

Engineering and Testing for EMC and Safety Compliance

Accredited under A2LA certificate # 2653.01

FCC & IC Certification Report

M/A-COM, Inc.
221 Jefferson Ridge Parkway
Lynchburg, VA 24501
Contact: Daryl Popowitch

MODEL: P7300 UHF-H Portable Radio

FCC ID: OWDTR-0052-E
IC: 3636B-0052

August 29, 2008

Standards Referenced for this Report	
Part 2: 2006	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
Part 15: 2007	Radio Frequency Devices - §15.109: Radiated Emissions Limits
Part 90: 2007	Private Land Portable Radio Services
ANSI TIA-603-C-2004	Land Portable FM or PM Communications Equipment - Measurement and Performance Standards
ANSI/TIA/EIA-102.CAAA; 2002	Digital C4FM/CQPSK Transceiver Measurement Methods
RSS-119; Issue 9; 2007	Land Portable and Fixed Radio Transmitters and Receivers 27.41 to 960.0 MHz

Frequency Range* (MHz)	Rated Transmit Power (W) (Conducted)	Frequency Tolerance (ppm)	Emission Designator
450-512	4.0	0.59	16K0F3E (Analog Voice; WB)
450-512	4.0	0.59	11K0F3E (Analog Voice; NB)
450-512	4.0	0.59	14K2F1D/E (2-level FSK; WB)
450-512	4.0	0.59	10K3F1D/E (2-level FSK; NB; XNB)
450-512	4.0	0.59	7K10F1D/E (2-level FSK; NB)
450-512	4.0	0.59	8K40F1D/E (4-level C4FM; P25)
450-512	4.0	0.59	17K1F1D/E (4-level FSK; WB)
450-512	4.0	0.59	12K00G1D/E (H-CPM; P25)

* 450 – 470 MHz for Industry Canada

Report Prepared by Test Engineer: Daniel Baltzell

Document Number: 2008141/QRTL08-304

*This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc.
Test results relate only to the item tested.*

Table of Contents

1	General Information.....	5
1.1	Test Facility.....	5
1.2	Related Submittal(s)/Grant(s)	5
2	Tested System Details	6
3	FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage	7
4	FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output: Conducted; RSS-119 §5.4: Output Power Test	8
4.1	Test Procedure.....	8
4.2	Test Data.....	8
5	FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions	9
5.1	Test Procedure.....	9
5.2	Test Data.....	9
6	FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §5.8: Transmitter Unwanted Emissions	11
6.1	Test Procedure.....	11
6.2	Test Data.....	11
6.2.1	CFR 47 Part 90.210 Requirements	11
7	FCC Rules and Regulations Part 2 §2.1049: Occupied Bandwidth; Part 90 §90.210(i) & (j): Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions	13
7.1	Test Procedure.....	13
7.2	Test Data.....	14
8	FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability.....	23
8.1	Test Procedure.....	23
8.2	Test Data.....	23
8.2.1	CFR 47 Part 90.213 Requirements	23
8.2.2	Frequency Stability/Temperature Variation	24
8.2.3	Frequency Stability/Voltage Variation	26
9	FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics - Audio Frequency Response	27
9.1	Test Procedure.....	27
9.2	Test Data.....	27
10	FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics – Audio Low Pass Filter.....	28
10.1	Test Procedure.....	28
10.2	Test Data.....	28
11	FCC Rules and Regulations Part 2 §2.1047(b): Modulation Characteristics - Modulation Limiting	29
11.1	Test Procedure.....	29
11.2	Test Data.....	29
12	FCC Rules and Regulations Part 90 §90.214: Transient Frequency Behavior; RSS-119 §5.9: Transient Frequency Behavior	33
12.1	Test Procedure.....	33
12.2	Test Data.....	33
13	FCC Rules and Regulations Part 2 §2.202: Necessary Bandwidth and Emission Bandwidth.....	37
14	Conclusion	38

Table of Figures

Figure 2-1: Configuration of Tested System	7
--	---

Table of Tables

Table 2-1: Equipment under Test (EUT).....	6
Table 2-2: Support Equipment.....	6
Table 4-1: RF Power Output (High Power): Carrier Output Power (Unmodulated).....	8
Table 4-2: RF Power Output (Low Power): Carrier Output Power (Unmodulated)	8
Table 4-3: RF Power Output (Rated Power).....	8
Table 4-4: Test Equipment for Testing RF Power Output - Conducted	8
Table 5-1: Conducted Spurious Emissions – 450 MHz; Narrow Band; High Power	9
Table 5-2: Conducted Spurious Emissions – 481 MHz; Narrow Band; High Power	10
Table 5-3: Conducted Spurious Emissions – 512 MHz; Narrow Band; High Power	10
Table 5-4: Test Equipment for Testing Conducted Spurious Emissions.....	10
Table 6-1: Field Strength of Spurious Radiation – 481 MHz; Narrow Band; High Power	11
Table 6-2: Test Equipment for Testing Field Strength of Spurious Radiation	12
Table 7-1: Test Equipment for Testing Occupied Bandwidth.....	22
Table 8-1: Frequency Stability/Temperature Variation – 422.2000 MHz	24
Table 8-2: Test Equipment for Testing Frequency Stability/Temperature.....	25
Table 8-3: Frequency Stability/Voltage Variation – 481 MHz	26
Table 8-4: Test Equipment for Testing Frequency Stability/Voltage	26
Table 9-1: Test Equipment for Testing Audio Frequency Response	27
Table 11-1: Test Equipment for Testing Modulation Limiting.....	32
Table 12-1: Test Equipment Used For Testing Transient Frequency Behavior	36

Table of Plots

Plot 7-1: Occupied Bandwidth – 481 MHz; Mask B; WB Analog; High Power	14
Plot 7-2: Occupied Bandwidth – 481 MHz; Mask D; NB Analog; High Power.....	15
Plot 7-3: Occupied Bandwidth – 481 MHz; Mask C; WB 2-level FSK; 9600 BPS.....	16
Plot 7-4: Occupied Bandwidth – 481 MHz; Mask D; NB 2-level FSK; 9600 BPS.....	17
Plot 7-5: Occupied Bandwidth – 481 MHz; Mask D; NB 2-level FSK; 4800 BPS.....	18
Plot 7-6: Occupied Bandwidth – 481 MHz; Mask D; 4-level C4FM (P25 mode); 4800 SPS	19
Plot 7-7: Occupied Bandwidth – 481 MHz; Mask C; 4-level FSK OTP; 19200 BPS.....	20
Plot 7-8: Occupied Bandwidth – 481 MHz; Mask D; H-CPM (PSK); 6000 SPS	21
Plot 8-1: Temperature Frequency Stability – 481 MHz Channel.....	24
Plot 8-2: Voltage Frequency Stability – 481 MHz Channel	26
Plot 9-1: Modulation Characteristics - Audio Frequency Response; 481 MHz; WB	27
Plot 10-1: Modulation Characteristics – Audio Low Pass Filter; 481 MHz; WB.....	28
Plot 11-1: Modulation Characteristics – Modulation Limiting: 481 MHz; WB; Positive Peak.....	29
Plot 11-2: Modulation Characteristics – Modulation Limiting: 481 MHz; WB; Negative Peak	30
Plot 11-3: Modulation Characteristics – Modulation Limiting: 481 MHz; NB; Positive Peak.....	31
Plot 11-4: Modulation Characteristics – Modulation Limiting: 481 MHz; NB; Negative Peak	32
Plot 12-1: Transient Frequency Behavior – Carrier On Time - Narrowband	33
Plot 12-2: Transient Frequency Behavior – Carrier Off Time - Narrowband	34
Plot 12-3: Transient Frequency Behavior – Carrier On Time - Wideband.....	35
Plot 12-4: Transient Frequency Behavior – Carrier Off Time - Wideband.....	36

Table of Appendixes

Appendix A:	RF Exposure.....	39
Appendix B:	TCB Agency Authorization	40
Appendix C:	FCC Confidentiality Request Letter	41
Appendix D:	IC Letters	42
Appendix E:	IC Confidentiality Request Letter	43
Appendix F:	Operational Description	44
Appendix G:	Schematics.....	45
Appendix H:	Block Diagrams	46
Appendix I:	Parts List.....	47
Appendix J:	Alignment/Tune Up Procedure	48
Appendix K:	User Manual	49
Appendix L:	Label & Location	50
Appendix M:	Test Configuration Photographs	53
Appendix N:	External Photographs	55
Appendix O:	Internal Photographs	61

Table of Photographs

Photograph 1:	FCC ID Label Sample with RF Exposure Warning	50
Photograph 2:	IC ID Label.....	51
Photograph 3:	ID Labels and RF Warning Label Locations	52
Photograph 4:	Radiated TX Spurious Emissions – Front View	53
Photograph 5:	Radiated TX Spurious Emissions – Rear View	54
Photograph 6:	P7300 Front View – Scan Version.....	55
Photograph 7:	P7300 Front View – System Version	56
Photograph 8:	P7300 Top View	57
Photograph 9:	P7300 PTT Side View.....	58
Photograph 10:	P7300 UDC Side View.....	59
Photograph 11:	P7300 Back View.....	60
Photograph 12:	P7300 Main PWB in Unit	61
Photograph 13:	P7300 Main PWB Front View	62
Photograph 14:	P7300 Main PWB Back View.....	62
Photograph 15:	P7300 Interface PWB in Unit	63
Photograph 16:	P7300 Interface PWB LCD	64
Photograph 17:	P7300 Interface PWB Component Side.....	65
Photograph 18:	P7300 Inside Front Cover.....	66
Photograph 19:	P7300 Rear Cast Assembly.....	67

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
www.rheintech.com

Client: M/A-COM, Inc.
Model: P7300 UHF-H Radio
ID's: OWDTR-0052-E/3636B-0052
Standards: Part 90/RSS-119
Report #: 2008141

1 General Information

The following Certification Report is prepared on behalf of **M/A-COM, Inc.** in accordance with the Federal Communications Commission and Industry Canada Rules and Regulations. The Equipment Under Test (EUT) was the **P7300 UHF-H Portable Radio; FCC ID: OWDTR-0052-E, IC: 3636B-0052**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with the application portions of the FCC Rules and Regulations CFR 47 and Industry Canada RSS-119. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

