

Engineering and Testing for EMC and Safety Compliance

Accredited under A2LA certificate # 2653.01

Certification Report

M/A-COM, Inc.
221 Jefferson Ridge Parkway
Lynchburg, VA 24501
Phone: (434) 455-9527
Daryl Popowitch
E-Mail: popowitda@tycoelectronics.com

Model: P5400 VHF-Portable Radio

FCC ID: OWDTR-0044-E
IC: 3636B-0044

November 29, 2007

Standards Referenced for this Report	
Part 2: 2006	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
Part 90: 2006	Private Land Portable Radio Services
ANSI TIA-603-C-2004	Land Portable FM or PM Communications Equipment - Measurement and Performance Standards
ANSI/TIA/EIA-102.CAAA; 2002	Digital C4FM/CQPSK Transceiver Measurement Methods
RSS-119 Issue 9 2007	Land Portable and Fixed Radio Transmitters and Receivers 27.41 to 960.0 MHz

Report Prepared by Test Engineer: Dan Baltzell

Document Number: 2007266/QRTL07-311

*This report may not be reproduced, except in full, without the full written approval of
Rhein Tech Laboratories, Inc. and M/A-COM, Inc.*

The test results relate only to the item tested.

Engineering and Testing for EMC and Safety Compliance

Accredited under A2LA certificate # 2653.01

Frequency Range (MHz)	Rated Transmit Power (W) (Conducted)	Frequency Tolerance (ppm)	Emission Designator
150.8 – 173.4	5.0/0.5	0.55	16K0F3E (Analog Voice; WB)
150.8 – 173.4	5.0/0.5	0.55	11K0F3E (Analog Voice; NB)
150.8 – 173.4	5.0/0.5	0.55	15K6F1D (Digital 2-FSK (9600 Data) WB)
150.8 – 173.4	5.0/0.5	0.55	15K6F1E (Digital Voice 2-FSK (9600 Data) WB)
150.8 – 173.4	5.0/0.5	0.55	10K8F1D (Digital 2-FSK (9600 Data) NB)
150.8 – 173.4	5.0/0.5	0.55	10K8F1E (Digital 2-FSK (9600 Data Voice) NB)
150.8 – 173.4	5.0/0.5	0.55	7K8F1D (Digital 2-FSK (4800 Data) NB)
150.8 – 173.4	5.0/0.5	0.55	7K8F1E (Digital 2-FSK (4800 Data Voice) NB)
150.8 – 173.4	5.0/0.5	0.55	8K4F1D (Digital C4FM (9600 Data) NB)
150.8 – 173.4	5.0/0.5	0.55	8K4F1E (Digital C4FM (9600 Data Voice) NB)

Table of Contents

1	General Information.....	6
1.1	Test Facility.....	6
1.2	Related Submittal(s)/Grant(s)	6
1.3	Product Description.....	6
2	Tested System Details	7
3	FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage	8
4	FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output RSS-119 §4.1: Output Power Test.....	9
4.1	Test Procedure.....	9
4.2	Test Data.....	9
5	FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks; RSS-119 §4.2: Transmitter Unwanted Emissions.....	10
5.1	Test Procedure.....	10
5.2	Test Data.....	10
6	FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §4.2: Unwanted Emissions	12
6.1	Test Procedure.....	12
6.2	Test Data.....	12
6.2.1	CFR 47 Part 90.210 Requirements	12
7	FCC Rules and Regulations Part 2 §2.1049: Occupied Bandwidth; Part 90 §90.210(i) & (j): Emissions Masks; RSS-119 §4.2: Transmitter Unwanted Emissions	14
7.1	Test Procedure.....	14
7.2	Test Data.....	15
8	FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability	21
8.1	Test Procedure.....	21
8.2	Test Data.....	21
8.2.1	CFR 47 Part 90.213 Requirements	21
8.2.2	Frequency Stability/Temperature Variation	22
8.2.3	Frequency Stability/Voltage Variation.....	23
9	FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics - Audio Frequency Response ..	24
9.1	Test Procedure.....	24
9.2	Test Data.....	24
10	FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics – Audio Low Pass Filter	25
10.1	Test Procedure.....	25
10.2	Test Data.....	25
11	FCC Rules and Regulations Part 2 §2.1047(b): Modulation Characteristics - Modulation Limiting	26
11.1	Test Procedure.....	26
11.2	Test Data.....	26
12	FCC Rules and Regulations Part 90 §90.214: Transient Frequency Behavior; RSS-119 §5.9: Transient Frequency Behavior	30
12.1	Test Procedure.....	30
12.2	Test Data.....	30
13	FCC Rules and Regulations Part 2 §2.202: Necessary Bandwidth and Emission Bandwidth	34
14	Conclusion.....	35

