

Engineering Solutions & Electromagnetic Compatibility Services

FCC Part 15.247 & IC RSS-210 Certification Report

Harris Corporation
221 Jefferson Ridge Parkway
Lynchburg, VA 21441
Daryl Popowitch
Phone: (434) 455-9527

Model: XG-25P VHF

FCC ID: OWDTR-0072-E
IC: 3636B-0072

September 26, 2011

Standards Referenced for this Report	
American National Standard Institute	ANSI C63.4-2003: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
FCC Classification	DSS – Part 15 Spread Spectrum Transmitter
FCC Rule Part(s)	FCC Rules Part 15.247: Operation within the bands 920-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz Frequency Hopping System (10-01-10)
IC Standard	RSS-210 Issue 8: Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
FCC Procedure	ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices
Digital Interface Information	Digital Interface was found to be compliant

Frequency Range (MHz)	Rated Transmit Power (W) (Conducted)	Frequency Tolerance (ppm)	Emission Designator
2402 – 2480	0.002	N/A	1M44FXD

Report Prepared By: Dan Baltzell

Document Number: 2011143DSS

This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc. and Harris Corporation. Test results relate only to the item tested.

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACCLASS. Refer to certificate and scope of accreditation AT-1445.

Table of Contents

1	General Information	4
1.1	Scope	4
1.2	Description of EUT	4
1.3	Test Facility	4
1.4	Related Submittal(s)/Grant(s)	4
1.5	Modifications	4
2	Test Information	5
2.1	Description of Test Modes	5
2.2	Exercising the EUT	5
2.3	Test Result Summary.....	5
2.4	Tested System Details	6
3	Peak Output Power – FCC 15.247(b)(1), RSS-210 A8.4(2), RSS-Gen 4.8	7
3.1	Power Output Test Procedure	7
3.2	Power Output Test Data.....	7
4	Antenna Conducted Spurious Emissions – FCC 15.247(d), RSS-210 A8.5	8
5	Band-Edge Compliance of RF Conducted Emissions – FCC 15.247(d), RSS-210 A8.5	9
5.1	Band Edge Test Procedure.....	9
5.2	Test Results	10
5.3	Radiated Band Edge Emissions	12
6	20 dB Bandwidth – FCC 15.247(a)(1), RSS-210 A8.1(a)	13
6.1	20 dB Bandwidth Test Procedure	13
6.2	20 dB Modulated Bandwidth Test Data	13
6.3	20 dB Bandwidth Plots	13
7	Carrier Frequency Separation - 15.247(a)(1), RSS-210 A8.1(b)	16
7.1	Carrier Frequency Separation Test Procedure	16
7.2	Carrier Frequency Separation Test Data	16
8	Hopping Characteristics – FCC 15.247(a)(1)(iii), RSS-210 A8.1(d)	17
8.1	Hopping Characteristics Test Procedure	17
8.2	Number of Hopping Frequencies	17
8.3	Average Time of Occupancy.....	18
9	Radiated Emissions Test Results - FCC Rules and Regulations Part 15.247(d)	20
9.1	Limits of Radiated Emissions Measurement.....	20
9.2	Radiated Emissions Measurement Test Procedure	20
9.2.1	Radiated Emissions Harmonics/Spurious Test Data	21
10	Conclusion	23

Figure Index

Figure 2-1: Configuration of Tested System.....	6
---	---

Table Index

Table 2-1: Channels Tested	5
Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247).....	5
Table 2-3: Equipment Under Test (EUT).....	6
Table 3-1: Power Output Test Data – High Power.....	7
Table 3-2: Power Output Test Equipment.....	7
Table 4-1: Antenna Conducted Spurious Test Equipment.....	8
Table 5-1: Band-Edge Compliance of RF Conducted Emissions Test Equipment	11
Table 5-2: Radiated Band Edge Emissions Test Data	12
Table 5-3: Radiated Band Edge Test Equipment.....	12
Table 6-1: 20 dB Modulated Bandwidth Test Data	13
Table 6-2: 20 dB Bandwidth Test Equipment.....	15
Table 8-1: Hopping Characteristics Test Equipment.....	19
Table 9-1: Radiated Emissions Harmonics/Spurious - 2402 MHz	21
Table 9-2: Radiated Emissions Harmonics/Spurious - 2441 MHz	21
Table 9-3: Radiated Emissions Harmonics/Spurious - 2480 MHz	22
Table 9-4: Radiated Emissions Harmonics/Spurious – Hopping Mode	22
Table 9-5: Radiated Emissions Test Equipment	23

Plot Index

Plot 5-1: Lower Band Edge TX Frequency - 2402 MHz	10
Plot 5-2: Upper Band Edge TX Frequency - 2480 MHz	11
Plot 6-1: 20 dB Bandwidth - 2402 MHz	13
Plot 6-2: 20 dB Bandwidth - 2441 MHz	14
Plot 6-3: 20 dB Bandwidth - 2480 MHz	15
Plot 7-1: Carrier Frequency Separation	16
Plot 8-1: Number of Hopping Frequencies (2402 - 2480 MHz)	17
Plot 8-2: Time of Occupancy (Dwell Time)	18
Plot 8-3: Number of Pulses in 3.16 Second Sweep	19

Appendix Index

Appendix A: Test Photographs	24
------------------------------------	----

Photograph Index

Photograph 1: Radiated Emissions – Front View	24
Photograph 2: Radiated Emissions – Back View.....	25

1 General Information

1.1 Scope

This is an original certification application test report.

Applicable Standards:

- FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz.
- RSS-210 Issue 8: Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

1.2 Description of EUT

Equipment Under Test	136-174 MHz Portable Radio
Model	XG-25P VHF
Power Supply	External 7.5 VDC battery
Modulation Type	FHSS
Frequency Range	2402 – 2480 MHz
Antenna Connector Type	N/A
Antenna Type	External

1.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4-2003).

1.4 Related Submittal(s)/Grant(s)

This is an original certification application for Harris Corporation Model: XG-25P VHF, FCC ID: OWDTR-0072-E, IC: 3636B-0072.

1.5 Modifications

None.

