	0.97	1.54%	10.31%
0.935	56.26	1.1	55.2	0.97	1.92%	13.40%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Sep 28	835 Body	22.0°C	22.2°C	≥ 15 cm	101.1 kPa	31%	1000

Applicant:	HAF	RRIS Corporation FCC ID		OWDTR-0074-E		IC:	3636B-0074	HARRIS	
DUT Type:	Porta	ole 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ibs Inc.	This document is not to	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 18 of 281

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/2	28/2011	Freq	uency: 835	MHz	Tissu	e: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	43.79	0.82	41.5	0.9	5.52%	-8.89%
0.745	43.24	0.83	41.5	0.9	4.19%	-7.78%
0.755	43.57	0.83	41.5	0.9	4.99%	-7.78%
0.765	43.53	0.85	41.5	0.9	4.89%	-5.56%
0.770*	43.3	0.855	41.5	0.9	4.34%	-5.00%
0.775	43.15	0.86	41.5	0.9	3.98%	-4.44%
0.785	43.15	0.87	41.5	0.9	3.98%	-3.33%
0.795	43.14	0.88	41.5	0.9	3.95%	-2.22%
0.802*	43.1	0.894	41.5	0.9	3.86%	-0.67%
0.805	43.06	0.9	41.5	0.9	3.76%	0.00%
0.815	42.69	0.91	41.5	0.9	2.87%	1.11%
0.824*	42.7	0.91	41.5	0.9	2.89%	1.11%
0.825	42.67	0.91	41.5	0.9	2.82%	1.11%
0.835	42.51	0.94	41.5	0.9	2.43%	4.44%
0.845	42.63	0.93	41.5	0.9	2.72%	3.33%
0.851*	42.5	0.93	41.5	0.9	2.41%	3.33%
0.855	42.36	0.93	41.5	0.9	2.07%	3.33%
0.865	42.16	0.95	41.5	0.9	1.59%	5.56%
0.875	42	0.95	41.5	0.9	1.20%	5.56%
0.885	42.05	0.97	41.5	0.9	1.33%	7.78%
0.895	41.78	0.99	41.5	0.9	0.67%	10.00%
0.905	41.76	0.98	41.5	0.9	0.63%	8.89%
0.915	41.58	0.99	41.5	0.9	0.19%	10.00%
0.925	41.43	1.02	41.5	0.9	-0.17%	13.33%
0.935	41.19	1.03	41.5	0.9	-0.75%	14.44%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Sep 28	835 Head	22.0°C	22.3°C	≥ 15 cm	101.1 kPa	31%	1000

	Applicant:	HAF	RRIS Corporation	FCC ID:	CC ID: OWDTR-0074-E		IC:	3636B-0074	HARRIS	
Ī	DUT Type:	Porta	ble 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
Ī	2011 Celltech La	ibs Inc.	This document is not to	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 09/2	29/2011	Freq	uency: 835	MHz	Tissu	e: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	44.07	0.81	41.5	0.9	6.19%	-10.00%
0.745	43.8	0.83	41.5	0.9	5.54%	-7.78%
0.755	43.6	0.83	41.5	0.9	5.06%	-7.78%
0.765	43.59	0.86	41.5	0.9	5.04%	-4.44%
0.770*	43.5	0.86	41.5	0.9	4.82%	-4.44%
0.775	43.36	0.86	41.5	0.9	4.48%	-4.44%
0.785	43.2	0.88	41.5	0.9	4.10%	-2.22%
0.795	43.35	0.87	41.5	0.9	4.46%	-3.33%
0.802*	43	0.877	41.5	0.9	3.61%	-2.56%
0.805	42.88	0.88	41.5	0.9	3.33%	-2.22%
0.815	42.92	0.9	41.5	0.9	3.42%	0.00%
0.824*	43	0.9	41.5	0.9	3.61%	0.00%
0.825	43.02	0.9	41.5	0.9	3.66%	0.00%
0.835	42.34	0.92	41.5	0.9	2.02%	2.22%
0.845	42.58	0.92	41.5	0.9	2.60%	2.22%
0.851*	42.3	0.926	41.5	0.9	1.93%	2.89%
0.855	42.17	0.93	41.5	0.9	1.61%	3.33%
0.865	42.15	0.95	41.5	0.9	1.57%	5.56%
0.875	41.99	0.96	41.5	0.9	1.18%	6.67%
0.885	42	0.96	41.5	0.9	1.20%	6.67%
0.895	41.84	0.98	41.5	0.9	0.82%	8.89%
0.905	41.79	0.99	41.5	0.9	0.70%	10.00%
0.915	41.71	1	41.5	0.9	0.51%	11.11%
0.925	41.6	1	41.5	0.9	0.24%	11.11%
0.935	41.3	1	41.5	0.9	-0.48%	11.11%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Sep 29	835 Head	22.0°C	22.2°C	≥ 15 cm	101.1 kPa	27%	1000

Applicant:	HAF	RRIS Corporation FCC ID: OW		WDTR-0074-E IC:		IC:	3636B-0074	HARRIS	
DUT Type:	Porta	ble 700/800-Band PT	0/800-Band PTT Radio Transceiver			XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	bs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 20 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 12/	/5/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	56.55	0.89	55.2	0.97	2.45%	-8.25%
0.745	56.68	0.89	55.2	0.97	2.68%	-8.25%
0.755	56.58	0.92	55.2	0.97	2.50%	-5.15%
0.765	56.5	0.91	55.2	0.97	2.36%	-6.19%
0.775	56.15	0.92	55.2	0.97	1.72%	-5.15%
0.785	56.2	0.94	55.2	0.97	1.81%	-3.09%
0.795	56.13	0.95	55.2	0.97	1.68%	-2.06%
0.805	55.95	0.96	55.2	0.97	1.36%	-1.03%
0.815	56.05	0.96	55.2	0.97	1.54%	-1.03%
0.825	55.99	0.98	55.2	0.97	1.43%	1.03%
0.835	55.62	0.98	55.2	0.97	0.76%	1.03%
0.845	55.45	1	55.2	0.97	0.45%	3.09%
0.851*	55.6	0.994	55.2	0.97	0.72%	2.47%
0.855	55.76	0.99	55.2	0.97	1.01%	2.06%
0.865	55.87	1.01	55.2	0.97	1.21%	4.12%
0.875	55.52	1.03	55.2	0.97	0.58%	6.19%
0.885	55.45	1.03	55.2	0.97	0.45%	6.19%
0.895	55.25	1.04	55.2	0.97	0.09%	7.22%
0.905	54.93	1.06	55.2	0.97	-0.49%	9.28%
0.915	55.28	1.07	55.2	0.97	0.14%	10.31%
0.925	54.85	1.09	55.2	0.97	-0.63%	12.37%
0.935	54.93	1.09	55.2	0.97	-0.49%	12.37%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg/m³)
Dec 5	835 Body	23.0°C	20.6°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	HAF	ARRIS Corporation FCC ID:		OWDTR-0074-E		IC:	3636B-0074	HARRIS	
DUT Type:	Porta	ole 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	A
2011 Celltech La	ibs Inc.	This document is not to	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 21 of 281

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 12	/6/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	56.52	0.87	55.2	0.97	2.39%	-10.31%
0.745	56.39	0.89	55.2	0.97	2.16%	-8.25%
0.755	56.21	0.91	55.2	0.97	1.83%	-6.19%
0.765	56.24	0.91	55.2	0.97	1.88%	-6.19%
0.775	56.08	0.93	55.2	0.97	1.59%	-4.12%
0.770*	56.2	0.92	55.2	0.97	1.81%	-5.15%
0.785	56.37	0.94	55.2	0.97	2.12%	-3.09%
0.795	55.87	0.95	55.2	0.97	1.21%	-2.06%
0.802*	55.8	0.95	55.2	0.97	1.09%	-2.06%
0.805	55.74	0.95	55.2	0.97	0.98%	-2.06%
0.815	55.91	0.97	55.2	0.97	1.29%	0.00%
0.824*	55.7	0.97	55.2	0.97	0.91%	0.00%
0.825	55.64	0.97	55.2	0.97	0.80%	0.00%
0.835	55.67	0.99	55.2	0.97	0.85%	2.06%
0.845	55.6	0.98	55.2	0.97	0.72%	1.03%
0.855	55.57	1	55.2	0.97	0.67%	3.09%
0.865	55.39	1.02	55.2	0.97	0.34%	5.15%
0.875	55.33	1.03	55.2	0.97	0.24%	6.19%
0.885	55.17	1.03	55.2	0.97	-0.05%	6.19%
0.895	55.16	1.03	55.2	0.97	-0.07%	6.19%
0.905	55.01	1.04	55.2	0.97	-0.34%	7.22%
0.915	55.11	1.06	55.2	0.97	-0.16%	9.28%
0.925	54.95	1.08	55.2	0.97	-0.45%	11.34%
0.935	54.64	1.07	55.2	0.97	-1.01%	10.31%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	mperature Temperature		Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Dec 6	835 Body	22.0°C	21.1°C	≥ 15 cm	101.1 kPa	30%	1000

	Applicant:	HAF	RRIS Corporation	FCC ID:	FCC ID: OWDTR			IC:	3636B-0074	HARRIS
Г	DUT Type:	Porta	ble 700/800-Band PTT Radio Transcei			Model:	XG-7	75 7/800	769-805/806-869 MHz	A
Г	2011 Celltech La	ıbs Inc.	This document is not to	be reproduced in	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 22 of 281

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

9.0 SAR TEST REDUCTION PROCEDURES APPLIED (FCC KDB 643646 D01v01r01)

- a. Face-held Configuration Default Battery Selection per FCC KDB 643646, Page 2, Section 1) A): "When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements."
- b. Face-held Configuration Audio Accessory with Integral Antenna face-held SAR evaluation for audio accessories with integral antenna are not specifically addressed in FCC KDB 643646. The procedures described in a. above were applied.
- c. Body-worn Configuration Audio Accessory with Integral Antenna per FCC KDB 643646, Page 7-8: "Audio accessories with an integral antenna or radiating element must be tested separately from those without any primary radiating element. An audio accessory with a built-in antenna that enables the antenna on a PTT radio to be disconnected from its output while the audio accessory is in use should be tested using the highest capacity default battery. When transmission from the antenna on the PTT radio is disabled while the audio accessory is transmitting using its integral antenna, the normal Bodyworn accessories for the radio are not expected to influence the SAR of the audio accessory. In addition, special Bodyworn attachments are generally used for audio accessories with an integral antenna; the audio accessory must be tested according to how it is attached to the user during normal operation. Body SAR is measured with the audio accessory positioned against a flat phantom representative of the normal operating and exposure conditions expected by users. All sides of the audio accessory that may be positioned against the user must be considered for SAR compliance. 1) An audio accessory is tested on the highest output power channel, according to the test channels required by KDB 447498 (6)(c) and in the frequency range covered by the antenna on the audio accessory within the operating frequency bands of the radio to measure body SAR. B) When the body SAR of an audio accessory tested in 1) is: I) \leq 3.5 W/kg, testing of all other required channels is not necessary for that audio accessory."
- d. Body-worn Configuration Default Battery Selection per FCC KDB 643646, Page 5, Section 1) A): "Start by testing a PTT radio with the thinnest battery and a standard (default) Body-worn accessory that are both supplied with the radio and, if applicable, a default audio accessory......."
- e. Body-worn Configuration Default Body-worn Accessory Selection the belt-clip was selected as the default Body-worn accessory based on the smaller separation distance it provides between the radio and the user in comparison to the remaining accessories. Per FCC KDB 643646, Page 5, Section 1) A): "When multiple default Body-worn accessories are supplied with a radio, the standard Body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions is considered the default Body-worn accessory for making Body-worn measurements."
- f. Body-worn Configuration Additional Body-worn Accessories the remaining Body-worn accessories were evaluated based on the "additional Body-worn accessory" guidance provided in FCC KDB 643646, Page 7, Section 4). The remaining Body-worn accessories can be utilized with all the audio accessory options.
- g. Body-worn Configuration Default Audio Accessory Selection According to the manufacturer, the radio is not supplied to the end user with a standard default audio accessory (as referenced in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Body-worn Accessories"); therefore the procedures described in note (j) below were applied in order to establish the default audio accessory.
- h. Body-worn Configuration Selection of Remaining Default Audio Accessories by Category the Remaining Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." Please refer to note (i) below for the procedure implemented to establish the Default Audio Accessory by Category (Grouping). The Remaining Default Audio Accessories by Category were evaluated on the highest SAR channel and antenna combination from the Default Audio Accessory evaluations (see note e.) based on the guidance provided in FCC KDB 643646, Page 10, Section 1) A) thru D).
- i. Body-worn Configuration Selection of Additional Audio Accessories by Category the Additional Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10.
- j. According to the manufacturer, all the optional audio accessories can be used with any accessory combination (antenna, battery & Body-worn accessory) see also Appendix I (Audio Accessory Combinations). Therefore, in order to establish the overall default audio accessory and default accessory by category (grouping), preliminary SAR evaluations (area scans with belt-clip, thinnest battery and worst-case antenna configuration from face-held evaluations) were performed by Celltech with all of the optional audio accessories connected to the radio consecutively.