1.2 Related Submittal(s)/Grant(s)

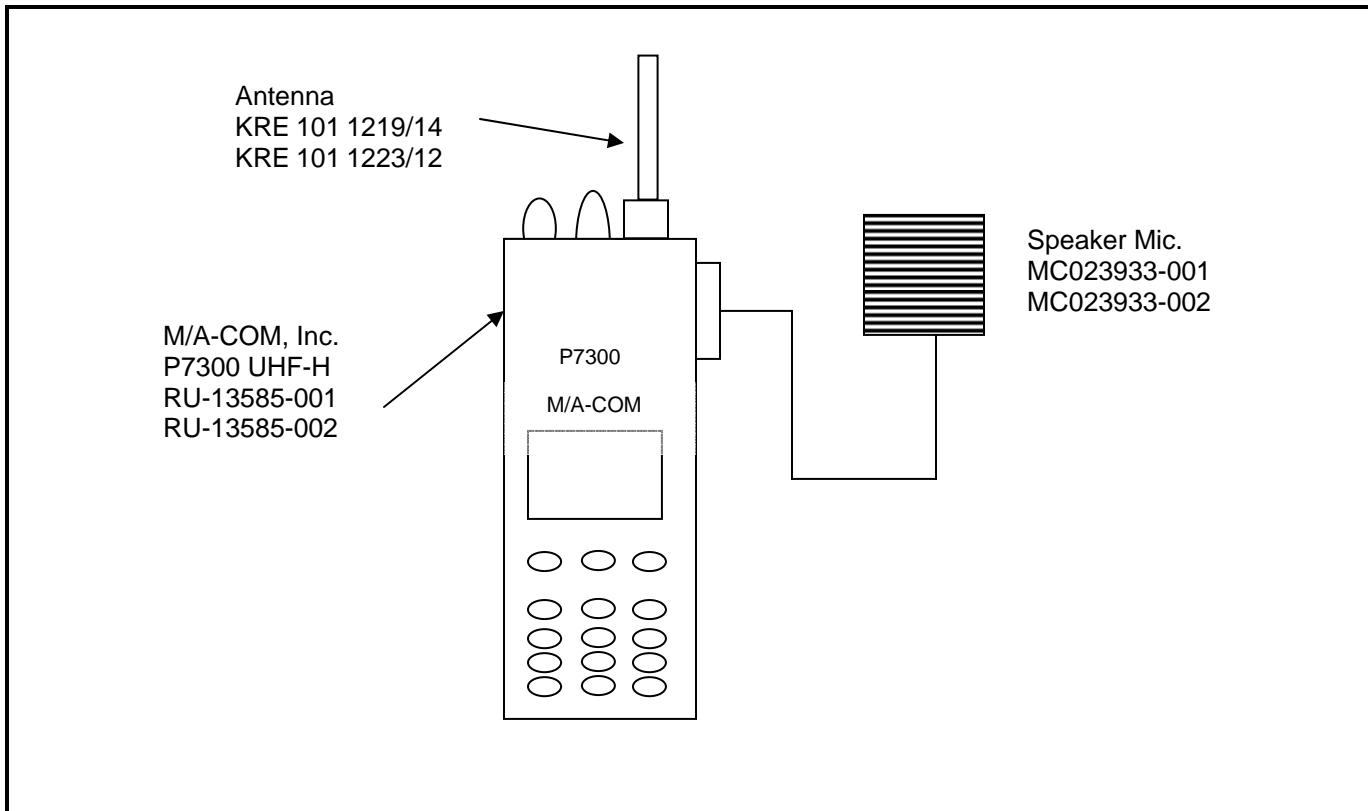
This is an original application report. The Industry Canada application applies to the range 450-470 MHz only.

2 Tested System Details

The test sample was received on August 25, 2008. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this testing, as applicable.

Note that the testing covers both the System and Scan versions of the P7300. The Scan version is a limited version of the System radio with fewer front panel buttons. The radios are electrically identical.

Table 2-1: Equipment under Test (EUT)


The test system contains the following components:

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Radio	M/A-COM, Inc.	P7300	RU-13585-002 (System version)	OWDTR-0052-E	18583
Radio	M/A-COM, Inc.	P7300	RU-13585-001 (Scan version)	OWDTR-0052-E	18584
Battery	M/A-COM, Inc.	NiMH	BT-023406-003	N/A	N/A
Battery	M/A-COM, Inc.	NiCd	BT-023406-001	N/A	N/A
Battery	M/A-COM, Inc.	Li-Ion	BT-023406-005	N/A	N/A
Microphone	M/A-COM, Inc.	Speaker Mic (no antenna)	MC023933-001	N/A	17868
Microphone	M/A-COM, Inc.	Speaker Mic (w/ antenna)	MC023933-002	N/A	17869
Antenna	M/A-COM, Inc.	Spring Whip	KRE 101 1219/14	N/A	N/A
Antenna	M/A-COM, Inc.	1/4 Wave Whip	KRE 101 1223/12	N/A	18042

Table 2-2: Support Equipment

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Audio Test Box	M/A-COM, Inc.	MATQ-03424	N/A	N/A	17870
Audio Test Cable	M/A-COM, Inc.	CA-023407-002	N/A	N/A	17869

Figure 2-1: Configuration of Tested System

3 FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage

Nominal DC Voltage:

NiCd: 6.0 to 9.0 (7.5 nom.)
NiMH: 6.0 to 9.0 (7.5 nom.)
Li-Ion: 6.0 to 9.0 (7.5 nom.)

Current: 2.5 A

4 FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output: Conducted; RSS-119 §5.4: Output Power Test

4.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.1.

The EUT was connected with a power sensor/meter through an appropriate 50 ohm attenuator. Attenuator loss was accounted for.

4.2 Test Data

Table 4-1: RF Power Output (High Power): Carrier Output Power (Unmodulated)

Frequency (MHz)	RF Power Measured (Watt)*
450	4.2
481	4.2
512	4.2

* Measurement accuracy: +/- .02 dB (logarithmic mode)

Table 4-2: RF Power Output (Low Power): Carrier Output Power (Unmodulated)

Frequency (MHz)	RF Power Measured (Watt)*
450	0.52
480	0.52
512	0.52

* Measurement accuracy: +/- .02 dB (logarithmic mode)

Table 4-3: RF Power Output (Rated Power)

Frequency (MHz)	High Power Rated (W)	Low Power Rated (W)*
450–512	4.0	0.5

Table 4-4: Test Equipment for Testing RF Power Output - Conducted

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901184	Agilent Technologies	E4416A	EPM-P Power Meter, Single Channel	GB41050573	10/24/08
901356	Agilent Technologies	E9323A	Power Sensor	31764-264	10/24/08
900819	Weinschel Corporation	BF0830	Attenuator 10 db	N/A	12/02/08

Test Personnel:

Daniel Baltzell		August 26, 2008
Test Engineer	Signature	Date Of Test

5 FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions

5.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.13.

The transmitter was interfaced with a spectrum analyzer through an appropriate 50 ohm attenuator and a notch filter. The transmitter was operated at maximum power. Attenuator and cable losses were accounted for.

Analog Modulation: The transmitter is terminated with a 50 ohm load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1,000 Hz.

Digital Modulation: Modulated to its maximum extent using a pseudo random data sequence – 9600 bps.

5.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to 10xFc.

Limit = $50 + 10 \log (P) \text{ dB}$ or 70 dB, whichever is greater.

The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Table 5-1: Conducted Spurious Emissions – 450 MHz; Narrow Band; High Power

Freq = 450 MHz - Limit = $50 + 10 \log P = 56.2 \text{ dBc}$ - Conducted Power = 36.2 dBm = 4.2 W

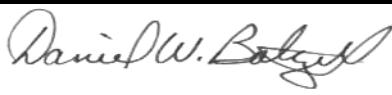
Frequency (MHz)	Spectrum Analyzer Level (dBm)	Corrected Level (dBc)	Margin (dB)
900	-45.6	80.0	-23.8
1350	-65.8	85.7	-29.5
1800	-60.2	91.7	-35.5
2250	-67.2	99.2	-43.0
2700	-83.8	116.2	-60.0
3150	-92.5	123.8	-67.6
3600	-90.5	121.8	-65.6
4050	-102.3	115.9	-59.7
4500	-101.4	128.2	-72.0

Table 5-2: Conducted Spurious Emissions – 481 MHz; Narrow Band; High Power

Freq = 481 MHz - Limit = 50 + 10 Log P = 56.2 dBc - Conducted Power = 36.2 dBm = 4.2 W

Frequency (MHz)	Spectrum Analyzer Level (dBm)	Corrected Level (dBc)	Margin (dB)
962	-35.9	70.4	-14.2
1443	-65.4	101.0	-44.8
1924	-52.5	87.9	-31.7
2405	-69.8	105.5	-49.3
2886	-99.9	135.8	-79.6
3367	-100.8	136.7	-80.5
3848	-100.2	135.4	-79.2
4329	-84.6	116.6	-60.4
4810	-101.3	134.1	-77.9

Table 5-3: Conducted Spurious Emissions – 512 MHz; Narrow Band; High Power


Freq = 512 MHz - Limit = 50 + 10 Log P = 56.2 dBc - Conducted Power = 36.2 dBm = 4.2 W

Frequency (MHz)	Spectrum Analyzer Level (dBm)	Corrected Level (dBc)	Margin (dB)
1024	-60.0	94.6	-38.4
1536	-76.0	111.9	-55.7
2048	-67.6	102.8	-46.6
2560	-73.3	109.4	-53.2
3072	-96.8	132.3	-76.1
3584	-95.4	131.7	-75.5
4096	-102.3	122.2	-66.0
4608	-98.9	131.7	-75.5
5120	-100.7	135.1	-78.9

Table 5-4: Test Equipment for Testing Conducted Spurious Emissions

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz – 12.8 GHz)	3826A00144	10/17/08
901307	Inmet	6N-10dB	Attenuator 10 dB	64671	3/26/09
901133	Par Electronics	UHFSN(400-512)	UHF Notch Filter	N/A	02/01/09

Test Personnel:

Daniel Baltzell		August 27, 2008
Test Engineer	Signature	Date Of Test

6 FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §5.8: Unwanted Emissions

6.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.12.

Analog Modulation: The transmitter is terminated with a 50 ohm load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1,000 Hz.

Digital Modulation: Modulated to its maximum extent using a pseudo random data sequence – 9600 bps.

The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

$$P_d(\text{dBm}) = P_g(\text{dBm}) - \text{cable loss (dB)} + \text{antenna gain (dB)}$$

where:

P_d is the dipole equivalent power

P_g is the generator output power into the substitution antenna

6.2 Test Data

6.2.1 CFR 47 Part 90.210 Requirements

Limit = $50 + 10 \log (P)$ dB or 70 dB, whichever is greater. The worst case emissions test data, high power, are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Table 6-1: Field Strength of Spurious Radiation – 481 MHz; Narrow Band; High Power

Freq = 481 MHz - Limit = $50 + 10 \log P = 56.2 \text{ dBc}$ - Conducted Power = 36.2 dBm = 4.2 W

Vertical Polarity						
Frequency (MHz)	Measured Level (dB _{UV})	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Corrected Level (dBc)	Margin (dB)
962.0	64.1	-28.2	6.0	-2.1	72.5	-16.3
1443.0	56.9	-18.9	7.2	4.7	57.6	-1.4
1924.0	29.5	-47.7	8.4	5.9	86.4	-30.2
2405.0	27.6	-51.9	9.4	7.0	90.5	-34.3
2886.0	24.3	-49.7	10.4	7.4	88.9	-32.7
3367.0	24.0	-54.6	11.3	7.5	94.6	-38.4
3848.0	23.4	-62.0	12.0	7.4	102.8	-46.6
4329.0	23.0	-58.7	12.7	8.1	99.5	-43.3
4810.0	22.4	-56.8	13.2	8.4	97.8	-41.6

Horizontal Polarity

Frequency (MHz)	Measured Level (dBuv)	Signal Generator Level (dbm)	Cable Loss (dB)	Antenna Gain (dBd)	Corrected Level (dBc)	Margin (dB)
962.0	36.7	-58.5	6.0	-2.1	102.8	-46.6
1443.0	27.9	-52.3	7.2	4.7	91.0	-34.8
1924.0	26.1	-55.7	8.4	5.9	94.4	-38.2
2405.0	23.5	-50.4	9.4	7.0	89.0	-32.8
2886.0	23.6	-46.9	10.4	7.4	86.1	-29.9
3367.0	23.6	-50.9	11.3	7.5	90.9	-34.7
3848.0	25.4	-45.0	12.0	7.4	85.8	-29.6
4329.0	24.8	-55.5	12.7	8.1	96.3	-40.1
4810.0	23.6	-56.1	13.2	8.4	97.1	-40.9

Table 6-2: Test Equipment for Testing Field Strength of Spurious Radiation

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz - 2 GHz)	2648	12/20/08
900772	EMCO	3161-02	Horn Antennas (2 – 4 GHz)	9504-1044	6/14/10
900321	EMCO	3161-03	Horn Antennas (4 – 8 GHz)	9508-1020	6/14/10
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridges Guide Antenna (1-18 GHz)	2310	03/30/09
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz – 12.8 GHz)	3826A00144	10/17/08
901424	Insulated Wire Inc.	KPS-1503-360-KPS	RF cable 36"	NA	10/5/08
901425	Insulated Wire, Inc.	KPS-1503-2400-KPS	RF cable, 20'	NA	10/5/08
901426	Insulated Wire Inc.	KPS-1503-3600-KPS	RF cable, 30'	NA	10/5/08

Test Personnel:

Daniel Baltzell		August 28, 2008
Test Engineer	Signature	Date Of Test

7 FCC Rules and Regulations Part 2 §2.1049: Occupied Bandwidth; Part 90 §90.210(i) & (j): Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions

7.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.11.