Table of Figures

Figure 2-1: Configuration of Tested System.....	8
---	---

Table of Tables

Table 2-1: Equipment under Test (EUT)	7
Table 2-2: Support Equipment	7
Table 4-1: RF Power Output (High Power): Carrier Output Power (Unmodulated)	9
Table 4-2: RF Power Output (Low Power): Carrier Output Power (Unmodulated)	9
Table 4-3: RF Power Output (Rated Power).....	9
Table 4-4: Test Equipment for Testing RF Power Output - Conducted.....	9
Table 5-1: Conducted Spurious Emissions –155 MHz; Narrow Band; High Power	10
Table 5-2: Test Equipment for Testing Conducted Spurious Emissions	11
Table 6-1: Field Strength of Spurious Radiation – 155 MHz; Narrow Band; High Power.....	12
Table 6-2: Test Equipment for Testing Field Strength of Spurious Radiation	13
Table 7-1: Test Equipment for Testing Masks	20
Table 8-1: Frequency Stability/Temperature Variation – 155 MHz.....	22
Table 8-2: Frequency Stability/Voltage Variation – 155 MHz	23
Table 8-3: Test Equipment for Testing Frequency Stability.....	23
Table 9-1: Test Equipment for Testing Audio Frequency Response	24
Table 11-1: Test Equipment for Testing Modulation Limiting.....	29
Table 12-1: Test Equipment for Testing Transient Frequency Behavior.....	33

Table of Plots

Plot 7-1: Occupied Bandwidth – 155 MHz; Mask B; WB Analog; High Power	15
Plot 7-2: Occupied Bandwidth – 155 MHz; Mask D; NB Analog; High Power.....	16
Plot 7-3: Occupied Bandwidth – 155 MHz; Mask C; WB 2-level FSK; 9600 BPS.....	17
Plot 7-4: Occupied Bandwidth – 155 MHz; Mask D; NB 2-level FSK; 9600 BPS.....	18
Plot 7-5: Occupied Bandwidth – 155 MHz; Mask D; NB 2-level FSK; 4800 BPS.....	19
Plot 7-6: Occupied Bandwidth – 155 MHz; Mask D; 4-level C4FM (P25 mode); 4800 SPS	20
Plot 8-1: Temperature Frequency Stability – 155 MHz Channel	22
Plot 8-2: Voltage Frequency Stability – 155 MHz Channel.....	23
Plot 9-1: Modulation Characteristics - Audio Frequency Response	24
Plot 10-1: Modulation Characteristics – Audio Low Pass Filter	25
Plot 11-1: Modulation Characteristics – Modulation Limiting: 155 MHz; WB; Positive Peak	26
Plot 11-2: Modulation Characteristics – Modulation Limiting: 155 MHz; WB; Negative Peak	27
Plot 11-3: Modulation Characteristics – Modulation Limiting: 155 MHz; NB; Positive Peak.....	28
Plot 11-4: Modulation Characteristics – Modulation Limiting: 155 MHz; NB; Negative Peak	29
Plot 12-1: Transient Frequency Behavior – Carrier On Time Wideband	30
Plot 12-2: Transient Frequency Behavior – Carrier Off Time Wideband	31
Plot 12-3: Transient Frequency Behavior – Carrier On Time Narrowband	32
Plot 12-4: Transient Frequency Behavior – Carrier Off Time Narrowband	33

Table of Appendixes

Appendix A:	RF Exposure	36
Appendix B:	Agency Authorization	37
Appendix C:	FCC Confidentiality Request Letter.....	38
Appendix D:	IC Letters	39
Appendix E:	IC Confidentiality Request Letter	40
Appendix F:	Attestation Letter – Contiguous Frequency Listing	41
Appendix G:	Operational Description.....	42
Appendix H:	Schematics	43
Appendix I:	Block Diagrams	44
Appendix J:	Parts List	45
Appendix K:	Alignment/Tune Up Procedure	46
Appendix L:	User Manual	47
Appendix M:	Label & Location.....	48
Appendix N:	Test Configuration Photographs	50
Appendix O:	External Photographs.....	52
Appendix P:	Internal Photographs	55