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	Ε	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ıbs Inc.	This document is not to	n whole or i	n part without	the prio	r written perr	nission of Celltech Labs Inc.	Page 23 of 281	

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

10.0 SAR MEASUREMENT SUMMARY

TAI	BLE 1			FAC	E-HEL	D SAR	EVALU	ATION	RESULT	rs					
	Dev	vice-Und	ler-Test	XG-7	5 7/800 F	Radio Tr	ansceiver	(System)							
		Test	Date(s)	Septe	ember 28	& 29, 2	011								
С					1	2		3	4	5	5	6	7	,	8
			Cond.		SAR W/I	cg 1g		SAR W/k	g 1g		SAR W/	cg 1g		SAR W/	kg 1g
R	Antenna Accessory	Test Freq.	Power Before	В	attery a (Default)	Bat	tery b (Ad	ditional)	Batt	tery c (Ad	dditional)	Batt	ery d (A	dditional)
	ID#	(MHz)	Test	100%	% ptt d/f	50% ptt	d/f 100%	ptt d/f	50% ptt d/f	100%	ptt d/f	50% ptt d/f	100%	ptt d/f	50% ptt d/f
			(W)	Dri	ft (dB)	50%+dr	-	ft dB	50%+droop	Drift	dB	50%+droop	Drift	dB	50%+droop
1		770.0	2.84	F1	0.944	0.47	2	N/A		N/A				N/A	4
2					-0.655	0.54	9								
3		802.0	2.82	F2	1.02	0.51	0	N/A			N/A			N/A	4
4			_		-0.451	0.56	6			.,					
5	1	806.0	3.10		N/A			N/A			N/A			N/A	4
6	-	824.0	3.15	F3	1.11	0.55	5	N/A			N/A			N/A	1
7		020	01.10		-0.757	0.66	1					•			•
8		851.0	3.15	F4	0.848	0.42	4	N/A			N/A			N/A	1
9		001.0	0.10	1 -	-0.210	0.44	5	14/71			14/7			14/7	
10		869.0	3.15		N/A			N/A			N/A	1		N/A	4
11		770.0	2.84	F5	2.88	1.44	ļ.	N/A			N/A		N/A		1
12		770.0	2.04	10	-0.100	1.47	,	19/75			11/73			18/7	
13		802.0	2.82	F6	3.20	1.60	F9	3.24	1.62	F10	3.34	1.67	F11	3.21	1.61
14		002.0	2.02	. 0	-0.109	1.64		-0.141	1.67	0	-0.210	1.75		-0.035	1.62
15	2	806.0	3.10		N/A			N/A			N/A	1		N/A	١
16	_	824.0	3.15	F7	3.70	1.85	F12	3.57	1.79	F13	3.60	1.80	F14	3.56	1.78
17		024.0	5.15	. ,	-0.078	1.88		-0.018	1.79	1 10	-0.075	1.83	1 14	-0.060	1.81
18		851.0	3.15	F8	2.84	1.42	2	N/A			N/A			N/A	1
19		001.0	5.15	10	-0.138	1.47	,	14/74			11//			14/7	`
20		869.0	3.15		N/A			N/A			N/A			N/A	A
		SAF	RLIMITS				HEA	D	SPA	TIAL PE	AK	RF E	XPOSU	RE CATE	GORY
FC	C 47 CFR 2.1	093	Health Ca	anada S	Safety Coo	le 6	8.0 W	/kg	1 gra	am aver	age	Occ	upation	al / Cont	rolled
Note	es														
	d 1: 769-775 M Freq.: 770.0 M				2: 799-809 req.: 802.				3: 806-824 N req.'s: 806.0		MHz	Band 4: Test Fre) MHz
C = 0	Column; R = R	Row					Fx (F	= Face) c	denotes the	correspo	onding Fa	ice SAR Plot	# as sho	wn in Ap	pendix A
Test	Mode = CW (Unmodula	ted Contin	uous W	ave)		Phar	ntom = Sid	e Planar Ph	antom					
F	ront of DUT D		o Planar F Parallel to)			a Distan	ce to Pla	nar Phanton			(D)
	(From	ווטעוטו		rialial	riiaiitom	,	Antenna 1				Anter				
			2.5 cm				5.3 cm 5.3 cm								

Applicant:	HAF	RRIS Corporation	ation FCC ID: OWD		DTR-0074-E IC:		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	bs Inc.	This document is not to	This document is not to be reproduced in w			the prior	r written perr	mission of Celltech Labs Inc.	Page 24 of 281

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures in accordance with FCC KDB 643646 (see reference [9])

- 1. For face-held configuration, battery "d" was selected as the default battery (highest mAh).
- 2. When the head SAR of an antenna tested on the highest output power channel with the default battery is \leq 3.5 W/kg (F1-F8), testing of all other required channels is not necessary.
- 3. When the SAR for all antennas tested using the default battery is \leq 4.0 W/kg (F1-F8), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (F9-F14). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s) Specific Absorption Rate Occupational (Controlled)

Test Report Revision No. Rev. 1.2 (3rd Release) RF Exposure Category

Antenna 2

3.0 cm

TABLE 2 **FACE-HELD SAR EVALUATION RESULTS Device-Under-Test** Speaker-Microphone Audio Accessory with Antenna (with XG-75 System Radio) **Accessory Part No.** MC-023933-002 Test Date(s) September 29, 2011 C 3 5 6 7 8 SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g Cond. **Antenna Test Power Battery a (Default) Battery b (Additional)** Battery c (Additional) Battery d (Additional) Accessory R Freq. **Before** ID# (MHz) **Test** 100% ptt d/f 50% ptt d/f (W) Drift (dB) 50%+droop Drift dB 50%+droop Drift dB 50%+droop Drift dB 50%+droop 0.885 1.77 770.0 2.84 F15 N/A N/A N/A -0.127 0.911 3 1.79 0.895 802.0 2.82 F16 N/A N/A N/A 4 -0.172 0.931 5 N/A N/A 806.0 3.10 N/A N/A 6 2.34 1.17 824.0 3.15 F17 N/A N/A N/A 7 -0.076 1.19 8 1.59 0.795 851.0 3.15 F18 N/A N/A N/A -0.022 0.799 9 10 869.0 3.15 N/A N/A N/A N/A 11 1.84 0.920 770.0 2.84 F19 N/A N/A N/A 12 -0.131 0.948 13 1.77 0.885 802.0 2.82 F20 N/A N/A N/A -0.027 0.890 14 **15** 806.0 3.10 N/A N/A N/A N/A 2 16 2.37 1.19 824.0 3.15 F21 N/A N/A N/A 17 -0.003 1.19 18 1.72 0.860 851.0 3.15 F22 N/A N/A N/A 19 -0.036 0.867 20 869.0 3.15 N/A N/A N/A N/A **SAR LIMITS HEAD SPATIAL PEAK RF EXPOSURE CATEGORY** FCC 47 CFR 2.1093 **Health Canada Safety Code 6** 8.0 W/kg **Occupational / Controlled** 1 gram average **Notes** Band 1: 769-775 MHz Band 2: 799-805 MHz Band 3: 806-824 MHz Band 4: 851-869 MHz Test Freq.: 770.0 MHz Test Freq.: 802.0 MHz Test Freq.'s: 806.0, 824.0 MHz Test Freq.'s: 851.0, 869.0 MHz C = Column; R = Row Fx (F = Face) denotes the corresponding Face SAR Plot # as shown in Appendix A Test Mode = CW (Unmodulated Continuous Wave) Phantom = Side Planar Phantom Shortest Antenna Distance to Planar Phantom (see Appendix D) Front of DUT Distance to Planar Phantom (see Appendix D) (Front of DUT Parallel to Planar Phantom)

Applicant:	HAF	RRIS Corporation	FCC ID:	VDTR-0074-E IC:		IC:	3636B-0074	HARRIS	
DUT Type:	Porta	ble 700/800-Band PT	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	/	
2011 Celltech La	bs Inc.	This document is not to	This document is not to be reproduced in			the prior	r written perr	mission of Celltech Labs Inc.	Page 26 of 281

2.5 cm

Antenna 1

3.0 cm

Test Report Issue Date
December 14, 2011

Test Report Serial No.
0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures in accordance with FCC KDB 643646 (see reference [9])

- 1. For face-held configuration, battery "d" was selected as the default battery (highest mAh).
- 2. When the head SAR of an antenna tested on the highest output power channel with the default battery is \leq 3.5 W/kg (F15-F22), testing of all other required channels is not necessary.
- 3. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	bs Inc.	This document is not to	be reproduced in	n whole or i	n part without	the prior	r written perr	nission of Celltech Labs Inc.	Page 27 of 281

Test Report Serial No. 083011OWD-T1113-S90M

Test Report Issue Date Description of Test(s) December 14, 2011 Specific Absorption Rate

RF Exposure Category Occupational (Controlled)

Rev. 1.2 (3rd Release)

TAE	BLE 3			ВОГ	OY-WOI	RN S	AR E	VALUAT	ΓΙΟΝ	N RESUL	TS			
	De	vice-Und	ler-Test	Spea	ker-Micro	phone	e Audio	o Accessor	y wit	h Antenna	(with XG-75 S	System Radio)	
	Acc	essory F	Part No.	MC-0	23933-00	02								
	Body-\	worn Acc	essory	Lape	l-Clip									
	A	udio Acc	essory	LS10	3239V1									
		Test	Date(s)	Septe	ember 23	& 26,	2011							
С					1	2	2	3		4	5	6	7	8
			Cond.		SAR W/	kg 1g		SAR	R W/k	g 1g	SAR W	//kg 1g	SAR W/kg 1g	
R	Antenna Accessory	Test Freq.	Power Before	В	attery a (I	Default	:)	Battery I	b (Ad	ditional)	Battery c (Additional)	Battery d (Additional)
	ID#	(MHz)	Test	100%	% ptt d/f	50% p	ott d/f	100% ptt d	I/f	50% ptt d/f	100% ptt d/f	50% ptt d/f	100% ptt d/f	50% ptt d/f
			(W)	Dri	ft (dB)	50%+0	droop	Drift dB		50%+droop	Drift dB	50%+droop	Drift dB	50%+droop
1		770.0	2.84	B1	1.97	0.9	85		N/A		N	/A	l N	/A
2			_		-0.196	1.0	03							
3		802.0	2.82	B2	2.11	1.0	06		N/A		N	/A	N.	/A
4		002.0			-0.137	1.0	09		,, .					, ,
5	1	806.0	3.10		N/A	<u> </u>		N/A			N	/A	N,	/A
6	-	824.0	3.15	В3	2.30	1.1	15		N/A		N	/A	N.	/A
7		020	00		0.097	n/	/a		,,,				IN/A	
8		851.0	3.15	B4	1.56	' 80	N/A			N	/A	N/A		
9		001.0	0.10		-0.096	'97								
10		869.0	3.15	N/A			N/A			N	/A	N.	/A	
11		770.0	2.84	B5	3.11	1.5	56	N/A			N	/A	N.	/A
12					-0.060	1.5	58							
13		802.0	2.82	B6	2.35	1.1	18		N/A		N	/A	N.	/A
14					-0.198	1.2	23							
15	2	806.0	3.10		N/A				N/A		N	/A	N,	/A
16		824.0	3.15	B7	3.11	1.8	56		N/A		N	/A	N.	/A
17					-0.307	1.6								
18		851.0	3.15	B8	2.50	1.2	25		N/A		N	/A	N.	/A
19					-0.197	1.3	31							
20		869.0	3.15		N/A				N/A		N	/A		/A
	SAR LIMITS							BODY		SPAT	IAL PEAK		KPOSURE CAT	
FC	C 47 CFR 2.1	093	Health Ca	anada S	afety Cod	le 6	-	8.0 W/kg		1 grar	n average	Occ	upational / Cor	itrolled
Note								1.						
	1: 769-775 N Freq.: 770.0 N				2: 799-805 req.: 802.0					: 806-824 M eq.'s: 806.0,	Hz , 824.0 MHz		851-869 MHz q.'s: 851.0, 869	.0 MHz
C = 0	Column; R = R	low						Bx (B = Be	ody)	denotes the	corresponding	Body SAR Plot	# as shown in /	Appendix A
Test	Mode = CW (Unmodula	ted Contin	uous W	ave)		Phantom = Barski Planar Phantom							
В	ack of DUT D						D)	Shortest Antenna Distance to F				o Planar Phantom (see Appendix D)		
	(Back	of Kadio I	Parallel to	Planar	rnantom)	Antenna 1 Antenna 2							
1.6 cm								2.4 cm 2.4 cm						

Applicant:	HAF	RRIS Corporation	tion FCC ID: OWDTR-007		DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	bs Inc.	This document is not to	n whole or i	n part without	the prior	r written perr	nission of Celltech Labs Inc.	Page 28 of 281	

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "a" was selected as the default battery*.
- 2. When the body SAR of an audio accessory is: \leq 3.5 W/kg (B1-B8), testing of all other required channels is not necessary for that audio accessory.
- 3. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.
Rev. 1.2 (3rd Release)

TABLE 4 BODY-WORN SAR EVALUATION RESULTS Device-Under-Test XG-75 7/800 Radio Transceiver (System) **Body-worn Accessory ID#** 5 (Default) Audio Accessory ID # G7a (Default) Test Date(s) September 7, 8 & 22, 2011 5 C 3 4 6 7 8 SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g Cond. **Power** Antenna Test Battery a (Default) Battery b (Additional) Battery c (Additional) Battery d (Additional) R Accessory Freq. **Before** ID# 100% ptt d/f 50% ptt d/f (MHz) Test (W) Drift dB Drift (dB) 50%+droop Drift dB 50%+droop 50%+droop Drift dB 50%+droop 1 2.88 6.65 3.33 5.76 5.53 2.77 5.42 2.71 770.0 2.84 В9 B17 B18 B19 -0.060 2 -0.212 3.49 2.92 -0.100 283 -0.561 3.08 3 3.19 6.38 802.0 2.82 B10 N/A N/A N/A -0.030 3.21 5 806.0 3.10 N/A N/A N/A N/A 1 6 5.85 2.93 5.43 2.72 4.55 2.28 5.05 2.53 824.0 3.15 B11 B20 B21 B22 -0.402 3.21 0.074 n/a -0.229 2 40 0.003 7 n/a 8 3.88 1.94 851.0 3.15 B12 N/A N/A N/A 9 -0.005 1.94 N/A N/A 10 869.0 3.15 N/A N/A 11 4.61 2.31 770.0 2.84 **B13** N/A N/A N/A 12 -0.097 2.36 13 5.51 2.76 802.0 2.82 **B14** N/A N/A N/A -0.042 2.78 14 15 806.0 3.10 N/A N/A N/A N/A 2 16 4.57 2.29 824.0 3.15 B15 N/A N/A N/A **17** -0.273 2.43 18 4.48 2.24 B16 N/A N/A 851.0 3.15 N/A 19 -0.310 2.41 20 869.0 3.15 N/A N/A N/A N/A **SAR LIMITS BODY SPATIAL PEAK RF EXPOSURE CATEGORY** FCC 47 CFR 2.1093 **Health Canada Safety Code 6** 8.0 W/kg 1 gram average **Occupational / Controlled** Notes Band 1: 769-775 MHz Band 2: 799-805 MHz Band 3: 806-824 MHz Band 4: 851-869 MHz Test Freq.: 770.0 MHz Test Freq.: 802.0 MHz Test Freq.'s: 806.0, 824.0 MHz Test Freq.'s: 851.0, 869.0 MHz C = Column; R = Row Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix A Test Mode = CW (Unmodulated Continuous Wave) Phantom = Barski Planar Phantom Shortest Antenna Distance to Planar Phantom (see Appendix D) Back of DUT Distance to Planar Phantom (see Appendix D) (Back of Radio Parallel to Planar Phantom) Antenna 1 Antenna 2 1.8 cm 2.0 cm 2.0 cm