2 Test Information

2.1 Description of Test Modes

In accordance with FCC 15.31(m), and because the EUT utilizes an operating band greater than 10 MHz, the following frequencies were tested:

Table 2-1: Channels Tested

Channel	Frequency
Low	2402
Middle	2441
High	2480

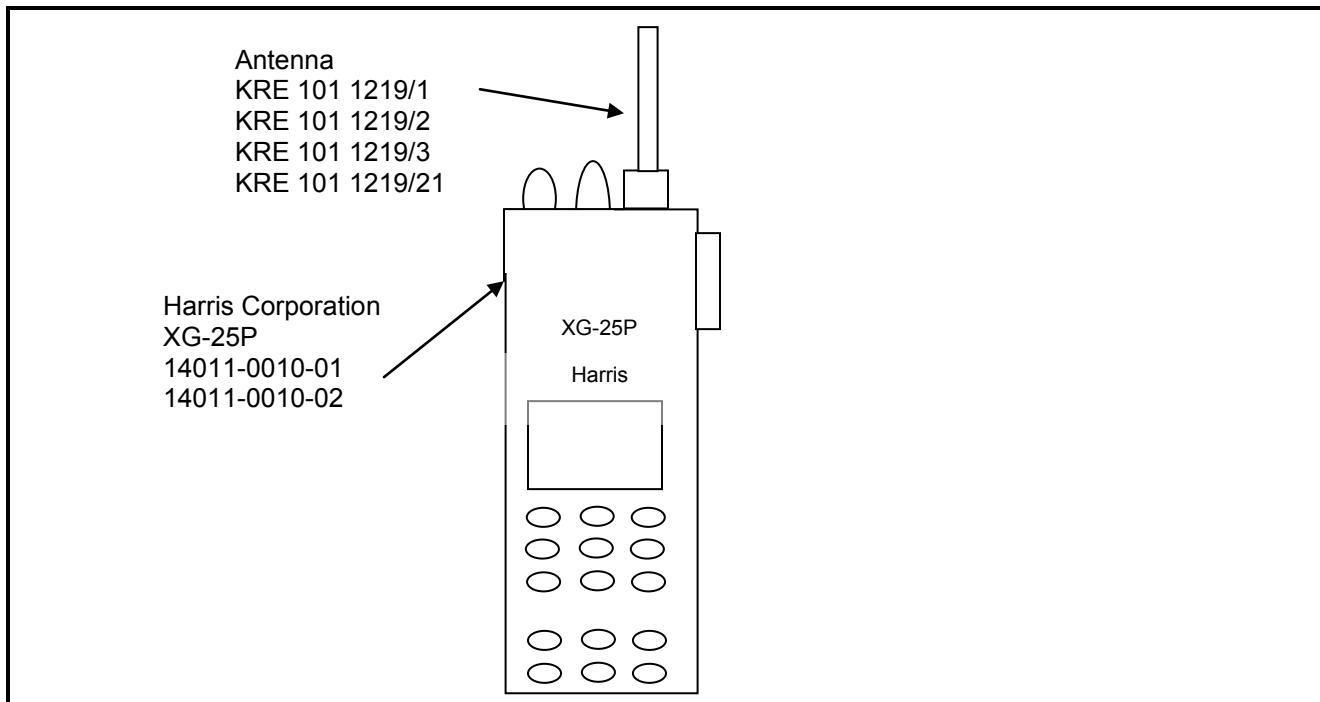
2.2 Exercising the EUT

The EUT was supplied with test software to select various transmit/receive modes (for example, high, mid, and low channel, hopping on/off, etc) for testing, and to continuously transmit during testing. The carrier was also checked to verify that information was being transmitted. There were no deviations from the test standard(s) and/or methods. The test results reported relate only to the item tested. DH5 (SDR) and 3-DH5 (EDR) modes were investigated. Where pertinent, data is presented for the two modes; otherwise, worst-case data is presented.

2.3 Test Result Summary

Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247)

Standard	Test	Pass/Fail or N/A
FCC 15.207	AC Power Conducted Emissions	N/A
FCC 15.209	Radiated Emissions	Pass
FCC 15.247(b)	Maximum Peak Power Output	Pass
FCC 15.247(d)	Antenna Conducted Spurious Emissions	Pass
FCC 15.247(d)	Band Edge Measurement	Pass
FCC 15.247(a)(1)	Carrier Frequency Separation	Pass
FCC 15.247(a)(1)(ii)	20 dB Bandwidth	Pass
FCC 15.247(a)(1)(iii)	Hopping Characteristics	Pass
FCC 15.247(a)(1)(iii)	Average Time of Occupancy	Pass


2.4 Tested System Details

The test sample was received on September 16, 2011. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

Table 2-3: Equipment Under Test (EUT)

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Portable Radio	Harris Corporation	XG-25P VHF (System)	14011-0010-01	OWDTR-0072-E	20278
Portable Radio	Harris Corporation	XG-25P VHF (Scan)	14011-0010-02	OWDTR-0072-E	20277

Figure 2-1: Configuration of Tested System

3 Peak Output Power – FCC 15.247(b)(1), RSS-210 A8.4(2), RSS-Gen 4.8

3.1 Power Output Test Procedure

Procedure: C63.10-2009 6.10

A conducted power measurement of the EUT was taken using an Agilent spectrum analyzer.

3.2 Power Output Test Data

Table 3-1: Power Output Test Data – High Power

Frequency (MHz)	Peak Conducted Power (dBm)
2402	1.5
2441	1.7
2480	2.0

Table 3-2: Power Output Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	GB41050573	1/20/12
901356	Agilent Technologies	E9323A	Power Sensor	31764-264	1/20/12

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

Signature

September 21, 2011
Date of Tests

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Harris Corporation
Model: XG-25P VHF
IDs: OWDTR-0072-E/3636B-0072
Standards: FCC 15.247/IC RSS-210
Report #: 2011143DSS

4 Antenna Conducted Spurious Emissions – FCC 15.247(d), RSS-210 A8.5

Procedure: C63.10-2009 6.7

Low, middle and high channels and hopping mode were investigated at both the lowest and highest operating powers. No spurious emissions were found within 20 dB of the limit; per FCC 15.31(o), no data is being reported (note that we are reporting power as peak).

Table 4-1: Antenna Conducted Spurious Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901413	Agilent Technologies	E4448A	Spectrum Analyzer	US44020346	12/29/12