The transmitter was interfaced with a spectrum analyzer through an appropriate 50 ohm attenuator and a notch filter. The transmitter was operated at maximum power. Attenuator losses were accounted for.

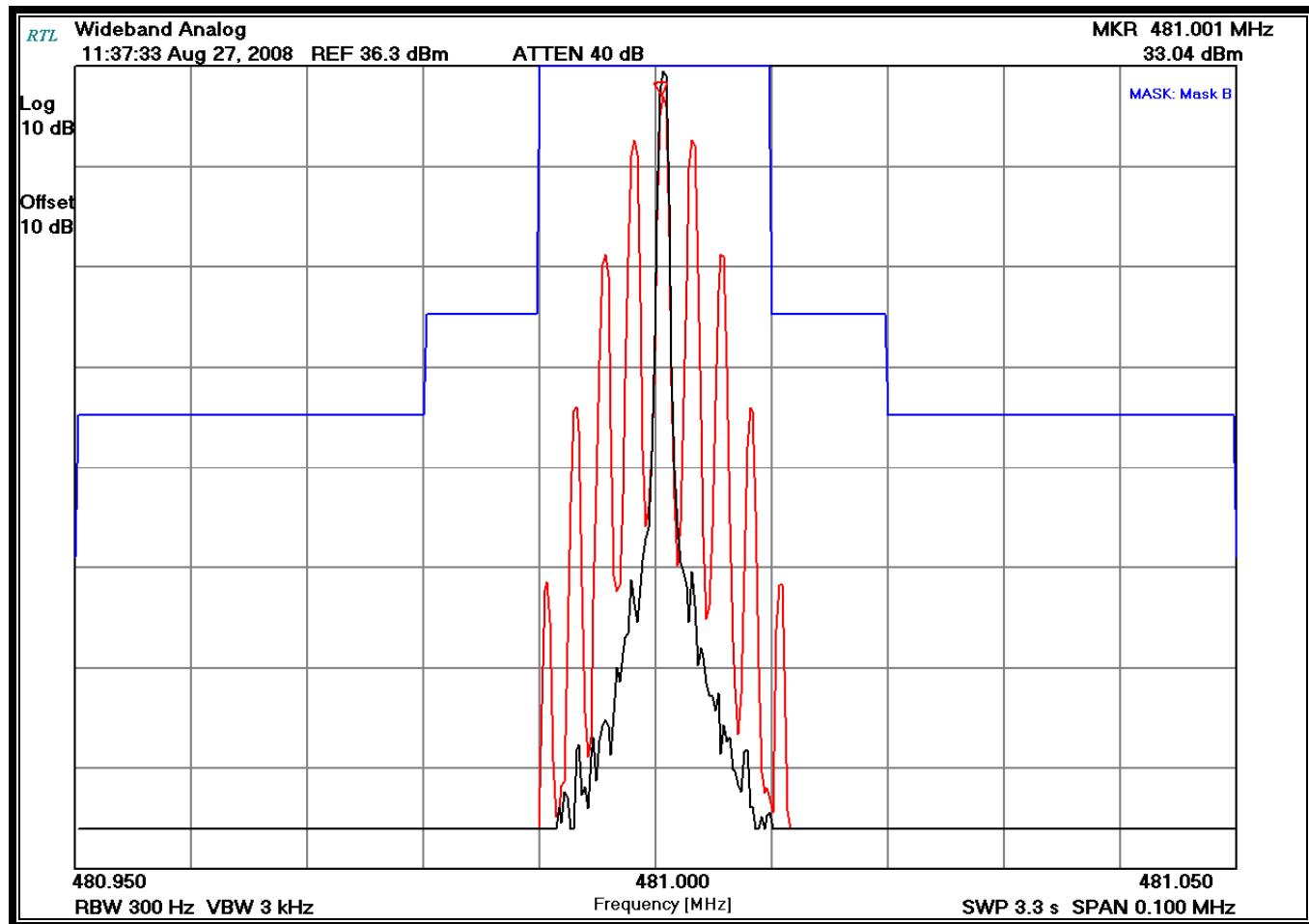
Analog Modulation: The transmitter is terminated with a 50 ohm load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1,000 Hz.

The device uses digital modulation and is modulated to its maximum extent using a pseudo-random data sequence of 9600 bps.

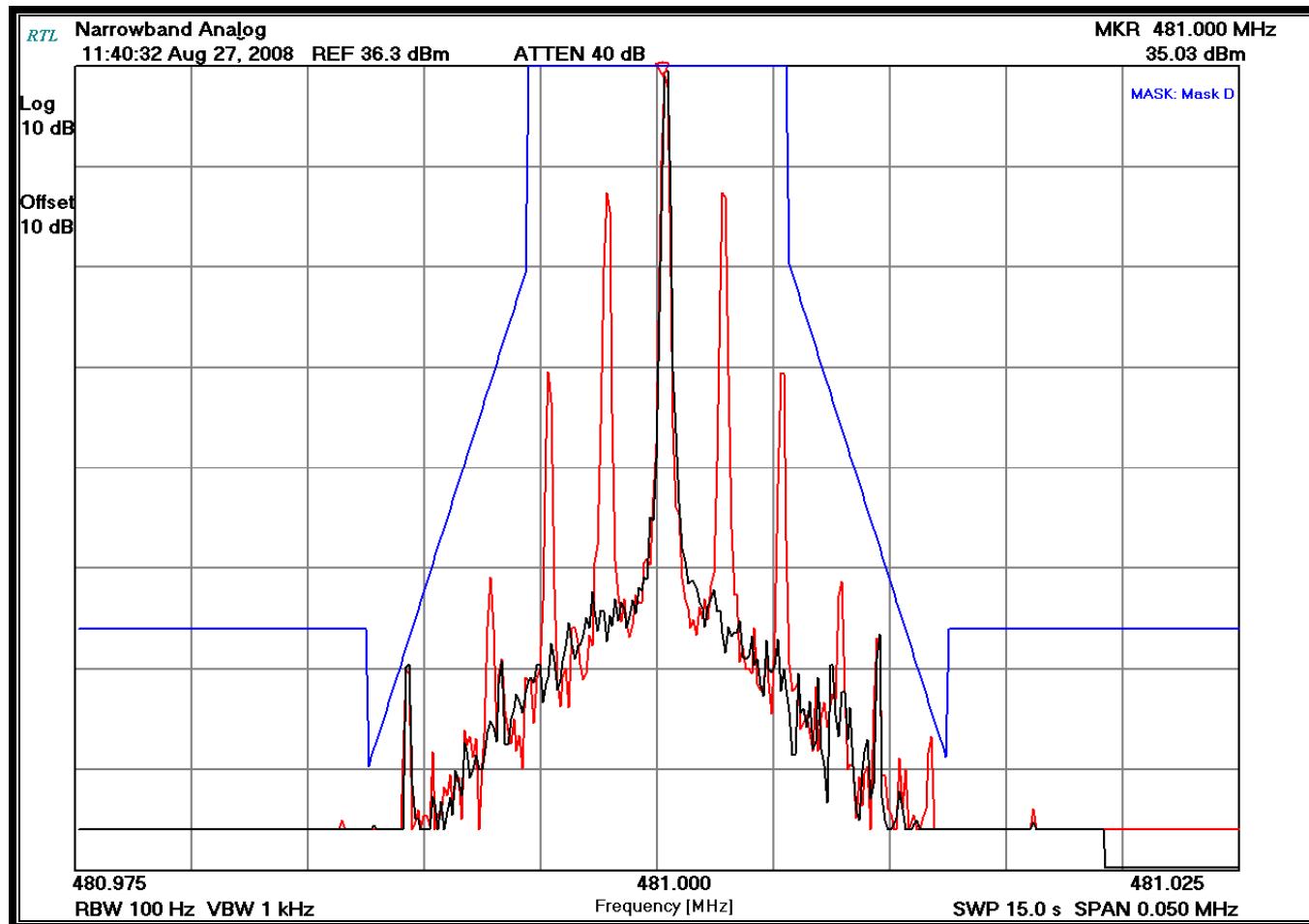
Limit Mask B:

- (1) On any frequency removed from the assigned frequency by more than 50%, but not more than 100% of the authorized bandwidth: **at least 25 dB**.
- (2) On any frequency removed from the assigned frequency by more than 100%, but not more than 250% of the authorized bandwidth: **at least 35 dB**.
- (3) On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth: **at least 43 + 10 log (P) dB**.

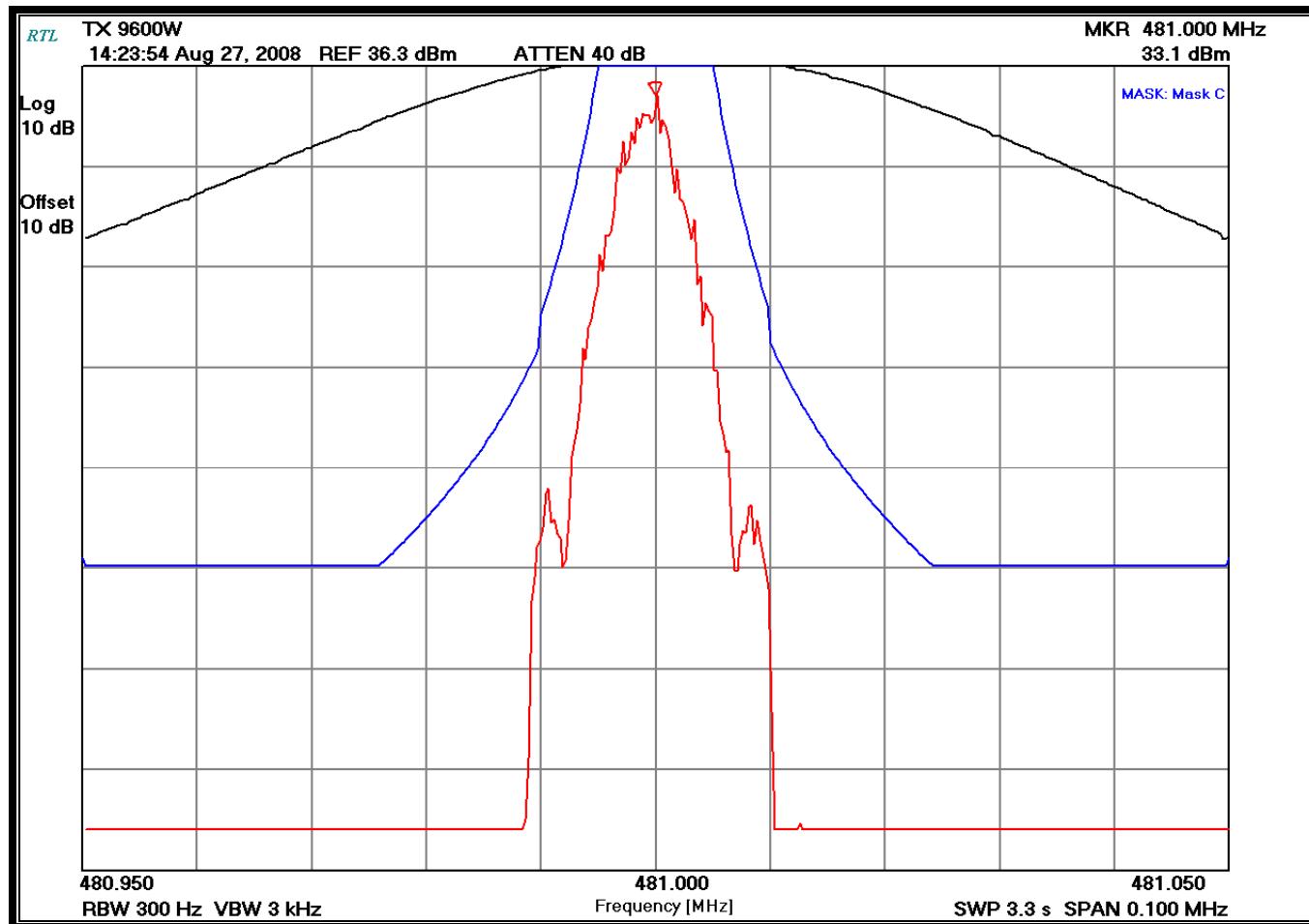
Limit Mask C:

