

Transmit Frequency Range(s)

Antenna Type(s) Tested

Battery Type(s) Tested

Body-worn Accessories Tested

Audio Accessories Tested

Max. SAR Level(s) Evaluated (SCAN Radio Model Variant)

FCC/IC Spatial Peak SAR Limit

Manufacturer's Rated Output Power

<u>Da</u>	<u>ate(</u>	<u>s) (</u>	of Ev	alua	<u>ition</u>
Jul.	05-	11,	Aug	. 24,	2011

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

851-869 MHz

Gain Spec.: 0 dBi

Gain Spec.: 0 dBi

7.5V, 2400 mAh

7.5V, 2400 mAh

7.4V, 2000 mAh

Gain Spec.: 2.5 dBi

Manuf. Upper Tolerance Spec.

50% PTT duty cycle

50% PTT duty cycle

50% PTT duty cycle

+ 0.23 Watts

Length: 100mm

Length: 175mm

Length: 83mm

BT-023406-003

BT-023406-004

BT-023406-005

Occupational / Controlled Exp.

Occupational / Controlled Exp.

Occupational / Controlled Exp.

DECLARATION OF COMPLIANCE - SAR RF EXPOSURE EVALUATION - FCC & IC C2PC CELLTECH LABS INC. Name **Test Lab Information Address** 21-364 Lougheed Road, Kelowna, B.C. V1X 7R8 Canada A2LA ISO/IEC 17025:2005 (A2LA Test Lab Certificate No. 2470.01) Test Lab Accreditation(s) Name HARRIS CORPORATION **Applicant Information Address** 221 Jefferson Ridge Parkway, Lynchburg, VA 24501 U.S.A. **FCC** IC Standard(s) Applied 47 CFR §2.1093 Health Canada Safety Code 6 FCC **FCC** OET Bulletin 65, Supplement C KDB 447498 D01v04 FCC Procedure(s) Applied **FCC** KDB 643646 D01v01r01 KDB Inquiry #538279, #235657 IC RSS-102 Issue 4 IEEE 1528-2003 62209-2:2010 **FCC** Licensed Non-Broadcast Transmitter Held to Face (TNF) - FCC Part 90 **Device Classification(s)** IC Land Mobile Radio Transmitter/Receiver (27.41-960 MHz) - RSS-119 FCC ID: OWDTR-0066-E **Class II Permissive Change Device Identifier(s) Application Type** 3636B-0066 Add P5500 800 Scan Model IC **Date of Sample Receipt** July 04, 2011 **Dates of Evaluation** July 05-11, August 24, 2011 **Device Description** Portable 800-Band Digital Push-To-Talk (PTT) Radio Transceiver 800 MHz P5500 (SYSTEM model with DTMF) P/N: RU-123550-006 (Original Certification) 800 MHz P5300 (SYSTEM model with DTMF) P/N: RU-123550-008 (color difference only) Device Model(s) 800 MHz P5500 (SCAN model without DTMF) P/N: RU-123550-005 (Class II Perm. Change) 800 MHz P5300 (SCAN model without DTMF) P/N: RU-123550-007 (color difference only) **Device Model(s) Tested** 800 MHz P5500 (SCAN model without DTMF) S/N: Re-8T-003 (Identical Prototype) **Test Sample Revision No.s** Hardware TMS-1 Firmware R14B01

P/N: KRE 101 1223/01

P/N: KRE 101 506/1

P/N: KRE 101 506/2

Immersible, non-IS

Immersible, <IS>

Immersible, non-IS

1g

1g

1g

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada Safety Code 6 for the Occupational / Controlled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 4, IEEE Standard 1528-2003 and IEC International Standard 62209-2:2010. All measurements were performed in accordance with the SAR system manufacturer recommendations.

See manufacturer's accessory listing (Section 7.0)

See manufacturer's accessory listing (Section 7.0)

2.16 W/kg

2.89 W/kg

8.0 W/kg

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

FCC/IC

(1) 1/4-wave Whip

(3) 1/4-wave Whip

(2) High-Gain

Face-held

Body-worn

Head/Body

Ni-MH

Ni-MH

Li-lon

806-824 MHz

3 Watts Nominal (Conducted)

The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By Sean Johnston Lab Manager Celltech Labs Inc.

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	6-E IC: 3636B-0066		HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	m P5500 800 Scan	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 1 of 109		

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	4
4.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ)	5
5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	5
6.0 NO. OF TEST CHANNELS (Nc)	5
7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING	6
8.0 FLUID DIELECTRIC PARAMETERS	8
FLUID DIELECTRIC PARAMETERS (CONT.)	
FLUID DIELECTRIC PARAMETERS (CONT.)	10
FLUID DIELECTRIC PARAMETERS (CONT.)	11
9.0 TEST REDUCTION PROCEDURES FOR SYSTEM MODEL (FCC KDB 643646)	12
10.0 TEST REDUCTION PROCEDURES FOR SCAN MODEL (FCC KDB INQ. 235657)	13
11.0 SAR MEASUREMENT SUMMARY	
SAR MEASUREMENT SUMMARY (CONT.)	15
SAR MEASUREMENT SUMMARY (CONT.)	16
SAR MEASUREMENT SUMMARY (CONT.)	17
SAR MEASUREMENT SUMMARY (CONT.)	18
SAR MEASUREMENT SUMMARY (CONT.)	
SAR MEASUREMENT SUMMARY (CONT.)	20
12.0 SAR SCALING (TUNE-UP TOLERANCE)	21
	22
14.0 SAR EVALUATION PROCEDURES	
15.0 SYSTEM PERFORMANCE CHECK	
16.0 SIMULATED EQUIVALENT TISSUES	24
	24
18.0 ROBOT SYSTEM SPECIFICATIONS	
19.0 PROBE SPECIFICATION (ET3DV6)	26
20.0 SAM TWIN PHANTOM V4.0C	26
21.0 SIDE PLANAR PHANTOM	26
22.0 BARSKI PLANAR PHANTOM	26
23.0 DEVICE HOLDER	27
24.0 TEST EQUIPMENT LIST	27
25.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION	
26.0 MEASUREMENT UNCERTAINTIES	
27.0 REFERENCES	
APPENDIX A - SAR MEASUREMENT DATA	
APPENDIX B - SYSTEM PERFORMANCE CHECK	
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	
APPENDIX E - DIPOLE CALIBRATION	
APPENDIX F - PROBE CALIBRATION	106
APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY	
APPENDIX H - SAM TWIN PHANTOM CERTIFICATE OF CONFORMITY	
APPENDIX I - AUDIO ACCESSORY COMBINATIONS (FCC KDB 643646 D01V01R01)	109

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:	3636B-0066		HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	dio Transcei	ver	Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 2 of 109				

<u>Test Report Issue Date</u> October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

	REVISION HISTORY							
REVISION NO.	REVISION NO. DESCRIPTION IMPLEMENTED BY RELEASE DATE							
1.0	1.0 Initial Release Jon Hughes October 07, 2011							

TEST REPORT SIGN-OFF							
DEVICE TESTED BY REPORT PREPARED BY QA REVIEW BY REPORT APPROVED BY							
Mike Meaker Cheri Frangiadakis Jon Hughes Sean Johnston							

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:	3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500	800 Syste	m P5500 800 Scan	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 3 of 109		

<u>Test Report Issue Date</u> October 07, 2011 <u>Test Report Serial No.</u> 070411OWD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the HARRIS Corporation Model: P5500 (800) Portable 800-Band PTT Radio Transceiver (Scan model variant) complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [3]), IC RSS-102 Issue 4 (see reference [4]) and IEEE Standard 1528-2003 (see reference [5]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

MEASURED RE	MEASURED RF CONDUCTED OUTPUT POWER LEVELS (SYSTEM & SCAN MODELS)									
Test Freq. (MHz)	Freq. Band	Mode	dBm	Watts	Method					
806.0125	806-824 MHz	CW	35.0	3.16	Average Conducted					
823.9875	806-824 MHz	CW	35.0	3.16	Average Conducted					
851.0125	851-869 MHz	CW	35.0	3.16	Average Conducted					
868.9875	851-869 MHz	CW	35.0	3.16	Average Conducted					

Notes

- 1. The test channels were selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [8]).
- 2. The RF conducted output power levels of the DUT were measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with FCC 47 CFR \$2.1046 (see reference [14]) and IC RSS-Gen (see reference [15]).

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Portal	ble 800-Band PTT Ra	dio Transcei	iver	Models:	P5500	800 Syste	m	P5500 800 Scan	,
2011 Celltech La	011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 4 of 109			

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

4.0 FCC POWER THRESHOLDS FOR PTT DEVICES ($f \le 0.5 \text{ GHz}$)

FCC SAR Evalua	FCC SAR Evaluation Power Thresholds for PTT Devices, $f \le 0.5 \text{ GHz}^{^{\star}}$								
Exposure Conditions									
Held to face, <i>d</i> ≥ 2.5 cm	250	1250							
Body-worn, d ≥ 1.5 cm	200	1000							
Body-worn, <i>d</i> ≥ 1.0 cm	150	750							

- 1. The time-averaged output power, corresponding to the required PTT duty factor, is compared with these thresholds.
- 2. The closest distance between the user and the device or its antenna is used to determine the power thresholds.
- * Per FCC KDB 447498 D01v04 Section 5)b)i) (see reference [8]).

Note: The thresholds specified in the above table do not apply to this 800 MHz band radio ($f \ge 0.5$ GHz). The output power threshold of $\ge 60/f_{\rm (GHz)}$ mW specified in FCC KDB 447498 (see reference [8]) was applied.

5.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within \pm 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within \pm 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, \pm 25 MHz < 300 MHz and \pm 50 MHz \geq 300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [10]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+50</u> MHz <u>></u> 300 MHz
	806.0125 MHz	29 MHz	< 50 MHz
835 MHz	823.9875 MHz	11 MHz	< 50 MHz
033 1411 12	851.0125 MHz	16 MHz	< 50 MHz
	868.9875 MHz	34 MHz	< 50 MHz

Note: The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps were not required.

6.0 NO. OF TEST CHANNELS (N_c)

A	Antenna Part No.	Antenna Type	Test Freq. Range	Band	N _c	Test Frequencies (MHz)
(1)	KRE 101 1223/01	1/4-wave Whip	806.0125 - 868.9875 MHz	FCC/IC	4	806.0125, 823.9875, 851.0125, 868.9875
(2)	KRE 101 506/1	High-Gain	806.0125 - 868.9875 MHz	FCC/IC	4	806.0125, 823.9875, 851.0125, 868.9875
(3)	KRE 101 506/2	1/4-wave Whip	806.0125 - 868.9875 MHz	FCC/IC	4	806.0125, 823.9875, 851.0125, 868.9875

Note: The number of test channels (*Nc*) were calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [8]).

Applicant:	HAF	RRIS Corporation	FCC ID:	FCC ID: OWDTR-0066-E		IC:	3636B-0066	HARRIS	
DUT Type:	Porta	able 800-Band PTT Radio Transceiver			Models:	P5500 800 System		m P5500 800 Scan	
2011 Celltech La	ech Labs Inc. This document is not to be reproduced in who					out the prio	r written perr	mission of Celltech Labs Inc.	Page 5 of 109

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

Accessory ID #	ACCESSORY CATEGORY:	ANTENNA						
for Test Report	Part Number	Description						
1	KRE 101 1223/01	1/4-wave whip						
2	KRE 101 1506/1	High gain, flexible construction						
3	KRE 101 1506/2	1/4 wave whip, wide bandwidth						
Accessory ID#	ACCESSORY CATEGORY: E	BATTERY						
for Test Report	Part Number	Description						
а	BT-023406-003	Ni-MH, immersible, non-IS (7.5V, 2400mAl	n)					
b	BT-023406-004	Ni-MH, immersible, <is> (7.5V, 2400mAh)</is>						
С	BT-023406-005	Li-Ion, immersible, non-IS (7.4V, 2000mAh)					
n/a*	BT-023406-103	Ni-MH, immersible, Goldpeak cells, non-IS	(7.5V, 2400mAh)					
Accessory ID#	ACCESSORY CATEGORY: E	BODY-WORN						
for Test Report	Part Number	Description						
1***	CC-023931-003 (kit) KRY 101 1609/1 (belt loop)	Kit contains (CC-023931-001 Leather Case w/o D-rings, FM-011820 elastic strap, KRY1011608/2 swivel mount), used with KRY 101 1609/1 Belt Loop						
2	CC-023931-004 (kit) KRY 101 1609/1 (belt loop)	Kit contains (CC-023931-002 Leather Case w/ D-rings, FM-011820 elastic strap, KRY1011608/2 swivel mount), used with KRY 101 1609/1 Belt Loop						
3	CC-023931-002 FM-011820 CC103333V1	CC-023931-002 Leather Case w/ D-rings + FM-011820 elastic strap, used with CC103333V1 Shoulder Strap						
4	KRY 101 1608/2 KRY 101 1609/1	Swivel Mount & Belt Loop						
5***	CC-023932-001 KRY 101 1609/1	Nylon Case (black) w/ Belt Loop						
n/a	CC-023932-002 ** KRY 101 1609/1	Nylon Case (orange) w/ Belt Loop						
6	CC23894	Metal Belt Clip						
7	CC-014534-002	Kit containing CC-014534-001 BEE Nylon Leather Belt Loop	Case (black) & CC-014527 BEE					
8	CC-014528-003	Kit containing CC-014528-001 BEE Leathe KRY1011608/2 swivel mount, and CC-014						
9***	CC-014528-004	Kit containing CC-014528-002 BEE Leather KRY1011608/2 swivel mount, and CC-014						
n/a	CC-014524-002	BEE Short Leather Retaining Strap						
Accessory ID#	ACCESSORY CATEGORY: A	AUDIO						
for Test Report	Part Number	Description	Audio Accessory Grouping					
G7a	MC-023933-001	Speaker-Mic, No Ant. (cc), <is></is>	Group 7					
n/a	MC-023933-002	Speaker-Mic, W/ Ant. (cc) provision, <is> n/a (contains integral antenna)</is>						
G7b	MC-009104-002	Speaker-Mic, GPS, non-IS	Group 7					
n/a	LS103239V1	Earphone for speaker-mic <is></is>	n/a (accessory to Group 7)					
G7c	MC-011617-601	Ruggedized Speaker Mic-Coil Cord	Group 7					
G7d	MC-011617-701	Standard Speaker Mic - Non Ant Group 7						
G12a	EA-009580-001	Earphone Kit, Black	Group 12					

