

Engineering and Testing for EMC and Safety Compliance

Accredited under A2LA Testing Certificate # 2653.01

RF Maximum Permissible Exposure (MPE) Report for Controlled and Uncontrolled Environments

M/A-COM, Inc.
221 Jefferson Ridge Parkway
Lynchburg, VA 24501
Daryl Popowitch
Phone: (434) 455-9527

**Model: M7300 700/800 MHz Mobile Radio
(Motorcycle Mount Configuration)**

**FCC ID: OWDTR-0051-E
IC: 3636B-0051**

August 12, 2008

Report Prepared by: Richard B. McMurray, P. E.

Document Number: 2008139

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and M/A-COM, Inc. Test results relate only to the item tested.

Table of Contents

1	MPE Measurements and Applicable Regulations	3
2	Identification of the EUT.....	4
3	Modifications	5
4	Test Laboratory.....	5
5	Turnaround Time	5
6	Test Equipment, Accessories and Test Setup.....	6
7	Justification of the Chosen Transmitting Mode and Frequency.....	9
8	MPE Limits for the EUT	9
9	Calculating the Safe Distance from the EUT's Antenna	10
10	Standard Test Conditions and Engineering Practices	10
11	Measurement Procedure	11
12	Test Results	12
13	Conclusion	13

1 MPE Measurements and Applicable Regulations

This test report presents the results of Maximum Permissible Exposure (MPE)¹ measurements performed on the M/A-COM, Inc. M7300 mobile radio, which is capable of operating in the frequency ranges 700 and 800 MHz; transmitting is enabled on frequencies 806-824 MHz (800 MHz range) and 794-797 MHz, 799-805 MHz and 803-806 MHz (700 MHz range).

The antenna presented in this report is for use in the 806-824 MHz. Therefore, the motor cycle configuration will be restricted for use in this frequency range.

The tests were performed in accordance with TCB training material and the following parts of the FCC Rules and Regulations and Industry Canada Radio Standard Specifications:

- IEEE Std C95.1: 2005: "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz",
- IEEE Std C95.3: 2002: "IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz – 300 GHz",
- FCC OET Bulletin 65, Edition 97-01: "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields",
- FCC Supplement C to OET Bulletin 65, Edition 01-01: "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emission",
- Subpart I, Part 1 of 47 CFR FCC Rules and Regulations, Edition 10-1-06: "Procedures Implementing the National Environmental Policy Act of 1969." Specifically, Paragraph 1.1310: "Radiofrequency Radiation Exposure Limits",
- Subpart J, Part 2 of 47 CFR FCC Rules and Regulations, Edition 10-1-06: "Equipment Authorization Procedures." Specifically, Paragraph 2.1091: "Radiofrequency Radiation Exposure Evaluation: Mobile Devices",
- RSS-102, Issue 2, 2005: "Spectrum Management and Telecommunications Radio Standards Specification. Radiofrequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)".

¹ By definition, maximum permissible exposure (MPE) is rms or peak electric (or magnetic) field strength, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with an acceptable safety factor.

2 Identification of the EUT

The EUT is a combination of a mobile radio and an antenna in a motorcycle mount configuration. The antenna was mounted on the metal case in which the radio was located.

Manufacturer's Name	M/A-COM, Inc.
Manufacturer's Address	221 Jefferson Ridge Parkway Lynchburg, VA 24501, USA
Device Type	Mobile radio – motorcycle mount configuration
Model of the EUT	M7300
FCC ID of the EUT	OWDTR-0051-E
IC ID of the EUT	3636B-0051
Operating Frequency Ranges (for the specific configuration in this report)	806–824 MHz
RF Max Power, Rated	35 W
TX Duty Cycle	50%
Antenna Tested	M/A-COM, Inc. Part Number: LE-OM806HDBK/TNCDS
Year of Manufacture	2008

3 Modifications

No modifications were made to the EUT during testing.