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

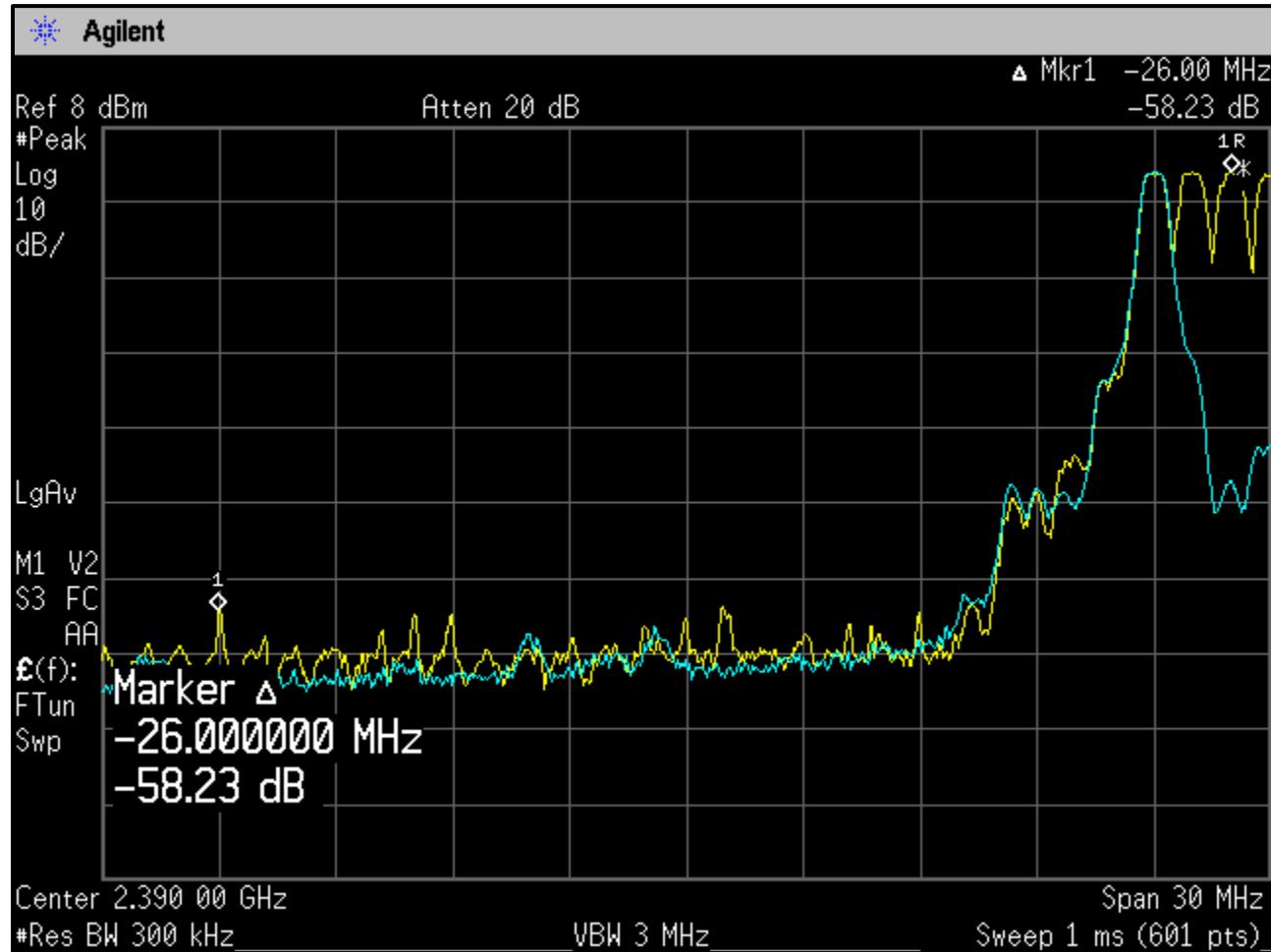
Signature

September 21, 2011
Date of Tests

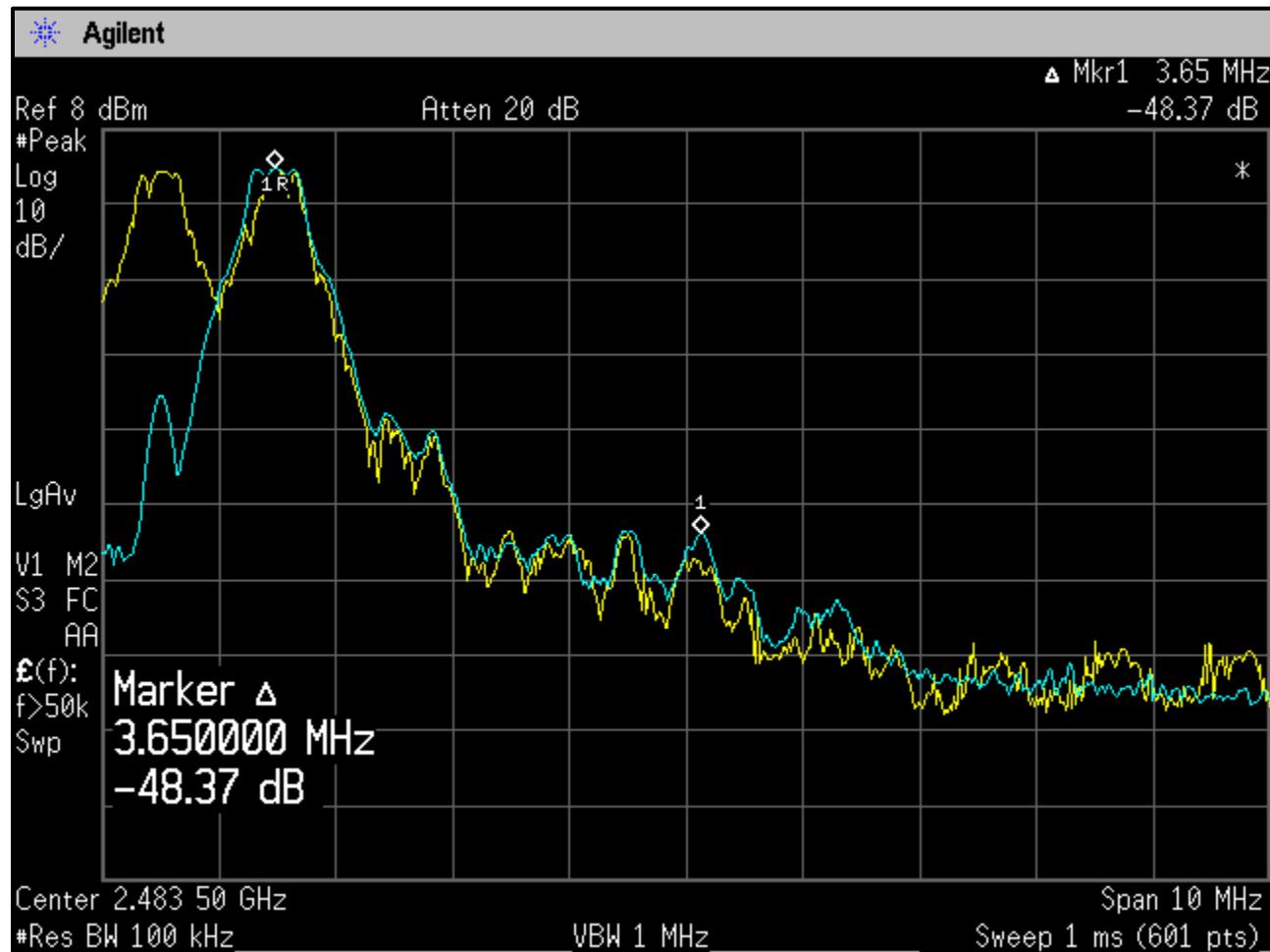
5 Band-Edge Compliance of RF Conducted Emissions – FCC 15.247(d), RSS-210 A8.5

5.1 Band Edge Test Procedure

Procedure: C63.10-2009 6.9.2.4


The EUT was connected to the spectrum analyzer through suitable attenuation. The span was set wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation. The spectrum analyzer was set to the following:

RBW > = 1 MHz
VBW > = 3 MHz
Sweep = auto
Detector function = peak
Trace = max hold


The trace was allowed to stabilize. The marker was set on the emission at the band edge. The marker-delta was used to show the delta between the maximum in-band emission and the emission at the band edge, and was compared to the 20 dBc requirement of 15.247(d) (when using peak emissions). This measurement was taken in both fixed frequency and hopping modes.