Applicant:	HAF	RRIS Corporation	FCC ID: OWDTR-0066-E		6-E	IC:		3636B-0066	HARRIS	
DUT Type:	Porta	rtable 800-Band PTT Radio Transceiver			Models:	P5500 800 System		m	P5500 800 Scan	
2011 Celltech La	ibs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 6 of 109		

Date(s) of Evaluation	Test Report Serial No.
Jul. 05-11, Aug. 24, 2011	0704110WD-T1108S-C2PC
Test Report Issue Date	Description of Test(s)

October 07, 2011

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

G12b****	EA-009580-002	Earphone Kit, Beige	Group 12
G8a	EA-009580-003	2-Wire Kit, Palm mic, Black	Group 8
G8b****	EA-009580-004	2-Wire Kit, Palm mic, Beige	Group 8
G9a	EA-009580-005	3-Wire Kit, Mini-Lapel Mic, Black	Group 9
G9b****	EA-009580-006	3-Wire Kit, Mini-Lapel Mic, Beige	Group 9
G4	EA-009580-007	Explorer Headset w/ PTT	Group 4
G2	EA-009580-008	Lightweight headset single spkr w/ PTT	Group 2
G3a	EA-009580-009	Breeze Headset w/ PTT	Group 3
G1a	EA-009580-010	Headset, heavy duty, N/C behind the head, w/ PTT	Group 1
G5	EA-009580-011	Ranger Headset w/ PTT	Group 5
G10	EA-009580-012	Skull mic w/body PTT & earcup	Group 10
G1b	EA-009580-013	Headset, heavy duty, N/C over the head, w/ PTT	Group 1
G11a	EA-009580-014	Throat mic w/acoustic tube & body PTT	Group 11
G11b	EA-009580-015	Throat mic w/acoustic tube, body PTT, & ring PTT	Group 11
G3b	EA-009580-016	Breeze headset w/ PTT & pigtail jack	Group 3
G6a	EA-009580-017	Hurricane headset w/ PTT	Group 6
G6b	EA-009580-018	Hurricane headset w/ PTT & pigtail jack	Group 6

Specific Absorption Rate

Manufacturer's disclosed accessory listing information provided by HARRIS Corporation

Applicant:	HAF	RRIS Corporation	FCC ID: OWDTR-006		6-E IC:			3636B-0066	HARRIS	
DUT Type:	Porta	rtable 800-Band PTT Radio Transceiver			Models:	P5500 800 System		m	P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 7 of 109		

^{*} BT-023406-103 does not need to be explicitly tested for SAR since the Goldpeak cells have the same physical form factor as the Sanyo cells used in the BT-023406-003.

^{**} The orange nylon case does not have to be explicitly tested for SAR due to physical similarity to the black case.

^{***} Body-worn accessories 1, 5 and 9 were not tested due to their physical similarity to accessories 8, 7 and 3 respectively. Preliminary SAR evaluations were performed to determine the worst case between each similar accessory, which was then selected for the compliance evaluations.

^{****} Audio accessories G8b, G9b and G12b were not tested as they differ only in color to G8a, G9a and G12a respectively.

<u>Test Report Issue Date</u> October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

8.0 FLUID DIELECTRIC PARAMETERS

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 07/	05/2011	Freq	uency: 835	MHz	Tissu	e: Head
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	44.07	0.79	41.5	0.9	6.19%	-12.22%
0.745	43.88	0.8	41.5	0.9	5.73%	-11.11%
0.755	43.74	0.81	41.5	0.9	5.40%	-10.00%
0.765	43.75	0.82	41.5	0.9	5.42%	-8.89%
0.775	43.62	0.84	41.5	0.9	5.11%	-6.67%
0.785	43.27	0.85	41.5	0.9	4.27%	-5.56%
0.795	43.38	0.86	41.5	0.9	4.53%	-4.44%
0.805	43.22	0.86	41.5	0.9	4.14%	-4.44%
0.815	42.9	0.87	41.5	0.9	3.37%	-3.33%
0.824*	43	0.888	41.5	0.9	3.61%	-1.33%
0.825	43	0.89	41.5	0.9	3.61%	-1.11%
0.835	43.35	0.9	41.5	0.9	4.46%	0.00%
0.845	42.73	0.91	41.5	0.9	2.96%	1.11%
0.855	42.59	0.91	41.5	0.9	2.63%	1.11%
0.865	42.61	0.92	41.5	0.9	2.67%	2.22%
0.869*	42.5	0.92	41.5	0.9	2.41%	2.22%
0.875	42.43	0.92	41.5	0.9	2.24%	2.22%
0.885	42.32	0.95	41.5	0.9	1.98%	5.56%
0.895	42.35	0.96	41.5	0.9	2.05%	6.67%
0.905	41.8	0.97	41.5	0.9	0.72%	7.78%
0.915	42.07	0.98	41.5	0.9	1.37%	8.89%
0.925	41.93	0.98	41.5	0.9	1.04%	8.89%
0.935	41.9	1	41.5	0.9	0.96%	11.11%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
July 5	835	24.0°C	23.2°C	≥ 15 cm	101.1 kPa	29%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:	: OWDTR-0066-E		6-E	IC:		3636B-0066	HARRIS	
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	Models:	P5500 800 System		m	P5500 800 Scan	,		
2011 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 8 of 109				

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

FLUID DIELECTRIC PARAMETERS (CONT.)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 07/	08/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	55.22	0.88	55.2	0.97	0.04%	-9.28%
0.745	55.1	0.87	55.2	0.97	-0.18%	-10.31%
0.755	55.29	0.88	55.2	0.97	0.16%	-9.28%
0.765	55.09	0.89	55.2	0.97	-0.20%	-8.25%
0.775	54.82	0.91	55.2	0.97	-0.69%	-6.19%
0.785	54.79	0.91	55.2	0.97	-0.74%	-6.19%
0.795	54.92	0.94	55.2	0.97	-0.51%	-3.09%
0.805	54.79	0.94	55.2	0.97	-0.74%	-3.09%
0.815	54.87	0.94	55.2	0.97	-0.60%	-3.09%
0.824*	54.6	0.967	55.2	0.97	-1.09%	-0.31%
0.825	54.63	0.97	55.2	0.97	-1.03%	0.00%
0.835	54.54	0.97	55.2	0.97	-1.20%	0.00%
0.845	54.41	0.99	55.2	0.97	-1.43%	2.06%
0.855	54.33	1	55.2	0.97	-1.58%	3.09%
0.865	54.29	1	55.2	0.97	-1.65%	3.09%
0.869*	54.2	1	55.2	0.97	-1.81%	3.09%
0.875	54.11	1.01	55.2	0.97	-1.97%	4.12%
0.885	53.81	1.04	55.2	0.97	-2.52%	7.22%
0.895	54.16	1.03	55.2	0.97	-1.88%	6.19%
0.905	53.66	1.05	55.2	0.97	-2.79%	8.25%
0.915	53.35	1.06	55.2	0.97	-3.35%	9.28%
0.925	53.46	1.05	55.2	0.97	-3.15%	8.25%
0.935	53.54	1.07	55.2	0.97	-3.01%	10.31%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
July 8	835	22.0°C	21.0°C	≥ 15 cm	101.1 kPa	30%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:	FCC ID: OWDTR-0066		6-E	IC:	3636B-0	066	HARRIS
DUT Type:	Porta	able 800-Band PTT Radio Transceiver			Models:	P5500 800 System I		m P5500 80	00 Scan	
2011 Celltech La	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 9 of 109		

<u>Test Report Issue Date</u> October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

FLUID DIELECTRIC PARAMETERS (CONT.)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 07/	11/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	55.58	0.87	55.2	0.97	0.69%	-10.31%
0.745	55.24	0.88	55.2	0.97	0.07%	-9.28%
0.755	55.02	0.89	55.2	0.97	-0.33%	-8.25%
0.765	54.89	0.9	55.2	0.97	-0.56%	-7.22%
0.775	54.84	0.9	55.2	0.97	-0.65%	-7.22%
0.785	54.99	0.93	55.2	0.97	-0.38%	-4.12%
0.795	54.78	0.94	55.2	0.97	-0.76%	-3.09%
0.805	54.51	0.95	55.2	0.97	-1.25%	-2.06%
0.815	54.64	0.95	55.2	0.97	-1.01%	-2.06%
0.824*	54.4	0.968	55.2	0.97	-1.45%	-0.21%
0.825	54.33	0.97	55.2	0.97	-1.58%	0.00%
0.835	54.53	0.97	55.2	0.97	-1.21%	0.00%
0.845	54.1	0.99	55.2	0.97	-1.99%	2.06%
0.855	54.19	0.99	55.2	0.97	-1.83%	2.06%
0.865	53.99	1	55.2	0.97	-2.19%	3.09%
0.869*	53.9	1	55.2	0.97	-2.36%	3.09%
0.875	53.67	1	55.2	0.97	-2.77%	3.09%
0.885	53.72	1.01	55.2	0.97	-2.68%	4.12%
0.895	53.75	1.04	55.2	0.97	-2.63%	7.22%
0.905	53.46	1.04	55.2	0.97	-3.15%	7.22%
0.915	53.22	1.05	55.2	0.97	-3.59%	8.25%
0.925	53.24	1.06	55.2	0.97	-3.55%	9.28%
0.935	53.17	1.06	55.2	0.97	-3.68%	9.28%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
July 11	835	23.0°C	21.5°C	≥ 15 cm	101.1 kPa	35%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Radio Transceiv			Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	be reproduced in	n whol	e or in part with	out the prio	r written perr	missio	on of Celltech Labs Inc.	Page 10 of 109

Test Report Issue Date October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

FLUID DIELECTRIC PARAMETERS (CONT.)

	FLI	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 08/2	24/2011	Freq	uency: 835	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
0.735	54.97	0.87	55.2	0.97	-0.42%	-10.31%
0.745	54.85	0.86	55.2	0.97	-0.63%	-11.34%
0.755	54.73	0.87	55.2	0.97	-0.85%	-10.31%
0.765	54.91	0.89	55.2	0.97	-0.53%	-8.25%
0.775	54.88	0.9	55.2	0.97	-0.58%	-7.22%
0.785	54.63	0.89	55.2	0.97	-1.03%	-8.25%
0.795	54.33	0.91	55.2	0.97	-1.58%	-6.19%
0.805	54.25	0.92	55.2	0.97	-1.72%	-5.15%
0.815	54.37	0.94	55.2	0.97	-1.50%	-3.09%
0.824*	54.2	0.931	55.2	0.97	-1.81%	-4.02%
0.825	54.21	0.93	55.2	0.97	-1.79%	-4.12%
0.835	53.77	0.96	55.2	0.97	-2.59%	-1.03%
0.845	54.19	0.97	55.2	0.97	-1.83%	0.00%
0.855	54.22	0.97	55.2	0.97	-1.78%	0.00%
0.865	53.86	0.99	55.2	0.97	-2.43%	2.06%
0.869*	54	0.99	55.2	0.97	-2.17%	2.06%
0.875	54.23	0.99	55.2	0.97	-1.76%	2.06%
0.885	53.91	1	55.2	0.97	-2.34%	3.09%
0.895	53.58	1	55.2	0.97	-2.93%	3.09%
0.905	53.62	1.01	55.2	0.97	-2.86%	4.12%
0.915	53.53	1.03	55.2	0.97	-3.03%	6.19%
0.925	53.47	1.05	55.2	0.97	-3.13%	8.25%
0.935	52.99	1.06	55.2	0.97	-4.00%	9.28%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Aug 24	835 Body	23°C	23.6°C	≥ 15 cm	101.1	34%	1000

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	his document is not to be reproduced in			out the prio	r written perr	missio	on of Celltech Labs Inc.	Page 11 of 109

<u>Test Report Issue Date</u> October 07, 2011 Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