4 Test Laboratory

Test personnel of Rhein Tech Laboratories, Inc. (RTL) performed testing for which the company is accredited by NVLAP. Testing was performed at the RTL test facility located at 360 Herndon Parkway, Suite 1400, Herndon, VA, 20170. Various regulatory bodies, including the FCC and IC, approved this facility for conducting tests and measurements on a contractual basis.

5 Turnaround Time

The EUT was ready for the MPE investigation on 05/08/08. The investigation was finished on 05/19/08.

6 Test Equipment, Accessories and Test Setup

Test equipment used for the measurements is shown in Table 6-1.

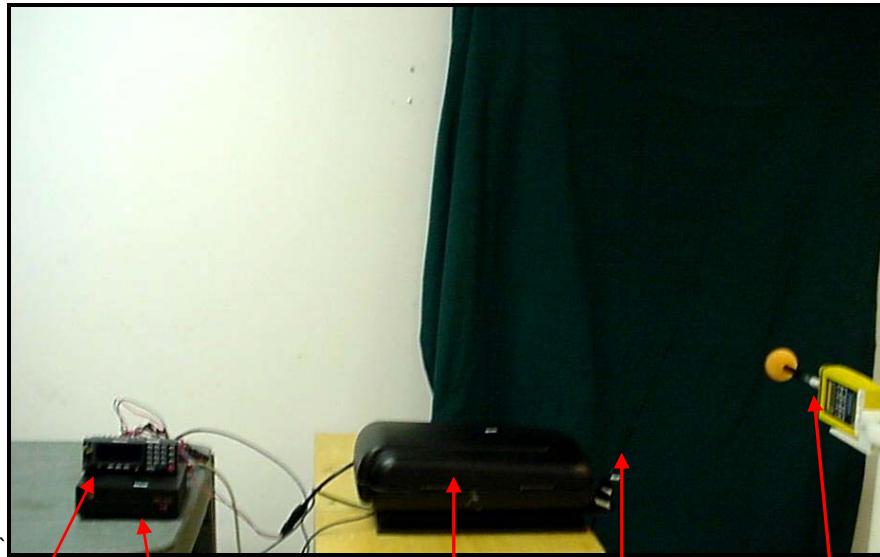
Table 6-1: Test Equipment

RTL Barcode	Manufacturer	Model	Equipment Type	Serial Number	Calibration Due Date
901182	Wandel & Goltermann	TYPE-8	E- Field Probe, 10 kHz to 3 GHz	AH-0021	09/14/2010
901183	Wandel & Goltermann	EMR 200 ²	Radiation Meter	AE-0024	09/14/2010
901420	Sper Scientific	800016	Humidity/Temperature Monitor	044432	02/28/2010
901366	Control Company	15551-024	Barometer	72638399	11/06/2009
901184	Agilent Technologies	E4416A	EPM-P Power Meter, Single Channel	GB41050573	10/24/2008
901356	Agilent Technologies	E9323A	Power Sensor	31764-264	10/24/2008
901396	MCE Weinschel	48-40-34	Attenuator, 40 dB, DC-18 GHz, 100 W	93453	01/13/2009

Table 6-2 shows detailed information about the EUT and accessories.

² Per the Operating Manual for the EMR 200 radiation meter, the device with the Type 8 probe is capable of measuring electromagnetic power in the range of 0.00027 - 170 mW/cm². The recommended environment is the following: Ambient temperature: (23 ± 3) °C, ambient relative humidity: 25% - 75%.

Table 6-2: EUT and Accessories


Part	Manufacturer	Model	SN	FCC ID	IC ID
M7300 Radio	M/A-COM, Inc.	M7300	N/A	OWDTR-0051-E	3636B-0051
Antenna	M/A-COM, Inc.	LE- OM806HDBK/TNCDS	N/A	N/A	N/A
DC Power Supply	Samplex America	SEC 1212	03051- 2K07-00197	N/A	N/A

RTL conducted the MPE measurements in an area free from electromagnetic radiation. Details of the test setup are as follows:

- The EUT was mounted on the 80 cm tall wood table.
- The power supply was located at a distance of at least 1.5 meters from the radiating EUT's antenna to minimize interference.
- The test probe was solidly connected to the radiation meter attached to the plastic mast in front of the EUT's antenna.
- During the MPE measurements, the EUT was set to transmit at maximum RF power with a 50% duty cycle.