5.2 Test Results

Plot 5-1: Lower Band Edge TX Frequency - 2402 MHz

Plot 5-2: Upper Band Edge TX Frequency - 2480 MHz

Table 5-1: Band-Edge Compliance of RF Conducted Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901413	Agilent Technologies	E4448A	Spectrum Analyzer	US44020346	12/29/12

Test Personnel:

Daniel W. Baltzell
 EMC Test Engineer

Signature

September 21, 2011
 Date of Tests

5.3 Radiated Band Edge Emissions

Table 5-2: Radiated Band Edge Emissions Test Data

Frequency (MHz)	Peak Spectrum Analyzer Level (1 MHz RBW/ VBW) (dBuV)	Average Analyzer Detector (1 MHz RBW/ 10 Hz VBW) (dBuV)	Site Correction Factor (dB/m)	Corrected Average Level (dBuV/m)	Delta Measurement From Plots (dB)	Average Limit (dBuV/m)	Margin (dB)
2402.000	78.6	34.9	25.7	60.6	58.2	54.0	-51.6
2480.000	80.0	36.3	25.9	62.2	48.4	54.0	-40.2

Table 5-3: Radiated Band Edge Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901516	Insulated Wire, Inc.	KPS-150.01253-2400-KPS-09302008	RF cable, 20'	NA	10/19/11
901413	Agilent Technologies	E4448A	Spectrum Analyzer	US44020346	12/29/12
900772	EMCO	3161-02	Horn Antenna (2 - 4 GHz)	9804-1044	6/14/12
900886	EMI Shop	WRT000-0003	Turntable OATS	N/A	Not Required
900890	StoneBridge	Fiberglass Dome	OATS1Tent	N/A	Not Required

Test Personnel:

Daniel W. Baltzell
 EMC Test Engineer

Signature

September 27, 2011

Date of Test

6 20 dB Bandwidth – FCC 15.247(a)(1), RSS-210 A8.1(a)

6.1 20 dB Bandwidth Test Procedure

Procedure: C63.10-2009 6.9

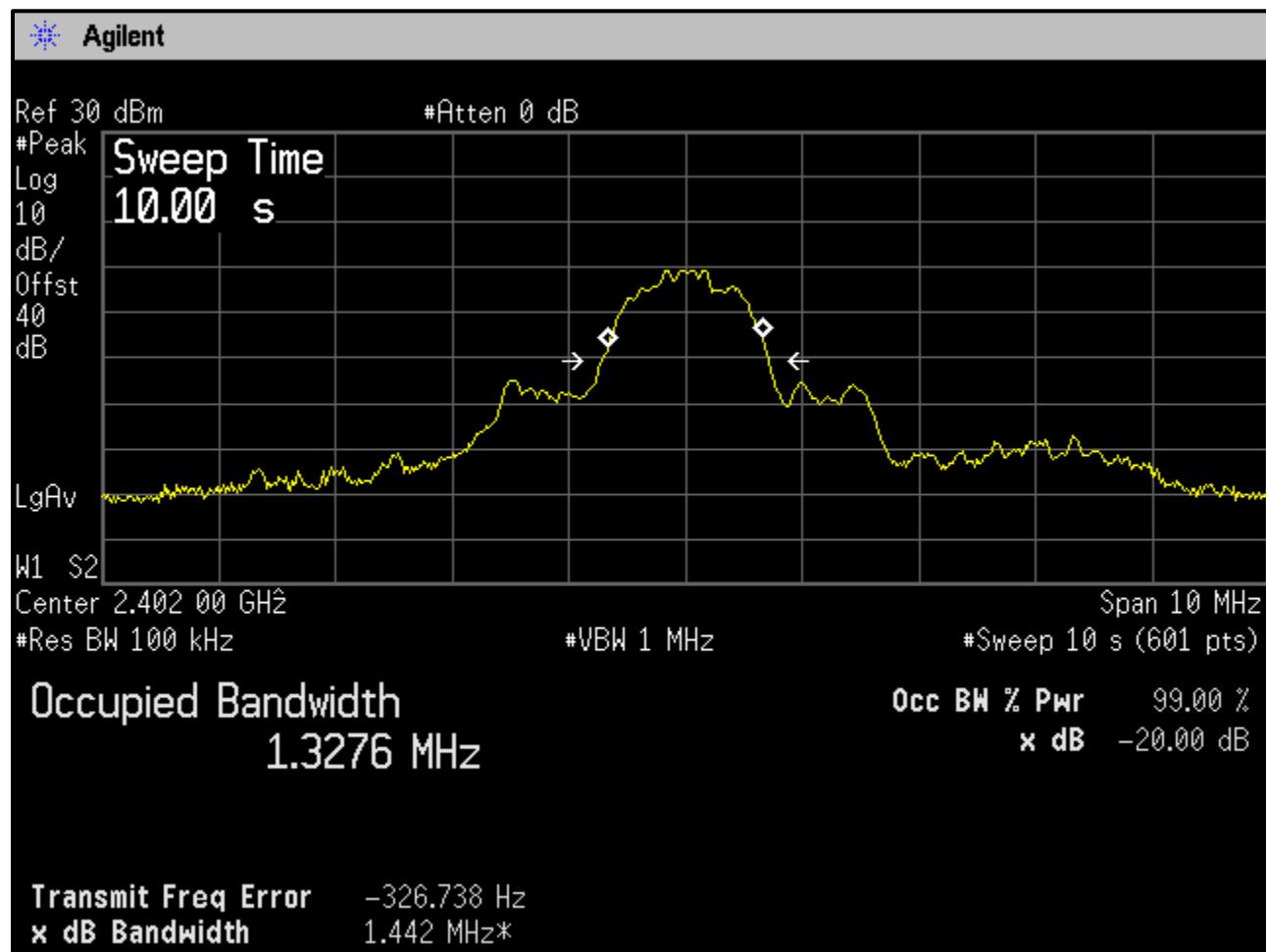
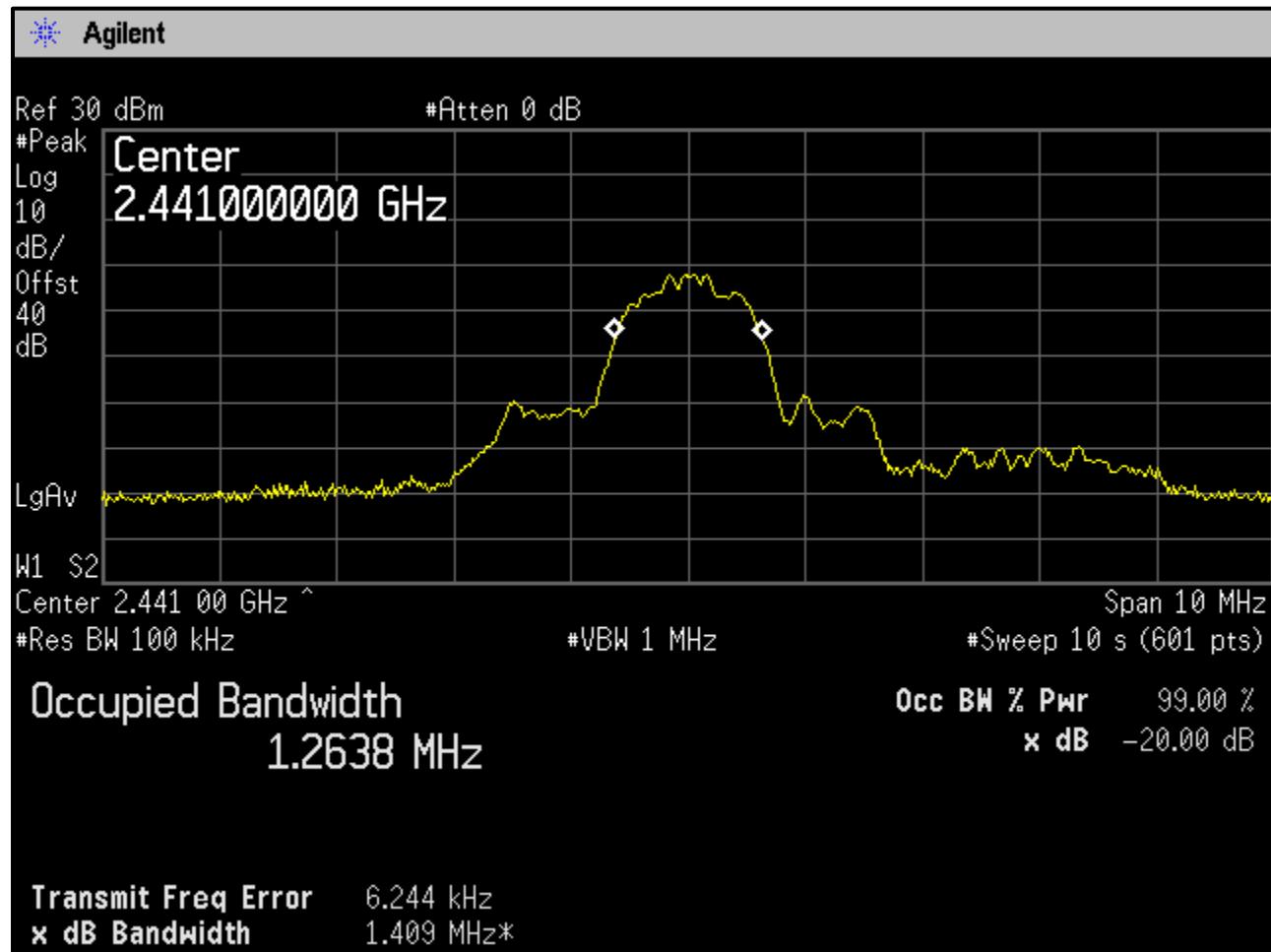