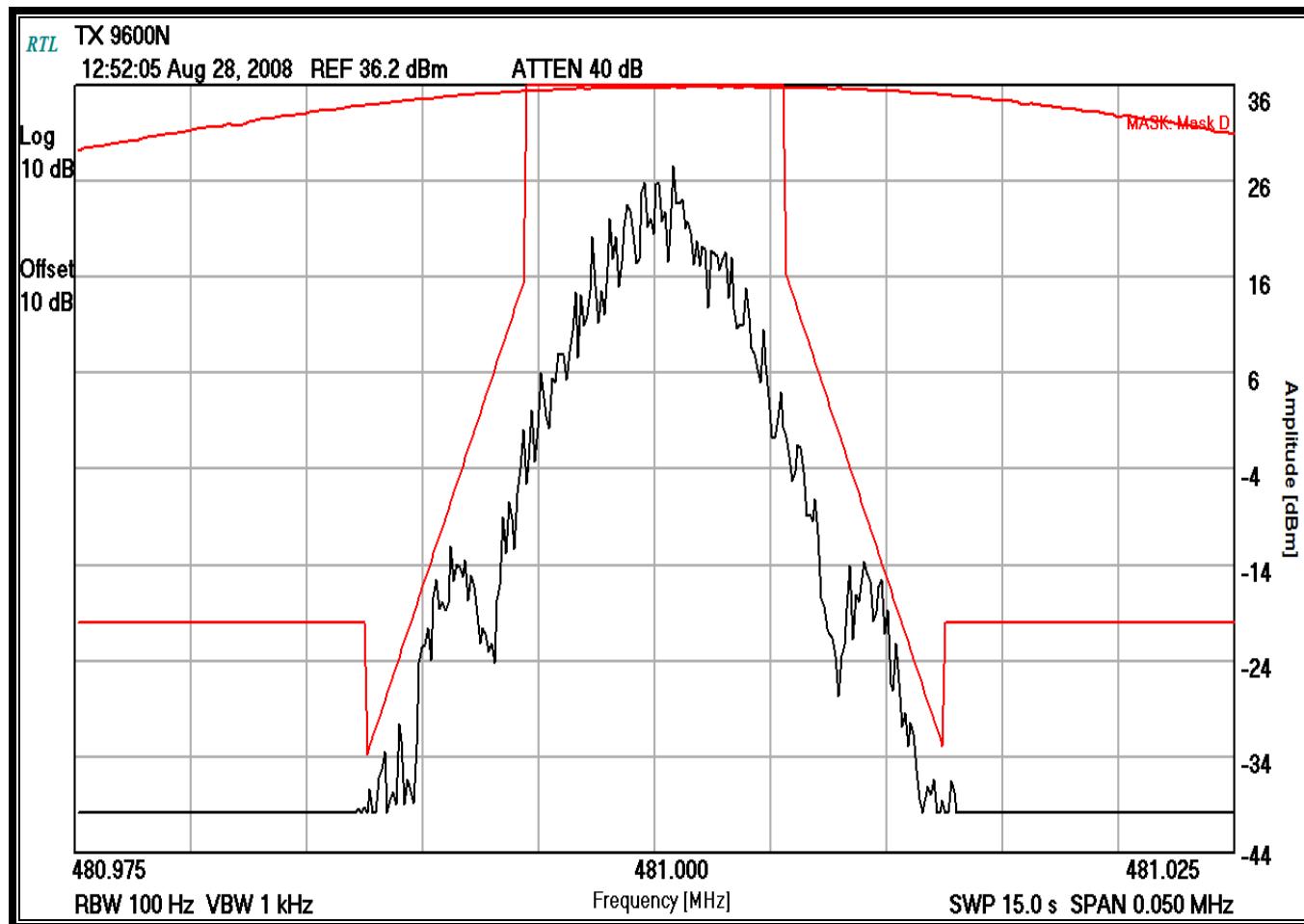

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: **at least 83 log (fd/5) dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: **at least 29 log (fd²/11) dB or 50 dB, whichever is the lesser attenuation**;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: **at least 43 + 10 log (P) dB**.

Limit Mask D:

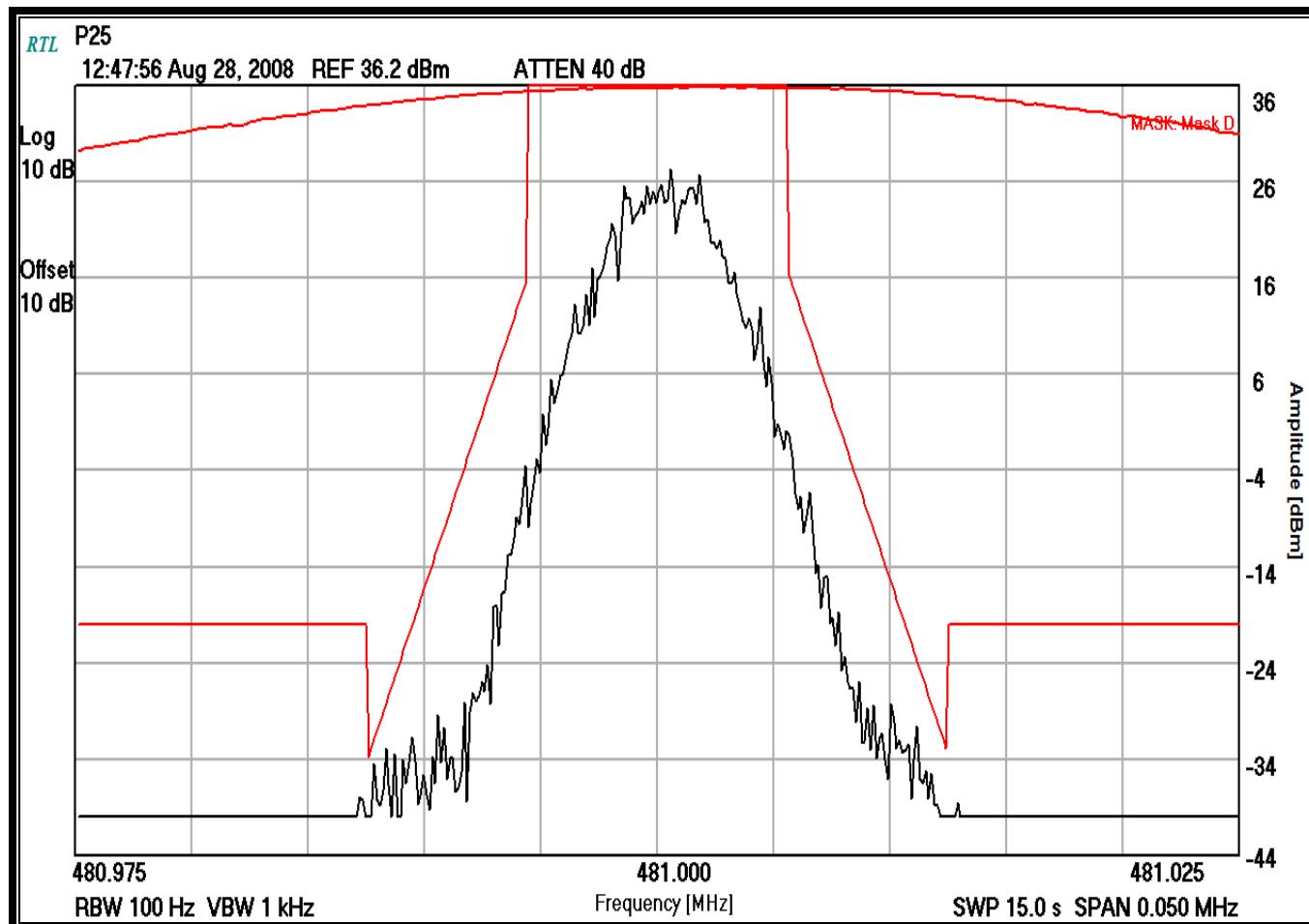

- (1) On any frequency removed from the center of the authorized bandwidth f_0 : **zero dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz, but not more than 12.5 kHz: **at least 7.27(fd-2.88 kHz) dB**;
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: **at least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation**.