Table of Photographs

Photograph 1:	ID Label and RF Label Locations	48
Photograph 2:	RF Label & ID Label Samples	49
Photograph 3:	Radiated TX Spurious Emissions – Front View.....	50
Photograph 4:	Radiated TX Spurious Emissions – Rear View	51
Photograph 5:	Scan and System Versions – Front.....	52
Photograph 6:	Top.....	53
Photograph 7:	Bottom	53
Photograph 8:	PTT	54
Photograph 9:	UDC	54
Photograph 10:	Board Placement Layer 1	55
Photograph 11:	Board Placement Layer 2	56
Photograph 12:	Board Placement Layer 3	57
Photograph 13:	Board Placement Layer 4	58
Photograph 14:	Main Board Front.....	59
Photograph 15:	Main Board Back	60
Photograph 16:	Rear Casting Front	61
Photograph 17:	RF Shield Front	62
Photograph 18:	RF Shield Back.....	63
Photograph 19:	Interface Board Front.....	64
Photograph 20:	Interface Board Back	65

1 General Information

This following Certification Report is prepared on behalf of **M/A-COM, Inc.** in accordance with the Federal Communications Commission and Industry Canada Rules and Regulations. The Equipment Under Test (EUT) was the **P5400 VHF Portable Radio; FCC ID: OWDTR-0044-E, IC: 3636B-0044**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47 and Industry Canada RSS-119. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

1.2 Related Submittal(s)/Grant(s)

This is an original application report.