Applicant:	HAF	RRIS Corporation	FCC ID: OWI		VDTR-0074-E		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	bs Inc.	This document is not to	be reproduced in	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 30 of 281

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "a" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B9-B16), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is ≤ 4.0 W/kg (B9-B16), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B17-B22). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G7a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

(Back of Radio Parallel to Planar Phantom)

4.5 cm

<u>Date(s) of Evaluation</u> 9/22-29 & 12/5-6, 2011

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

Antenna 2

4.7 cm

TABLE 5 **BODY-WORN SAR EVALUATION RESULTS Device-Under-Test** XG-75 7/800 Radio Transceiver (System) **Body-worn Accessory ID #** 1 (Additional) Audio Accessory ID# G7a (Default) Test Date(s) September 8, 9, 12 & 22, 2011 C 3 5 8 6 SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g Cond. **Antenna Test Power** Battery a (Default) Battery b (Additional) Battery c (Additional) Battery d (Additional) R **Accessory** Freq. **Before** 100% ptt d/f 50% ptt d/f ID# (MHz) Test (W) Drift (dB) 50%+droop Drift dB 50%+droop Drift dB 50%+droop Drift dB 50%+droop 1.45 0.725 1.29 0.645 1.19 0.595 1.65 0.825 B31 B33 770.0 2.84 **B23** B32 2 -0.373 0.790 -0.1770.672 -0.429 0.657 -0.414 0.908 3 0.595 1.19 802.0 2.82 B24 N/A N/A N/A 4 -0.507 0.669 5 806.0 3.10 N/A N/A N/A N/A 1 6 1.24 0.620 3.15 B25 N/A N/A N/A 824.0 -0.641 7 0.719 0.898 0.449 8 851.0 3.15 **B26** N/A N/A N/A 9 -0.313 0.483 869.0 3.15 N/A N/A N/A N/A 10 11 0.800 0.400 770.0 2.84 **B27** N/A N/A N/A 12 -0.1290.412 0.977 0.489 13 2.82 **B28** 802.0 N/A N/A N/A -0.182 14 0.509 N/A N/A 15 806.0 3.10 N/A N/A 1.48 16 0.740 1.29 0.645 1.59 0.795 1.61 0.805 824.0 3.15 B29 B34 B35 **B36** 17 -0.154 0.767 -0.181 0.672 -0.120 0.817 -0.212 0.845 0.590 18 1.18 851.0 B30 N/A N/A 3.15 N/A 19 -0.184 0.616 20 869.0 3.15 N/A N/A N/A N/A **RF EXPOSURE CATEGORY SAR LIMITS BODY SPATIAL PEAK** FCC 47 CFR 2.1093 **Health Canada Safety Code 6** 8.0 W/kg 1 gram average **Occupational / Controlled Notes** Band 1: 769-775 MHz Band 2: 799-805 MHz Band 3: 806-824 MHz Band 4: 851-869 MHz Test Freq.: 770.0 MHz Test Freq.: 802.0 MHz Test Freq.'s: 806.0, 824.0 MHz Test Freq.'s: 851.0, 869.0 MHz Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix A C = Column; R = Row Test Mode = CW (Unmodulated Continuous Wave) Phantom = Barski Planar Phantom Shortest Antenna Distance to Planar Phantom (see Appendix D) Back of DUT Distance to Planar Phantom (see Appendix D)

Applicant:	HAF	RRIS Corporation	tion FCC ID: OWD		DTR-0074-E		IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	/	
2011 Celltech La	bs Inc.	This document is not to	This document is not to be reproduced in w			the prior	r written perr	mission of Celltech Labs Inc.	Page 32 of 281

Antenna 1

4.7 cm

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "a" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B23-B30), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B23-B30), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B31-B36). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G7a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

TABLE 6				BODY-WORN SAR EVALUATION RESULTS														
Device-Under-Test			XG-75 7/800 Radio Transceiver (System)															
Body-worn Accessory ID #			3 (Additional)															
	Audio Accessory ID #			G7a (Default)														
	Test Date(s)			September 13, 22 & 23, 2011														
С	• • • • • • • • • • • • • • • • • • • •				1		2		3	4		5	6		7	8		
			Cond.		SAR W/I	ka 1a			SAR W/k	a 1a		SAR W/	ka 1a		SAR W	/ka 1a		
	Antenna	Test	Power	В	Battery a (Default)		lt)		ery b (Ad		Bat	tery c (Ad		Bat		Additional)		
R	Accessory ID#	Freq. (MHz)	Before Test	100%	% ptt d/f	50%	ptt d/f	100%	ptt d/f	50% ptt d/f	100%	6 ptt d/f	50% ptt d/f	100%	6 ptt d/f	50% ptt d/f		
		` ′	(W)	Drif	ft (dB)	50%-	-droop	Drift dB		50%+droop	Dri	ft dB	50%+droop	Dri	ft dB	50%+droop		
1		770.0	2.04	B37	0.944	0.4	472		N/A			NI/A			N/	۸		
2		770.0	2.84	D37	-0.377	0.	515		IN/A	IN/A		N/A			N/A			
3		000 0 000		Dag	0.937	0.4	469		N1/0			NI/A			Δ.			
4		802.0	2.82	B38	-0.414	0.:	515		N/A	N/A		N/A			N/A			
5		806.0	3.10		N/A	\		N/A			N/A			N/A				
6	1	824.0	2.45	B39	0.813	0.4	407		N/A			N/A			N/A			
7		824.0 3.15		БЗЭ	0.115	n	n/a		IN/A	N/A		IN/A		IN/A				
8		851.0	1.0 3.15	P40	B40 0.691 0.346				N/A			N/A	A N/A					
9		051.0	3.13	D40	-0.543	0.392		IV/A		14//1			14/7					
10		869.0	3.15		N/A	١			N/A		N/A				N/A			
11		770.0	2.84	B41	0.737	0.3	0.369 0.377		N/A			N/A			N/A			
12		770.0	2.04	D-11	-0.098	0.3									1 1/.			
13		802.0	2.82	2.82	2.82	2.82 B42	1.05	0.	525	25 B45	1.06	0.530	B46	1.18	0.590	B47	1.22	0.610
14		002.0			-0.029	0.	529	2.0	-0.164	0.550	2.0	-0.202	0.618		-0.186	0.637		
15	2	806.0	3.10		N/A	\ 			N/A	.		N/A			N/.	A		
16	_	824.0	3.15	B43	1.18	0.	590	B48	1.25	0.625	B49	1.50	0.750	B50	1.61	0.805		
17					-0.200	0.0	618		-0.239	0.660		-0.155	0.777		-0.225	0.848		
18		851.0	3.15	B44	1.02		510		N/A			N/A		N/A				
19					-0.180		532											
20		869.0	3.15		N/A			N/A			N/A			N/A				
FC	CC 47 CFR 2.10		LIMITS Health Ca	anada S	Safety Code 6									XPOSURE CATEGORY upational / Controlled				
Note									9	. 514		3-		3pan91				
Band 1: 769-775 MHz Test Freq.: 770.0 MHz Band 2: 799-805 MHz Test Freq.: 802.0 MHz								Band 3: 806-824 MHz Test Freq.'s: 806.0, 824.0 MHz Test Freq.'s: 851.0, 869.0						0 MHz				
	C = Column; R = Row							Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix A										
Test	Mode = CW (U	nmodulate	ious Wa	ve)			Phantom = Barski Planar Phantom											
В	Back of DUT Distance to Planar Phantom (see A					perior b)				a Distance to Planar Phantom (see Appendix D)				x D)				
	(Back of Radio Parallel to Planar Phantom)						Antenna 1						Antenna 2					
	5.2 cm							5.3 cm 5.3 cm										

Applicant:	HAF	RRIS Corporation	FCC ID:	DTR-0074-	E	IC:	3636B-0074	HARRIS		
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	iver Model: XG-75 7/800			769-805/806-869 MHz		
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									Page 34 of 281	

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "a" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B37-B44), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B37-B44), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B45-B50). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G7a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

Rev. 1.2 (3rd Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

TAI	BLE 7			BOD	Y-WOF	RN S	AR E	VALU	IATION	RESUL	.TS							
Device-Under-Test			XG-75 7/800 Radio Transceiver (System)															
	Body-worn Accessory ID #			4 (Additional)														
	Audio	Accesso	ory ID #	G7a (Default)														
		Test	Date(s)	Septe	September 12, 13 & 23, 2011													
C			1 2				3 4			5 6			7 8					
			Cond.		SAR W/k	a 1a			SAR W/k	a 1a		SAR W/k	a 1a		SAR W/	ka 1a		
	Antenna	Test	Power	В	Battery a (Default)		t)			ditional)	Bat	tery c (Ad		Bat		dditional)		
R	Accessory ID#	Freq. (MHz)	Before Test		% ptt d/f 50% ptt d			100% ptt d/f 50% ptt d/f			ptt d/f	50% ptt d/f			50% ptt d/f			
		, ,	(W)	Dri	ft (dB)	50%-	-droop	Drif	t dB	50%+droop	Dri	ft dB	50%+droop	Drif	ft dB	50%+droop		
1		770.0	0.04	DE4	2.63	1	.32		N1/A			N1/A			N1//			
2		770.0	2.84	B51	-0.425	1	.45		N/A			N/A		N/A				
3		802.0			2.27 1.14		.14											
4		2.82	B52	-0.693 1.33		N/A			N/A			N/A						
5		806.0	N/A				N/A				N/A			N/A				
6	1			B53	2.28	1.14												
7		824.0 3.15			0.762	r	n/a	N/A				N/A		N/A				
8					1.70		850											
9		851.0	3.15	B54	-0.115	0.873		N/A		N/A			N/A					
10		869.0	3.15		N/A		070	N/A			N/A				N/A	1		
11		000.0	0.10		3.74		.87		2.76	1.38		3.31	1.66		4.76	2.38		
12		770.0 2	2.84	B55	-0.093	1.		B59	-0.055	1.40	B60	-0.153	1.71	B61	-0.082	2.43		
13					2.85		.43		-0.000	1.40		-0.100	1.71		-0.002	2.40		
14		802.0	2.82	B56	-0.074	1.45		N/A			N/A				N/A			
15		806.0	3.10		N/A		.40	N/A				N/A		N/A				
16	2	000.0	3.10		2.89		.45	IN/A				IN/A		19/7				
		824.0	3.15	B57				N/A			N/A			N/A				
17					-0.238 3.64		.53 .82		4.22	2 44		4.07	2.04	4.60		2.25		
18		851.0	3.15	B58	-0.487			B62		2.11	B63	4.07	2.04	B64	4.69	2.35		
19 20		869.0	3.15				.04		-0.126 N/A	2.17		-0.136	2.10		-0.075	2.39		
20			LIMITS	N/A			_			N/A TAL PEAK RF E			N/A					
FC	CC 47 CFR 2.1			anada S	Safety Cod	le 6	8	BODY 3.0 W/k			m avera			XPOSURE CATEGORY upational / Controlled				
Note	s																	
	1: 769-775 MF Freq.: 770.0 M				Band 2: 799-805 MHz Test Freq.: 802.0 MHz			Band 3: 806-824 MHz Test Freq.'s: 806.0, 824.0 MHz				ЛHz	Band 4: 851-869 MHz Test Freq.'s: 851.0, 869.0 MHz					
C = 0	C = Column; R = Row									Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix A								
Test	Mode = CW (U	ous Wave)				Phantom = Barski Planar Phantom												
Е	Back of DUT Distance to Planar P				,				Short	est Antenna	a Distar	ice to Plai	nar Phanton	n (see /	Appendix	(D)		
(Back of Radio Parallel to Planar Phantom)						,	Antenna 1 Anten					enna 2						
	3.0 cm							3.3 cm 3.3 cm										

Applicant:	HAF	RRIS Corporation	FCC ID:	DTR-0074-	E	IC:	3636B-0074	HARRIS	
DUT Type:	Porta	ble 700/800-Band PT	sceiver	Model: XG-75 7/800			769-805/806-869 MHz		
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 36 of 281		

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)

RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "a" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B51-B58), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is ≤ 4.0 W/kg (B51-B58), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B59-B64). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G7a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

(Back of Radio Parallel to Planar Phantom)

3.3 cm

<u>Date(s) of Evaluation</u> 9/22-29 & 12/5-6, 2011

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s)

RF Exposure Category
Occupational (Controlled

Test Report Revision No.