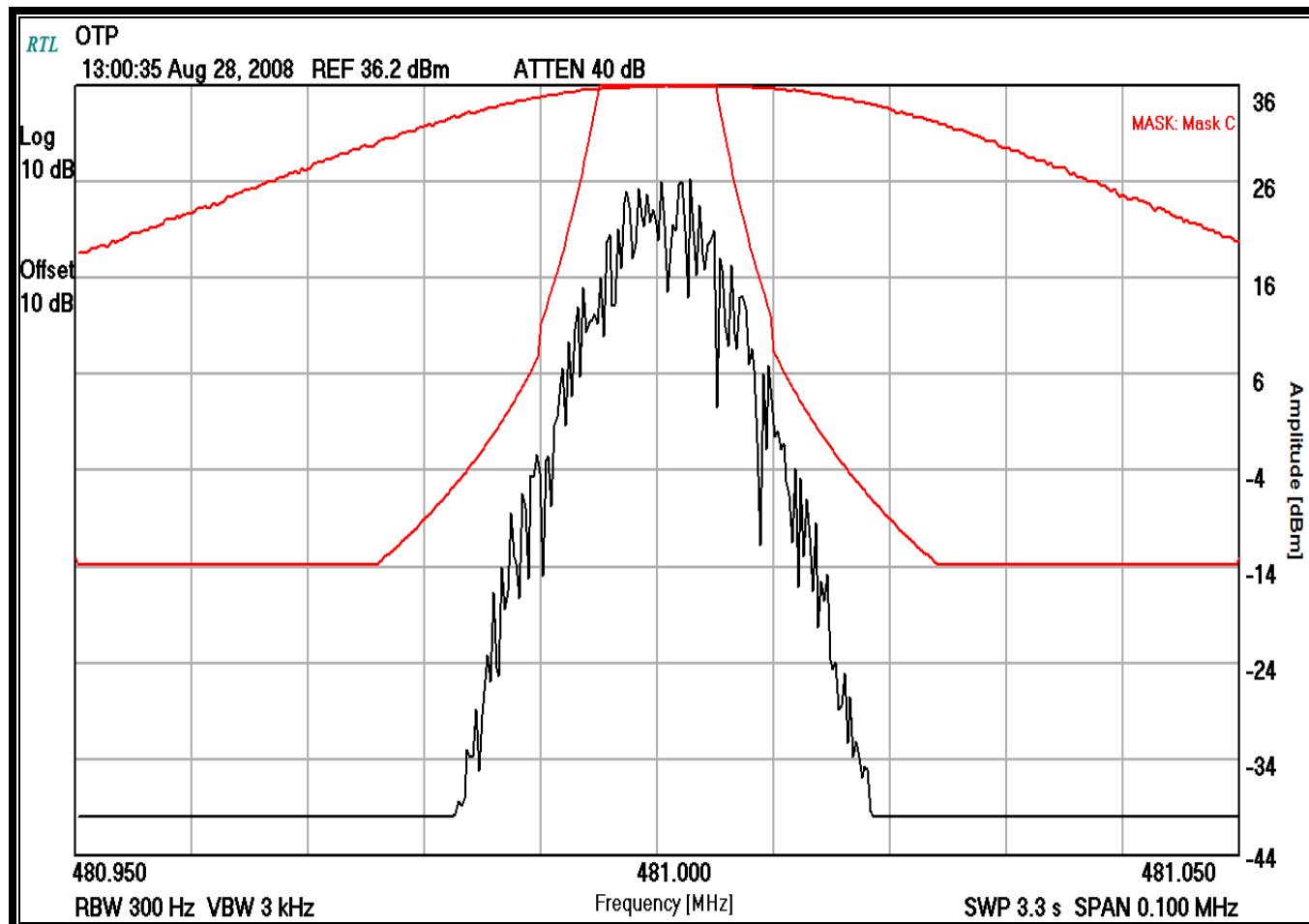
7.2 Test Data

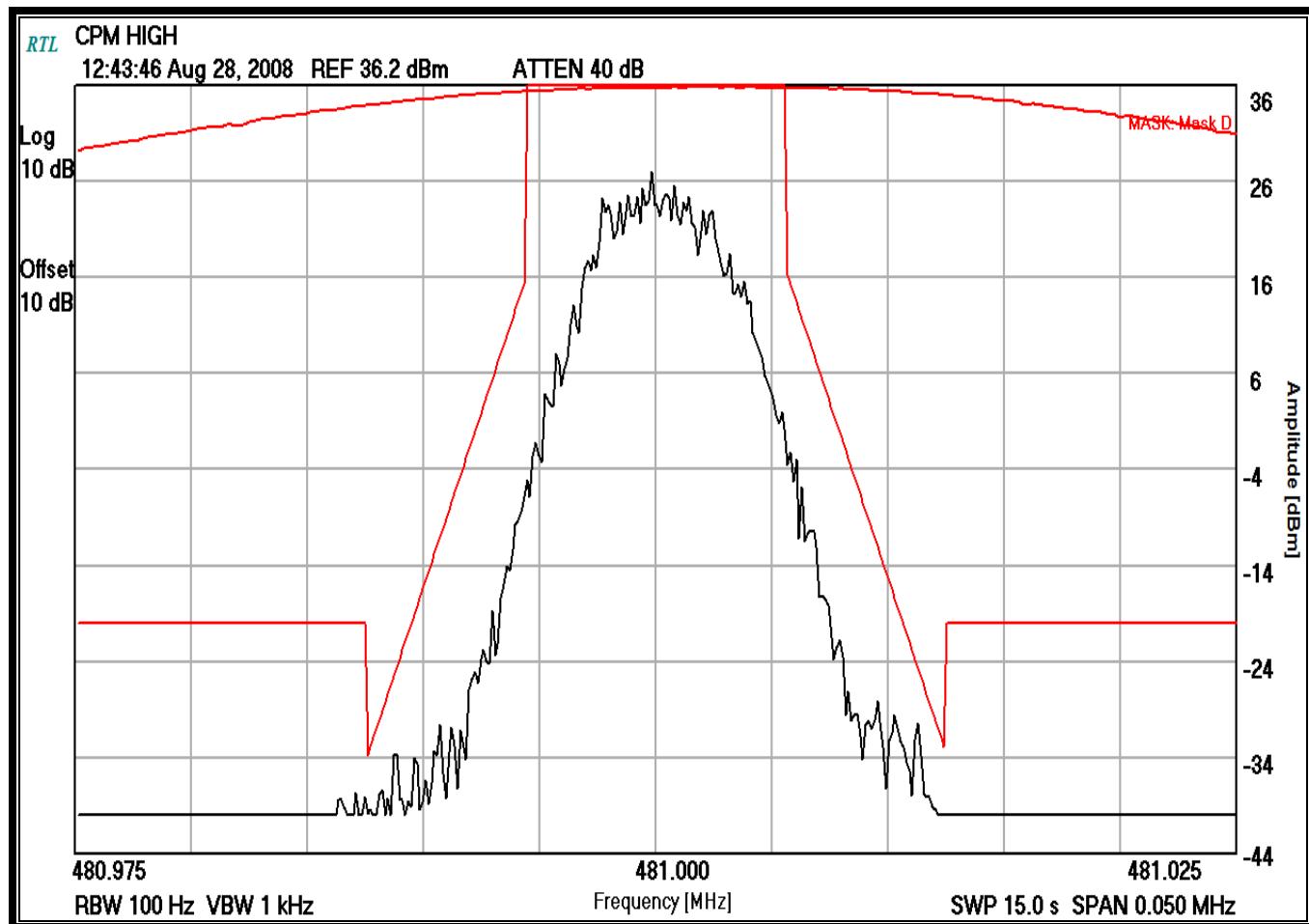

Plot 7-1: Occupied Bandwidth – 481 MHz; Mask B; WB Analog; High Power


Plot 7-2: Occupied Bandwidth – 481 MHz; Mask D; NB Analog; High Power

Plot 7-3: Occupied Bandwidth – 481 MHz; Mask C; WB 2-level FSK; 9600 BPS


Plot 7-4: Occupied Bandwidth – 481 MHz; Mask D; NB 2-level FSK; 9600 BPS


Plot 7-5: Occupied Bandwidth – 481 MHz; Mask D; NB 2-level FSK; 4800 BPS


Plot 7-6: Occupied Bandwidth – 481 MHz; Mask D; 4-level C4FM (P25 mode); 4800 SPS

Plot 7-7: Occupied Bandwidth – 481 MHz; Mask C; 4-level FSK OTP; 19200 BPS

Plot 7-8: Occupied Bandwidth – 481 MHz; Mask D; H-CPM (PSK); 6000 SPS

Table 7-1: Test Equipment for Testing Occupied Bandwidth

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz – 12.8 GHz)	3826A00144	10/17/08
901307	Inmet	6N-10dB	Attenuator 10 dB	64671	3/26/09

Test Personnel:

Daniel Baltzell		August 27 and 28, 2008
Test Engineer	Signature	Dates of Tests

8 FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055; RSS-119 §5.3: Frequency Stability

8.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.2.

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30°C to +60°C.

The temperature was initially set to -30°C and a 1-hour period was observed for stabilization of the EUT. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10°C through the range. A ½ hour period was observed to stabilize the EUT at each measurement step, and the frequency stability was measured within one minute after application of primary power to the transmitter. Additionally, the power supply voltage of the EUT was varied from the battery operating end point to 115% of nominal value.

The worst-case test data are shown below in Table 8-1 and Table 8-3.

8.2 Test Data

8.2.1 CFR 47 Part 90.213 Requirements

For mobile transmitters over 2 Watts output power:

451-512 MHz band: 5 ppm WB and 2.5 ppm NB

Note: In the 450-512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.

8.2.2 Frequency Stability/Temperature Variation

Plot 8-1: Temperature Frequency Stability – 481 MHz Channel

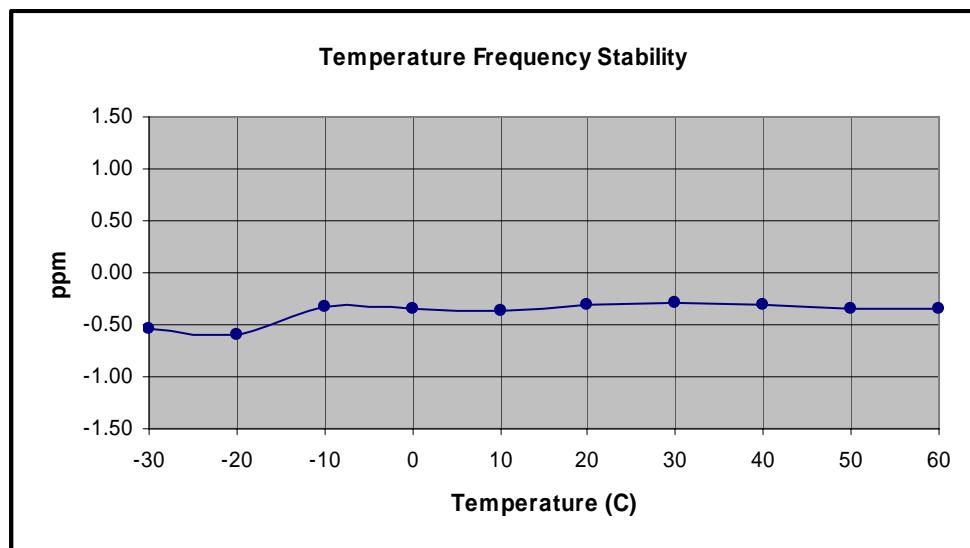


Table 8-1: Frequency Stability/Temperature Variation – 422.2000 MHz

Temperature °C	Measured Frequency (MHz)	ppm
-30	480.999740	-0.54
-20	480.999715	-0.59
-10	480.999845	-0.32
0	480.999831	-0.35
10	480.999826	-0.36
20	480.999849	-0.31
30	480.999862	-0.29
40	480.999852	-0.31
50	480.999829	-0.36
60	480.999835	-0.34

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
www.rheintech.com

Client: M/A-COM, Inc.
Model: P7300 UHF-H Radio
ID's: OWDTR-0052-E/3636B-0052
Standards: Part 90/RSS-119
Report #: 2008141

Table 8-2: Test Equipment for Testing Frequency Stability/Temperature

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900946	Tenney Engineering, Inc.	TH65	Temperature Chamber with Humidity	11380	5/8/09
901307	Inmet	6N-10dB	Attenuator 10 dB	64671	3/26/09
901300	Agilent Technologies	53131A	Frequency Counter	MY40001345	1/30/09

Test Personnel:

Daniel Baltzell		August 27, 2008
Test Engineer	Signature	Date Of Test

8.2.3 Frequency Stability/Voltage Variation

Plot 8-2: Voltage Frequency Stability – 481 MHz Channel



Table 8-3: Frequency Stability/Voltage Variation – 481 MHz

Voltage (VDC)	Measured Frequency (MHz)	ppm
6	481.000090	0.19
6.375	481.000120	0.25
7.5	481.000130	0.27
8.625	481.000110	0.23

Table 8-4: Test Equipment for Testing Frequency Stability/Voltage

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900946	Tenney Engineering, Inc.	TH65	Temperature Chamber with Humidity	11380	5/8/09
901307	Inmet	6N-10dB	Attenuator 10 dB	64671	3/26/09
901300	Agilent Technologies	53131A	Frequency Counter	MY40001345	1/30/09
901350	Meterman	33XR	Multimeter	040402802	12/5/08

Test Personnel:

Daniel Baltzell		August 27, 2008
Test Engineer	Signature	Date Of Test

9 FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics - Audio Frequency Response

9.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.6.: The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic. The input audio level at 1000 Hz was set to produce 20% of the rated system deviation. This point is shown as the 0 dB reference level, noted DEVref. The audio signal generator was varied from 100 Hz to 5 kHz with the input level held constant. The deviation in kHz was recorded using a modulation analyzer as DEVfreq. The response in dB relative to 1 kHz was calculated as follows: Audio Frequency Response = 20 LOG (DEVfreq/DEVref)