9.0 TEST REDUCTION PROCEDURES FOR SYSTEM MODEL (FCC KDB 643646)

- a. Face-held Configuration Default Battery Selection per FCC KDB 643646, Page 2, Section 1) A): "When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements."
- b. Face-held Configuration Audio Accessory with Integral Antenna face-held SAR evaluation for audio accessories with integral antenna are not specifically addressed in FCC KDB 643646. The procedures described in a. above were applied.
- c. Body-worn Configuration Audio Accessory with Integral Antenna per FCC KDB 643646, Page 7-8: "Audio accessories with an integral antenna or radiating element must be tested separately from those without any primary radiating element. An audio accessory with a built-in antenna that enables the antenna on a PTT radio to be disconnected from its output while the audio accessory is in use should be tested using the highest capacity default battery. When transmission from the antenna on the PTT radio is disabled while the audio accessory is transmitting using its integral antenna, the normal bodyworn accessories for the radio are not expected to influence the SAR of the audio accessory. In addition, special bodyworn attachments are generally used for audio accessories with an integral antenna; the audio accessory must be tested according to how it is attached to the user during normal operation. Body SAR is measured with the audio accessory positioned against a flat phantom representative of the normal operating and exposure conditions expected by users. All sides of the audio accessory that may be positioned against the user must be considered for SAR compliance. 1) An audio accessory is tested on the highest output power channel, according to the test channels required by KDB 447498 (6)(c) and in the frequency range covered by the antenna on the audio accessory within the operating frequency bands of the radio to measure body SAR. B) When the body SAR of an audio accessory tested in 1) is: I) < 3.5 W/kg, testing of all other required channels is not necessary for that audio accessory."
- d. Body-worn Configuration Default Battery Selection per FCC KDB 643646, Page 5, Section 1) A): "Start by testing a PTT radio with the thinnest battery and a standard (default) body-worn accessory that are both supplied with the radio and, if applicable, a default audio accessory......."
- e. Body-worn Configuration Default Body-worn Accessory Selection the belt-clip was selected as the default body-worn accessory based on the smaller separation distance it provides between the radio and the user in comparison to the remaining accessories. Per FCC KDB 643646, Page 5, Section 1) A): "When multiple default body-worn accessories are supplied with a radio, the standard body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions is considered the default body-worn accessory for making body-worn measurements."
- f. Body-worn Configuration Additional Body-worn Accessories the remaining body-worn accessories were evaluated based on the "additional body-worn accessory" guidance provided in FCC KDB 643646, Page 7, Section 4). The remaining body-worn accessories can be utilized with all the audio accessory options.
- g. Body-worn Configuration Default Audio Accessory Selection According to the manufacturer, the radio is not supplied to the end user with a standard default audio accessory (as referenced in FCC KDB 643646, Page 4, Section "Body SAR Test Considerations for Body-worn Accessories"); therefore the procedures described in note (j) below were applied in order to establish the default audio accessory.
- h. Body-worn Configuration Selection of Remaining Default Audio Accessories by Category the Remaining Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." Please refer to note (i) below for the procedure implemented to establish the Default Audio Accessory by Category (Grouping). The Remaining Default Audio Accessories by Category were evaluated on the highest SAR channel and antenna combination from the Default Audio Accessory evaluations (see note e.) based on the guidance provided in FCC KDB 643646, Page 10, Section 1) A) thru D).
- i. Body-worn Configuration Selection of Additional Audio Accessories by Category the Additional Audio Accessories by Category were selected based on the guidance provided in FCC KDB 643646, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10 and the following procedures were applied per Section D:
- "I) if the SAR measured in D) is > 7.0 W/kg and it is one of the accessories within a group of similar audio accessories, test all other audio accessories within that group of similar audio accessories using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration identified in 1) that is applicable to the audio accessory
- a) when the SAR for a similar audio accessory in I) is > 7.0 W/kg, test that audio accessory on all required channels using the combination in I)."
- j. According to the manufacturer, all the optional audio accessories can be used with any accessory combination (antenna, battery & body-worn accessory) see also Appendix I. Therefore, in order to establish the overall default audio accessory and default accessory by category (grouping), preliminary SAR evaluations (area scans with belt-clip, thinnest battery and worst-case antenna configuration from face-held evaluations) were performed by Celltech with all of the optional audio accessories connected to the radio consecutively.

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:	3636B-0066	HARRIS
DUT Type:	Porta	able 800-Band PTT Radio Transceiver			Models:	P5500	800 Syste	m P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	n whole	e or in part with	out the prio	r written perr	mission of Celltech Labs Inc.	Page 12 of 109	

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

10.0 TEST REDUCTION PROCEDURES FOR SCAN MODEL (FCC KDB INQ. 235657)

With respect to the SAR results for the *original model*, please test the SAR for *additional models* according to the following where reported and measured should mean the SAR results at 50% duty factor before further scaling or compensation.

- 1. For face exposure, *additional models* should be measured for each of the antennas using the highest SAR configuration reported among the battery configurations for the *base model*; i.e., one SAR per antenna for each additional model.
- 2. For body-worn accessories with the default audio accessory, additional models should be measured for each of the antennas and body-worn accessories using the highest SAR configuration reported among the battery configurations for the base model; i.e., one SAR per antenna and body-worn accessory combination. For each of these configurations, if the measured SAR for the additional models is > 7.0 W/kg repeat all SAR measured for the base model that are > 6.0 W/kg using the additional models. In addition, all SAR measured for the base model > 7.0 W/kg must be repeated for the additional models.
- 3. For the remaining default audio accessories, all SAR measured for each combination of antenna, battery, body-worn accessory and audio accessory with the *base model* with SAR >= 7.0 W/kg must be repeated for the *additional models* for such combinations. When the highest SAR measured for a *base model* combination of antenna, battery, body-worn accessory and audio accessory is < 7.0 W/kg, measure SAR for the *additional models* using the highest SAR reported for each *base model* combination; i.e., at least one test per combination. However, if the highest reported SAR for a *base model* combination is < 5.0 W/kg, no test is needed for that combination. For each *additional model* combination, if the measured SAR is > 7.0 W/kg repeat all SAR measured for that combination when the reported *base model* SAR is > 6.0 W/kg.
- 4. For the rest of the additional (non-default) audio accessories tested for the *base model*, apply the same procedures used for the remaining default audio accessories in #3 above. A combination should be determined according to audio accessory part numbers; not by audio category.

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:	3636B-0066	HARRIS
DUT Type:	Porta	able 800-Band PTT Radio Transceiver			Models:	P5500	800 Syste	m P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	n whol	e or in part with	out the prio	r written perr	mission of Celltech Labs Inc.	Page 13 of 109	

October 07, 2011

Test Report Issue Date

<u>Test Report Serial No.</u> 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

11.0 SAR MEASUREMENT SUMMARY

TAE	BLE 1		FACE-H	ELD	SAR E	VALUATIO	N RESULT	S (Syster	n v S	can Mo	del Compa	rison)	
			P5500 8	00 SC/	AN Radi	o Keypad Vari	ant Model	P55	00 800	SYSTEM	/ Radio Base	Model	
С			Cond.		1	2	3	Cond.		4	5	6	
1	Antenna	Test	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	
R	Accessory ID #	Freq. (MHz)	Test (W)	1009	% ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100% ptt d/f		50% ptt d/f	Accessory ID #	
			(**)	Dri	ft (dB)	50%+droop		(**)	Dr	ift dB	50%+droop		
1		806.0125	3.16			N/A		3.16			N/A		
2		823.9875	3.16	F1	3.66	1.83	а	3.16	F1	3.82	1.91	а	
3	1	020.0070	0.10		-0.238	1.93	u	0.10		-0.134	1.97	ŭ	
4	(1223/01)	851.0125	3.16			N/A	_	3.16			N/A		
5		868.9875	3.16	F2	3.62	1.81	а	3.16	F2	3.43	3.43 1.72		
6		000.9075	3.10	Γ2	-0.118	1.86	а	3.10	Γ2	0.062	N/A	а	
7		806.0125	3.16			N/A		3.16			N/A		
8		202 2075	0.40	F0	1.21	0.605	_	0.40	F0	1.60	0.800		
9	2	823.9875	3.16	F3	-0.322	0.652		3.16	F3	-0.189	0.836	а	
10	(1506/1)	851.0125	3.16		N/A		•	3.16		•	N/A		
11		000 0075	3.16 F4		0.934	0.467	_	2.40	- 4	0.856	0.428	_	
12		868.9875	3.16	F4	-0.100 0.478		а	3.16	F4	0.035	N/A	а	
13		806.0125	3.16			N/A		3.16			N/A		
14		202 2075	0.40		4.32	2.16	_	0.40		4.84	2.42	_	
15	3	823.9875	3.16	F5	-0.103	2.21	а	3.16	F5	-0.033	2.44	а	
16	(1506/2)	851.0125	3.16		•	N/A		3.16			N/A		
17		000 0075	2.16	F6	3.90	1.95	h	2.16	F9	3.91	1.96	h	
18		868.9875	3.16	FO	-0.075	1.98	b	3.16	F9	0.038	N/A	b	
		SAR LIMI	TS			HEAD	SPATIA	L PEAK		RF EXP	OSURE CATE	GORY	
FCC	47 CFR 2.109	3 Healt	n Canada Sa	fety Co	de 6	8.0 W/kg	1 gram	average		Occup	ational / Contr	olled	
Note	s												
Test	Date(s): July 0	5, 2011 (Sca	n model)		N/A = N	Not Applicable							
C = C	Column; R = Ro)W				otes the correspo otes the correspo							
Test	Mode = CW (U	nmodulated	Continuous V	Vave)	Phantom = Side Planar Phantom								
Front of DUT Distance to Planar Phantom				m		Sh	nortest Distan	tance from Antenna to Planar Phantom					
	(Front of DU	T Parallel to	Phantom)			Antenna 1		An	tenna 2	2	Ante	nna 3	
		2.5 cm				5	5.0 cm 5.0 cm						

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	WDTR-0066-E			3636B-0066	HARRIS	
DUT Type:	Porta	ble 800-Band PTT Ra	dio Transcei	ver	Models:	P5500	800 Syste	m	P5500 800 Scan		
2011 Celltech La	ibs Inc.	This document is not to	be reproduced in	n whole	e or in part witho	out the prio	r written perr	missio	on of Celltech Labs Inc.	Page 14 of 109	

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (1st Release)

TAI	BLE 2		BODY-	WOR	N SAR	EVALUATI	ON RESU	LTS (Sys	tem v	Scan I	Model Com	parison)
BOI	OY-WORN ACC	ESSORY ID#	6 (Defau	lt)								
	AUDIO ACCE	SSORY ID#	G4 (Defa	ault)								
			P5500 8	800 SC	AN Radio	o Keypad Var	iant Model	P55	00 800	SYSTEM	/ Radio Base	Model
С			Cond.		1	2	3	Cond.		4	5	6
	Antenna	Test Freg.	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	Power Before	SAR W/kg (1g)		SAR W/kg (1g)	Battery
R	Accessory ID #	(MHz)	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #
			(**)	Dri	ft (dB)	50%+droop		(**)	Dr	ift dB	50%+droop	
1		806.0125	3.16			N/A		3.16			N/A	
2	_	823.9875	3.16			N/A		3.16			N/A	
3	1 (1223/01)	851.0125	3.16			N/A		3.16			N/A	
4	(122001)	868.9875	3.16	B1	4.89	2.45	b	3.16	B15	4.60	2.30	b
5		000.9075	3.10	ы	-0.203	2.56	D	3.10	БІЭ	-0.193	2.41	D
6		806.0125	3.16			N/A		3.16			N/A	
7		000 0075	0.40	D0	5.78	2.89	_	0.40	DO	5.17	2.59	_
8	2 (1506/1)	823.9875	3.16	B2	0.053	N/A	а	3.16	В9	-0.411	2.84	а
9	(1000,1)	851.0125	3.16		•	N/A	•	3.16		•	N/A	
10		868.9875	3.16			N/A		3.16			N/A	
11		806.0125	3.16			N/A		3.16			N/A	
12		000 0075	3.16	В3	5.07	2.54	_	2.40	B11	4.89	2.45	_
13	3 (1506/2)	823.9875	3.10	ВЗ	-0.651	2.95	а	3.16	БП	-0.130	2.52	а
14	(1000.2)	851.0125	3.16			N/A		3.16			N/A	
15		868.9875	3.16			N/A		3.16			N/A	
		SAR LIMITS				BODY	SPATIA	L PEAK		RF EXP	OSURE CATE	GORY
F	CC 47 CFR 2.109	3 Health	Canada Sa	fety Co	de 6	8.0 W/kg	1 gram	average		Occup	ational / Contr	olled
Note	s											
Test	Dates:				N/A = N	lot Applicable						
C = 0	Column; R = Row					otes the correspotes the corresp						
Test	Mode = CW (Unn	nodulated Contin	uous Wave)	Phantom = Barski Planar Phantom							
	Back of DUT Distance to Planar Phantom					S	nce from An	tenna to	hantom			
(DUT Battery Parallel to Phantom)				Antenna 1			Antenna 2			Ante	nna 3	
1.1 cm						1.9 cm		1.7 cm			1.7 cm	

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500	800 Syste	m	P5500 800 Scan	,
2011 Celltech La	abs Inc.	This document is not to	be reproduced in	n whol	e or in part witho	out the prio	r written perr	missio	n of Celltech Labs Inc.	Page 15 of 109

<u>Test Report Issue Date</u> October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

 Description of Test(s)
 RF Exposure Category

 Specific Absorption Rate
 Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (1st Release)