Rev. 1.2 (3rd Release)

Antenna 2

3.5 cm

Specific Absorption Rate Occupational (Controlled) **TABLE 8 BODY-WORN SAR EVALUATION RESULTS Device-Under-Test** XG-75 7/800 Radio Transceiver (System) **Body-worn Accessory ID #** 6 (Additional) Audio Accessory ID # G7a (Default) Test Date(s) December 5 & 6, 2011 C 3 5 6 8 SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g SAR W/kg 1g Cond. Antenna **Test Power** Battery a (Default) Battery b (Additional) Battery c (Additional) Battery d (Additional) R **Before** Accessory Freq. ID# (MHz) **Test** 100% ptt d/f 50% ptt d/f (W) Drift (dB) 50%+droop Drift dB 50%+droop Drift dB 50%+droop Drift dB 50%+droop 1 2 23 2.23 1.12 1.12 2.18 1.09 2.18 1.09 770.0 2.84 B65 B73 B74 B75 -0.312 2 -0.316 1.20 1.20 -0.185 1.14 -0.1691.13 3 1.05 2.09 802.0 2.82 **B66** N/A N/A N/A 4 -0.314 1.12 3.10 N/A N/A 5 806.0 N/A N/A 1.85 6 0.925 824.0 3.15 **B67** N/A N/A N/A -0.058 0.938 8 1.43 0.715 851.0 3.15 **B68** N/A N/A N/A 9 -0.0850.729 10 869.0 3.15 N/A N/A N/A N/A 11 1.02 0.510 770.0 2.84 **B69** N/A N/A N/A -0.083 0.520 12 1.55 0.775 13 802.0 2.82 B70 N/A N/A N/A 14 0.582 n/a 15 806.0 3.10 N/A N/A N/A N/A 2 16 2.13 1.07 1.77 0.885 2.16 1.08 2.62 1.31 B71 **B76** B78 824.0 3.15 **B77** -0.265 1.13 0.983 -0.107 1.11 -0.239 17 -0.4561.38 18 0.955 1.91 851.0 B72 N/A N/A 3.15 N/A -0.198 19 1.00 20 869.0 3.15 N/A N/A N/A N/A **SAR LIMITS BODY SPATIAL PEAK** RF EXPOSURE CATEGORY FCC 47 CFR 2.1093 **Health Canada Safety Code 6** 8.0 W/kg 1 gram average **Occupational / Controlled Notes** Band 1: 769-775 MHz Band 2: 799-805 MHz Band 3: 806-824 MHz Band 4: 851-869 MHz Test Freq.: 770.0 MHz Test Freq.: 802.0 MHz Test Freq.'s: 806.0, 824.0 MHz Test Freq.'s: 851.0, 869.0 MHz C = Column; R = Row Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix A Test Mode = CW (Unmodulated Continuous Wave) Phantom = Barski Planar Phantom Shortest Antenna Distance to Planar Phantom (see Appendix D) Back of DUT Distance to Planar Phantom (see Appendix D)

Applicant:	HAF	RRIS Corporation	FCC ID:	CC ID: OWDTR-0074-E		TR-0074-E IC:		3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver Model: XG-75 7/8		75 7/800	769-805/806-869 MHz	A	
2011 Celltech La	bs Inc.	This document is not to	Page 38 of 281						

Antenna 1

3.5 cm

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s) R
Specific Absorption Rate Oc

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Certificate No. 2470.01

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. For Body-worn configuration, battery "a" was selected as the default battery*.
- 2. When the body SAR of an antenna is ≤ 3.5 W/kg (B65-B72), testing of all other required channels is not necessary for that antenna.
- 3. When the SAR for all antennas tested using the thinnest* battery is \leq 4.0 W/kg (B65-B72), test additional batteries using the antenna and channel configuration that resulted in the highest SAR among all antennas (B73-B78). Note: This procedure was applied separately to the 700 MHz band and the 800 MHz band.
- 4. The audio accessory G7a was selected as the default audio accessory based on preliminary evaluations resulting in the most conservative SAR of all the disclosed audio accessory options.
- 5. When test reduction applies, the data table entries for such configurations are denoted with N/A (Not Applicable).
- * All battery options are the same thickness; therefore preliminary evaluations were performed to establish the default battery.

Test Report Issue Date

Test Report Serial No. 083011OWD-T1113-S90M

Rev. 1.2 (3rd Release) RF Exposure Category

Test Report Revision No.

Description of Test(s) December 14, 2011 Specific Absorption Rate

Occupational (Controlled)

REMAINING DEFAULT AUDIO ACCESSORIES BY GROUPING	TAI			BODY-WOR	N SAR EVAL	UATION F	RESUL	TS																
Body-worn Accessory ID # S (Default)	IAI	DLE 9		REMAINING	DEFAULT A	UDIO AC	CESSC	RIES BY GF	ROUPING															
Test Date(s) September 26, 27 & 28, 2011 2 3 Audio Accessory D #		Device	e-Under-Test	XG-75 7/800 Ra	adio Transceiver	(System)																		
C	В	ody-worn Ac	cessory ID #	5 (Default)																				
Antenna Accessory ID # A			Test Date(s)	September 26,	27 & 28, 2011																			
R	С							1	2															
The color of the		Antenna	Battery	Audio	Cond. Power	Test		1g SAR (W	/kg)															
1	R	•						100% ptt d/f	50% ptt d/f															
Color		ID#	# UI	1U #	(VV)	(IVIHZ)	#		50%+droop															
State					2.84	770.0	A1																	
G2 2.84 770.0 A3 5.80 2.90 7 3.15 824.0 A4 5.80 2.90 10 3.15 824.0 A4 4.84 2.42 11 3.15 824.0 A6 0.122 10/a 11 3.15 824.0 A6 0.243 10/a 12 13 14 15				G1a																				
G2					3.15	824.0	A2																	
G2					2.04	770.0	۸.2																	
The color of the				G2	2.04	770.0	AS	-0.204																
Sample Continue				02	3.15	824.0	A4																	
Color																								
11 12 13 14 15 16 17 18 19 17 18 19 19 19 19 19 19 19					2.84	770.0	A5																	
12 13 14 15 16 16 17 18 19 19 19 19 19 19 19				G3b																				
Color					3.15	824.0	A6																	
14 15 16 17 18 19 20 21 22 23 23 24 25 26 25 26 27 28 29 20 27 28 29 20 21 22 24 25 28 29 20 21 22 24 25 28 29 20 24 25 28 29 20 24 25 28 29 20 24 25 28 29 20 26 27 28 29					2.84	770.0	Δ7	6.02																
15 16 17 18 19 2.84 770.0 A9 6.13 3.07 -0.051 3.10 19 2.84 770.0 A1 5.65 2.83 2.84 2.84 770.0 A1 5.95 2.98 -0.485 3.33 -0.485 3.33 -0.485 3.33 -0.485 3.33 -0.088 3.09 -				G4	2.04	770.0	Λ,																	
Total Process Total Proces				•	3.15	824.0	A8																	
The color of the																								
19 20 21 22 23 24 25 26 27 28 3.15 824.0 A10 5.65 2.83 0.501 N/a 5.95 2.98 -0.485 3.33 24 25 26 27 28 29 30 31 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 33 34 4.90 A12 A12 A13 A14 A15 A15 A15 A16 A16 A17 A17 A18																				2.84	770.0	A9		
20 21 22 23 24 25 26 27 28 29 30 31 31 32 31 32 33 34 40 Gfb 3.15 824.0 A10 0.501 n/a 5.95 2.98 -0.485 3.33 2.50 -0.485 3.03 -0.088 3.09 -0.088 3.09 -0.088 3.09 -0.088 3.09 -0.088 3.09 -0.088 3.09 -0.088 2.43 -0.048 2.45 -0.048 2.45 -0.048 2.45 -0.048 2.84 770.0 A15 -0.574 3.42 -0.068 0.168 n/a 3.15 824.0 A16 -0.203 3.22 33 34 -0.088 3.09 -0.008 3.15 -0.008 3.15 -0.008 3.15 -0.008 3.15 -0.008 3.15 -0.008 -0.008 -0.168 -0																	G5							
Color												3.15	824.0	A10										
1 a G6b 3.15 824.0 A12 4.99 2.50 2.60 27 28 29 30 30 31 32 33 34 35 36 37 38 39 40 G10 G11b 3.15 824.0 A12 4.99 2.50 2.60 2.60 3.03 3.00 3.15 824.0 A14 4.85 2.43 3.07 3.15 824.0 A16 5.20 2.60 3.03 3.22 3.15 824.0 A18 5.20 2.60 3.07 3.15 824.0 A19 5.42 2.71 3.15 3.15 824.0 A20 5.91 2.96 3.15 3.15 824.0 A20 5.91 2.96 3.15 3.29 3.15 3.15 824.0 A20 5.91 2.96 3.15 3.29 3.15 3.15 824.0 A20 5.91 2.96 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	21							2.84	770.0	Δ11		2.98												
3.15 824.0 A12 4.99 2.50 2.84 770.0 A13 6.06 3.03 -0.088 3.09 -0.048 2.45 2.84 770.0 A15 6.00 3.00 -0.574 3.42 3.15 824.0 A16 5.20 2.60 3.15 824.0 A16 5.20 2.60 3.15 824.0 A17 -0.203 3.22 3.15 824.0 A18 5.20 2.60		1	9	G6b	2.04	770.0	AII																	
28 26 27 28 29 30 31 32 33 34 36 37 38 39 40 40 41 41 41 42 43 44 45 46 47 41 41 41 41 41 41 41 41 42 43 44 44 45 46 47 48 48 49 40 40 41 41 41 41 42 43 44 44 44 45 46 47 48 49 40 41 41 41 42		•	a	G6b	3.15	824.0	A12																	
284 27 28 29 30 31 32 33 34 35 36 37 38 39 40 40 284 770.0 A15 6.00 3.00 -0.574 3.42 2.84 770.0 A16 5.20 2.60 0.168 n/a 2.84 770.0 A17 6.14 3.07 -0.203 3.22 3.15 824.0 A18 5.20 2.60 0.061 n/a 2.84 770.0 A19 5.42 2.71 -0.359 2.94 3.15 824.0 A20 5.91 2.96 0.198 n/a 40																								
Section Sect					2.84	770.0	A13																	
Column				G8a	0.45	004.0																		
G9a 2.84 770.0 A15 -0.574 3.42 32 33 34 35 36 37 38 39 40 41 CHAIS -0.574 3.42 2.84 770.0 A18 5.20 2.60 0.061 n/a 0.059 2.94 0.198 n/a 40 41	28				3.15	824.0	A14	-0.048																
G9a 3.15 3.15 824.0 A16 5.20 2.60 0.168 n/a 3.07 -0.203 3.22 3.35 36 37 38 39 40 41 41 41 41 3.15 824.0 A16 5.20 2.60 0.168 n/a 3.07 -0.203 3.22 2.60 0.061 n/a 5.42 2.71 -0.359 2.94 3.15 824.0 A20 5.91 2.96 0.198 n/a					2.84	770.0	A15																	
31 32 33 34 35 36 37 38 39 40 40 41 3.15 824.0 A16 5.20 2.60 3.15 824.0 A16 5.20 2.60 3.15 824.0 A18 5.20 2.60 3.15 3.15 824.0 A20 5.91 2.96 3.15 824.0 A20 5.91 2.91 2.91 2.91 2.91 2.91 2.91 2.91 2				G9a			76																	
33 34 35 36 37 38 39 40 40 41					3.15	824.0	A16																	
G10 2.84 770.0 A17 -0.203 3.22 3.15 824.0 A18 5.20 2.60 3.15 824.0 A19 5.42 2.71 3.15 824.0 A20 5.91 2.96 40 41																								
35 36 37 38 39 40 41				010	2.84	770.0	A17																	
36 37 38 39 40 40 41 3.15 2.84 770.0 A19 5.42 2.71 -0.359 2.94 5.91 2.96 0.198 0.1				G10	2.15	924.0	۸10																	
38 39 40 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15					3.10	024.U	Alo		n/a															
38 39 40 3.15 824.0 A20 5.91 0.198 0.198 1.72					2.84	770.0	A19																	
3.15 824.0 A20 5.91 2.96 0.198 n/a 5.91 2.96				G11b																				
5 91 2 96					3.15	824.0	A20																	
204 7700 404 5.51 2.00																								
2.84 //0.0 A21 0.113 p/a								2.84	770.0	A21														
G12a 5.12 2.56				G12a	2.45	004.0	400																	
3.15 824.0 A22 0.124 n/a				3.15	824.0	A22																		

The test frequencies were selected based on the maximum SAR levels measured for the 700-band and 800-band splits.

Applicant:	HAF	RRIS Corporation	FCC ID:	D: OWDTR-0074-E		DTR-0074-E IC:		3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	A
2011 Celltech La	bs Inc.	This document is not to	Page 40 of 281						

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

Rev. 1.2 (3rd Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

S	AR LIMITS			BODY		SPATIAL PEAK	RF EXPOSURE CATEGORY				
FCC 47 CFR 2.1093	Health Ca	anada Safety Code 6	8	8.0 W/kg		1 gram average	Occupational / Controlled				
Notes											
Band 1: 769-775 MHz Test Freq.: 770.0 MHz		Band 2: 799-805 MHz Test Freq.: 802.0 MHz			Band 3: 806-824 MHz Test Freq.'s: 806.0, 824.0 MHz Band 4: 851-869 MHz Test Freq.'s: 851.0, 869.0						
C = Column; R = Row				Bx (B = Body) denotes the corresponding Body SAR Plot # as shown in Appendix							
Test Mode = CW (Unmode	ulated Contin	uous Wave)		Phantom :	= Barski I	Planar Phantom					
Back of DUT Distance	e to Planar P	hantom (see Appendix	D)	S	Shortest	Antenna Distance to Pla	nar Phantom (see Appendix D)				
(Back of Rad	(Back of Radio Parallel to Planar Phantom)					Antenna 1					
	1.6 cm				2.0 cm						

Test Procedures applied in accordance with FCC KDB 643646 (see reference [9])

- 1. The audio accessories selected are the default accessories per grouping.
- 2. The antenna, battery and body-worn accessory were selected based on the maximum SAR level configuration from the body-worn accessory test sequence in the previous tables.
- 3. SAR evaluations for the remaining audio accessories within each grouping were not required based on the SAR levels from the default audio accessories per grouping were not > 7.0 W/kg (A1-A22).