9.2 Test Data

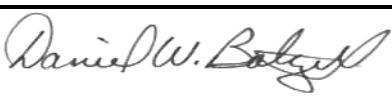

Plot 9-1: Modulation Characteristics - Audio Frequency Response; 481 MHz; WB

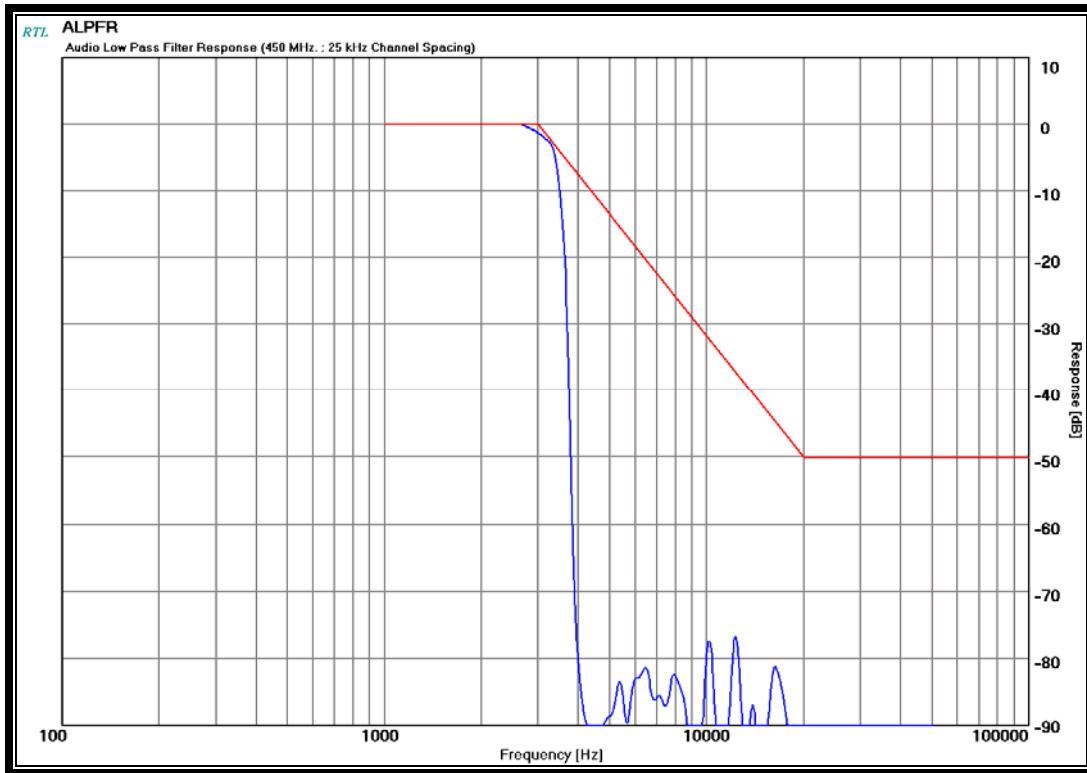
Table 9-1: Test Equipment for Testing Audio Frequency Response

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	12/12/08
901118	Hewlett Packard	8901A Opt. 002-003	Modulation Analyzer	2406A00178	08/21/08

Test Personnel:

Daniel Baltzell		August 26, 2008
Test Engineer	Signature	Date Of Test

10 FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics – Audio Low Pass Filter


10.1 Test Procedure

2.1047(a) Voice modulated communication equipment: a curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage, shall be submitted.

ANSI TIA-603-C, 2.2.15: The Audio Low Pass Filter Response is the frequency response of the post limiter low pass filter circuit above 3000 Hz. The audio frequency response of the post-limiter filter can not be measured directly as it is embedded within DSP code. The following plot is a simulation of the audio low pass filter circuitry, and is deemed "equivalent data" per 2.1047(a).

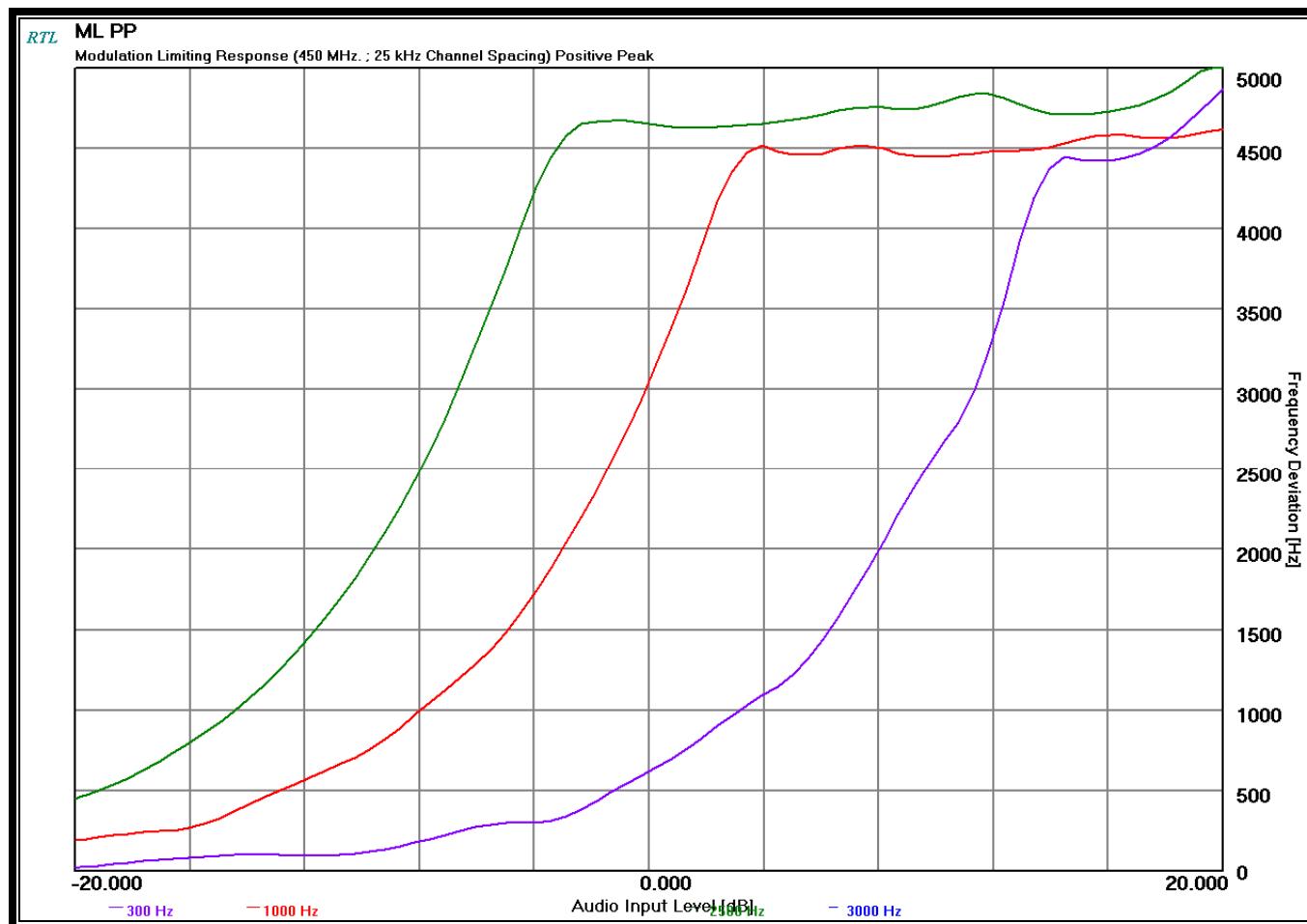
10.2 Test Data

Plot 10-1: Modulation Characteristics – Audio Low Pass Filter; 481 MHz; WB

Test Personnel:

Daniel Baltzell		August 26, 2008
Test Engineer	Signature	Date Of Test

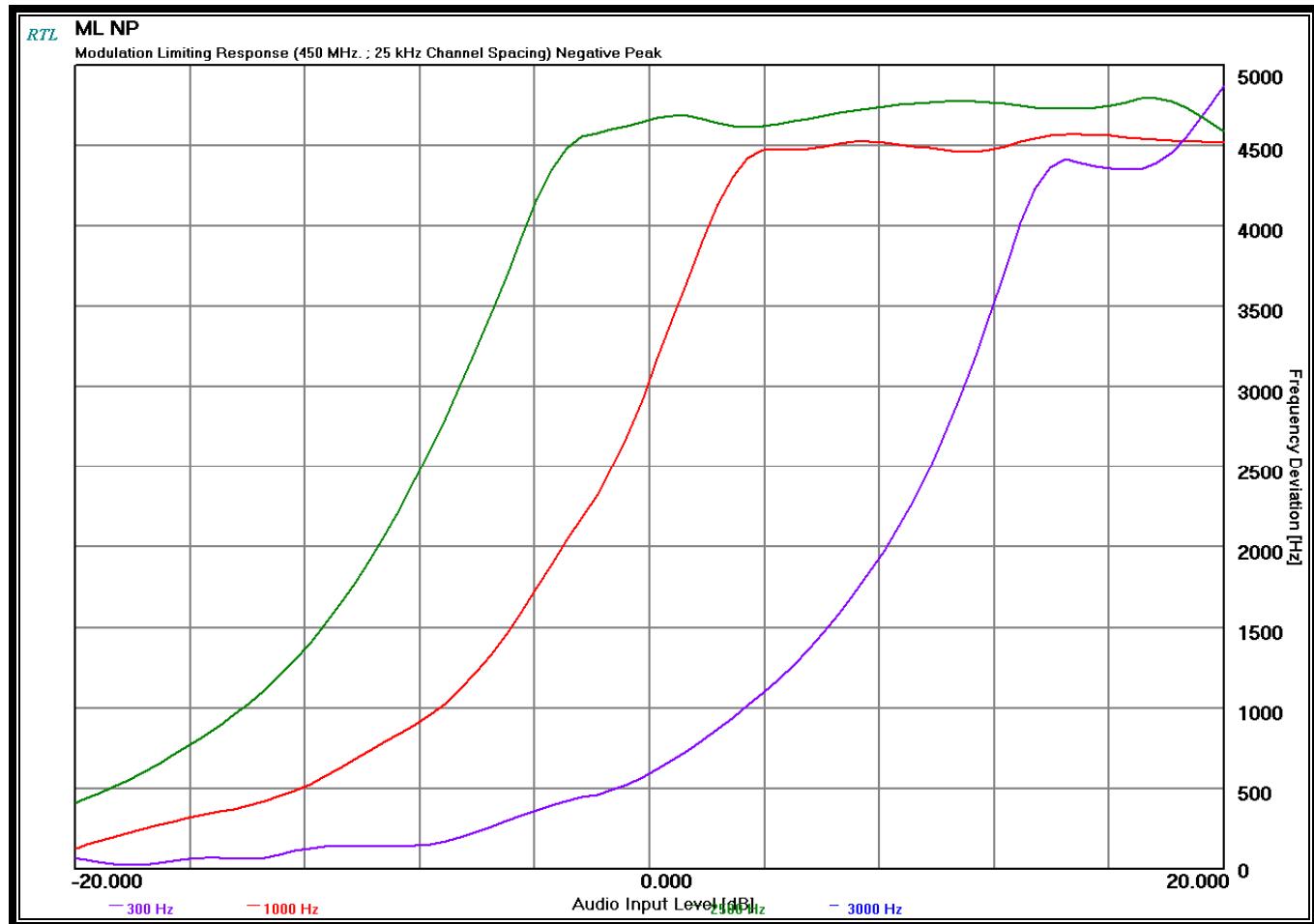
11 FCC Rules and Regulations Part 2 §2.1047(b): Modulation Characteristics - Modulation Limiting