TA	BLE 3		BODY	-WOF	RN SAF	R EVALUAT	ION RESU	JLTS (Sys	stem	v Scan	Model Con	nparison)
ВО	DY-WORN ACCE	SSORY ID#	4 (Addit	ional)								
	AUDIO ACCES	SSORY ID#	G4 (Def	ault)								
			P5500 8	300 SC	AN Rad	io Keypad Va	riant Model	P55	00 800	SYSTEM	/ Radio Base	Model
С			Cond.		1	2	3	Cond.		4	5	6
,	Antenna	Test Freg.	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery
R	Accessory ID #	(MHz)	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID#
			(33)	Dri	ft (dB)	50%+droop		(==)	Dr	ift dB	50%+droop	
1		806.0125	3.16			N/A		3.16			N/A	
2		823.9875	3.16			N/A		3.16			N/A	
3	1 (1223/01)	851.0125	3.16			N/A	_	3.16		_	N/A	
4	(,	060 0075	2.16	B4	1.88	0.940	b	2.16	B25	1.89	0.945	h
5		868.9875	3.16	B4	-0.538	1.06	D	3.16	B25	-0.284	1.01	b
6		806.0125	3.16			N/A		3.16			N/A	
7		000 0075	2.40	DC	1.21	0.605		2.40	DOO	1.84	0.920	_
8	2 (1506/1)	823.9875	3.16	B5	-0.429	0.668	а	3.16	B20	-0.088	0.939	а
9	(1300/1)	851.0125	3.16			N/A		3.16		•	N/A	
10		868.9875	3.16			N/A		3.16			N/A	
11		806.0125	3.16			N/A		3.16			N/A	
12			0.40	D.O.	2.42	1.21		0.40	D04	3.50	1.75	
13	3 (1506/2)	823.9875	3.16	B6	-0.306	1.30	С	3.16	B24	-0.131	1.80	С
14	(1000/2)	851.0125	3.16			N/A		3.16		I.	N/A	
15		868.9875	3.16			N/A		3.16			N/A	
		SAR LIMITS		•		BODY	SPATIA	L PEAK		RF EXP	OSURE CATE	GORY
F	CC 47 CFR 2.1093	Health C	anada Sa	ety Co	de 6	8.0 W/kg	1 gram	average		Occup	ational / Contr	olled
Note	es	•			<u> </u>							
Test	Dates:				N/A = N	lot Applicable						
C =	Column; R = Row					otes the correspotes the corresp						
Test	Mode = CW (Unm	odulated Contin	uous Wav	e)	Phanto	m = Barski Plana	ar Phantom					
	Back of DUT Dis	tance to Plana	r Phanton	1		SI	nortest Distan	ice from Ant	enna to	Planar P	hantom	
	(DUT Battery Parallel to Phantom)					Antenna 1		An	tenna 2		Ante	nna 3
		3.0 cm				3.8 cm		3	3.6 cm		3.6	cm

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech La	abs Inc.	This document is not to	be reproduced in	e or in part with	out the prio	r written peri	mission	of Celltech Labs Inc.	Page 16 of 109	

<u>Test Report Issue Date</u> October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (1st Release)

TAE	SLE 4		BODY	-WOF	RN SA	R EVALUAT	ION RESU	ILTS (Sys	stem	v Scan	Model Con	nparison)
BOD	Y-WORN ACCE	SSORY ID#	3 (Addit	ional)								
	AUDIO ACCE	SSORY ID#	G4 (Def	ault)								
			P5500 8	300 SC	AN Rac	lio Keypad Va	riant Model	P55	00 800	SYSTEM	/ Radio Base	Model
С			Cond		1	2	3	Cand		4	5	6
	Antenna	Test Freg.	Cond. Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	Cond. Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery
R	Accessory ID#	(MHz)	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID#
			(**)	Dri	ft (dB)	50%+droop		(**)	Dr	ift dB	50%+droop	
1		806.0125	3.16			N/A		3.16			N/A	
2	_	823.9875	3.16	В7	4.52	2.26		3.16	B27	4.38	2.19	
3	1 (1223/01)	823.9875	3.16	В/	0.103	N/A	а	3.16	BZI	0.102	N/A	а
4	(1223/01)	851.0125	3.16			N/A	•	3.16		l	N/A	
5		868.9875	3.16			N/A		3.16			N/A	
6		806.0125	3.16			N/A		3.16			N/A	
7		000 0075	2.40	DO	2.04	1.02	_	2.40	DOO	2.13	1.07	_
8	2 (1506/1)	823.9875	3.16	B8 -	-0.198	1.07	а	3.16	B29	-0.084	1.09	а
9	(1000,1)	851.0125	3.16			N/A	•	3.16		•	N/A	
10		868.9875	3.16			N/A		3.16			N/A	
11		806.0125	3.16			N/A		3.16			N/A	
12		823.9875	3.16			N/A		3.16			N/A	
13	3 (1506/2)	851.0125	3.16			N/A		3.16			N/A	
14	(1000,2)	000 0075	2.16	В9	5.48	2.74		2.16	B36	5.41	2.71	
15		868.9875	3.16	БЭ	-0.293	2.93	С	3.16	B30	-0.204	2.84	С
		SAR LIMITS				BODY	SPATIA	L PEAK		RF EXP	OSURE CATE	GORY
FC	C 47 CFR 2.1093	Health C	anada Sa	fety Co	de 6	8.0 W/kg	1 gram	average		Occup	ational / Contr	olled
Notes												
Test [Dates:				N/A =	Not Applicable						
C = C	olumn; R = Row					notes the corresp						
Test N	Mode = CW (Unm	odulated Contin	uous Wave	e)	Phant	om = Barski Plan	ar Phantom					
	Back of DUT Distance to Planar Phantom					s	hortest Distar	nce from An	tenna to	Planar P	hantom	
	(DUT Battery Parallel to Phantom)					Antenna 1		An	tenna 2		Ante	nna 3
		1.2 cm				3.0 cm		2	2.9 cm		2.9	cm

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	em	P5500 800 Scan	
2011 Celltech La	abs Inc.	This document is not to	be reproduced in	n whol	e or in part withou	out the prio	r written perr	missio	n of Celltech Labs Inc.	Page 17 of 109

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

 Description of Test(s)
 RF Exposure Category

 Specific Absorption Rate
 Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (1st Release)

TAB	LE 5		BODY	-WOR	N SAR	EVALUAT	ON RESU	LTS (Sys	tem v	/ Scan	Model Con	parison)
BOD	Y-WORN ACCE	SSORY ID#	2 (Additi	ional)								
	AUDIO ACCES	SSORY ID#	G4 (Def	ault)								
			P5500 8	300 SC	AN Radi	o Keypad Vai	riant Model	P55	00 800	SYSTEM	/ Radio Base	Model
С			Cond.		1	2	3	Cond.		4	5	6
	Antenna	Test Freq.	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery
R	Accessory ID #	(MHz)	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #
			(33)	Dri	ft (dB)	50%+droop		()	Dr	ift dB	50%+droop	
1		806.0125	3.16			N/A		3.16			N/A	
2		823.9875	3.16	B10	1.99	0.995	а	3.16	B37	1.81	0.905	а
3	1 (1223/01)	023.9073	3.10	БЮ	-0.175	1.04	а	3.10	537	-0.121	0.931	а
4	(851.0125	3.16			N/A		3.16			N/A	
5		868.9875	3.16			N/A		3.16			N/A	
6		806.0125	3.16			N/A		3.16			N/A	
7	_	823.9875	3.16	B11	1.31	0.655		3.16	B39	1.22	0.610	0
8	2 (1506/1)	023.9075	3.10	БП	-0.257	0.695	а	3.10	DOS	-0.168	0.634	а
9	(1000.1)	851.0125	3.16			N/A		3.16			N/A	
10		868.9875	3.16			N/A		3.16			N/A	
11		806.0125	3.16			N/A		3.16			N/A	
12		000 0075	2.40	D40	2.41	1.21	_	0.40	B44	2.51	1.26	
13	3 (1506/2)	823.9875	3.16	B12	0.034	N/A	С	3.16	B44	-0.150	1.30	С
14	(7000,2)	851.0125	3.16			N/A		3.16		•	N/A	
15		868.9875	3.16			N/A		3.16			N/A	
		SAR LIMITS				BODY	SPATIA	L PEAK		RF EXP	OSURE CATE	GORY
FC	C 47 CFR 2.1093	Health (Canada Sa	fety Co	de 6	8.0 W/kg	1 gram	average		Occup	ational / Contr	olled
Notes												
Test E)ates:				N/A = N	lot Applicable						
C = C	olumn; R = Row					otes the correspotes the corresp						
Test N	Node = CW (Unmo	odulated Contin	uous Wave)	Phanto	m = Barski Plan	ar Phantom					
	Back of DUT Dis	stance to Plana	r Phanton	1		S	hortest Distan	ice from Ant	enna to	Planar P	hantom	
	(DUT Battery	/ Parallel to Ph	antom)			Antenna 1		An	tenna 2		Ante	nna 3
		4.0 cm				4.8 cm		4	.6 cm		4.6	cm

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	m	P5500 800 Scan	,
2011 Celltech La	ibs Inc.	This document is not to	be reproduced in	n whol	e or in part with	out the prio	r written perr	missio	n of Celltech Labs Inc.	Page 18 of 109

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

TAB	LE 6		BODY	-WORI	N SAR	EVALUATI	ON RESU	LTS (Sys	tem v	Scan	Model Con	parison)
BOD	Y-WORN ACCE	SSORY ID#	8 (Additi	onal)								
	AUDIO ACCES	SSORY ID#	G4 (Defa	ault)								
			P5500 8	BOO SCA	AN Radio	o Keypad Var	riant Model	P55	00 800	SYSTEM	/ Radio Base	Model
С			0		1	2	3	Orași		4	5	6
	Antenna	Test Freg.	Cond. Power Before	_	AR g (1g)	SAR W/kg (1g)	Battery	Cond. Power Before	_	SAR kg (1g)	SAR W/kg (1g)	Battery
R	Accessory ID #	(MHz)	Test (W)	100%	ptt d/f	50% ptt d/f	Accessory ID #	Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #
			(==)	Drift	t (dB)	50%+droop		()	Dr	ift dB	50%+droop	
1		806.0125	3.16			N/A		3.16			N/A	
2		823.9875	3.16	B13	1.30	0.650	а	3.16	B47	1.66	0.830	2
3	1 (1223/01)	023.9073	3.10	ыз	-0.385	0.710	а	3.10	D41	-0.259	0.881	а
4	(1223,01)	851.0125	3.16	•		N/A		3.16			N/A	
5		868.9875	3.16			N/A		3.16			N/A	
6		806.0125	3.16			N/A		3.16			N/A	
7			0.40	544	0.852	0.426		0.40	D.10	0.864	0.432	
8	2 (1506/1)	823.9875	3.16	B14 -	-0.349	0.462	а	3.16	B49	-0.405	0.474	а
9	(1300/1)	851.0125	3.16			N/A		3.16			N/A	
10		868.9875	3.16			N/A		3.16			N/A	
11		806.0125	3.16			N/A		3.16			N/A	
12					1.55	0.775				2.38	1.19	
13	3 (1506/2)	823.9875	3.16	B15	-0.297	0.830	а	3.16	B51	-0.291	1.27	а
14	(1300/2)	851.0125	3.16			N/A		3.16			N/A	
15		868.9875	3.16			N/A		3.16			N/A	
		SAR LIMITS				BODY	SPATIA	L PEAK		RF EXP	OSURE CATE	GORY
FC	C 47 CFR 2.1093	Health	Canada Sa	fety Cod	de 6	8.0 W/kg	1 gram	average		Occup	ational / Contr	olled
Notes												
Test D	ates:				N/A =	Not Applicable						
C = C	olumn; R = Row										ndix A (SCAN Mert. report (SYS	
Test N	lode = CW (Unmo	odulated Contin	uous Wave	:)	Phanto	om = Barski Pla	nar Phantom					
	Back of DUT Dis	stance to Plan	ar Phantor	n		S	hortest Dista	nce from An	tenna t	o Planar I	Phantom	
		y Parallel to Pl			Antenna '	1	An	tenna 2		Ante	nna 3	
		5.1 cm				5.9 cm		5	5.7 cm		5.7	cm

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:	3636B-00	066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500	800 Syste	m P5500 80	00 Scan	
2011 Celltech La	abs Inc.	This document is not to	be reproduced in	n whol	e or in part witho	out the prio	r written perr	nission of Celltech	Labs Inc.	Page 19 of 109

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

 Description of Test(s)
 RF Exposure Category

 Specific Absorption Rate
 Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (1st Release)

TAB	LE 7		BODY	-WOR	N SAF	R EVALUAT	ION RE	ESU	LTS (Sys	tem v	/ Scan	Model Con	parison)
BOD	Y-WORN ACCE	SSORY ID#	7 (Additi	ional)									
	AUDIO ACCES	SSORY ID#	G4 (Def	ault)									
			P5500 8	300 SC	AN Rac	io Keypad Va	riant Mo	del	P55	00 800	SYSTEM	M Radio Base	Model
С			Cond.		1	2	3		Cond.		4	5	6
,	Antenna	Test Freg.	Power Before		SAR kg (1g)	SAR W/kg (1g)	Batte	-	Power Before		SAR kg (1g)	SAR W/kg (1g)	Battery
R	Accessory ID #	(MHz)	Test (W)	100%	% ptt d/f	50% ptt d/f	Access ID#		Test (W)	100%	% ptt d/f	50% ptt d/f	Accessory ID #
			, ,	Dri	ft (dB)	50%+droop			,	Dr	ift dB	50%+droop	
1		806.0125	3.16			N/A			3.16			N/A	
2	4	823.9875	3.16			N/A			3.16			N/A	
3	1 (1223/01)	851.0125	3.16			N/A			3.16			N/A	
4	, ,	868.9875	3.16	B16	1.64	0.820	а		3.16	B58	2.00	1.00	а
5		000.0070	0.10	D.0	-0.377	0.894	ű		0.10	200	-0.179	1.04	u
6		806.0125	3.16			N/A			3.16			N/A	
7	(1506/1)	823.9875	3.16	B17	1.14	0.570	а		3.16	B59	0.712	0.356	а
8		020.0070	0.10	511	-0.186	0.595	ű		0.10	500	-0.428	0.393	<u> </u>
9	,	851.0125	3.16			N/A			3.16			N/A	
10		868.9875	3.16			N/A			3.16			N/A	
11		806.0125	3.16			N/A			3.16			N/A	
12	2	823.9875	3.16			N/A			3.16			N/A	
13	3 (1506/2)	851.0125	3.16			N/A			3.16			N/A	
14		868.9875	3.16	B18	1.82	0.910	а		3.16	B62	2.29	1.15	а
15					-0.151	0.942	_				-0.174	1.19	-
		SAR LIMITS				BODY	SP	ATIA	L PEAK		RF EXF	OSURE CATE	GORY
FCC	47 CFR 2.1093	Health C	anada Safe	ety Cod	e 6	8.0 W/kg	1 g	gram a	average		Occup	oational / Contr	olled
Notes													
Test D	ates:				N/A =	Not Applicable							
C = C	olumn; R = Row				notes the corresp notes the corresp								
Test N	Node = CW (Unmo	odulated Contin)	Phant	om = Barski Plan	ar Phanto	om						
	Back of DUT Distance to Planar Phantom					s	hortest D	istan	ce from Ant	enna to	Planar F	Phantom	
	(DUT Battery Parallel to Phantom)					Antenna 1			Antenr	na 2		Anten	na 3
	4.4 cm					5.2 cm	_		5.0 c	m		5.0 (cm

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500	800 Syste	m	P5500 800 Scan	,
2011 Celltech La	This document is not to	be reproduced in	out the prio	r written perr	missio	n of Celltech Labs Inc.	Page 20 of 109			

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 070411OWD-T1108S-C2PC

Specific Absorption Rate

04110WD-T1108S-C2PC Rev. 1.0 (1st Release)

Description of Test(s) RF Exposure Category

Test Report Revision No.