Applicant:	HAF	RRIS Corporation	FCC ID:	FCC ID: OWDTR-0074-E			IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	Model:	XG-7	75 7/800	769-805/806-869 MHz			
2011 Celltech La	bs Inc.	This document is not to	Page 41 of 281						

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)

RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

11.0 SAR SCALING (TUNE-UP TOLERANCE)

SCALING	OF MA	XIMUM SA	R LEVELS T	O MANUFA	CTURER'S T	UNE-UP	TOLER	RANCE SPEC	CIFICATION	
Test Config.	Test Freq. (MHz)	Antenna Accessory ID #	Battery Accessory ID #	Body-worn Accessory ID #	Conducted Power Before Test	SAR Level 1g (50% PTT d/f)		Scaling up to Manuf. Upper Tol.	Scaled SAR (50% PTT d/f) 1g (W/kg)	
	(Watts	W/kg	Plot #	Power Spec.	19 (11119)	
Face-held	824.0	2	d	n/a	3.15	1.85	F7	+0.11 dB	1.90	
Body-worn	Body-worn 770.0 1 a 5				2.84	3.33	В9	+0.17 dB	3.46	
		SAR LIMIT	6		HEAD / BODY	SPATIAL PEAK		RF EXPOSURE CATEGORY		
FCC 47 C	FCC 47 CFR 2.1093 Health Canada Safety Code 6					1 gram average		Occupational / Controlled		

Manufacturer's Rated Output Power Specification inc. Upper Tolerance

700 Band = 2.95 Watts 800 Band = 3.23 Watts

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver Model: XG-75			75 7/800	769-805/806-869 MHz	
2011 Celltech La	ıbs Inc.	This document is not to	Page 42 of 281						

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

12.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [8]).
- 2. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 (see reference [9]).
- 3. The SAR evaluations were performed with a fully charged battery.
- 4. The SAR drift of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was performed (see Appendix A).
- 5. The fluid temperature remained within +/-2°C from the fluid dielectric parameter measurement to the completion of the SAR evaluation.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 7. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.

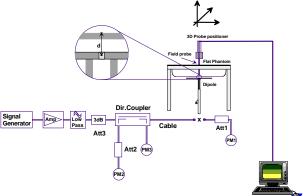
13.0 SAR EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For Body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.2 (3rd Release)


RF Exposure Category
Occupational (Controlled)

14.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, system checks were performed with a planar phantom and 835 MHz SPEAG dipole (see Appendix B for system performance check test plots) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

	SYSTEM PERFORMANCE CHECK EVALUATIONS															
Test	Equiv. Tissue		AR 1g W/kg)		Dielec	tric Cons ε _r	stant		nductivit (mho/m)	у	ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	Target	Meas.	Dev.	Target	Meas.	Dev.	Target	Meas.	Dev.	(Kg/m³)	(℃)	(℃)	(cm)	(%)	(kPa)
Sep 07	Body 835	2.49 ±10%	2.28	-8.4%	55.2 ±5%	57.4	+4.0%	0.97 ±5%	0.99	+2.1%	1000	23.0	23.5	≥ 15	32	101.1
Sep 12	Body 835	2.49 ±10%	2.37	-4.8%	55.2 ±5%	57.1	+3.4%	0.97 ±5%	0.96	-1.0%	1000	23.0	24.0	≥ 15	34	101.1
Sep 22	Body 835	2.49 ±10%	2.40	-3.6%	55.2 ±5%	57.0	+3.3%	0.97 ±5%	0.99	+2.1%	1000	23.0	23.3	≥ 15	36	101.1
Sep 26	Body 835	2.49 ±10%	56.8 +2.9% ±5% 1000 23.0 23.9 ≥ 15 31 101.1												101.1	
Sep 28	Head 835	2.35 ±10%	2.35	0.0%	41.5 ±5%	42.5	+2.4%	0.90 ±5%	0.94	+4.4%	1000	22.0	22.3	≥ 15	31	101.1
Dec 5	Body 835	2.49 ±10%											101.1			
	1.	The target	SAR valu	es are th	e measured	d values s	specified	by the SAR	system r	nanufact	urer in the	dipole ca	alibration	(see App	endix E).	
	2.							ies specified IC RSS-102			em manu	facturer ir	n the dipo	le calibra	tion (see /	Appendix
	3.	The fluid te check.	emperatur	e remair	ned within +	/-2°C fror	m the flui	id dielectric	paramete	er measu	rement to	the com	pletion of	the syste	em perforn	nance
Notes	4.	The dielect and a Netw					mixture	were measu	red prior	to the sy	stem per	formance	check us	ing a Die	lectric Pro	be Kit
	System Performance Checks were not performed for each SAR evaluation test date based on compliance with the following provision per TCBC Workshop Presentation April 5-7, 2011 (Kwok Chan Presentation File 04-06-2011-FCC 4 RF Exposure Guidance 040611- KC): SAR System Verification when head and body tissue dielectric parameters are required to test a device, separate SAR system verifications are required - daily verification of each liquid is usually not necessary when liquid parameter tolerances are maintained in a controlled environment - typically every few days is sufficient or when liquid is changed															
						1							-			

System Performance Check Measurement Setup Diagram (IEEE Standard 1528-2003)

835 MHz SPEAG Validation Dipole Setup

Applican	t:	HAR	RIS Corporation	FCC ID: OWDTR-0074-E		IC: 3636B-0074		HARRIS			
DUT Typ	e:	Portal	ble 700/800-Band PT	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz			
2011 Cellte	h Labs	s Inc.	This document is not to	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

15.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [11] and [12]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

		SIMULATED TI	SSUE MIXTURES		
	Water		40.71 %		53.79 %
	Sugar		56.63 %		45.13 %
INGREDIENT	Salt	835 MHz Head Tissue Mixture	1.48 %	835 MHz Body Tissue Mixture	0.98 %
	HEC		0.99 %		
	Bactericide		0.19 %		0.10 %

16.0 SAR LIMITS

	SAR RF EXPOSU	RE LIMITS	_
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)
	ial Average ver the whole body)	0.08 W/kg	0.4 W/kg
	atial Peak er any 1 g of tissue)	1.6 W/kg	8.0 W/kg
	atial Peak ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	HAF	RRIS Corporation	FCC ID:	C ID: OWDTR-0074-E		E	IC:	3636B-0074	HARRIS	
DUT Type:	Porta	ble 700/800-Band PT	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	A 2.2		
2011 Celltech La	abs Inc.	This document is not to	his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

17.0 ROBOT SYSTEM SPECIFICATIONS

Positioner Stäubli Unimation Corp. Robot Model: RX60L	<u>Specifications</u>	
No. of axis 6 Pata Acquisition Electronic (DAE) System Cell Controller Processor AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity	Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Data Acquisition Electronic (DAE) System Cell Controller AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Phantom Type Side Planar Phantom Phantom <	Repeatability	0.02 mm
Cell Controller Processor AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Features Signal Amplifier, multiplexer, A/D converter, and control logic Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Ferial No. Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm	No. of axis	6
Processor AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Type Barski Planar Phantom Fhantom Type Barski Planar Phantom Flexiglass Fiberglass	Data Acquisition Electronic (DAE	<u>System</u>
Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections CoM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Type Barski Planar Phantom Fiberglass	Cell Controller	
Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Phantom Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Ph	Processor	AMD Athlon XP 2400+
Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm <	Clock Speed	2.0 GHz
Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock	Operating System	Windows XP Professional
Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model BET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Type Barski Planar Phantom Fiberglass	Data Converter	
Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Fiberglass Fiberglass Fiberglass Fiberglass	Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Type Barski Planar Phantom Fiberglass	Software	Measurement Software: DASY4, V4.7 Build 44
Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Type Side Planar Phantom Type Serial No. 3 GHz) Phantom Type Side Planar Phantom Type Side Planar Phantom Type Side Planar Phantom Type Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Type Barski Planar Phantom	Johnware	Postprocessing Software: SEMCAD, V1.8 Build 171
Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Fiberglass Fiberglass Fiberglass	Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Fiberglass Fiberglass Fiberglass Fiberglass	DASY4 Measurement Server	
Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface F-Field Probe Model Berial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Type Barski Planar Phantom Fiberglass	Function	Real-time data evaluation for field measurements and surface detection
E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	E-Field Probe	
Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Model	ET3DV6
Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Serial No.	1590
Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Construction	Triangular core fiber optic detection system
Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Frequency	10 MHz to 6 GHz
Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ± 0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Linearity	± 0.2 dB (30 MHz to 3 GHz)
Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	<u>Phantom</u>	
Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Туре	SAM V4.0C
Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Shell Material	Fiberglass
Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Thickness	2.0 ±0.1 mm
Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Volume	Approx. 25 liters
Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Phantom	
Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Туре	Side Planar Phantom
Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass	Shell Material	Plexiglass
Phantom Type Barski Planar Phantom Shell Material Fiberglass	Bottom Thickness	2.0 mm ± 0.1 mm
Type Barski Planar Phantom Shell Material Fiberglass	Inner Dimensions	72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)
Type Barski Planar Phantom Shell Material Fiberglass	Phantom	
Shell Material Fiberglass		Barski Planar Phantom
		Fiberglass
	Thickness	2.0 ±0.1 mm
Volume Approx. 70 liters	Volume	Approx. 70 liters

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	VDTR-0074-E IC:			C: 3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver M			75 7/800	769-805/806-869 MHz	
2011 Celltech La	bs Inc.	This document is not to	Page 46 of 281						

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

Rev. 1.2 (3rd Release)

RF Exposure Category Occupational (Controlled)

Test Report Revision No.

18.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Frequency: Directivity:

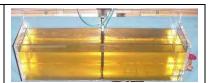
 \pm 0.2 dB in head tissue (rotation around probe axis) \pm 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Surface Detect:

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm


Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe

19.0 PHANTOM(S)

The Side Planar Phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and Body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

The Barski Planar Phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom was used for the DUT SAR evaluations and the system performance check evaluations. See Appendix G for dimensions and specifications of the Barski planar phantom.

Barski Planar Phantom

The SAM Twin Phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix H for specifications of the SAM Twin Phantom V4.0C).

20.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Radio Transceiver Model:			75 7/800	769-805/806-869 MHz	
2011 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

21.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AGGET NO.	OLIVIAL NO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	27Apr10	Biennial
х	-ET3DV6 E-Field Probe	00017	1590	22Jun11	Annual
х	-D835V2 Validation Dipole	00217	4d075	20Apr09	Triennial
х	Side Planar Phantom	00156	161	CNR	CNR
х	Barski Planar Phantom	00155	03-01	CNR	CNR
х	SPEAG SAM Twin Phantom V4.0C	00154	1033	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	04May10	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833699	04May10	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	04May10	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

22.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION

SAR dipoles calibrated less than two years ago but more than one year ago were confirmed by maintaining return loss (< - 20dB, within 20% of prior calibration) and impedance (within 5Ω from prior calibration) requirements per extended calibrations in FCC KDB 450824 (see reference [10]).

		SPEAG D	335V3 SN: 4d07	' 5		
Date of Measurement	Frequency	Fluid Type	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
Apr. 20, 2009	835 MHz	Head	-29.1	-	51.8	-
Jun. 29, 2011	000 IVII IZ	Head	-27.3	-6.2%	48.6	-3.2
Apr. 20, 2009	835 MHz	Pody	-26.7	-	48.0	-
Apr. 20, 2011	oso IVI⊓Z	Body	-24.0	10.1%	51.3	3.3

Applicant:	HAF	ARRIS Corporation FCC ID: OW			DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	ıbs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 48 of 281

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

23.0 MEASUREMENT UNCERTAINTIES

	UNCERT	AINTY BUD	GET FOR D	EVICE EVAL	.UATIO	ON			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (835 MHz)	E.2.1	6.0	Normal	1	1	1	6.0	6.0	∞
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	×
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	8
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	oc
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	×
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	oc
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	×
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	×
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measured)	E.3.3	5.67	Normal	1	0.64	0.43	3.6	2.4	∞
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measured)	E.3.3	4.82	Normal	1	0.6	0.49	2.9	2.4	8
Combined Standard Uncertainty			RSS				11.59	11.02	
Expanded Uncertainty (95% Confidence	e Interval)		k=2				23.19	22.05	
Measi	urement Ur	certainty Table	e in accordanc	e with IEEE Sta	ndard 1	528-20	03		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-E IC:			3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	bs Inc.	This document is not to	Page 49 of 281						

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

24.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [7] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [8] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.
- [9] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01r01: April 2011.
- [10] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [11] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [12] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [13] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [14] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [15] Industry Canada "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 2: June 2007.

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	HAF	RRIS Corporation FCC ID: OW			DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz	A	
2011 Celltech La	bs Inc.	This document is not to	Page 188 of 281						

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 09/07/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

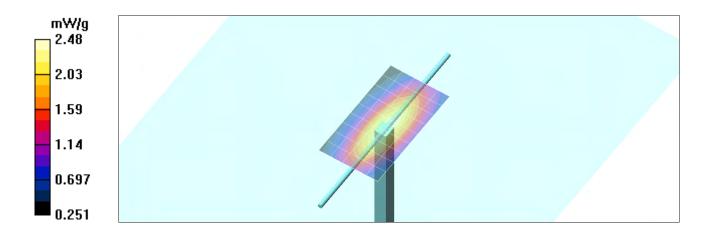
Ambient Temp: 23C; Fluid Temp: 23.5C; Barometric Pressure: 101.1 kPa; Humidity: 32%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 57.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.46 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

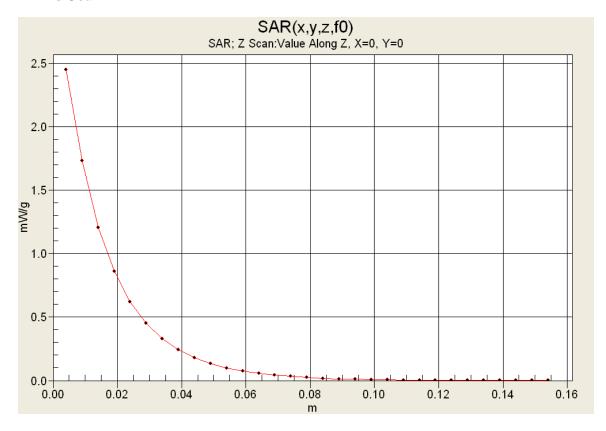
Reference Value = 50.6 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.48 mW/g

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M


<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	DTR-0074-	E	IC:	3636B-0074	HARRIS		
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	ıbs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 190 of 281

Test Report Issue Date
December 14, 2011

Test Report Serial No.
0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 09/12/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