6.2 20 dB Modulated Bandwidth Test Data

Table 6-1: 20 dB Modulated Bandwidth Test Data


Frequency (MHz)	20 dB Bandwidth (kHz)
2402	1.442
2441	1.409
2480	1.395

6.3 20 dB Bandwidth Plots

Plot 6-1: 20 dB Bandwidth - 2402 MHz

Plot 6-2: 20 dB Bandwidth - 2441 MHz

Plot 6-3: 20 dB Bandwidth - 2480 MHz

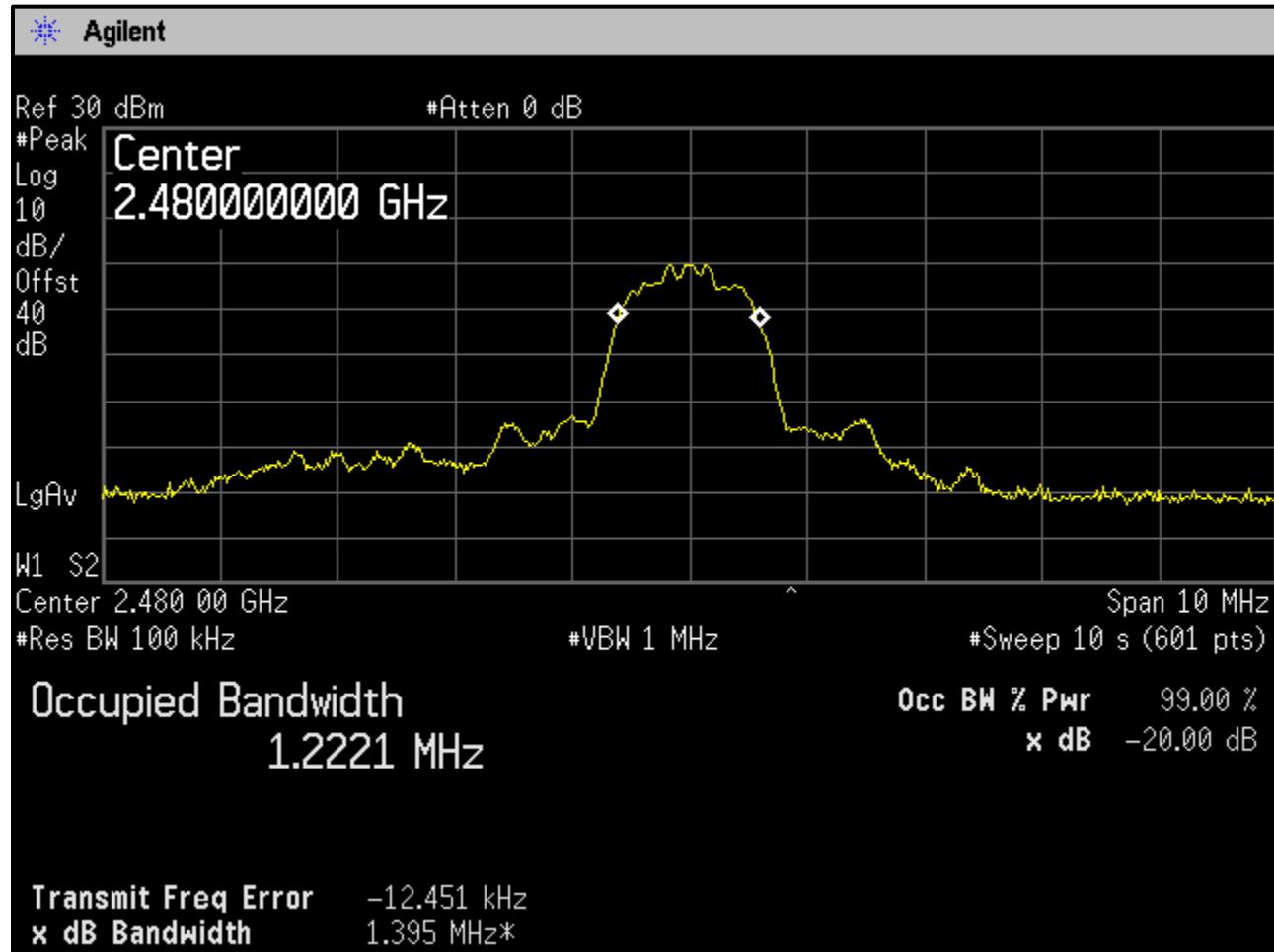


Table 6-2: 20 dB Bandwidth Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901413	Agilent Technologies	E4448A	Spectrum Analyzer	US44020346	12/29/12