The test setup is shown in Photograph 6-1.

Photograph 6-1: MPE Test Setup for the EUT in Motorcycle Configuration

Control Unit

Power Supply

EUT

Antenna

Wandel & Goltermann
E-Field Probe,
10 kHz to 3 GHz,
TYPE-8

7 Justification of the Chosen Transmitting Mode and Frequency

The EUT is able to transmit with a non-modulated carrier and with various types of modulations at maximum rated power 35.0 W. "P25 random" with the highest RF power was chosen for the MPE measurements. Measurements were conducted at 816 MHz, the middle frequency of the 800 MHz band.

8 MPE Limits for the EUT

The FCC and IC have the same MPE limits for the EUT's frequency range, which are shown below for uncontrolled and controlled environments in Tables 8-1 and 8-2 respectively. The limits are based on the recommended MPE Guidelines published by the National Council on Radiation Protection and Measurements in "Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields."

Table 8-1: FCC/IC MPE Limit and Averaging Time in an Uncontrolled Environment

Frequency Range, MHz	Power Density (S), mW/cm ²	Averaging Time, min
300-1500	f/1500, where "f" is the frequency in MHz	30

Table 8-2: FCC/IC MPE Limit and Averaging Time in a Controlled Environment

Frequency Range, MHz	Power Density (S), mW/cm ²	Averaging Time, min
300-1500	f/300, where "f" is the frequency in MHz	6

The MPE limits for the EUT transmitting at 816 MHz are shown in Table 8-3.

Table 8-3: MPE Limits

Frequency, MHz	MPE Limit (S) for Controlled Environment, mW/cm ²	MPE Limit (S) for Uncontrolled Environment, mW/cm ²
816	2.72	0.54

9 Calculating the Safe Distance from the EUT's Antenna

Before starting MPE measurements, we calculated the safe distance, R_{safe} using a common formula for a far-field region:

$$R_{\text{safe}} = \sqrt{\frac{P_{\text{max}} \cdot G_n \cdot \eta}{4\pi \cdot S}}$$

In this equation, G_n is numerical antenna gain, P_{max} and S are the maximum power input to the antenna and the MPE limit for power density, respectively; η is the duty cycle listed as a decimal number, for the measurements, $\eta = 0.5$.

Cable loss of the RF cable connecting the EUT and the antenna under test decreases the RF power delivered to the antenna and influences the value of the safe distance.

Based on the specification for the 4.0 m Larsen cable connecting the investigated motorcycle antenna to the EUT, cable loss for 816 MHz is about 2.34 dB; therefore, maximum power delivered to the motorcycle antenna is 20.4 W.

Table 9-1 presents the results of R_{safe} calculations for investigated frequencies and antennas applicable for different environments.

Table 9-1: Calculated R_{safe} for Different Environments – 816 MHz

Antenna Gain, dBi	R_{safe} for Controlled Environment, cm, for the frequencies below	R_{safe} for Uncontrolled Environment, cm, for the frequencies below
5.50	32.6	73.1

10 Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were fulfilled during the testing:

1. ANSI C63.4 requires the ambient temperature and relative humidity to be within the ranges of 10°C to 40°C and 10% to 90%, respectively. With respect to the narrower ranges recommended for the power meter used for the measurements, ambient conditions shall be in line with the power meter ranges. Actual values of ambient temperature and relative humidity are shown in Section 12 of this test report.
2. Measurement results presented in Section 12, Test Results, unless otherwise noted, show the highest measured level of MPE.