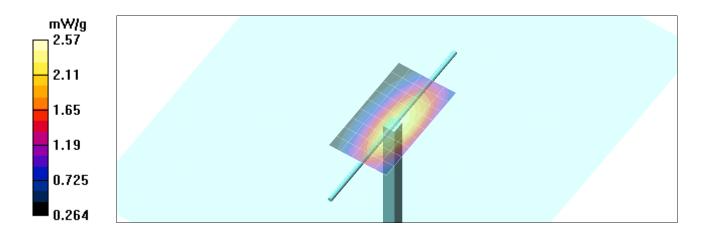
Ambient Temp: 23C; Fluid Temp: 24.0C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 57.1$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.50 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

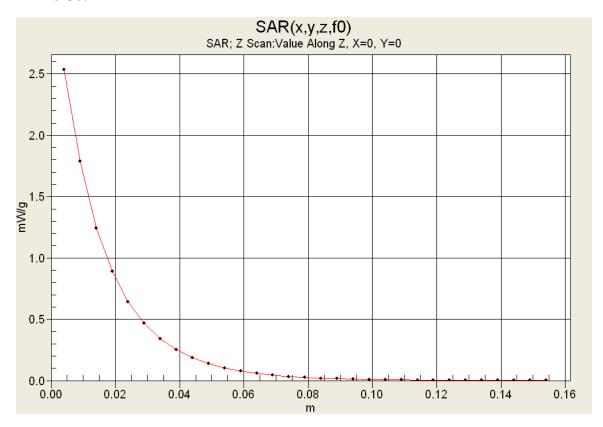
Reference Value = 49.4 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 3.30 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.57 mW/g

Applicant:	HAF	RRIS Corporation	DTR-0074-	E	IC:	3636B-0074	HARRIS		
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz	A	
2011 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 191 of 281

Test Report Issue Date
December 14, 2011


<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	DTR-0074-	E	IC:	3636B-0074	HARRIS		
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	ıbs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 192 of 281

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 0830110WD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

Date Tested: 09/22/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

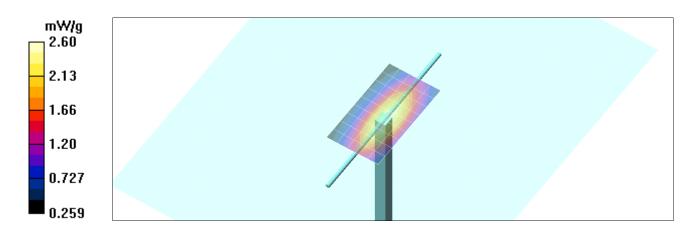
Ambient Temp: 23C; Fluid Temp: 23.3C; Barometric Pressure: 101.1 kPa; Humidity: 36%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 57$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.58 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

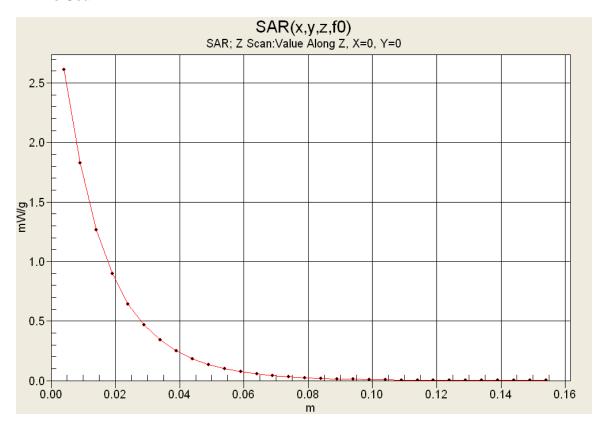
Reference Value = 51.0 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.60 mW/g

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M


<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	IS Corporation FCC ID: OW			E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	ıbs Inc.	This document is not to	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 194 of 281		

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 09/26/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

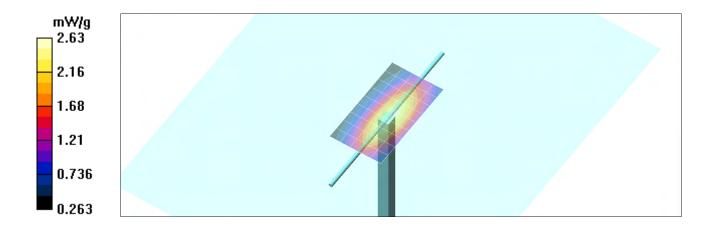
Ambient Temp: 23C; Fluid Temp: 23.9C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 56.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.61 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.5 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 3.41 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.61 mW/g Maximum value of SAR (measured) = 2.63 mW/g

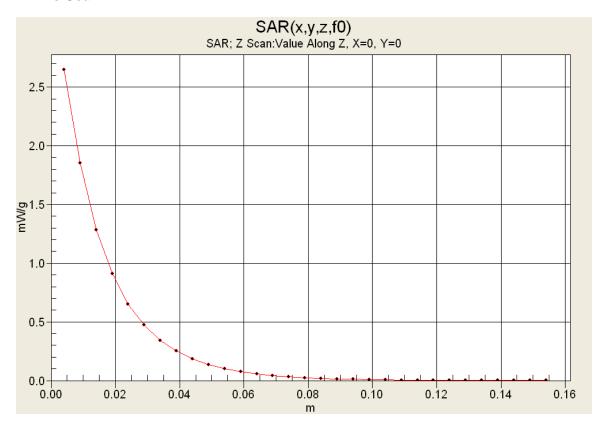
Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

Rev. 1.2 (3rd Release)


RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Z-Axis Scan

Applicant:	HAF	ARRIS Corporation FCC ID: 0			/DTR-0074-E IC:			3636B-0074	HARRIS
DUT Type:	Porta	able 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ıbs Inc.	This document is not to	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 196 of 281	

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s) RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Rev. 1.2 (3rd Release)

Date Tested: 09/28/2011

System Performance Check - 835 MHz Dipole - Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

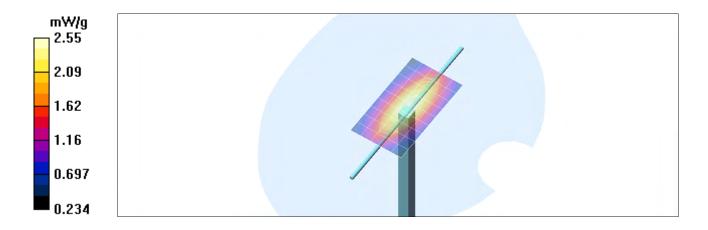
Ambient Temp: 22C; Fluid Temp: 22.3C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: CW

Frequency: 835 MHz: Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Head d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.48 mW/g

Head d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

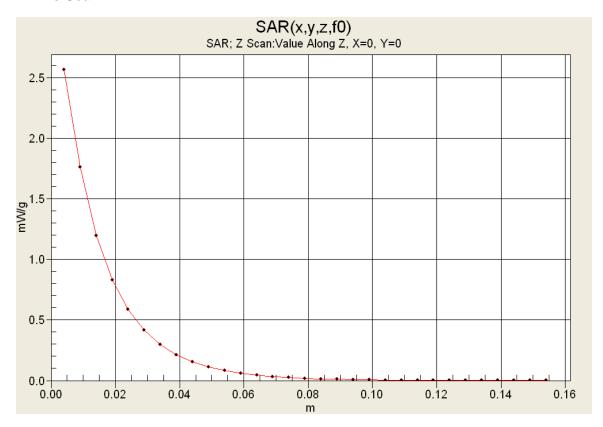
Reference Value = 54.2 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.55 mW/gMaximum value of SAR (measured) = 2.55 mW/g

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M


Description of Test(s)

Rev. 1.2 (3rd Release) RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Z-Axis Scan

Applicant:	HAF	ARRIS Corporation FCC ID: 0			/DTR-0074-E IC:			3636B-0074	HARRIS
DUT Type:	Porta	able 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ıbs Inc.	This document is not to	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 198 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category

Date Tested: 12/05/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2009

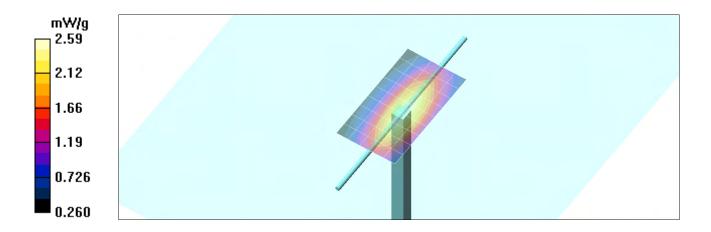
Ambient Temp: 23C; Fluid Temp: 20.6C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.58 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

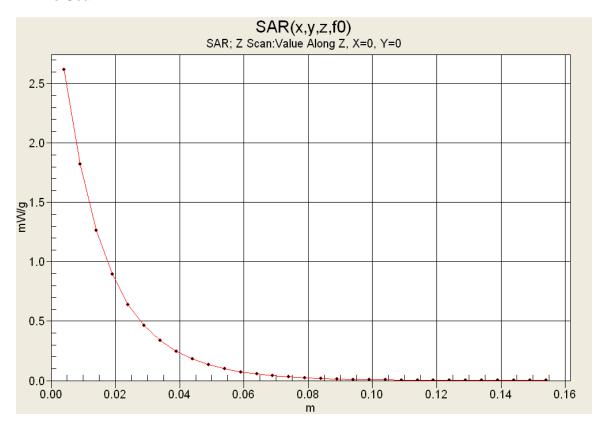
Reference Value = 50.8 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.59 mW/g

Test Report Issue Date December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M


Description of Test(s)

Specific Absorption Rate

Rev. 1.2 (3rd Release) RF Exposure Category Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	ARRIS Corporation FCC ID: 0			/DTR-0074-E IC:			3636B-0074	HARRIS
DUT Type:	Porta	able 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ıbs Inc.	This document is not to	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 200 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

	Applicant:	HAF	RRIS Corporation FCC ID: OW			DTR-0074-	E	IC:	3636B-0074	HARRIS
Ī	DUT Type:	Porta	ble 700/800-Band PT	/800-Band PTT Radio Transceiver			XG-7	75 7/800	769-805/806-869 MHz	
Ī	2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 201 of 281		

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
07/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

******	******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	57.77	0.88
0.7450	55.55	0.96	57.99	0.90
0.7550	55.51	0.96	57.89	0.90
0.7650	55.47	0.96	57.63	0.91
0.7750	55.43	0.97	57.55	0.95
0.7850	55.39	0.97	57.83	0.93
0.7950	55.36	0.97	57.34	0.96
0.8050	55.32	0.97	57.55	0.95
0.8150	55.28	0.97	57.49	0.96
0.8250	55.24	0.97	57.42	0.97
0.8350	55.20	0.97	57.41	0.99
0.8450	55.17	0.98	57.26	1.00
0.8550	55.14	0.99	57.02	1.00
0.8650	55.11	1.01	57.15	1.00
0.8750	55.08	1.02	56.90	1.03
0.8850	55.05	1.03	56.95	1.03
0.8950	55.02	1.04	56.72	1.03
0.9050	55.00	1.05	56.80	1.04
0.9150	55.00	1.06	56.67	1.07
0.9250	54.98	1.06	56.56	1.07
0.9350	54.96	1.07	56.66	1.08

Test Report Issue Date

Test Report Serial No. 083011OWD-T1113-S90M

Rev. 1.2 (3rd Release) RF Exposure Category Occupational (Controlled)

Test Report Revision No.

Description of Test(s) December 14, 2011 Specific Absorption Rate

835 MHz Body

Celltech Labs Test Result for UIM Dielectric Parameter 08/Sep/2011 Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

***********	*****	*****	******	*****
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	57.48	0.88
0.7450	55.55	0.96	57.61	0.89
0.7550	55.51	0.96	57.29	0.91
0.7650	55.47	0.96	57.35	0.91
0.7750	55.43	0.97	57.32	0.92
0.7850	55.39	0.97	57.38	0.92
0.7950	55.36	0.97	57.18	0.93
0.8050	55.32	0.97	57.06	0.94
0.8150	55.28	0.97	56.99	0.94
0.8250	55.24	0.97	57.07	0.97
0.8350	55.20	0.97	56.93	0.97
0.8450	55.17	0.98	56.59	0.97
0.8550	55.14	0.99	56.89	0.99
0.8650	55.11	1.01	56.75	1.00
0.8750	55.08	1.02	56.54	1.02
0.8850	55.05	1.03	56.47	1.03
0.8950	55.02	1.04	56.67	1.05
0.9050	55.00	1.05	56.44	1.04
0.9150	55.00	1.06	56.24	1.06
0.9250	54.98	1.06	56.32	1.06
0.9350	54.96	1.07	56.32	1.08

Applicant:	HAF	RRIS Corporation FCC ID: OW			DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ıbs Inc.	This document is not to	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 203 of 281		

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
09/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

******	*******	*****	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	57.34	0.87
0.7450	55.55	0.96	57.05	0.87
0.7550	55.51	0.96	57.16	0.89
0.7650	55.47	0.96	56.85	0.89
0.7750	55.43	0.97	56.98	0.90
0.7850	55.39	0.97	56.84	0.92
0.7950	55.36	0.97	56.48	0.93
0.8050	55.32	0.97	56.83	0.93
0.8150	55.28	0.97	56.72	0.95
0.8250	55.24	0.97	56.46	0.96
0.8350	55.20	0.97	56.40	0.96
0.8450	55.17	0.98	56.31	0.98
0.8550	55.14	0.99	56.35	0.99
0.8650	55.11	1.01	56.33	1.00
0.8750	55.08	1.02	56.01	1.01
0.8850	55.05	1.03	56.01	1.00
0.8950	55.02	1.04	55.72	1.03
0.9050	55.00	1.05	55.83	1.04
0.9150	55.00	1.06	55.76	1.07
0.9250	54.98	1.06	55.66	1.05
0.9350	54.96	1.07	55.62	1.07

Applicant:	HAF	ARRIS Corporation FCC ID: OW			DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	A 3.5
2011 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 204 of 281		

Test Report Issue Date
December 14, 2011

Test Report Serial No. 0830110WD-T1113-S90M

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.2 (3rd Release)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
12/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