Occupational (Controlled)

12.0 SAR SCALING (TUNE-UP TOLERANCE)

SCA	LING O	F MAX. SA	AR (MANU	FAC	ΓURΕΙ	R'S TUNE	E-U	IP TOLE	RANCI	SPECIFIC	ATION)
Test	DUT	Test Freq.	Antenna Acc. ID#		ttery . ID #	Conducte Power (W		SAR Le (50% P		Scaling up to 3.23 W	Scaled SAR (50% PTT d/f)
Config.		(MHz)	ACC. ID #	ACC	. וט #	Before Te	st	W/kg	Plot#	(Max. Tol.)	1g (W/kg)
Face-held	SCAN	823.9875	3		а	3.16		2.16	F5	+ 0.09 dB	2.21
Body-worn	ody-worn SCAN 823.9875 2			а	3.16		2.89	B2	+ 0.09 dB	2.95	
	S	AR LIMITS			Е	ODY		SPATIAL	PEAK	RF EXPOSU	RE CATEGORY
FCC 47 CFR	2.1093	de 6	8.0) W/kg		1 gram av	erage	Occupation	al / Controlled		

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Test Lab Cert

Test Lab Certificate No. 2470.01

13.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for the original System radio model SAR evaluations were selected in accordance with the procedures described in FCC KDB 447498 Section 6) c) (see reference [8]).
- 2. The original System radio model was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 (see reference [9]).
- 3. The number of test frequencies and the test channels evaluated for the Scan radio model SAR evaluations were selected in accordance with the procedures described in FCC KDB Inquiry #538279 and #235657.
- 4. The SAR evaluations were performed with a fully charged battery.
- 5. The SAR droop of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR droop was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables. A SAR-versus-Time power droop evaluation was performed (see Appendix A).
- 6. The fluid temperature remained within +/-2°C from the fluid dielectric parameter measurement to the completion of each SAR test.
- 7. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 8. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.

14.0 SAR EVALUATION PROCEDURES

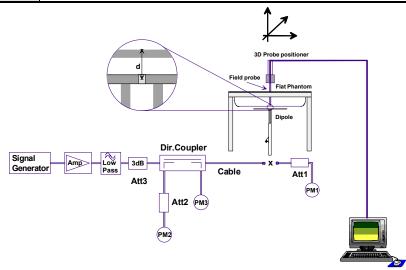
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category


Occupational (Controlled)

15.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, system checks were performed with a planar phantom and 835 MHz SPEAG dipole (see Appendix B for system performance check test plots) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ from the system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

				Sì	STEM F	ERFO	RMAN	ICE CHE	CK E	VALU	ATIONS	3				
Test	Equiv. Tissue		AR 1g W/kg)		Dielect	ric Cons ε _r	tant		nductivit (mho/m)	у	ρ,	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	Target	Meas.	Dev.	Target	Meas.	Dev.	Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Jul 05	Head 835	2.35 ±10%	2.31	-1.7%	41.5 ±5%	43.4	+4.6%	0.90 ±5%	0.90	0.0%	1000	24.0	23.2	≥ 15	29	101.1
Jul 06	Body 835	2.49 ±10%	2.41	-3.2%	55.2 ±5%	53.7	-2.7%	0.97 ±5%	0.96	-1.0%	1000	24.0	22.2	≥ 15	31	101.1
Jul 11	Body 835	2.49 ±10%	2.52	+1.2%	55.2 ±5%	54.5	-1.3%	0.97 ±5%	0.97	0.0%	1000	23.0	21.5	≥ 15	35	101.1
Aug 24	Body 835	2.49 ±10%														
	1.	The target	SAR va	alues ar	e the meas	sured va	lues fro	m the dipo	le calibra	ation pe	rformed l	by SPEA	G (see	Appendi	x E).	
	2.	The target	t dielectr	ic parar	neters are	the nom	ninal val	ues from th	ne dipole	e calibra	tion perf	ormed by	y SPEAC	G (see A	ppendix E	Ξ).
	3.	The fluid t performan	-		ained with	in +/-2°(C from t	he fluid die	lectric p	aramete	er measu	rement t	to the co	mpletion	of the sy	/stem
	4.							mixture we pendix C).		sured p	rior to th	ne syste	m perfor	mance	check us	ing a
Notes Dielectric Probe Kit and a Network Analyzer (see Appendix C). System Performance Checks were not performed for each SAR evaluation test date based on compliance with the provision per TCBC Workshop Presentation April 5-7, 2011 (Kwok Chan Presentation File 04-06-2011-FCC 4 R Guidance 040611- KC): SAR System Verification when head and body tissue dielectric parameters are required to test a device, separate SAR system verification - daily verification of each liquid is usually not necessary when liquid parameter tolerances are maintained in environment - typically every few days is sufficient or when liquid is changed												RF Expos	ure quired			

System Performance Check Measurement Setup Diagram (IEEE 1528-2003)

835 MHz SPEAG Validation Dipole Setup

Applicant:	HARRIS Corporation FCC ID:				OWDTR-006	6-E	IC:	3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500	800 Syste	m P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	n whole	e or in part with	out the prio	r written perr	mission of Celltech Labs Inc.	Page 23 of 109	

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 070411OWD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (1st Release)

16.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [11] and [12]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

		SIMULATED TI	SSUE MIXTURES		
	Water		40.71 %		53.79 %
	Sugar		56.63 %		45.13 %
INGREDIENT	Salt	835 MHz Head Tissue Mixture	1.48 %	835 MHz Body Tissue Mixture	0.98 %
	HEC		0.99 %		
	Bactericide		0.19 %		0.10 %

17.0 SAR LIMITS

	SAR RF EXPOSU	RE LIMITS		
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)	
	ial Average ver the whole body)	0.08 W/kg	0.4 W/kg	
	atial Peak er any 1 g of tissue)	1.6 W/kg	8.0 W/kg	
	atial Peak ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg	

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	OWDTR-0066-E		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	dio Transceiver Models:			P5500 800 System			
2011 Celltech La	abs Inc.	This document is not to	n whol	e or in part with	out the prio	r written perr	nission of Celltech Labs Inc.	Page 24 of 109	

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

18.0 ROBOT SYSTEM SPECIFICATIONS

Positioner Stabbil Unimation Corp. Robot Model: RX60L	<u>Specifications</u>	
No. of axis 6	Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Data Acquisition Electronic (DAE) System Cell Controller AMD Athlon XP 2400+ Processor AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU, 32 MB chipdisk, 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type Shell Material Fiberglass Thickness 2.0 ±0.1 mm Inner Dimen	Repeatability	0.02 mm
Cell Controller Processor AMD Athlon XP 2400+	No. of axis	6
Processor AMD Athlon XP 2400+ Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Features Signal Amplifier, multiplexer, A/D converter, and control logic Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model Berial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Phantom Type Side Planar Phantom 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)	Data Acquisition Electronic (DAE) System
Clock Speed 2.0 GHz Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Shell Material Plexiglass Bottom Thickness 2.0 m ± 0.1 mm Inner Dimensions 72.6 cm (L) x	Cell Controller	
Operating System Windows XP Professional Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm </th <th>Processor</th> <th>AMD Athlon XP 2400+</th>	Processor	AMD Athlon XP 2400+
Data Converter Features Signal Amplifier, multiplexer, A/D converter, and control logic Measurement Software: DASY4, V4.7; Build 44 Postprocessing Software: EMCAD, V1.8; Build 171 Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server	Clock Speed	2.0 GHz
Features Signal Amplifier, multiplexer, A/D converter, and control logic Software Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Type Barski Planar Phantom	Operating System	Windows XP Professional
Measurement Software: DASY4, V4.7 Build 44 Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock	<u>Data Converter</u>	
Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Type Barski Planar Phantom Fiberglass Thickness 2.0 ±0.1 mm	Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Postprocessing Software: SEMCAD, V1.8 Build 171 Connecting Lines Optical downlink for data and status info., Optical uplink for commands and clock DASY4 Measurement Server Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Comections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Tiberglass Tipe Barski Planar Phantom Fiberglass Type Barski Planar Phantom Fiberglass Type Barski Planar Phantom	Software	Measurement Software: DASY4, V4.7 Build 44
Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Trickness 2.0 ±0.1 mm Fiberglass Bottom Thickness 2.0 mm ± 0.1 mm Finer Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Fiberglass Trickness 2.0 ±0.1 mm	Continuid	•
Function Real-time data evaluation for field measurements and surface detection Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Inter Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Fiberglass Thickness 2.0 ±0.1 mm	Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
Hardware PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	DASY4 Measurement Server	
Connections COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Function	Real-time data evaluation for field measurements and surface detection
E-Field Probe Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Model ET3DV6 Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
Serial No. 1590 Construction Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	E-Field Probe	
ConstructionTriangular core fiber optic detection systemFrequency10 MHz to 6 GHzLinearity±0.2 dB (30 MHz to 3 GHz)PhantomTypeSAM V4.0CShell MaterialFiberglassThickness2.0 ±0.1 mmVolumeApprox. 25 litersPhantomTypeSide Planar PhantomShell MaterialPlexiglassBottom Thickness2.0 mm ± 0.1 mmInner Dimensions72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)PhantomPhantomTypeBarski Planar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm	Model	ET3DV6
Frequency 10 MHz to 6 GHz Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Serial No.	1590
Linearity ±0.2 dB (30 MHz to 3 GHz) Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Construction	Triangular core fiber optic detection system
Phantom Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Frequency	10 MHz to 6 GHz
Type SAM V4.0C Shell Material Fiberglass Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Linearity	± 0.2 dB (30 MHz to 3 GHz)
Shell Material Fiberglass Thickness 2.0 ± 0.1 mm Volume Approx. 25 liters Phantom Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ± 0.1 mm	<u>Phantom</u>	
Thickness 2.0 ±0.1 mm Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Туре	SAM V4.0C
Volume Approx. 25 liters Phantom Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Shell Material	Fiberglass
PhantomTypeSide Planar PhantomShell MaterialPlexiglassBottom Thickness2.0 mm ± 0.1 mmInner Dimensions72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)PhantomTypeBarski Planar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm	Thickness	2.0 ±0.1 mm
Type Side Planar Phantom Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Volume	Approx. 25 liters
Shell Material Plexiglass Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	<u>Phantom</u>	
Bottom Thickness 2.0 mm ± 0.1 mm Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Туре	Side Planar Phantom
Inner Dimensions 72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H) Phantom Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Shell Material	Plexiglass
PhantomTypeBarski Planar PhantomShell MaterialFiberglassThickness2.0 ±0.1 mm	Bottom Thickness	2.0 mm ± 0.1 mm
Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Inner Dimensions	72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)
Type Barski Planar Phantom Shell Material Fiberglass Thickness 2.0 ±0.1 mm	Phantom	
Thickness 2.0 ±0.1 mm		Barski Planar Phantom
Thickness 2.0 ±0.1 mm	Shell Material	Fiberglass
Volume Approx 70 litera	Thickness	2.0 ±0.1 mm
Approx. 70 illers	Volume	Approx. 70 liters

Applicant:	HARRIS Corporation FCC ID:				OWDTR-006	OWDTR-0066-E IC:			3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500 800 System		em	P5500 800 Scan	,
2011 Celltech La	abs Inc.	This document is not to	n whol	e or in part with	out the prio	r written peri	mission	of Celltech Labs Inc.	Page 25 of 109	

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

19.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

 \pm 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe

20.0 SAM TWIN PHANTOM V4.0C


The SAM Twin Phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix H for specifications of the SAM Twin Phantom V4.0C).