Test Personnel:

Daniel W. Baltzell
 EMC Test Engineer

Signature

September 21, 2011
 Date of Tests

7 Carrier Frequency Separation - 15.247(a)(1), RSS-210 A8.1(b)

7.1 Carrier Frequency Separation Test Procedure


Procedure: C63.10-2009 7.7.2

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz, or the 20 dB bandwidth of the hopping channel, whichever is greater.

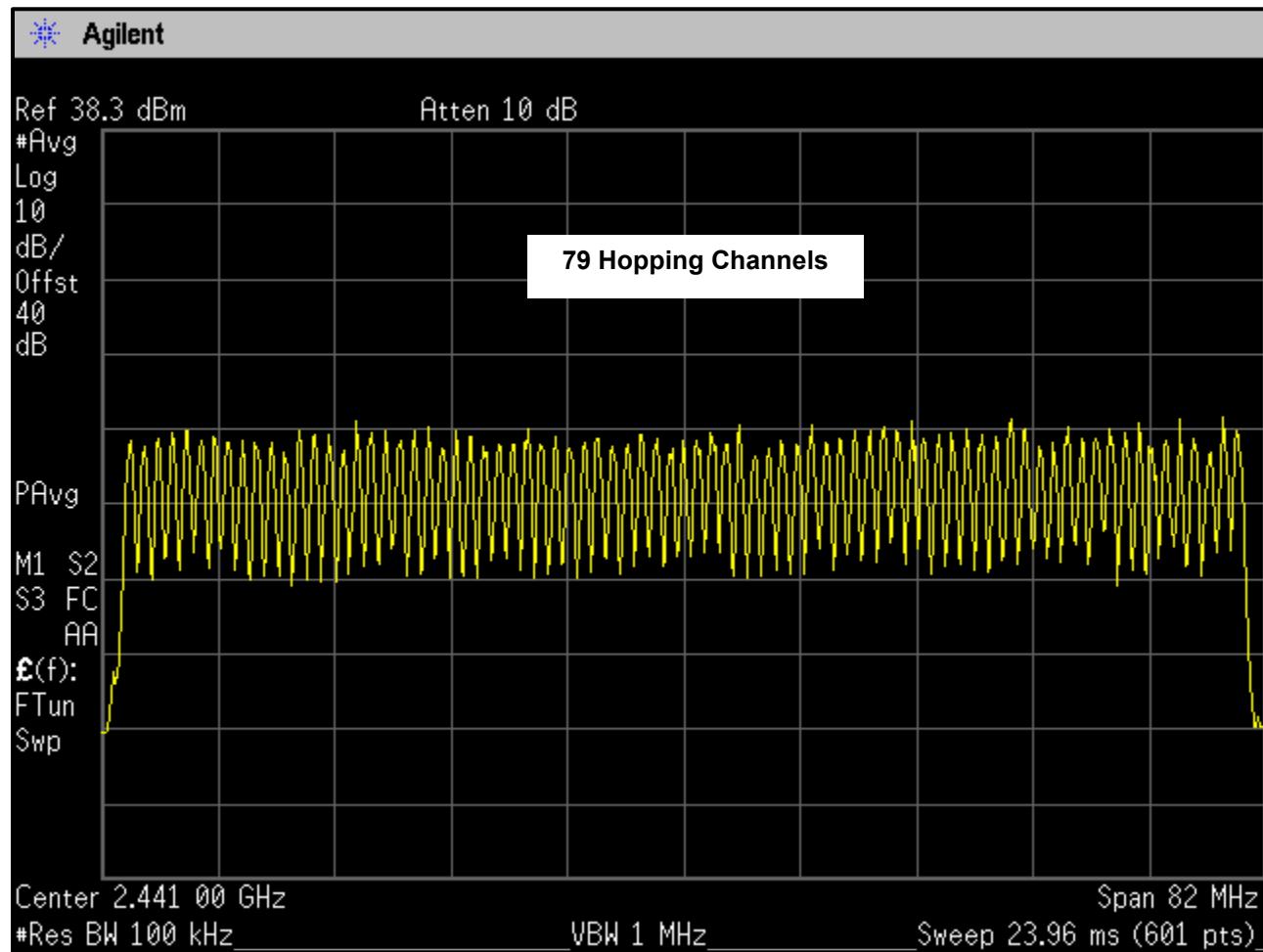
Measured frequency separation = 1.0 MHz

7.2 Carrier Frequency Separation Test Data

Plot 7-1: Carrier Frequency Separation

8 Hopping Characteristics – FCC 15.247(a)(1)(iii), RSS-210 A8.1(d)

8.1 Hopping Characteristics Test Procedure


Procedure: C63.10-2009 7.7.3

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.2 Number of Hopping Frequencies