*******	*******	******	******	*****
Freq	FCC_eB	FCC_sE	B Test_e	Test_s
0.7350	55.59	0.96	58.14	0.87
0.7450	55.55	0.96	57.43	0.88
0.7550	55.51	0.96	57.86	0.89
0.7650	55.47	0.96	57.84	0.92
0.7750	55.43	0.97	57.01	0.92
0.7850	55.39	0.97	57.26	0.92
0.7950	55.36	0.97	57.28	0.93
0.8050	55.32	0.97	57.02	0.93
0.8150	55.28	0.97	57.06	0.94
0.8250	55.24	0.97	57.14	0.96
0.8350	55.20	0.97	57.11	0.96
0.8450	55.17	0.98	57.30	0.96
0.8550	55.14	0.99	56.78	0.96
0.8650	55.11	1.01	56.71	0.98
0.8750	55.08	1.02	56.91	0.99
0.8850	55.05	1.03	56.62	1.02
0.8950	55.02	1.04	56.60	1.02
0.9050	55.00	1.05	56.45	1.03
0.9150	55.00	1.06	56.29	1.04
0.9250	54.98	1.06	56.30	1.05
0.9350	54.96	1.07	56.12	1.06

Applicant:	HAF	RRIS Corporation FCC ID: OWI			DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ole 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	ıbs Inc.	This document is not to	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 205 of 281	

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
13/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

*******	******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	57.76	0.87
0.7450	55.55	0.96	57.83	0.88
0.7550	55.51	0.96	57.57	0.88
0.7650	55.47	0.96	57.48	0.90
0.7750	55.43	0.97	57.52	0.90
0.7850	55.39	0.97	57.27	0.91
0.7950	55.36	0.97	57.14	0.92
0.8050	55.32	0.97	57.28	0.94
0.8150	55.28	0.97	57.14	0.94
0.8250	55.24	0.97	57.27	0.94
0.8350	55.20	0.97	56.81	0.95
0.8450	55.17	0.98	57.09	0.98
0.8550	55.14	0.99	57.17	0.99
0.8650	55.11	1.01	56.88	1.00
0.8750	55.08	1.02	56.85	1.00
0.8850	55.05	1.03	56.71	1.01
0.8950	55.02	1.04	56.45	1.02
0.9050	55.00	1.05	56.86	1.03
0.9150	55.00	1.06	56.45	1.04
0.9250	54.98	1.06	56.39	1.05
0.9350	54.96	1.07	56.51	1.06

Applicant:	HAF	RRIS Corporation	FCC ID: OWDTR-0074-E		IC:	3636B-0074	HARRIS		
DUT Type:	Porta	able 700/800-Band PTT Radio Transceiver			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 206 of 281			

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
22/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM

Test_s Sigma of UIM

*******	********	*******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	57.77	0.88
0.7450	55.55	0.96	57.56	0.90
0.7550	55.51	0.96	57.28	0.92
0.7650	55.47	0.96	57.64	0.92
0.7750	55.43	0.97	57.30	0.93
0.7850	55.39	0.97	57.40	0.94
0.7950	55.36	0.97	57.17	0.96
0.8050	55.32	0.97	57.26	0.95
0.8150	55.28	0.97	56.55	0.97
0.8250	55.24	0.97	56.70	0.98
0.8350	55.20	0.97	56.95	0.99
0.8450	55.17	0.98	56.93	0.98
0.8550	55.14	0.99	56.55	1.00
0.8650	55.11	1.01	56.60	1.01
0.8750	55.08	1.02	56.58	1.04
0.8850	55.05	1.03	56.28	1.04
0.8950	55.02	1.04	56.35	1.05
0.9050	55.00	1.05	56.20	1.06
0.9150	55.00	1.06	56.37	1.06
0.9250	54.98	1.06	56.10	1.08
0.9350	54.96	1.07	56.11	1.09

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
23/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

Freq	FCC_eB	FCC_sE	3 Test_e	Test_s			
0.7350	55.59	0.96	57.57	0.90			
0.7450	55.55	0.96	57.53	0.91			
0.7550	55.51	0.96	57.50	0.93			
0.7650	55.47	0.96	57.28	0.93			
0.7750	55.43	0.97	57.50	0.96			
0.7850	55.39	0.97	57.64	0.95			
0.7950	55.36	0.97	57.02	0.97			
0.8050	55.32	0.97	57.17	0.97			
0.8150	55.28	0.97	57.17	0.98			
0.8250	55.24	0.97	57.08	1.00			
0.8350	55.20	0.97	56.91	0.99			
0.8450	55.17	0.98	56.95	1.01			
0.8550	55.14	0.99	56.94	1.01			
0.8650	55.11	1.01	56.64	1.02			
0.8750	55.08	1.02	56.41	1.02			
0.8850	55.05	1.03	56.53	1.03			
0.8950	55.02	1.04	56.23	1.07			
0.9050	55.00	1.05	56.19	1.07			
0.9150	55.00	1.06	56.31	1.07			
0.9250	54.98	1.06	56.10	1.09			
0.9350	54.96	1.07	55.93	1.11			

Applicant:	HAF	RRIS Corporation	FCC ID: OWDTR-0074-E		IC:	3636B-0074	HARRIS		
DUT Type:	Porta	able 700/800-Band PTT Radio Transceiver Mo			Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 208 of 281			

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
26/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

******	******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	58.07	0.89
0.7450	55.55	0.96	57.89	0.90
0.7550	55.51	0.96	57.59	0.92
0.7650	55.47	0.96	57.61	0.92
0.7750	55.43	0.97	57.62	0.95
0.7850	55.39	0.97	57.40	0.95
0.7950	55.36	0.97	57.50	0.95
0.8050	55.32	0.97	57.34	0.96
0.8150	55.28	0.97	57.15	0.97
0.8250	55.24	0.97	57.01	0.98
0.8350	55.20	0.97	56.78	0.99
0.8450	55.17	0.98	56.79	1.01
0.8550	55.14	0.99	57.10	1.01
0.8650	55.11	1.01	56.70	1.03
0.8750	55.08	1.02	56.69	1.03
0.8850	55.05	1.03	56.68	1.05
0.8950	55.02	1.04	56.71	1.04
0.9050	55.00	1.05	56.43	1.07
0.9150	55.00	1.06	56.18	1.07
0.9250	54.98	1.06	56.25	1.08
0.9350	54.96	1.07	56.14	1.10

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
27/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	*******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	57.92	0.88
0.7450	55.55	0.96	57.53	0.88
0.7550	55.51	0.96	57.33	0.91
0.7650	55.47	0.96	57.47	0.90
0.7750	55.43	0.97	57.17	0.94
0.7850	55.39	0.97	57.14	0.94
0.7950	55.36	0.97	57.16	0.95
0.8050	55.32	0.97	57.39	0.97
0.8150	55.28	0.97	57.19	0.95
0.8250	55.24	0.97	57.16	0.98
0.8350	55.20	0.97	56.99	0.99
0.8450	55.17	0.98	56.61	1.01
0.8550	55.14	0.99	56.44	1.01
0.8650	55.11	1.01	56.30	1.02
0.8750	55.08	1.02	56.69	1.04
0.8850	55.05	1.03	56.36	1.04
0.8950	55.02	1.04	56.45	1.06
0.9050	55.00	1.05	56.67	1.06
0.9150	55.00	1.06	55.98	1.07
0.9250	54.98	1.06	56.31	1.07
0.9350	54.96	1.07	56.06	1.09

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	7
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without				n part without	the prior	r written perr	nission of Celltech Labs Inc.	Page 210 of 281	

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
28/Sep/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

*******	*****	******	******	*******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	57.83	0.89
0.7450	55.55	0.96	57.74	0.90
0.7550	55.51	0.96	57.62	0.90
0.7650	55.47	0.96	57.50	0.91
0.7750	55.43	0.97	57.41	0.95
0.7850	55.39	0.97	57.33	0.93
0.7950	55.36	0.97	57.28	0.96
0.8050	55.32	0.97	57.10	0.99
0.8150	55.28	0.97	56.96	0.98
0.8250	55.24	0.97	56.85	0.99
0.8350	55.20	0.97	56.67	0.99
0.8450	55.17	0.98	56.74	1.01
0.8550	55.14	0.99	56.59	1.01
0.8650	55.11	1.01	56.63	1.02
0.8750	55.08	1.02	56.43	1.02
0.8850	55.05	1.03	56.34	1.04
0.8950	55.02	1.04	56.37	1.06
0.9050	55.00	1.05	55.98	1.06
0.9150	55.00	1.06	56.23	1.09
0.9250	54.98	1.06	56.05	1.07
0.9350	54.96	1.07	56.26	1.10

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Head

Celltech Labs
Test Result for UIM Dielectric Parameter
28/Sep/2011

Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

**	*******	*******	******	*****	******
F	req	FCC_eH	IFCC_sH	Test_e	Test_s
	0.7350	42.02	0.89	43.79	0.82
	0.7450	41.97	0.89	43.24	0.83
	0.7550	41.92	0.89	43.57	0.83
	0.7650	41.86	0.89	43.53	0.85
	0.7750	41.81	0.90	43.15	0.86
	0.7850	41.76	0.90	43.15	0.87
	0.7950	41.71	0.90	43.14	0.88
	0.8050	41.66	0.90	43.06	0.90
	0.8150	41.60	0.90	42.69	0.91
	0.8250	41.55	0.90	42.67	0.91
	0.8350	41.50	0.90	42.51	0.94
	0.8450	41.50	0.91	42.63	0.93
	0.8550	41.50	0.92	42.36	0.93
	0.8650	41.50	0.93	42.16	0.95
	0.8750	41.50	0.94	42.00	0.95
	0.8850	41.50	0.95	42.05	0.97
	0.8950	41.50	0.96	41.78	0.99
	0.9050	41.50	0.97	41.76	0.98
	0.9150	41.50	0.98	41.58	0.99
	0.9250	41.48	0.98	41.43	1.02
	0.9350	41.46	0.99	41.19	1.03

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Head

Celltech Labs
Test Result for UIM Dielectric Parameter
29/Sep/2011

Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

*******	******	*****	******	*****
Freq	FCC_eH	IFCC_sh	l Test_e	Test_s
0.7350	42.02	0.89	44.07	0.81
0.7450	41.97	0.89	43.80	0.83
0.7550	41.92	0.89	43.60	0.83
0.7650	41.86	0.89	43.59	0.86
0.7750	41.81	0.90	43.36	0.86
0.7850	41.76	0.90	43.20	0.88
0.7950	41.71	0.90	43.35	0.87
0.8050	41.66	0.90	42.88	0.88
0.8150	41.60	0.90	42.92	0.90
0.8250	41.55	0.90	43.02	0.90
0.8350	41.50	0.90	42.34	0.92
0.8450	41.50	0.91	42.58	0.92
0.8550	41.50	0.92	42.17	0.93
0.8650	41.50	0.93	42.15	0.95
0.8750	41.50	0.94	41.99	0.96
0.8850	41.50	0.95	42.00	0.96
0.8950	41.50	0.96	41.84	0.98
0.9050	41.50	0.97	41.79	0.99
0.9150	41.50	0.98	41.71	1.00
0.9250	41.48	0.98	41.60	1.00
0.9350	41.46	0.99	41.30	1.00

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS	
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz		
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 213 of 281			

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
05/Dec/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	56.55	0.89
0.7450	55.55	0.96	56.68	0.89
0.7550	55.51	0.96	56.58	0.92
0.7650	55.47	0.96	56.50	0.91
0.7750	55.43	0.97	56.15	0.92
0.7850	55.39	0.97	56.20	0.94
0.7950	55.36	0.97	56.13	0.95
0.8050	55.32	0.97	55.95	0.96
0.8150	55.28	0.97	56.05	0.96
0.8250	55.24	0.97	55.99	0.98
0.8350	55.20	0.97	55.62	0.98
0.8450	55.17	0.98	55.45	1.00
0.8550	55.14	0.99	55.76	0.99
0.8650	55.11	1.01	55.87	1.01
0.8750	55.08	1.02	55.52	1.03
0.8850	55.05	1.03	55.45	1.03
0.8950	55.02	1.04	55.25	1.04
0.9050	55.00	1.05	54.93	1.06
0.9150	55.00	1.06	55.28	1.07
0.9250	54.98	1.06	54.85	1.09
0.9350	54.96	1.07	54.93	1.09

Test Report Issue Date
December 14, 2011

Test Report Serial No. 083011OWD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs
Test Result for UIM Dielectric Parameter
06/Dec/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

********	*******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	56.52	0.87
0.7450	55.55	0.96	56.39	0.89
0.7550	55.51	0.96	56.21	0.91
0.7650	55.47	0.96	56.24	0.91
0.7750	55.43	0.97	56.08	0.93
0.7850	55.39	0.97	56.37	0.94
0.7950	55.36	0.97	55.87	0.95
0.8050	55.32	0.97	55.74	0.95
0.8150	55.28	0.97	55.91	0.97
0.8250	55.24	0.97	55.64	0.97
<mark>0.8350</mark>	55.20	0.97	55.67	0.99
0.8450	55.17	0.98	55.60	0.98
0.8550	55.14	0.99	55.57	1.00
0.8650	55.11	1.01	55.39	1.02
0.8750	55.08	1.02	55.33	1.03
0.8850	55.05	1.03	55.17	1.03
0.8950	55.02	1.04	55.16	1.03
0.9050	55.00	1.05	55.01	1.04
0.9150	55.00	1.06	55.11	1.06
0.9250	54.98	1.06	54.95	1.08
0.9350	54.96	1.07	54.64	1.07

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX E - DIPOLE CALIBRATION

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be			n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 277 of 281

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Celltech

Certificate No: D835V2-4d075_Apr09

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d075

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

April 20, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
			156-
Approved by:	Katja Pokovic	Technical Manager	20 11.e

Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d075_Apr09 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.46 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	9.96 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.61 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.64 mW / g
SAR normalized	normalized to 1W	6.56 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.39 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 3.1 jΩ
Return Loss	- 29.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.1 jΩ	
Return Loss	- 26.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.401 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

Certificate No: D835V2-4d075_Apr09

DASY5 Validation Report for Head TSL

Date/Time: 14.04.2009 11:20:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