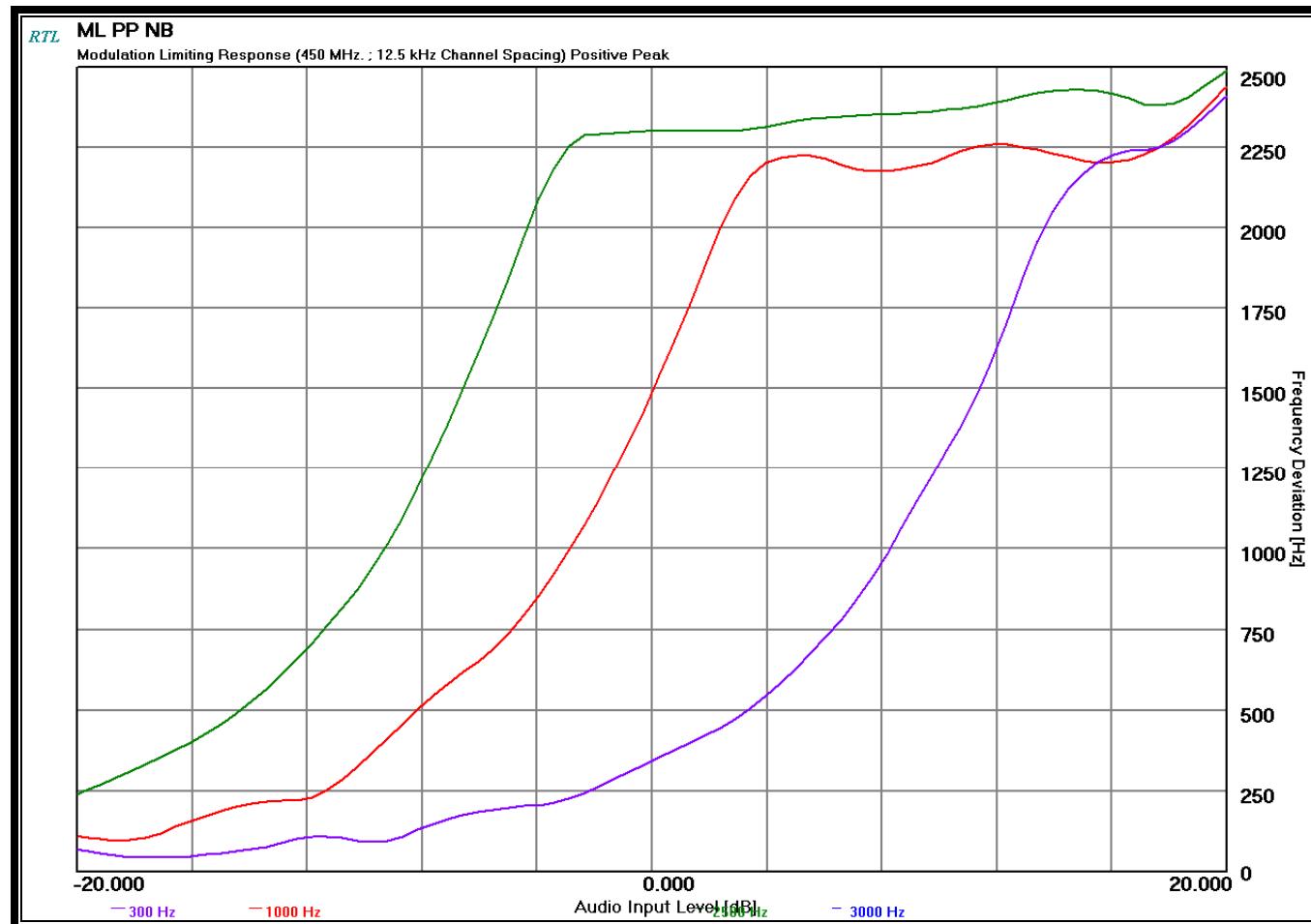

11.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.3.

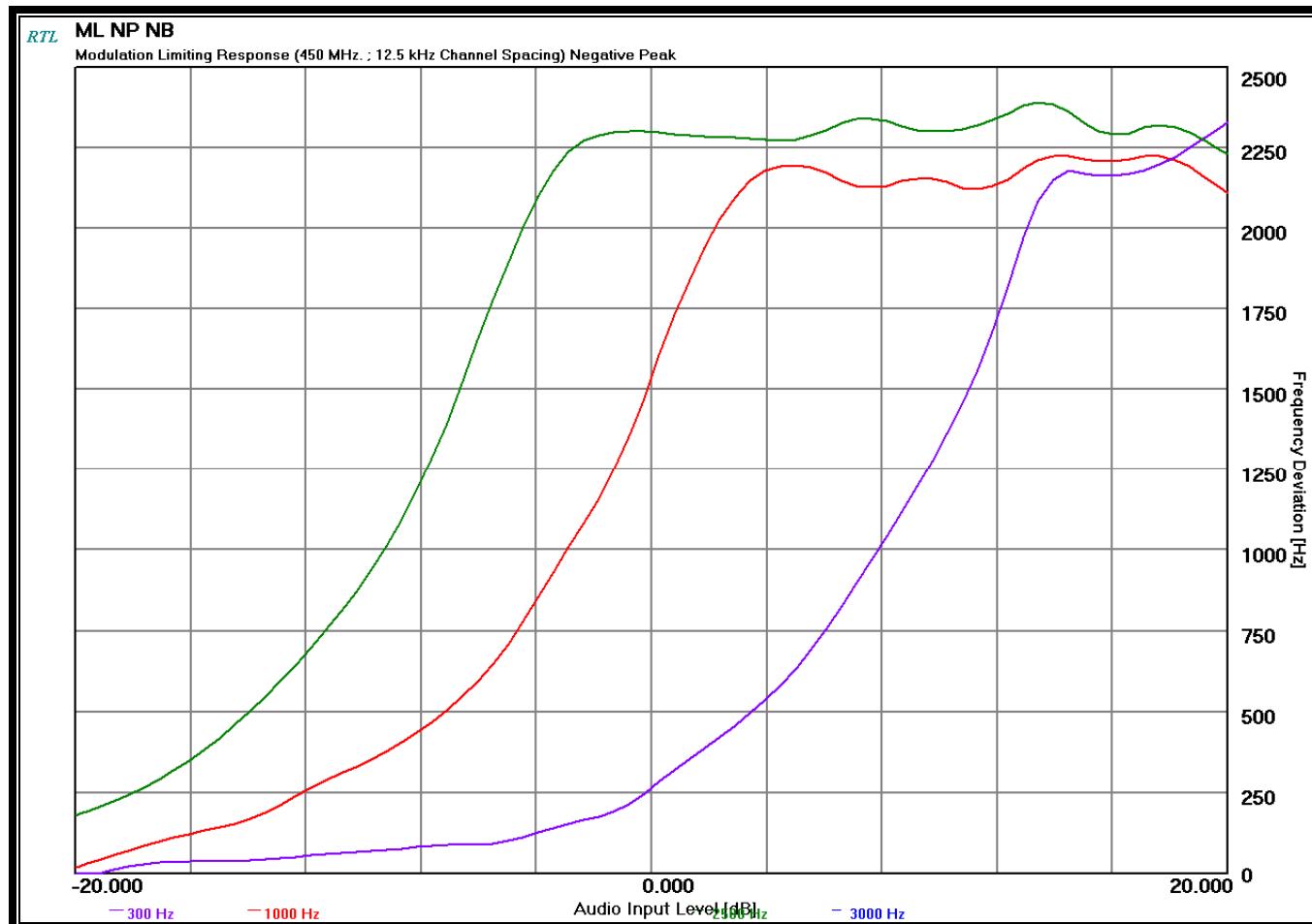
The transmitter was adjusted for full rated system deviation. The audio input level was adjusted for 60% of rated system deviation at 1000 Hz. Using this level as a reference (0 dB), the audio input level was varied from the reference +/-20 dB for modulation frequencies of 300 Hz, 1,000 Hz, and 2,500 Hz. The system deviation obtained as a function of the input level was recorded. Both positive and negative peak deviations were recorded.

11.2 Test Data


Plot 11-1: Modulation Characteristics – Modulation Limiting: 481 MHz; WB; Positive Peak


Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
www.rheintech.com

Client: M/A-COM, Inc.
Model: P7300 UHF-H Radio
ID's: OWDTR-0052-E/3636B-0052
Standards: Part 90/RSS-119
Report #: 2008141


Plot 11-2: Modulation Characteristics – Modulation Limiting: 481 MHz; WB; Negative Peak

Plot 11-3: Modulation Characteristics – Modulation Limiting: 481 MHz; NB; Positive Peak

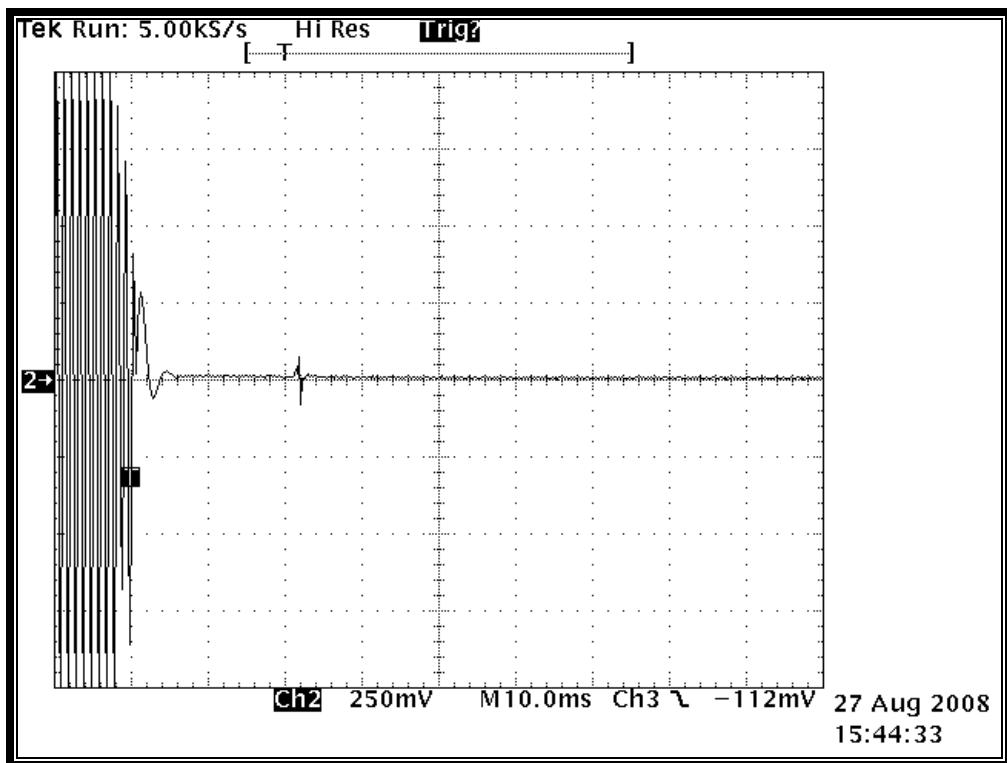
Plot 11-4: Modulation Characteristics – Modulation Limiting: 481 MHz; NB; Negative Peak