SAM Twin Phantom V4.0C

21.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

22.0 BARSKI PLANAR PHANTOM

The Barski Planar Phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The planar phantom is used for DUT SAR evaluations and system performance check evaluations. See Appendix G for dimensions and specifications of the Barski Planar Phantom.

Barski Planar Phantom

Applicant:	HARRIS Corporation FCC ID:				OWDTR-0066-E IC:			3636B-0066	HARRIS
DUT Type:	Porta	rtable 800-Band PTT Radio Transceiver			Models:	P5500	800 Syste	m P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	n whole	e or in part witho	out the prio	r written perr	mission of Celltech Labs Inc.	Page 26 of 109	

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 070411OWD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

23.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

24.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AGGET NO.	SERIAL NO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	27Apr10	Biennial
х	-ET3DV6 E-Field Probe	00017	1590	22Jun11	Annual
х	-D835V2 Validation Dipole	00217	4d075	20Apr09	Triennial
х	Side Planar Phantom	00156	161	CNR	CNR
х	Barski Planar Phantom	00155	03-01	CNR	CNR
х	SPEAG SAM Twin Phantom V4.0C	00154	1033	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	04May10	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833699	04May10	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	04May10	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

Applicant:	HAF	RRIS Corporation		OWDTR-0066-E IC:			3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	Models:	P5500 800 System		m P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	n whole	e or in part with	out the prio	r written perr	mission of Celltech Labs Inc.	Page 27 of 109

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

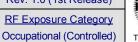
<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

25.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION

SAR dipoles calibrated less than two years ago but more than one year ago were confirmed by maintaining return loss (< -20dB, within 20% of prior calibration) and impedance (within 5Ω from prior calibration) requirements per extended calibrations in FCC KDB 450824 (see reference [10]).

		SPEAG D	335V3 SN: 4d07	'5		
Date of Measurement	Frequency	Fluid Type	Return Loss (dB)	Δ %	Impedance (Ω)	ΔΩ
Apr. 20, 2009	835 MHz	Head	-29.1	-	51.8	-
Jun. 29, 2011	OGG IVII IZ	Head	-27.3	-6.2%	48.6	-3.2
Apr. 20, 2009	835 MHz	Pody	-26.7	-	48.0	-
Apr. 20, 2011	OSS IVITZ	Body	-24.0	10.1%	51.3	3.3


Applicant:	HAF	HARRIS Corporation FCC ID:				6-E	IC:	3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500 800 System		m P5500 800 Scan	
2011 Celltech La	ibs Inc.	This document is not to	n whole	e or in part withou	out the prio	r written perr	mission of Celltech Labs Inc.	Page 28 of 109	

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 070411OWD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

ed) Test Lab Certificate No. 2470.01

26.0 MEASUREMENT UNCERTAINTIES

IEEE 1528 Section E.2.1 E.2.2	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10q	Uncertainty Value ±%	Uncertainty Value ±%	V _i or
	6.0					(1g)	(10g)	V _{eff}
	6.0							
E.2.2	0.0	Normal	1	1	1	6.0	6.0	∞
	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	oc
E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞
E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	00
E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	oo.
E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	oo.
E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	8
E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	oc
E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	oo.
E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	oc
E.3.3	4.02	Normal	1	0.64	0.43	2.6	1.7	00
E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	∞
E.3.3	4.46	Normal	1	0.6	0.49	2.7	2.2	∞
		RSS				11.25	10.85	
nterval)		k=2				22.51	21.71	
	E.2.3 E.2.4 E.2.5 E.2.6 E.2.7 E.2.8 E.6.1 E.6.2 E.6.3 E.5 E.4.2 E.4.1 6.6.2 E.3.1 E.3.2 E.3.3 E.3.2 E.3.3	E.2.3 1 E.2.4 4.7 E.2.5 1 E.2.6 0.3 E.2.7 0.8 E.2.8 2.6 E.6.1 3 E.6.2 0.4 E.6.3 2.9 E.5 1 E.4.2 2.9 E.4.1 3.6 6.6.2 5 E.3.1 4 E.3.2 5 E.3.3 4.02 E.3.2 5 E.3.3 4.46 nterval)	E.2.3 1 Rectangular E.2.4 4.7 Rectangular E.2.5 1 Rectangular E.2.6 0.3 Normal E.2.7 0.8 Rectangular E.2.8 2.6 Rectangular E.6.1 3 Rectangular E.6.2 0.4 Rectangular E.6.3 2.9 Rectangular E.5 1 Rectangular E.4.1 3.6 Normal E.4.1 3.6 Normal E.3.1 4 Rectangular E.3.2 5 Rectangular E.3.3 4.02 Normal E.3.2 5 Rectangular E.3.3 4.46 Normal RSS nterval) k=2	E.2.3 1 Rectangular 1.732050808 E.2.4 4.7 Rectangular 1.732050808 E.2.5 1 Rectangular 1.732050808 E.2.6 0.3 Normal 1 E.2.7 0.8 Rectangular 1.732050808 E.2.8 2.6 Rectangular 1.732050808 E.6.1 3 Rectangular 1.732050808 E.6.2 0.4 Rectangular 1.732050808 E.6.3 2.9 Rectangular 1.732050808 E.5 1 Rectangular 1.732050808 E.4.1 3.6 Normal 1 E.4.2 2.9 Normal 1 E.4.1 3.6 Normal 1 E.3.1 4 Rectangular 1.732050808 E.3.1 4 Rectangular 1.732050808 E.3.3 4.02 Normal 1 E.3.2 5 Rectangular 1.732050808 E.3.3 4.46 Normal	E.2.3 1 Rectangular 1.732050808 1 E.2.4 4.7 Rectangular 1.732050808 1 E.2.5 1 Rectangular 1.732050808 1 E.2.6 0.3 Normal 1 1 E.2.7 0.8 Rectangular 1.732050808 1 E.2.8 2.6 Rectangular 1.732050808 1 E.6.1 3 Rectangular 1.732050808 1 E.6.2 0.4 Rectangular 1.732050808 1 E.6.3 2.9 Rectangular 1.732050808 1 E.5 1 Rectangular 1.732050808 1 E.4.2 2.9 Normal 1 1 E.4.1 3.6 Normal 1 1 E.4.2 2.9 Normal 1 1 E.3.1 4 Rectangular 1.732050808 1 E.3.2 5 Rectangular 1.732050808 1 <	E.2.3 1 Rectangular 1.732050808 1 1 E.2.4 4.7 Rectangular 1.732050808 1 1 E.2.5 1 Rectangular 1.732050808 1 1 E.2.6 0.3 Normal 1 1 1 E.2.6 0.3 Normal 1 1 1 E.2.6 0.3 Normal 1 1 1 E.2.7 0.8 Rectangular 1.732050808 1 1 E.2.8 2.6 Rectangular 1.732050808 1 1 E.6.1 3 Rectangular 1.732050808 1 1 E.6.2 0.4 Rectangular 1.732050808 1 1 E.6.3 2.9 Rectangular 1.732050808 1 1 E.4.1 3.6 Normal 1 1 1 E.4.1 3.6 Normal 1 1 1 E.3.1 4	E.2.3 1 Rectangular 1.732050808 1 1 0.6 E.2.4 4.7 Rectangular 1.732050808 1 1 2.7 E.2.5 1 Rectangular 1.732050808 1 1 0.6 E.2.6 0.3 Normal 1 1 1 0.3 E.2.7 0.8 Rectangular 1.732050808 1 1 0.5 E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 E.6.1 3 Rectangular 1.732050808 1 1 1.7 E.6.2 0.4 Rectangular 1.732050808 1 1 1.7 E.6.3 2.9 Rectangular 1.732050808 1 1 1.7 E.5 1 Rectangular 1.732050808 1 1 0.6 E.4.2 2.9 Normal 1 1 1 2.9 E.4.1 3.6 Normal 1	E.2.3 1 Rectangular 1.732050808 1 1 0.6 0.6 E.2.4 4.7 Rectangular 1.732050808 1 1 2.7 2.7 E.2.5 1 Rectangular 1.732050808 1 1 0.6 0.6 E.2.6 0.3 Normal 1 1 1 0.3 0.3 E.2.7 0.8 Rectangular 1.732050808 1 1 0.5 0.5 E.2.8 2.6 Rectangular 1.732050808 1 1 1.5 1.5 E.6.1 3 Rectangular 1.732050808 1 1 1.7 1.7 E.6.2 0.4 Rectangular 1.732050808 1 1 1.7 1.7 E.5 1 Rectangular 1.732050808 1 1 0.6 0.6 E.4.2 2.9 Normal 1 1 1 2.9 2.9 E.4.1 3.6 Normal

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

<u>Test Report Issue Date</u> October 07, 2011 Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Occupational (Controlled)

27.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [7] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [8] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.
- [9] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01r01: April 2011.
- [10] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [11] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [12] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [13] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- I141 Federal Communications Commission "Measurements Required: RF Power Output": Rule Part 47 CFR §2.1046.
- [15] Industry Canada "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 2: June 2007.

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-0066-E		IC:	3636B-0066	HARRIS
DUT Type:	Porta	ortable 800-Band PTT Radio Transceiver			Models:	P5500 800 System		m P5500 800 Scan	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									Page 59 of 109

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

gory

Occupational (Controlled)

Date Tested: 07/05/2011

System Performance Check - 835 MHz Dipole - Head

DUT: Dipole D835V2; Asset: 00217; Serial: 411; Calibration: 04/20/2009

Ambient Temp: 24.0°C; Fluid Temp: 23.2°C; Barometric Pressure: 101.1 kPa; Humidity: 29%

Communication System: CW

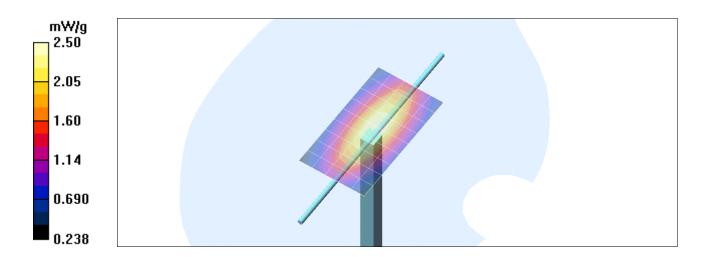
Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 43.4$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.5, 6.5, 6.5); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 835 MHz Dipole

Head d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 2.41 mW/g

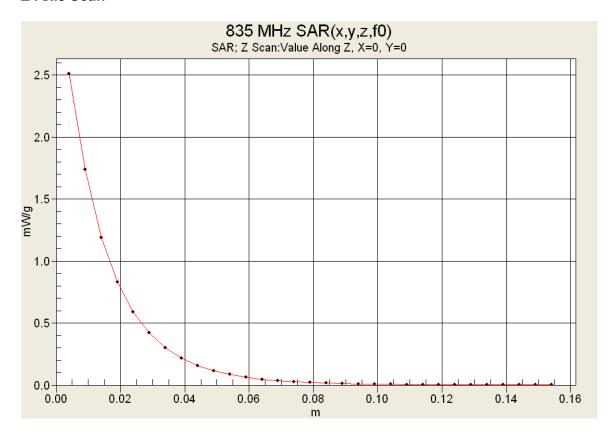
Head d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.8 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 3.26 W/kg

SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.50 mW/g

Test Report Issue Date
October 07, 2011


Test Report Serial No. 0704110WD-T1108S-C2PC

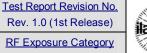
<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	OWDTR-0066-E			IC:	3636B-0066		HARRIS
DUT Type:	Porta	ortable 800-Band PTT Radio Transceiver			Models:	P5500 800 System			P5500 800 Scan	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									Page 61 of 109	

Test Report Issue Date
October 07, 2011


Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Date Tested: 07/06/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole D835V2; Asset: 00217; Serial: 411; Calibration: 04/20/2009

Ambient Temp: 24.0°C; Fluid Temp: 22.2°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

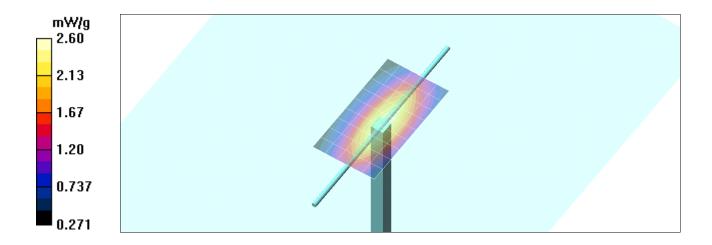
Communication System: CW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 835 MHz Dipole

Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 2.58 mW/g

Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.1 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.60 mW/g

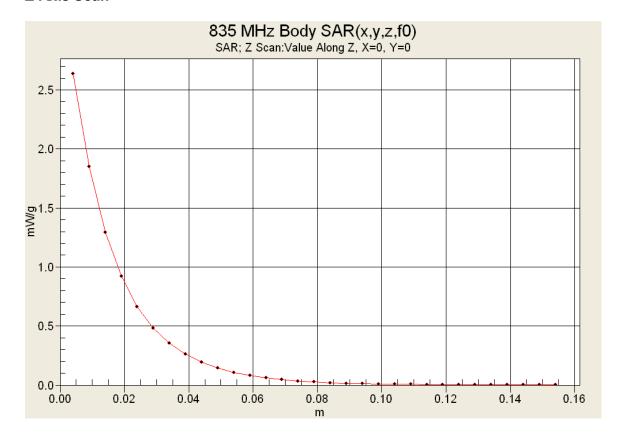
October 07, 2011

Test Report Issue Date

Test Report Serial No. 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate


Rev. 1.0 (1st Release) RF Exposure Category

Test Report Revision No.