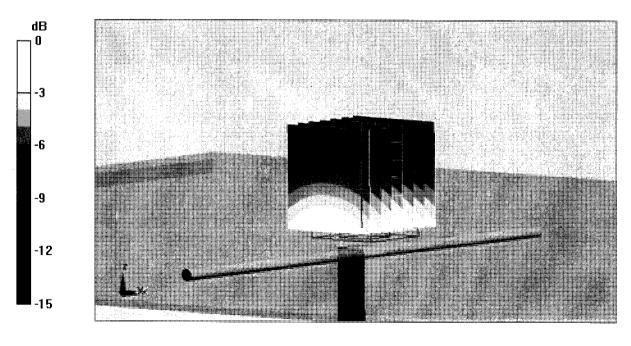
• Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

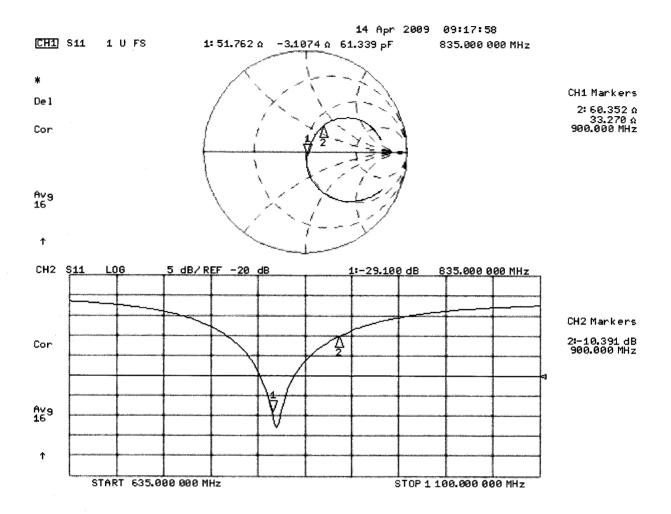
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g


Maximum value of SAR (measured) = 2.74 mW/g

0 dB = 2.74 mW/g

Certificate No: D835V2-4d075 Apr09

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 20.04.2009 09:57:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

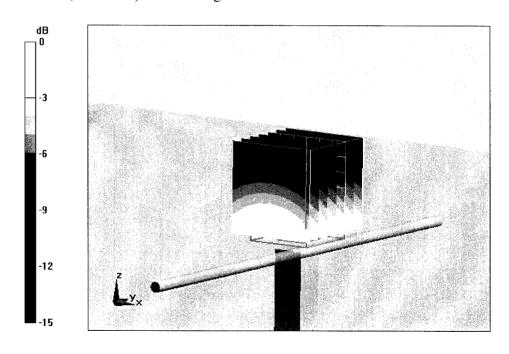
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

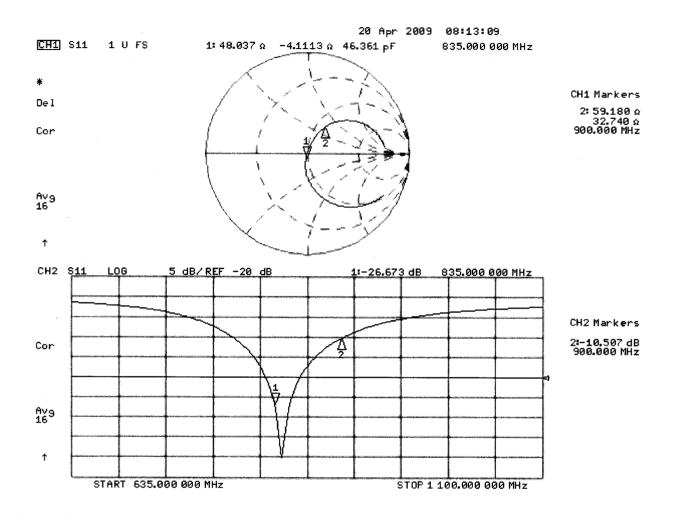
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.00173 dB

Peak SAR (extrapolated) = 3.61 W/kg


SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.64 mW/g

Maximum value of SAR (measured) = 2.9 mW/g

0 dB = 2.9 mW/g

Impedance Measurement Plot for Body TSL

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX F - PROBE CALIBRATION

Applicant:	HAF	RRIS Corporation	FCC ID: OWD		IS Corporation FCC ID: OWDTR-0074-E IC:		3636B-0074	HARRIS	
DUT Type:	Porta	ble 700/800-Band PT	TT Radio Transceiver		Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	h Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 278 of 281			

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Certificate No: ET3-1590_Jun11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1590

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date: June 22, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID		Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator SN: S5129 (30b)		29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4 SN: 654		3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: June 23, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NOR

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1590_Jun11 Page 2 of 11

ET3DV6 - SN:1590 June 22, 2011

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001

Calibrated:

June 22, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.93	2.00	1.66	± 10.1 %
DCP (mV) ^B	96.0	98.7	88.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	104.2	±2.7 %
			Υ	0.00	0.00	1.00	117.7	-
			Z	0.00	0.00	1.00	129.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

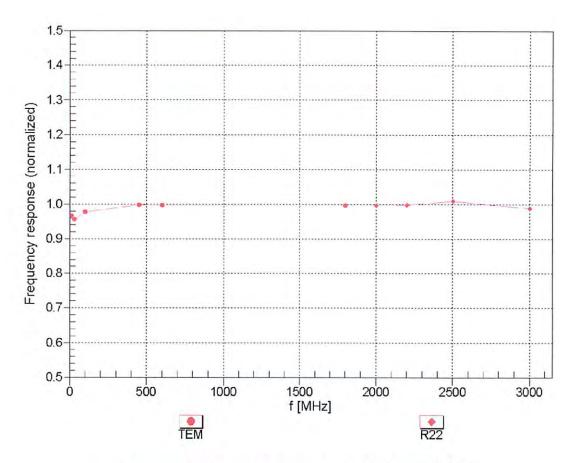
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)							
450	43.5	0.87	7.30	7.30	7.30	0.18	2.10	± 13.4 %							
835	41.5	0.90	6.50	6.50	6.50	0.38	2.55	± 12.0 %							
900	41.5	0.97	6.39	6.39	6.39	0.39	2.47	± 12.0 %							

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

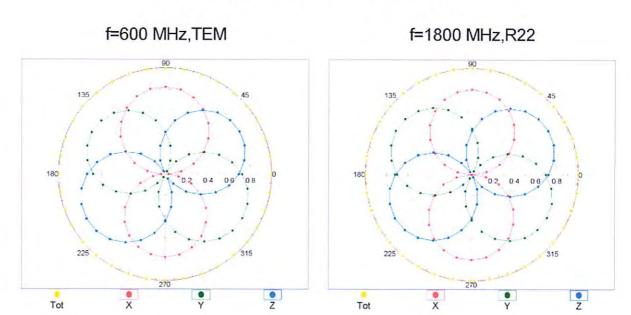
DASY/EASY - Parameters of Probe: ET3DV6- SN:1590

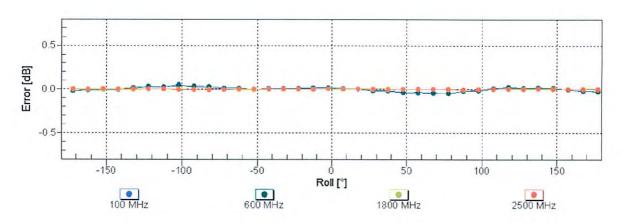

Calibration Parameter Determined in Body Tissue Simulating Media

					_			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.82	7.82	7.82	0.12	2.04	± 13.4 %
835	55.2	0.97	6.37	6.37	6.37	0.42	2.33	± 12.0 %
900	55.0	1.05	6.27	6.27	6.27	0.40	2.45	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

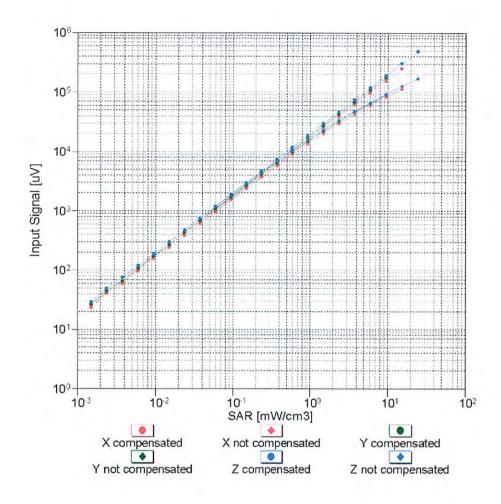
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

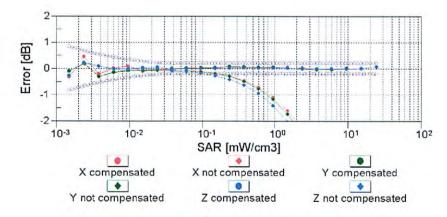

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



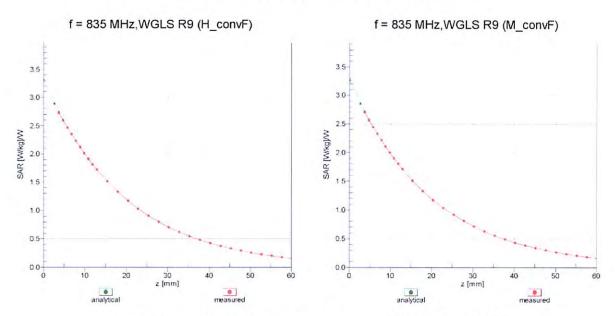
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

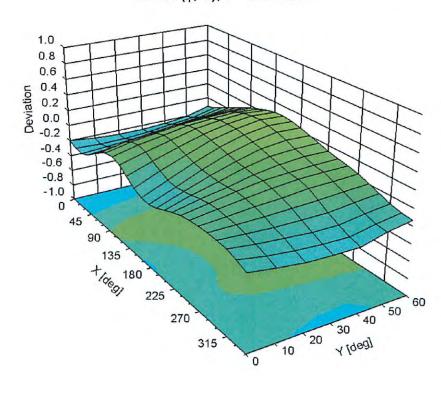
ET3DV6- SN:1590 June 22, 2011


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

ET3DV6-SN:1590

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	A
2011 Celltech La	bs Inc.	This document is not to	be reproduced in	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 279 of 281

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

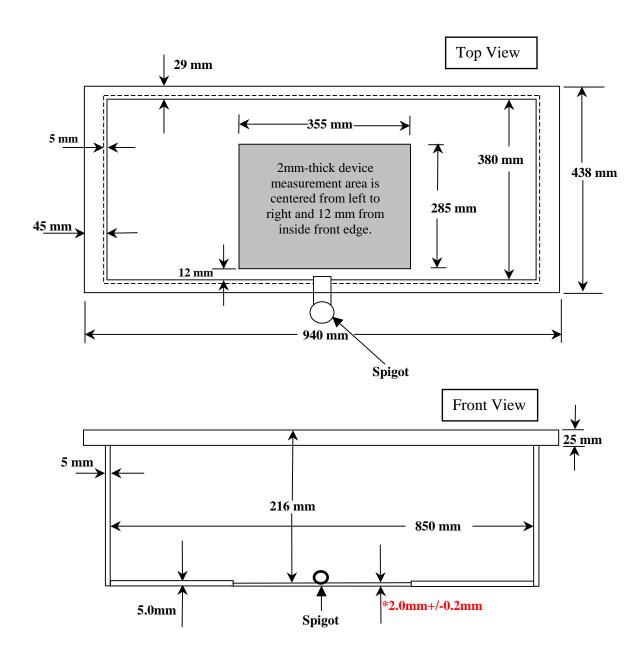
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured. This drawing is not to scale.

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX H - SAM TWIN PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	75 7/800	769-805/806-869 MHz		
2011 Celltech La	bs Inc.	This document is not to	be reproduced in	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 280 of 281

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen
	Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Fin Brubolt

Test Report Issue Date
December 14, 2011

<u>Test Report Serial No.</u> 083011OWD-T1113-S90M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.2 (3rd Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX I - AUDIO ACCESSORY COMBINATIONS (FCC KDB 643646 D01v01r01)

Applicant:	HAF	RRIS Corporation	FCC ID:	OW	DTR-0074-	E	IC:	3636B-0074	HARRIS
DUT Type:	Porta	ble 700/800-Band PT	T Radio Trans	sceiver	Model:	XG-7	75 7/800	769-805/806-869 MHz	
2011 Celltech La	bs Inc.	This document is not to	be reproduced in	n whole or i	n part without	the prior	r written perr	mission of Celltech Labs Inc.	Page 281 of 281

HARRIS CORPORATION FCC ID: OWDTR-0074-E XG-75 700/800 PTT Radio Transceiver (SYSTEM)

Body	Body SAR Test Considerations for Audio Accessories without Built-in Antenna - Audio Accessory Combinatio Battery a (Default) Battery b (Additional) Battery c (Additional)														tion	s (F	CCI	KDB	6436	646 I	D01v	/01r	01 P	age	9)															
				Bat	tery	a (D	efaul	t)					Е	atte	ry b	(Add	lition	al)					В	atte	ry c (Add	litior	nal)					Ва	atter	y d (Add	ition	al)		
Audio Accessory ID #					Ante	enna	1-2					Antenna 1-2											A	nter	nna 1	1-2							Α	nter	na 1	-2				
	В	v#5	В	v#1	Bv	ν#3	Bv	v#4	Bv	v#6	В	v#5	Ви	v#1	Ви	v#3	Bv	v#4	Bv	v#6	Bv	v#5	Bw	/#1	Bw	#3	Bw	ı#4	Bv	v#6	Bv	v#5	Bv	/#1	Ви	v#3	Bw	v#4	Bw	#6
G1a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G1b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G3a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G3b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G4	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G5	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G6a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G6b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G7a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G7b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G7c	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G7d	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G8a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G8b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G9a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G9b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G10	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G11a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G11b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G12a	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
G12b	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2

Notes:

- All audio accessory options can be utilized with any antenna, battery and body-worn combination.
 The accessory combinations evaluated for SAR are highlighted in yellow.
- 3. Please refer to Section 7.0 of the SAR report for description of accessory ID #.

 4. Bw = Body-worn

12/14/2011 Rev. 1.1 Page 1 of 1