Table 11-1: Test Equipment for Testing Modulation Limiting

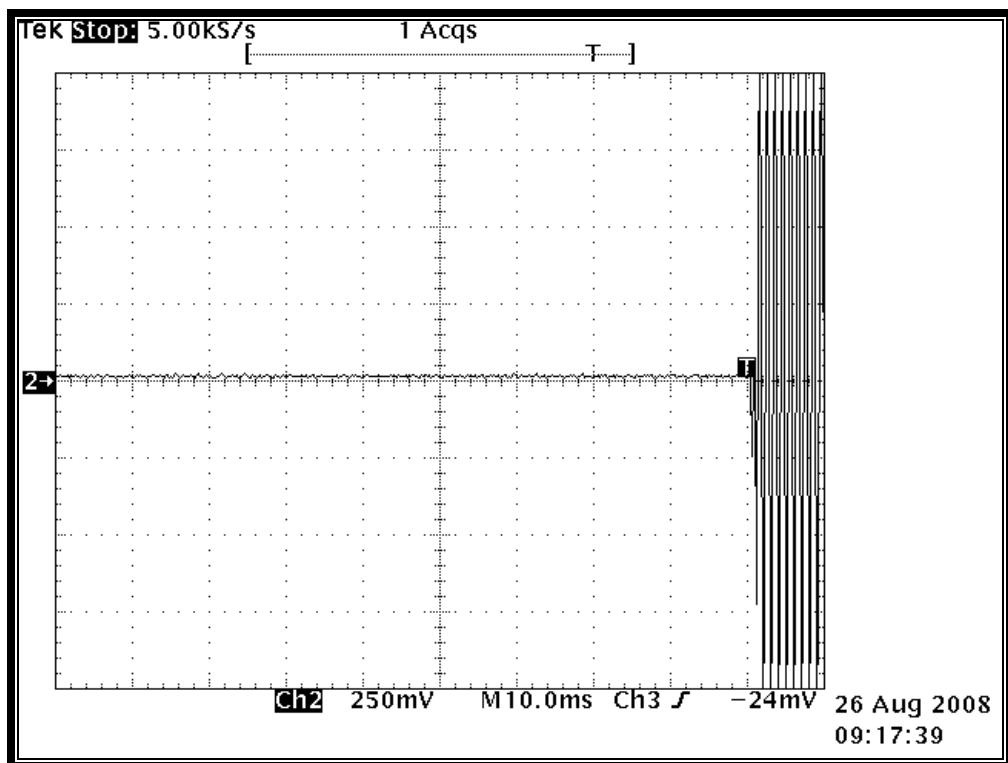
RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	12/12/08
901118	Hewlett Packard	8901A Opt. 002-003	Modulation Analyzer	2406A00178	08/21/08

Test Personnel:

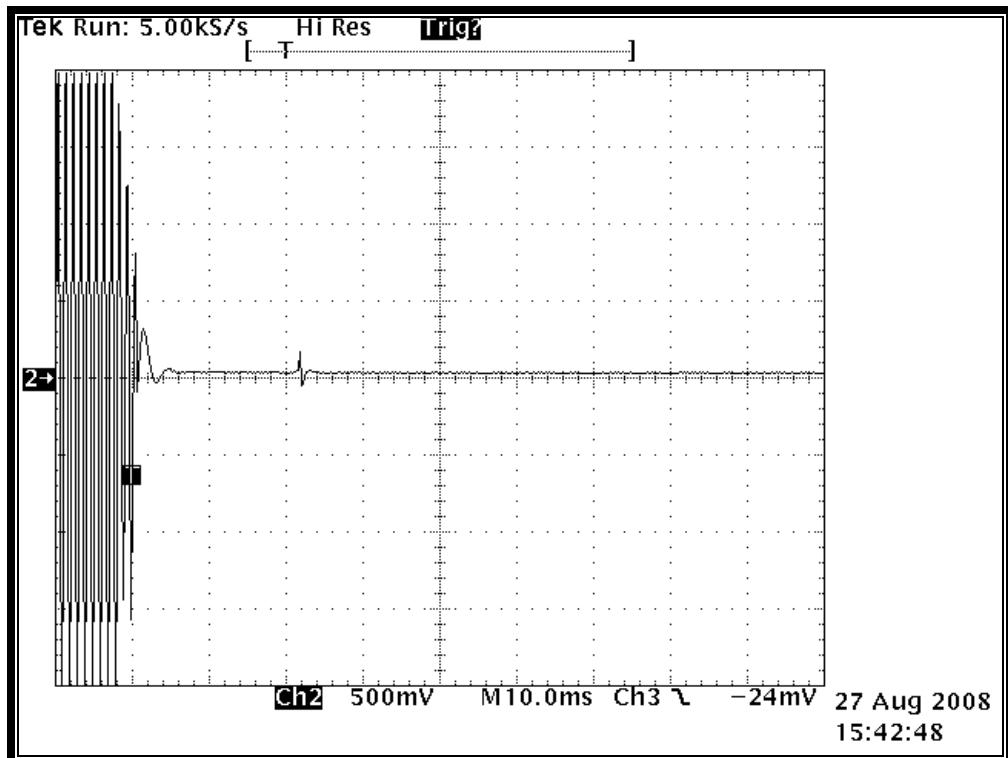
Daniel Baltzell		August 26, 2008
Test Engineer	Signature	Date Of Test

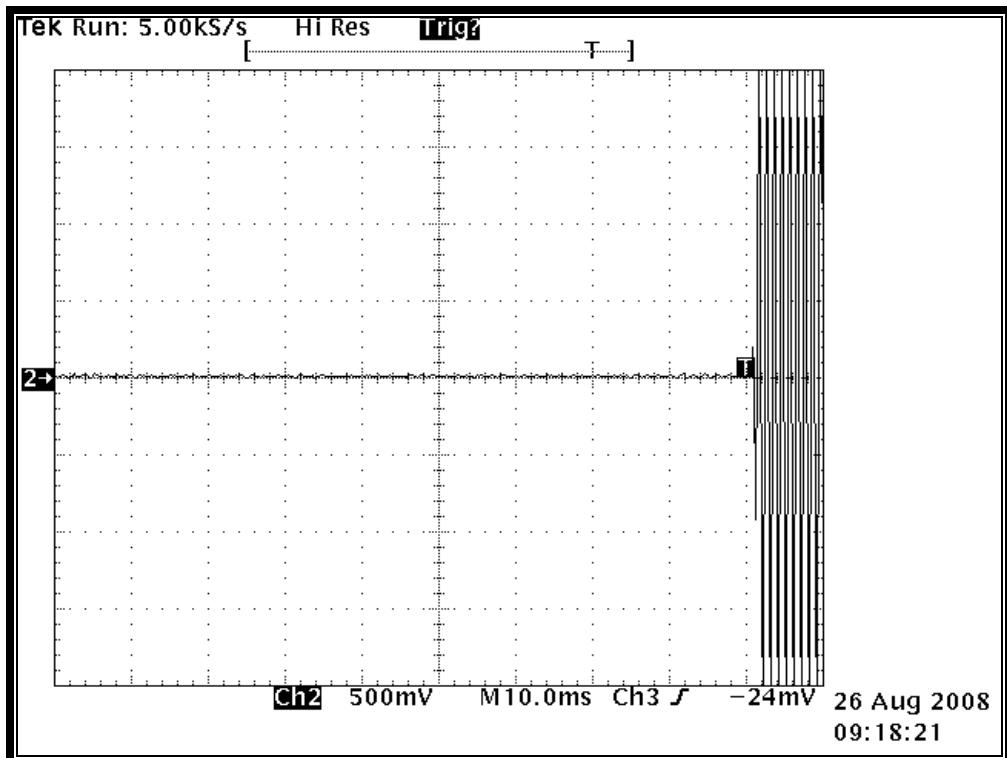

12 FCC Rules and Regulations Part 90 §90.214: Transient Frequency Behavior; RSS-119 §5.9: Transient Frequency Behavior

12.1 Test Procedure


ANSI TIA-603-C-2004, section 2.2.3.

12.2 Test Data


Plot 12-1: Transient Frequency Behavior – Carrier On Time - Narrowband


Plot 12-2: Transient Frequency Behavior – Carrier Off Time - Narrowband

Plot 12-3: Transient Frequency Behavior – Carrier On Time - Wideband

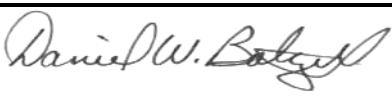

Plot 12-4: Transient Frequency Behavior – Carrier Off Time - Wideband

Table 12-1: Test Equipment Used For Testing Transient Frequency Behavior

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900917	Hewlett Packard	8648C	Signal Generator	3537A01741	09/05/08
901118	Hewlett Packard	8901A Opt. 002-003	Modulation Analyzer	2406A00178	8/21/08
900561	Tektronix	TDS540B	Oscilloscope	B020129	09/20/08
900352	Werlatone	C1795	Directional Coupler	4989	N/A

Test Personnel:

Daniel Baltzell		August 26 and 27, 2008
Test Engineer	Signature	Dates Of Tests

13 FCC Rules and Regulations Part 2 §2.202: Necessary Bandwidth and Emission Bandwidth

Type of Emissions: F3E, F1D, F1E, G1D, G1E

Voice – Wide Band; 25 kHz Channel Spacing

Calculation:

Max modulation (M) in kHz: 3.0

Max deviation (D) in kHz: 5.0

Constant factor (K): 1 (assumed)

$B_n = 2xM+2xDK = 16.0$ kHz

Emission designator: 16K0F3E

Voice – Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Max modulation (M) in kHz: 3.0

Max deviation (D) in kHz: 2.5

Constant factor (K): 1 (assumed)

$B_n = 2xM+2xDK = 11.0$ kHz

Emission designator: 11K0F3E

Digital Voice and Data – 2-level FSK; 9600 bps; Wide Band; 25 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 9600

Peak deviation of carrier (D) = 3000

$B_n = 3.86D + 0.27R = 3.86(3000) + 0.27(9600) = 14.172$ kHz

Emission designator: 14K2F1D, 14K2F1E

Digital Voice and Data – 2-level FSK; 9600 bps; Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 9600

Peak deviation of carrier (D) = 2000

$B_n = 3.86D + 0.27R = 3.86(2350) + 0.27(9600) = 10.312$ kHz

Emission designator: 10K3F1D, 10K3F1E

Digital Voice and Data – 2-level FSK; 4800 bps; Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 4800

Peak deviation of carrier (D) = 1500

$B_n = 3.86D + 0.27R = 3.86(1500) + 0.27(4800) = 7.086$ kHz

Emission designator: 7K10F1D, 7K10F1E

Digital Data – 4 level C4FM (P25 Standard); 4800 sps; Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 9600

Peak deviation of carrier (D) = +/-1.8 kHz

Number of states in each symbol (S) = 2

$B_n = [9600/\log_2(4) + 2(1800)(1)] = 8.400$ kHz

Emission designator: 8K40F1D, 8K40F1E

Digital Data – 4 level FSK; 9600 sps; Wide Band; 25 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 19200

Peak deviation of carrier (D) = +/-3.75 kHz

Number of states in each symbol (S) = 2

Bn = [19200/log₂(4) + 2(3750)(1)] = 17.100 kHz

Emission designator: 17K10F1D, 17K10F1E

Digital Data – H-CPM (PSK); 6000 sps; Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 12000

Number of states in each symbol (S) = 4

Bn = 2RK/ log₂S=2(12000)(1)/log₂(4)(1)] = 12.0 kHz

Emission designator: 12K00G1D, 12K00G1E

14 Conclusion

The data in this measurement report shows that the **M/A-COM, Inc.** Model **P7300 UHF-H Portable Radio, FCC ID: OWDTR-0052-E, IC: 3636B-0052**, complies with all the applicable requirements of Parts 90 and 2 of the FCC Rules and Regulations, and Industry Canada RSS-119, Issue 9, 2007.