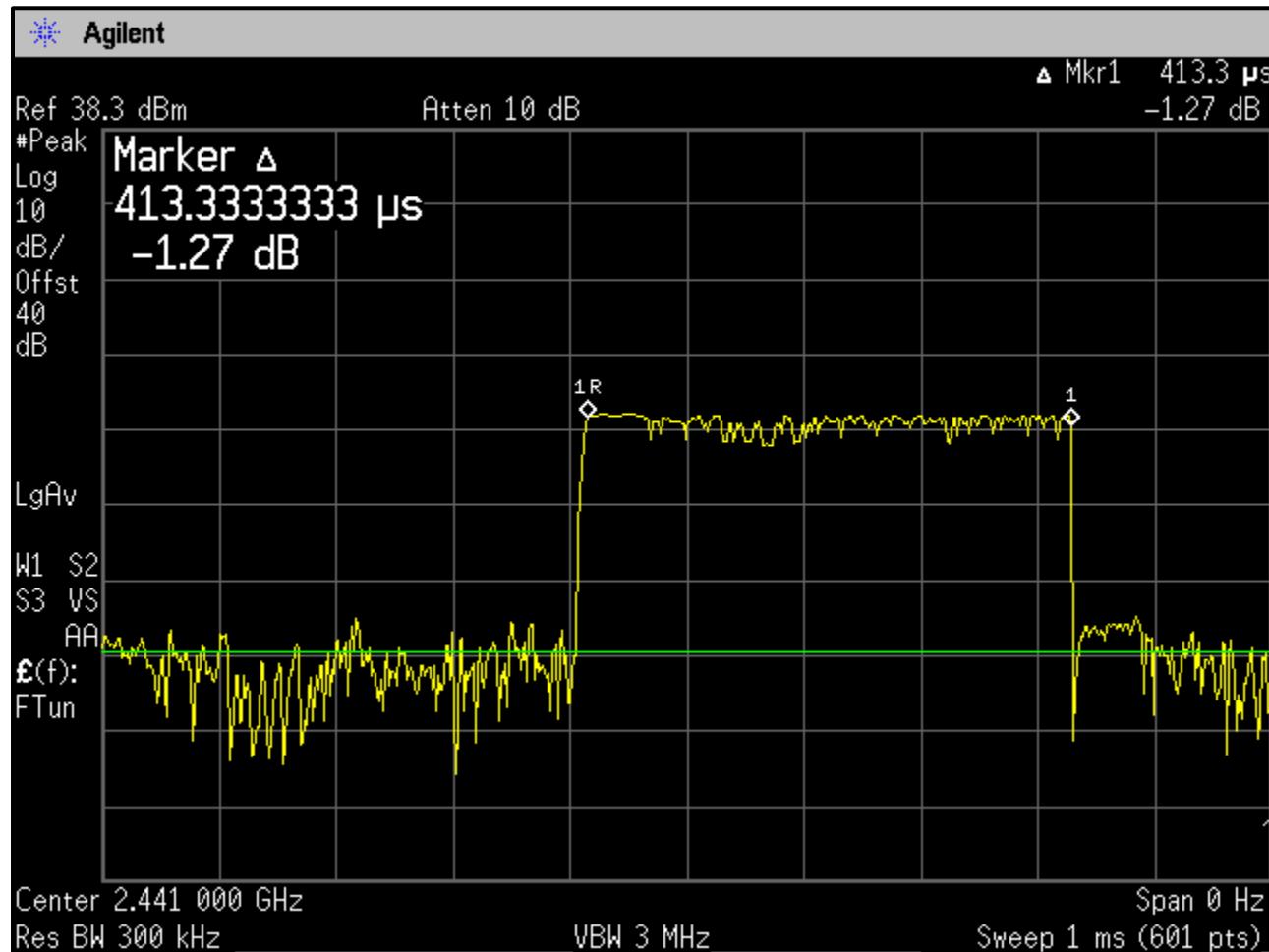
Measured number of hopping frequencies = 79

Plot 8-1: Number of Hopping Frequencies (2402 - 2480 MHz)

8.3 Average Time of Occupancy

Procedure: C63.10-2009 7.7.4

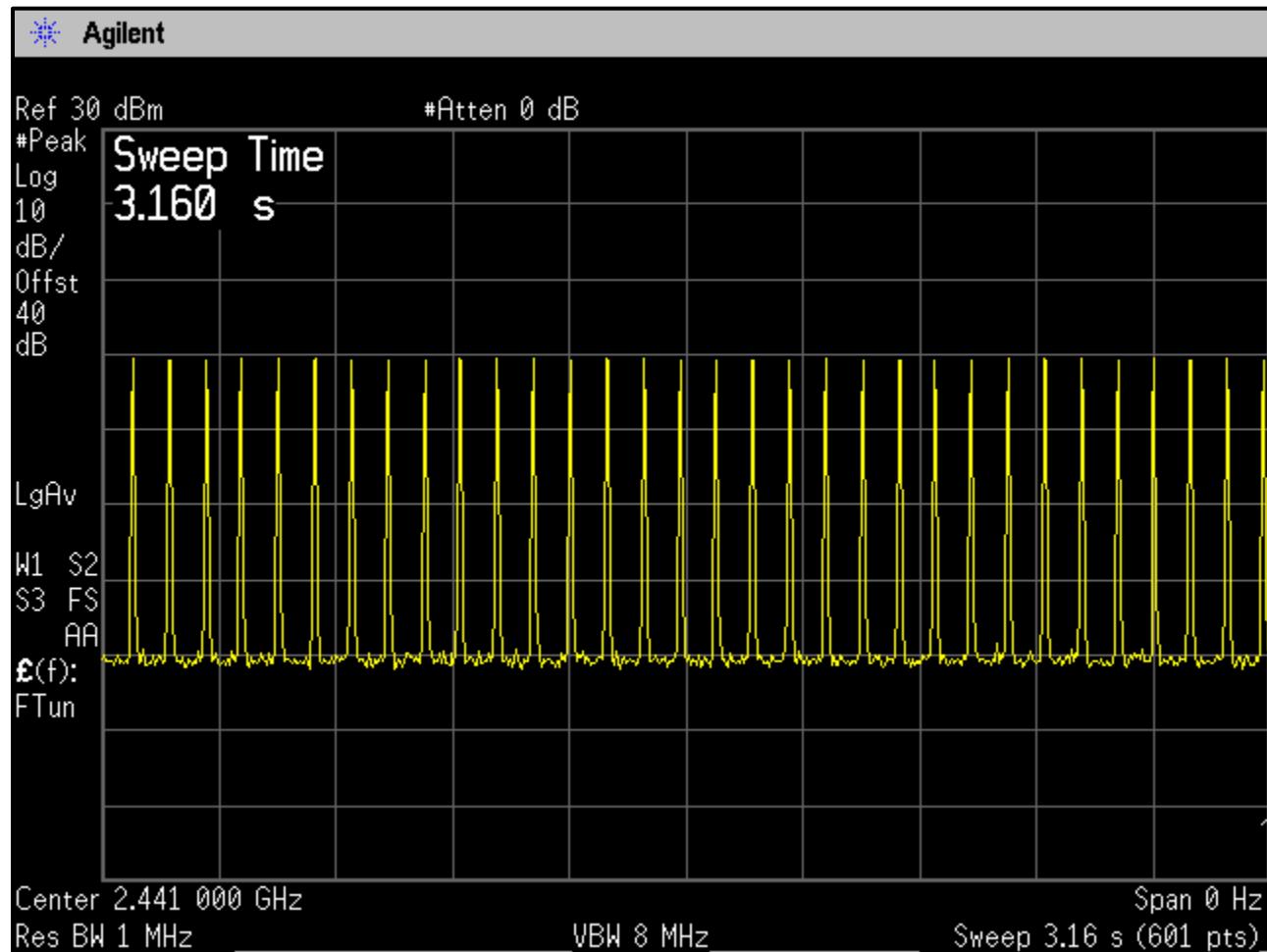
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