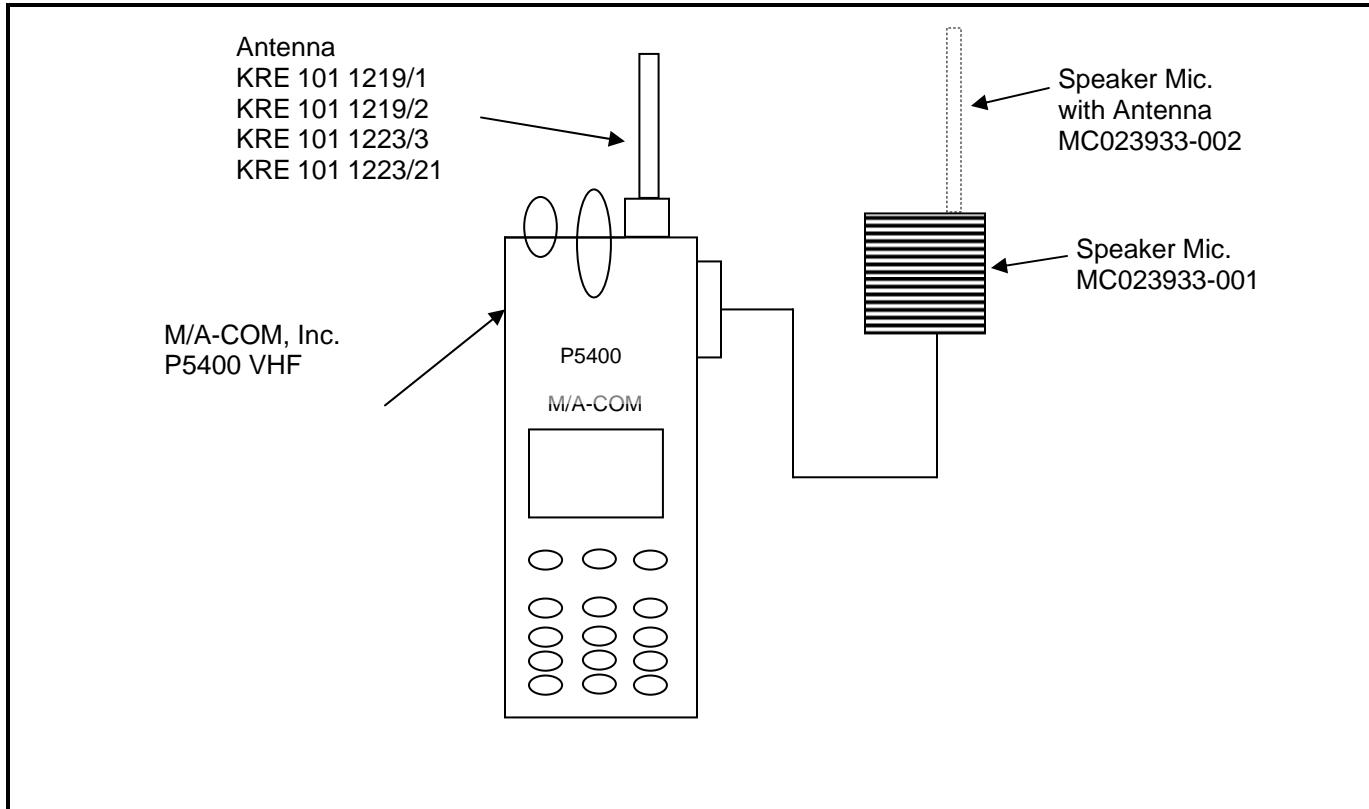
1.3 Product Description

The P5400 VHF is a handheld transceiver for use in the Public Safety VHF band. It is a member of the P5300/P5400 model series of portable radios which cover user applications in 900 MHz, 800 MHz, UHF-H and UHF-L bands.

This report covers two versions of the EUT - the System and the Scan versions. Both versions are electrically identical, with the System version having more buttons on the front than the Scan version.

2 Tested System Details

The test sample was received on October 11, 2007. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this testing, as applicable.


Table 2-1: Equipment under Test (EUT)

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Radio	M/A-COM, Inc.	P5400 VHF	TI-V-008	OWDTR-0044-E	18158
Radio	M/A-COM, Inc.	P5400 VHF	TI-V-009	OWDTR-0044-E	18159
Battery	M/A-COM, Inc.	NiMH	BT-023406-003	N/A	17931
Battery	M/A-COM, Inc.	NiCd	BT-023406-001	N/A	17933
Battery	M/A-COM, Inc.	Li-Ion	BT-023406-005	N/A	17932
Microphone	M/A-COM, Inc.	N/A	MC023933-001	N/A	18156
Microphone	M/A-COM, Inc.	N/A	MC023933-002	N/A	18157
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/2	N/A	18160
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/21	N/A	18161
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/1	N/A	18162
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/3	N/A	18163
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/2	N/A	18164
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/3	N/A	18165
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/1	N/A	18166
Antenna	M/A-COM, Inc.	Spring Whip	KRE 1011219/21	N/A	18167

Table 2-2: Support Equipment

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Battery Charger	Tamua Corporation of America	8263	00033	N/A	17865

Figure 2-1: Configuration of Tested System

3 FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage

DC Voltages:

NiCd: 6.0 to 9.0 (7.5 nom.)
NiMH: 6.0 to 9.0 (7.5 nom.)
Li-Ion: 6.0 to 9.0 (7.5 nom.)

Current: 2.964 A

4 FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output RSS-119 §4.1: Output Power Test

4.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.1

The EUT was connected with a power sensor/meter through an appropriate 50 ohm attenuator. Attenuator loss was accounted for.

4.2 Test Data

Table 4-1: RF Power Output (High Power): Carrier Output Power (Unmodulated)

Frequency (MHz)	RF Power Measured (Watt)*
155	5.495

Table 4-2: RF Power Output (Low Power): Carrier Output Power (Unmodulated)

Frequency (MHz)	RF Power Measured (Watt)*
155	0.537

Table 4-3: RF Power Output (Rated Power)

Frequency (MHz)	High Power Rated (W)	Low Power Rated (W)*
150.8 – 173.4	5.0	0.5

Table 4-4: Test Equipment for Testing RF Power Output - Conducted

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901184	Agilent Technologies	E4416A	EPM-P Power Meter, Single Channel	GB41050573	10/24/08
900937	Agilent Technologies	8482H	Power Sensor	3318A08961	05/08/08
900819	Weinschel Corporation	BF0830	Attenuator 10 db	N/A	12/02/08

Test Personnel:

Dan Baltzell		October 12, 2007
Test Engineer	Signature	Date Of Test

5 FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks; RSS-119 §4.2: Transmitter Unwanted Emissions

5.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.13.

The transmitter was interfaced with a spectrum analyzer through an appropriate 50 ohm attenuator and a notch filter. The transmitter was operated at maximum power. Attenuator and cable losses were accounted for.

Analog Modulation: The transmitter is terminated with a 50 ohm load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1,000 Hz.

Digital Modulation: Modulated to its maximum extent using a pseudo random data sequence – 9600 bps.

5.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to 10xFc.

Limit = $50 + 10 \log (P)$ dB or 70 dB, whichever is greater.