ilac-MR/ Occupational (Controlled)

Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-0066-E		IC:	3636B-0066		HARRIS
DUT Type:	Porta	Portable 800-Band PTT Radio Transceiver			Models:	P5500 800 System			P5500 800 Scan	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									Page 63 of 109	

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (1st Release)

Date Tested: 07/11/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole D835V2; Asset: 00217; Serial: 411; Calibration: 04/20/2009

Ambient Temp: 23°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

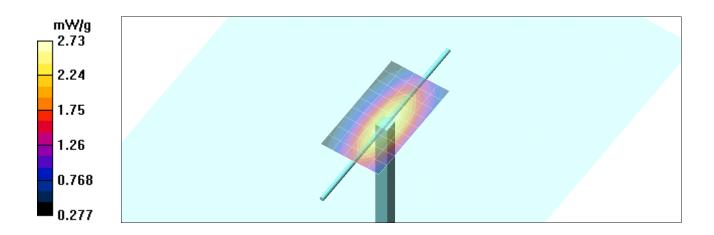
Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 835 MHz Dipole

Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 2.71 mW/g

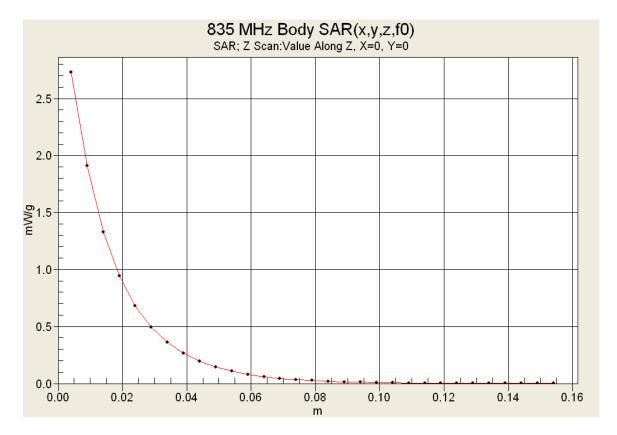
Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.6 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.68 mW/g Maximum value of SAR (measured) = 2.73 mW/g

Test Report Issue Date
October 07, 2011


Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	HAF	RRIS Corporation	FCC ID:	CC ID: OWDTR-0066-E IC:			3636B-0066	HARRIS	
DUT Type:	Porta	ble 800-Band PTT Ra	dio Transcei	ver	Models:	P5500	800 Syste	m P5500 800 Scan	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 65 of 109		

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 0704110WD-T1108S-C2PC

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (1st Release)

Date Tested: 08/24/2011

System Performance Check - 835 MHz Dipole - Body

DUT: Dipole D835V2; Asset: 00217; Serial: 411; Calibration: 04/20/2009

Ambient Temp: 23C; Fluid Temp: 23.6C; Barometric Pressure: 101.1 kPa; Humidity: 34%

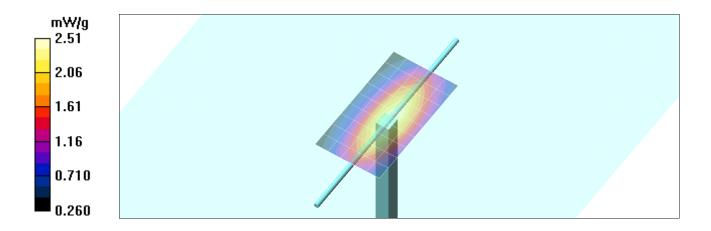
Communication System: CW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.96 mho/m; ϵ_r = 53.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.37, 6.37, 6.37); Calibrated: 22/06/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 835 MHz Dipole

Body d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 2.51 mW/g

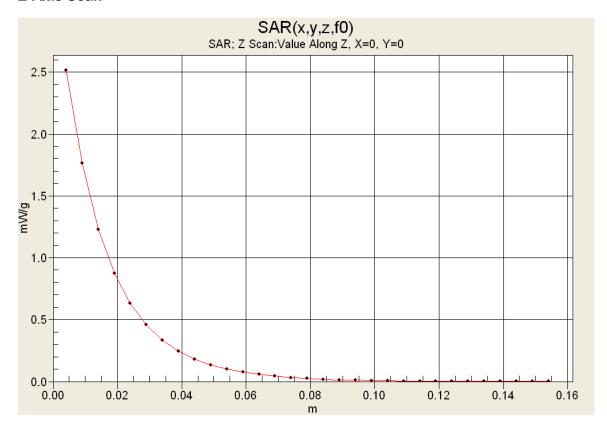
Body d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.5 V/m; Power Drift = 0.002 dB

Peak SAR (extrapolated) = 3.26 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.55 mW/g

Test Report Issue Date
October 07, 2011


Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

Z-Axis Scan

Applicant:	olicant: HARRIS Corporation		FCC ID:		OWDTR-0066-E		IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	dio Transcei	ver	Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part with					out the prio	r written perr	missio	on of Celltech Labs Inc.	Page 67 of 109	

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	t: HARRIS Corporation		FCC ID:		OWDTR-0066-E		IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	em	P5500 800 Scan	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 68 of 109		

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Head

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 05/Jul/2011

Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eH	IFCC_sh	Test_e	Test_s
0.7350	42.02	0.89	44.07	0.79
0.7450	41.97	0.89	43.88	0.80
0.7550	41.92	0.89	43.74	0.81
0.7650	41.86	0.89	43.75	0.82
0.7750	41.81	0.90	43.62	0.84
0.7850	41.76	0.90	43.27	0.85
0.7950	41.71	0.90	43.38	0.86
0.8050	41.66	0.90	43.22	0.86
0.8150	41.60	0.90	42.90	0.87
0.8250	41.55	0.90	43.00	0.89
0.8350	41.50	0.90	43.35	0.90
0.8450	41.50	0.91	42.73	0.91
0.8550	41.50	0.92	42.59	0.91
0.8650	41.50	0.93	42.61	0.92
0.8750	41.50	0.94	42.43	0.92
0.8850	41.50	0.95	42.32	0.95
0.8950	41.50	0.96	42.35	0.96
0.9050	41.50	0.97	41.80	0.97
0.9150	41.50	0.98	42.07	0.98
0.9250	41.48	0.98	41.93	0.98
0.9350	41.46	0.99	41.90	1.00

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
08/Jul/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

****	******	*******	*****	*******
est_s	3 Test_e	_	FCC_eE	Freq
0.88	55.22	0.96	55.59	0.7350
0.87	55.10	0.96	55.55	0.7450
0.88	55.29	0.96	55.51	0.7550
0.89	55.09	0.96	55.47	0.7650
0.91	54.82	0.97	55.43	0.7750
0.91	54.79	0.97	55.39	0.7850
0.94	54.92	0.97	55.36	0.7950
0.94	54.79	0.97	55.32	0.8050
0.94	54.87	0.97	55.28	0.8150
0.97	54.63	0.97	55.24	0.8250
0.97	54.54	0.97	55.20	0.8350
0.99	54.41	0.98	55.17	0.8450
1.00	54.33	0.99	55.14	0.8550
1.00	54.29	1.01	55.11	0.8650
1.01	54.11	1.02	55.08	0.8750
1.04	53.81	1.03	55.05	0.8850
1.03	54.16	1.04	55.02	0.8950
1.05	53.66	1.05	55.00	0.9050
1.06	53.35	1.06	55.00	0.9150
1.05	53.46	1.06	54.98	0.9250
1.07	53.54	1.07	54.96	0.9350

Applicant:	t: HARRIS Corporation		FCC ID:		OWDTR-0066-E		IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech La	2011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 70 of 109		

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

835 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
11/Jul/2011
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

*****	*****	*****	****	*****
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	55.58	0.87
0.7450	55.55	0.96	55.24	0.88
0.7550	55.51	0.96	55.02	0.89
0.7650	55.47	0.96	54.89	0.90
0.7750	55.43	0.97	54.84	0.90
0.7850	55.39	0.97	54.99	0.93
0.7950	55.36	0.97	54.78	0.94
0.8050	55.32	0.97	54.51	0.95
0.8150	55.28	0.97	54.64	0.95
0.8250	55.24	0.97	54.33	0.97
0.8350	55.20	0.97	54.53	0.97
0.8450	55.17	0.98	54.10	0.99
0.8550	55.14	0.99	54.19	0.99
0.8650	55.11	1.01	53.99	1.00
0.8750	55.08	1.02	53.67	1.00
0.8850	55.05	1.03	53.72	1.01
0.8950	55.02	1.04	53.75	1.04
0.9050	55.00	1.05	53.46	1.04
0.9150	55.00	1.06	53.22	1.05
0.9250	54.98	1.06	53.24	1.06
0.9350	54.96	1.07	53.17	1.06

Applicant:	HAF	RRIS Corporation	FCC ID: O		OWDTR-0066-E IC:			3636B-0066	HARRIS	
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech La	abs Inc. This document is not to be reproduced in who				e or in part with	out the prio	r written perr	missio	on of Celltech Labs Inc.	Page 71 of 109

Test Report Issue Date
October 07, 2011

<u>Test Report Serial No.</u> 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)
RF Exposure Category

Occupational (Controlled)

835 MHz Body

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
24/Aug/2011
Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e_Epsilon of UIM

Test_e Epsilon of UIM
Test_s Sigma of UIM

*****	******	*****	*******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	54.97	0.87
0.7450	55.55	0.96	54.85	0.86
0.7550	55.51	0.96	54.73	0.87
0.7650	55.47	0.96	54.91	0.89
0.7750	55.43	0.97	54.88	0.90
0.7850	55.39	0.97	54.63	0.89
0.7950	55.36	0.97	54.33	0.91
0.8050	55.32	0.97	54.25	0.92
0.8150	55.28	0.97	54.37	0.94
0.8250	55.24	0.97	54.21	0.93
0.8350	55.20	0.97	53.77	0.96
0.8450	55.17	0.98	54.19	0.97
0.8550	55.14	0.99	54.22	0.97
0.8650	55.11	1.01	53.86	0.99
0.8750	55.08	1.02	54.23	0.99
0.8850	55.05	1.03	53.91	1.00
0.8950	55.02	1.04	53.58	1.00
0.9050	55.00	1.05	53.62	1.01
0.9150	55.00	1.06	53.53	1.03
0.9250	54.98	1.06	53.47	1.05
0.9350	54.96	1.07	52.99	1.06

Applicant:	HARRIS Corporation		FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Portal	ble 800-Band PTT Ra	adio Transcei	iver	Models:	P5500	800 Syste	em	P5500 800 Scan	,
2011 Celltech La	O11 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 72 of 109		

<u>Test Report Issue Date</u> October 07, 2011 Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX E - DIPOLE CALIBRATION

Applicant:	HARRIS Corporation FO		FCC ID:		OWDTR-0066-E		IC:	3	8636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver	Models:	P5500	800 Syste	m P	5500 800 Scan	
2011 Celltech La	O11 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written p						r written perr	mission of	f Celltech Labs Inc.	Page 105 of 109

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

Celltech

Certificate No: D835V2-4d075_Apr09

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d075

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

April 20, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	=7211
Annual but		terinessen generalis angen kan kalina in pagan na mata- Kalina kan alam sa m akan kan kalina kan kanan a kan kan kan kan kan kan kan kan kan ka	
Approved by:	Katja Pokovic	Technical Manager	La let
		rang mengeli mengelem membang pengebahan belah di belah di berang.	

Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d075_Apr09

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.46 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	9.96 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.61 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition			
SAR measured	250 mW input power	1.64 mW / g		
SAR normalized	normalized to 1W	6.56 mW / g		
SAR for nominal Body TSL parameters ²	normalized to 1W	6.39 mW / g ± 16.5 % (k=2)		

Certificate No: D835V2-4d075_Apr09

 $^{^{\}rm 2}$ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 3.1 jΩ
Return Loss	- 29.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.1 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.401 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

DASY5 Validation Report for Head TSL

Date/Time: 14.04.2009 11:20:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

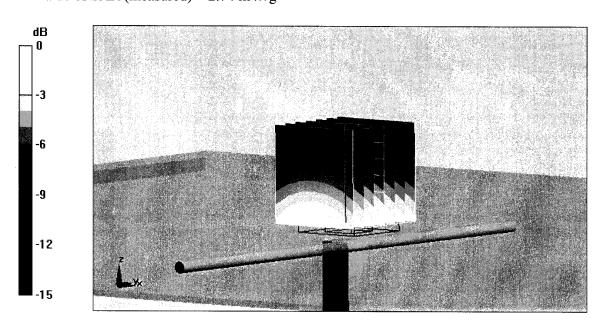
Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

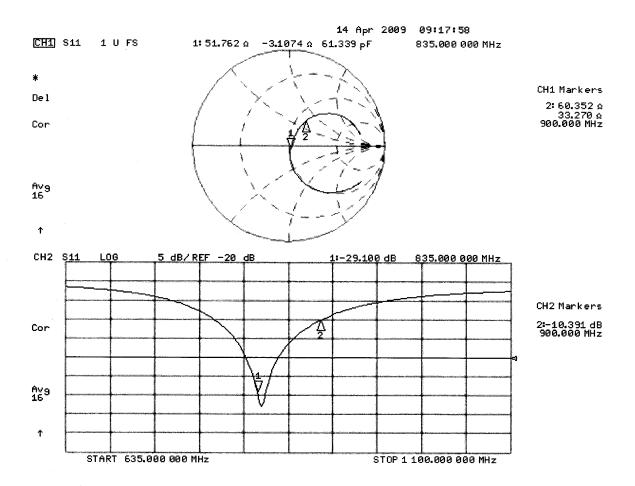
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 3.47 W/kg


SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.74 mW/g

0 dB = 2.74 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 20.04,2009 09:57:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

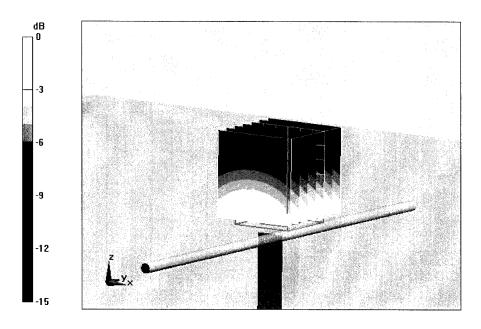
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

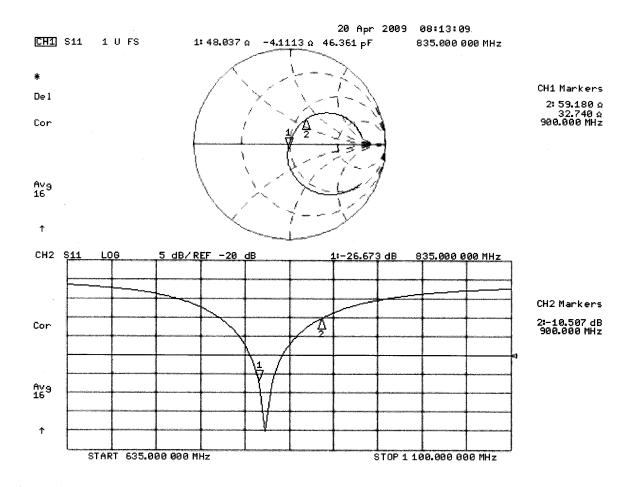
Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.00173 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.64 mW/g


Maximum value of SAR (measured) = 2.9 mW/g

0 dB = 2.9 mW/g

Certificate No: D835V2-4d075 Apr09

Impedance Measurement Plot for Body TSL

Test Report Issue Date
October 07, 2011

Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX F - PROBE CALIBRATION

Applicant:	HAF	RRIS Corporation FCC ID:			OWDTR-006	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	ver Models: P5500 800		500 800 System P5500 800 Scan			
2011 Celltech La	111 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 106 of 109			

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

S

C

S

Certificate No: ET3-1590_Jun11

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1590

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

June 22, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: June 23, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal
A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1590_Jun11 Page 2 of 11

ET3DV6 - SN:1590 June 22, 2011

Probe ET3DV6

SN:1590

Manufactured: Calibrated:

March 19, 2001 June 22, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.93	2.00	1.66	± 10.1 %
DCP (mV) ^B	96.0	98.7	88.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	104.2	±2.7 %
			Υ	0.00	0.00	1.00	117.7	
			Z	0.00	0.00	1.00	129.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Calibration Parameter Determined in Head Tissue Simulating Media

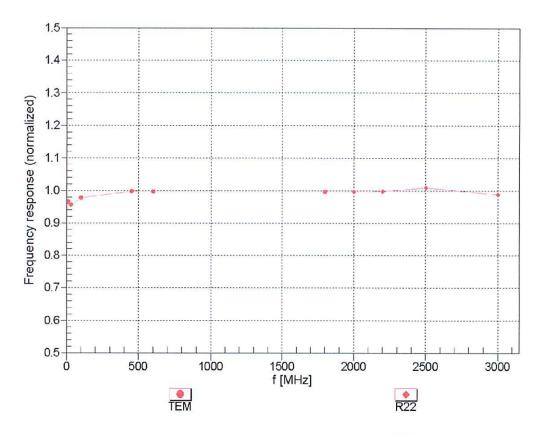
					•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.30	7.30	7.30	0.18	2.10	± 13.4 %
835	41.5	0.90	6.50	6.50	6.50	0.38	2.55	± 12.0 %
900	41.5	0.97	6.39	6.39	6.39	0.39	2.47	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ET3DV6- SN:1590

Calibration Parameter Determined in Body Tissue Simulating Media

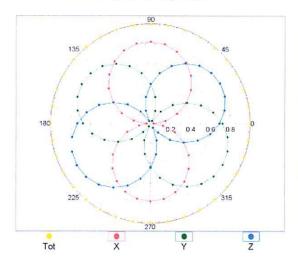

			•		_			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.82	7.82	7.82	0.12	2.04	± 13.4 %
835	55.2	0.97	6.37	6.37	6.37	0.42	2.33	± 12.0 %
900	55.0	1.05	6.27	6.27	6.27	0.40	2.45	± 12.0 %

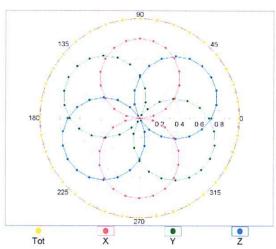
c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

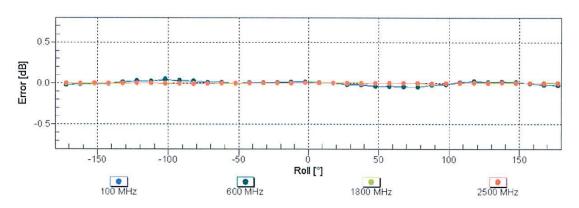
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

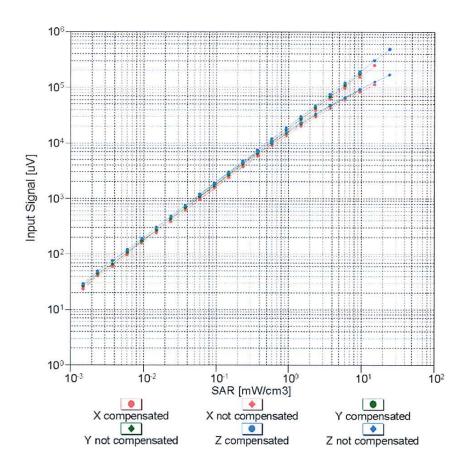


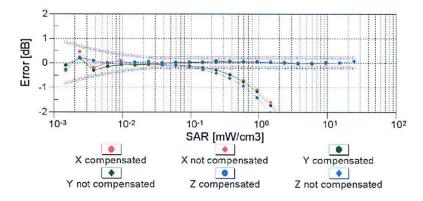

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

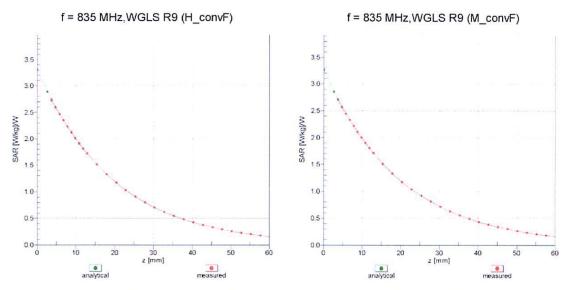
f=600 MHz,TEM

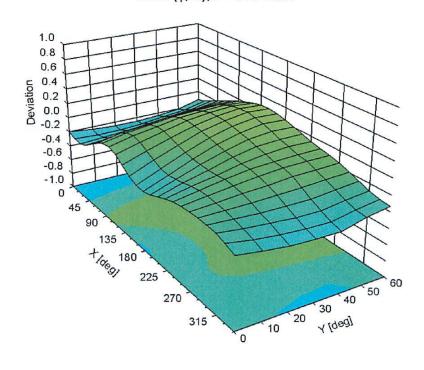
f=1800 MHz,R22

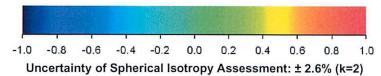




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

ET3DV6-SN:1590

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

<u>Test Report Issue Date</u> October 07, 2011 Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:	3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	adio Transcei	iver	er Models: P5500 800 System			m P5500 800 Scan	
2011 Celltech La	1 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 107 of 109			

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

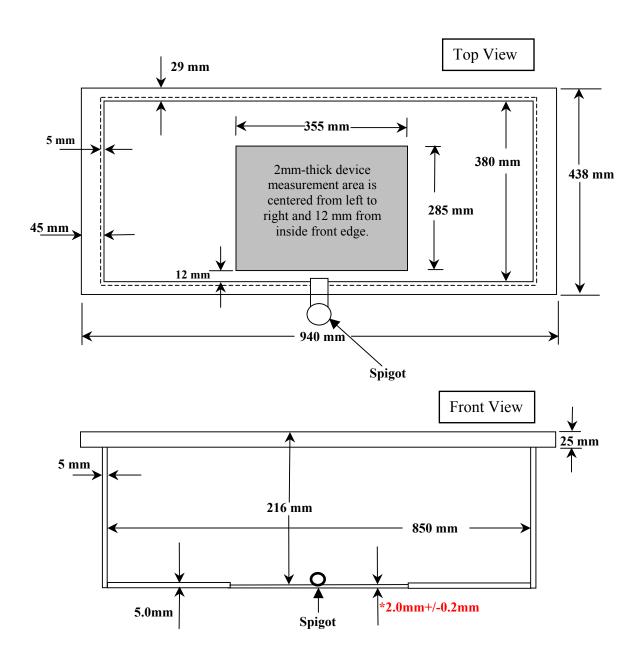
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.

This drawing is not to scale.

<u>Test Report Issue Date</u> October 07, 2011 Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX H - SAM TWIN PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:	3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	dio Transcei	ver	Models:	P5500	m P5500 800 Scan		
2011 Celltech La	1 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 108 of 109			

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Fin Brubolt
Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

<u>Test Report Issue Date</u> October 07, 2011 Test Report Serial No. 0704110WD-T1108S-C2PC

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX I - AUDIO ACCESSORY COMBINATIONS (FCC KDB 643646 D01v01r01)

Applicant:	HAF	RRIS Corporation	FCC ID:		OWDTR-006	6-E	IC:		3636B-0066	HARRIS
DUT Type:	Porta	ble 800-Band PTT Ra	dio Transcei	ver	Models:	P5500	800 Syste	m	P5500 800 Scan	
2011 Celltech La	011 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 109 of 109			

HARRIS CORPORATION FCC ID: OWDTR-0066-E P5500 800-Band PTT Radio Transceiver (Scan)

			Вс	dy	SA	R T	est	Co	nsi	der	atio	ons	for	Au	dio	Ac	ces	sor	ies	wit	hou	t B	uilt-	-in	٩nt	enn	a (F	-CC	KE)B	6436	646	D01	1 v0	1r01	Pa	ge	9) -	Au	dio	Ac	ces	sor	у С	omk	bina	atio	ns						
Audio								В	atte	ery a	а									Battery b													Battery c																					
Accessory		Antenna 1-3												Antenna 1-3													Antenna 1-3																											
ID#		Bw#2	!	В	w#3		В	w#4	ļ	E	Bw#	6		Bw#	ŧ7		Bw#	‡ 8		Bw#	2		Bw#	# 3		Bw#	#4		Bw#	‡ 6		Bw#	ŧ7	ı	Bw#8	8	Е	3w#	2	Е	3w#	3	Е	3w#	4	F	3w#	6	Е	3w#	7	В	3w#8	J
G1a	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G1b	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G2	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G3a	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G3b	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G4	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G5	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G6a	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G6b	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G7a	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G7b	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G7c	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G7d	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G8a	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	-	1	2	3	1	2	3	1	2	3	1	2		1	2		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
G8b	1	2	3			3	1		3	1	2		-	2	3	_	2		1	2		1	2	_	_	2	_	1	2	3	_	2			2		1	2	3	1	2	3	1	2	3	1	2	3	1	2		1		3
G9a	1	2	3			3	1		3	1	2			2	3	1	2		-	2	-	1	2	-		2		1	2	3	-	2			2		1	2	3		2	3	1	2	3	1	2	3	1	2		1		3
G9a G9b	1	2	3	_		3	1		3	1	2	<u> </u>		2	3		2	-	-		3	1	2	<u> </u>		2		1	2	3		2			2		1	2	3	1	2	3	1	2	3	1	2	3	1	2		1		3
	1	2	3			3	1		3	<u>'</u>	2		-	2	3		2			2	4	1	2	_		2	+	'	2	3	_	2		1	2		1	2	3	1	2	3	1	2	3	<u> </u>	2	3	1	2		<u> </u>		3
G10	1	2	3		_	3	1		3		<u> </u>	1	4	<u> </u>	3		2	-		2		1	2	<u> </u>	_	2			2	3	_	2		1	2		1	2	3	1	2	3	1	2	3	Ľ		3	1	2				3
G11a	1						1			1	2	<u> </u>	4	2			<u> </u>	-	1			1	-	<u> </u>			4	1	<u> </u>	<u> </u>	_	<u> </u>		Ľ			·						1			1	2		1			1		
G11b	1	2	3	_		3	1		3	1	2	-		2	3		2		-	2		1	2	-		2		1	2	3	-	2		ļ				2	3	1	2	3	1	2	3	<u> </u>	2	3	1	2		1		3
G12a	1	2	3			3	1		3	1	2			2	3		2	-	4	2		1	2	<u> </u>	_	2		1	2	3		2			2		1	2	3		2	3	1	2	3	1	2	3	1			1		3
G12b	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3

Notes:

- All audio accessory options can be utilized with any antenna, battery and body-worn combination.
 The accessory combinations evaluated for SAR are highlighted in yellow.
 Please refer to Section 7.0 of the SAR report for description of accessory ID #.

- 4. Bw = Body-worn

10/7/2011 Rev. 1.0 Page 1 of 1