Allowed period = 0.4 s X 79 channels = 31.6 s

Pulse width = 0.413 ms

Number of pulses within a 31.6 s sweep = $32 \times 10 = 320$

Average time of occupancy in 31.6 s = $0.413 \text{ ms} \times 320 \text{ pulses} = 0.132 \text{ s}$, which meets the limit of 0.4 s


Plot 8-2: Time of Occupancy (Dwell Time)

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Harris Corporation
Model: XG-25P VHF
IDs: OWDTR-0072-E/3636B-0072
Standards: FCC 15.247/IC RSS-210
Report #: 2011143DSS

Plot 8-3: Number of Pulses in 3.16 Second Sweep

Table 8-1: Hopping Characteristics Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901413	Agilent Technologies	E4448A	Spectrum Analyzer	US44020346	12/29/12

Test Personnel:

Daniel W. Baltzell
EMC Test Engineer

Signature

September 21, 2011

Date of Tests

9 Radiated Emissions Test Results - FCC Rules and Regulations Part 15.247(d)

9.1 Limits of Radiated Emissions Measurement

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009-0.490	2400/f (kHz)	300
0.490-1.705	2400/f (kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any circumstances of modulation.

9.2 Radiated Emissions Measurement Test Procedure

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one and three meter distances. This was done in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to ensure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three/ten-meter, open-field test site. The EUT was placed on a nonconductive turntable 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to the 10th harmonic of the highest fundamental transmitter frequency (24.8 GHz).

At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations. For frequencies between 30 and 1000 MHz, the spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. For emissions above 1000 MHz, emissions are measured using the average detector function with a minimum resolution bandwidth of 1 MHz. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

9.2.1 Radiated Emissions Harmonics/Spurious Test Data

Table 9-1: Radiated Emissions Harmonics/Spurious - 2402 MHz

Emission Frequency (MHz)	Average Analyzer Reading (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4804	32.9	-7.4	25.5	54.0	-28.5
12012	28.6	1.9	30.5	54.0	-23.5
19218	28.2	18.7	46.9	54.0	-7.1

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/ VBW)	Site Correction Factor (dB/m)	Peak Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)
4804	47.6	-7.4	40.2	74.0	-33.8
12012	43.3	1.9	45.2	74.0	-28.8
19218	42.5	18.7	61.2	74.0	-12.8

Table 9-2: Radiated Emissions Harmonics/Spurious - 2441 MHz

Emission Frequency (MHz)	Average Analyzer Reading (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4882	31.9	-7.5	24.4	54.0	-29.6
7323	34.0	-4.3	29.7	54.0	-24.3
12205	28.2	3.8	32.0	54.0	-22.0
19528	29.2	23.4	52.6	54.0	-1.4

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/ VBW)	Site Correction Factor (dB/m)	Peak Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)
4882	47.0	-7.5	39.5	74.0	-34.5
7323	49.6	-4.3	45.3	74.0	-28.7
12205	42.9	3.8	46.7	74.0	-27.3
19528	43.8	23.4	67.2	74.0	-6.8

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Harris Corporation
 Model: XG-25P VHF
 IDs: OWDTR-0072-E/3636B-0072
 Standards: FCC 15.247/IC RSS-210
 Report #: 2011143DSS

Table 9-3: Radiated Emissions Harmonics/Spurious - 2480 MHz

Emission Frequency (MHz)	Average Analyzer Reading (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4960	31.9	-6.9	25	54.0	-29.0
7440	34.0	-4.2	29.8	54.0	-24.2
12400	29.6	6.4	36	54.0	-18.0
19840	30.3	21.0	51.3	54.0	-2.7
22320	18.9	24.4	43.3	54.0	-10.7
24800	19.9	27.0	46.9	54.0	-7.1

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/ VBW)	Site Correction Factor (dB/m)	Peak Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)
4960	45.8	-6.9	38.9	74.0	-35.1
7440	49.5	-4.2	45.3	74.0	-28.7
12400	43.8	6.4	50.2	74.0	-23.8
19840	45.1	21.0	66.1	74.0	-7.9
22320	43.2	24.4	67.6	74.0	-6.4
24800	44.3	27.0	71.3	74.0	-2.7

Table 9-4: Radiated Emissions Harmonics/Spurious – Hopping Mode

Emission Frequency (MHz)	Peak Analyzer Level (dBuV) (1 MHz RBW/ VBW)	Average Analyzer Level (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4805.80	45.6	31.1	13.3	44.4	54.0	-9.6
4905.40	45.2	30.6	13.4	44.0	54.0	-10.0
7256.57	45.4	30.8	12.5	43.3	54.0	-10.7
7268.49	45.3	30.2	12.5	42.7	54.0	-11.3
7314.12	45.7	30.2	12.5	42.7	54.0	-11.3
12345.00	42.6	28.0	18.6	46.6	54.0	-7.4

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Harris Corporation
 Model: XG-25P VHF
 IDs: OWDTR-0072-E/3636B-0072
 Standards: FCC 15.247/IC RSS-210
 Report #: 2011143DSS

Table 9-5: Radiated Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900151	Rohde and Schwarz	HFH2-Z2	Loop Antenna (9 kHz - 30 MHz)	827525/019	10/1/12
901364	MITEQ	JS4-01002600-36-5P	Amplifier 0.1-26 GHz, 28 dB gain, power 5 dB	849863	2/22/12
900878	Rhein Tech Laboratories	AM3-1197-0005	3 meter antenna mast, polarizing	OATS1	N/A
901516	Insulated Wire Inc.	KPS-1503-2400-KPS	RF cable, 20'	NA	10/19/11
901517	Insulated Wire Inc.	KPS-1503-360-KPS	RF cable 36"	NA	10/19/11
901242	Rhein Tech Laboratories	WRT-000-0003	Wood rotating table	N/A	N/A
901413	Agilent Technologies	E4448A	Spectrum Analyzer	US44020346	12/29/12
900791	Chase	CBL6111B	Bilog Antenna (30 MHz – 2000 MHz)	N/A	1/31/13
900321	EMCO	3161-03	Horn Antennas (4 – 8 GHz)	9508-1020	6/14/12
900323	EMCO	3160-07	Horn Antennas (8.2 – 12 GHz)	9605-1054	6/14/12
900356	EMCO	3160-08	Horn Antennas (12.4 – 18 GHz)	9607-1044	6/14/12
901218	EMCO	3160-09	Horn Antenna (18 - 26 GHz)	960281-003	6/19/12
900772	EMCO	3161-02	Horn Antenna (2 - 4 GHz)	9804-1044	6/14/12

Test Personnel:

Daniel W. Baltzell
 EMC Test Engineer

Signature

September 27, 2011
 Date of Test

10 Conclusion

The data in this measurement report shows that the **Harris Corporation Model XG-25P VHF, FCC ID: OWDTR-0072-E, IC: 3636B-0072**, complies with all the applicable requirements of FCC Part 15 and Part 2, and IC RSS-210.