11 Measurement Procedure

1. The test setup was as described in Section 6 of this test report.
2. Polarization of the EUT's antenna was vertical, which is its polarization in actual use.
3. The EUT at the chosen modulation was set to transmit at the chosen frequency at maximum RF power and at 50% duty cycle. During preliminary measurements, we set the distance between the power density probe and the investigated EUT's antenna equal to the average calculated R_{safe} (Table 9-1) applicable either for controlled or uncontrolled environments.
4. Power density measurements were taken at different heights of the probe from the ground (0.1 to 2 meters) while rotating versus azimuth (from 0° to 360°) the antenna.
5. The azimuth between the probe and the antenna position corresponding to the highest MPE level was chosen as the "worst case" position for the final measurements.
6. For the final measurements we adjusted the distance between the test probe and the tested antenna to the real safe distance, R_{real} , such that the measured highest power density in the "worst case" position was the same or slightly less than the test limit.
7. The measurement results of final measurements conducted at the chosen azimuth and different heights of the probe above the ground are shown in Section 12.
8. Average values of power density were calculated for the imaginary whole human body (0.1–2.0 m), for the lower part of the body (0.1–0.9 m) and for the upper part of the body (1.0–2.0 m). The results of calculations are shown in Section 12.

12 Test Results

The MPE measurements were conducted between 05/08/08 and 05/19/08 by Galina Yushina.

Ambient conditions during the MPE investigation were as follows:

- Temperature 22–24°C
- Relative humidity 30–42%
- Atmospheric pressure 102 kPa

The MPE measurement procedure was in line with the description in Section 11. Tables 12-1 through 12-4 demonstrate the test results.

Table 12-1: MPE for Controlled Environment with 5.5 dBi antenna at 816.0 MHz

MPE, mW/cm ² , measured at the distance of 28 cm between the probe and the antenna at the height (cm) shown below																			
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
0.10	0.13	0.23	0.25	0.10	0.18	0.78	1.60	2.61	2.32	0.96	0.56	0.32	0.19	0.20	0.19	0.13	0.06	0.03	0.05

Table 12-2: MPE for Body Parts in Controlled Environment with 5.5 dBi antenna at 816.0 MHz

Part of the body / averaging points	Averaged Power Density at the $R_{real} = 28$ cm, mW/cm ²
Whole body (0.1 m to 2.0 m)	0.55
Lower body (0.1 m to 0.9 m)	0.66
Upper body (1.0 m to 2.0 m)	0.46

Table 12-3: MPE for Uncontrolled Environment with 5.5 dBi antenna at 816.0 MHz

MPE, mW/cm ² , measured at the distance of 72 cm between the probe and the antenna at the height (cm) shown below																			
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
0.20	0.19	0.04	0.03	0.02	0.02	0.08	0.14	0.43	0.53	0.35	0.15	0.10	0.12	0.12	0.11	0.20	0.08	0.06	

Table 12-4: MPE for Body Parts in Uncontrolled Environment with 5.5 dBi antenna at 816.0 MHz

Part of the body / averaging points	Averaged Power Density at the $R_{real} = 72$ cm, mW/cm ²
Whole body (0.1 m to 2.0 m)	0.15
Lower body (0.1 m to 0.9 m)	0.13
Upper body (1.0 m to 2.0 m)	0.17

13 Conclusion

1. The MPE measurements for controlled and uncontrolled environments shown in this report were conducted per the applicable FCC/IC Rules, Regulations and Guidance, and determined the minimum safe distances between the EUT antennas with different gains and a user.
2. As is shown in Section 12, the measured MPE are below the maximum allowed limits.
3. To cover all antennas related to M73000 radio, the User Manual shall have a statement regarding the safe distance similar to the one shown below:

Based on the highest radiated RF power, the following distances are considered as safe distances for controlled and uncontrolled environments while transmitting at a maximum 50% duty cycle:

Safe Distance, R_{safe}, cm, for Different Environments	
Controlled Environment	Uncontrolled Environment
28	72