The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Table 5-1: Conducted Spurious Emissions –155 MHz; Narrow Band; High Power

Freq = 155 MHz - Limit = $50 + 10 \log P = 57.4$ dBc - Conducted Power = 37.4 dBm = 5.495 W

Frequency (MHz)	Spectrum Analyzer Level Corrected with Notch Insertion Loss (dBm)	Level (dBc)	Limit (dBc)	Margin (dB)
310.0	-45.5	82.9	57.4	-25.5
465.0	-51.2	88.6	57.4	-31.2
620.0	-79.1	116.5	57.4	-59.1
775.0	-68.4	105.8	57.4	-48.4
930.0	-79.3	116.7	57.4	-59.3
1085.0	-95.4	132.8	57.4	-75.4
1240.0	-88.8	126.2	57.4	-68.8
1395.0	-84.7	122.1	57.4	-64.7
1550.0	-90.1	127.5	57.4	-70.1

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: M/A-COM, Inc.
Model: P5400 VHF Portable Radio
ID's: OWDTR-0044-E/3636B-0044
Standards: Part 90/RSS-119
Report #: 2007266

Table 5-2: Test Equipment for Testing Conducted Spurious Emissions

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz – 12.8 GHz)	3826A00144	10/17/08
900819	Weinschel Corporation	BF0830	Attenuator 10db	N/A	12/02/08
901135	Par Electronics	VHFSN(400-512)	VHF Notch Filter	N/A	02/01/09

Test Personnel:

Dan Baltzell		October 23, 2007
Test Engineer	Signature	Date Of Test

6 FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §4.2: Unwanted Emissions

6.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.12.

Analog Modulation: The transmitter is terminated with a 50 ohm load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1,000 Hz.

Digital Modulation: Modulated to its maximum extent using a pseudo random data sequence – 9600 bps.

The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

$$P_d(\text{dBm}) = P_g(\text{dBm}) - \text{cable loss (dB)} + \text{antenna gain (dB)}$$

where:

P_d is the dipole equivalent power

P_g is the generator output power into the substitution antenna

6.2 Test Data

6.2.1 CFR 47 Part 90.210 Requirements

Limit = $50 + 10 \log (P)$ dB or 70 dB, whichever is greater. The worst case emissions test data, high power, are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Table 6-1: Field Strength of Spurious Radiation – 155 MHz; Narrow Band; High Power

Freq = 155 MHz - Limit = $50 + 10 \log P = 57.4$ dBc - Conducted Power = 37.4 dBm = 5.495 W

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss from Signal Generator (dB)	Transmitting Antenna Gain (dBd)	Corrected Signal Generator Level (dBc)	Margin (dB)
310.0	32.7	-72.2	3.4	-0.5	113.5	-56.1
465.0	32.4	-75.3	4.1	-0.7	117.5	-60.1
620.0	34.0	-66.8	4.8	-1.0	110.0	-52.6
775.0	31.4	-69.3	5.3	-1.3	113.3	-55.9
930.0	23.4	-79.0	5.6	-1.0	123.0	-65.6
1085.0	32.2	-67.6	6.1	3.2	107.9	-50.5
1240.0	35.0	-59.7	6.4	3.9	99.6	-42.2
1395.0	35.9	-62.2	6.8	4.5	101.9	-44.5
1550.0	35.5	-65.2	7.1	5.1	104.6	-47.2

Table 6-2: Test Equipment for Testing Field Strength of Spurious Radiation

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz-2 GHz)	2648	11/01/07
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridges Guide Antenna (1-18 GHz)	2310	03/30/09
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz-12.8 GHz)	3826A00144	10/17/08
901424	Insulated Wire Inc.	KPS-1503-360-KPS	RF cable 36"	NA	10/05/08
901425	Insulated Wire, Inc.	KPS-1503-2400-KPS	RF cable, 20'	NA	10/05/08
901426	Insulated Wire Inc.	KPS-1503-3600-KPS	RF cable, 30'	NA	10/05/08
900154	Compliance Design	Roberts Dipole	Adjustable Elements Dipole Antenna (30-1000 MHz)	N/A	01/07/08
900917	Hewlett Packard	8648C	Synthesized. Signal Generator (9 kHz-3200 MHz)	3537A01741	09/07/08

Test Personnel:

Dan Baltzell		October 23, 2007
Test Engineer	Signature	Date Of Test

7 FCC Rules and Regulations Part 2 §2.1049: Occupied Bandwidth; Part 90 §90.210(i) & (j): Emissions Masks; RSS-119 §4.2: Transmitter Unwanted Emissions

7.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.11.

The transmitter was interfaced with a spectrum analyzer through an appropriate 50 ohm attenuator and a notch filter. The transmitter was operated at maximum power. Attenuator losses were accounted for.

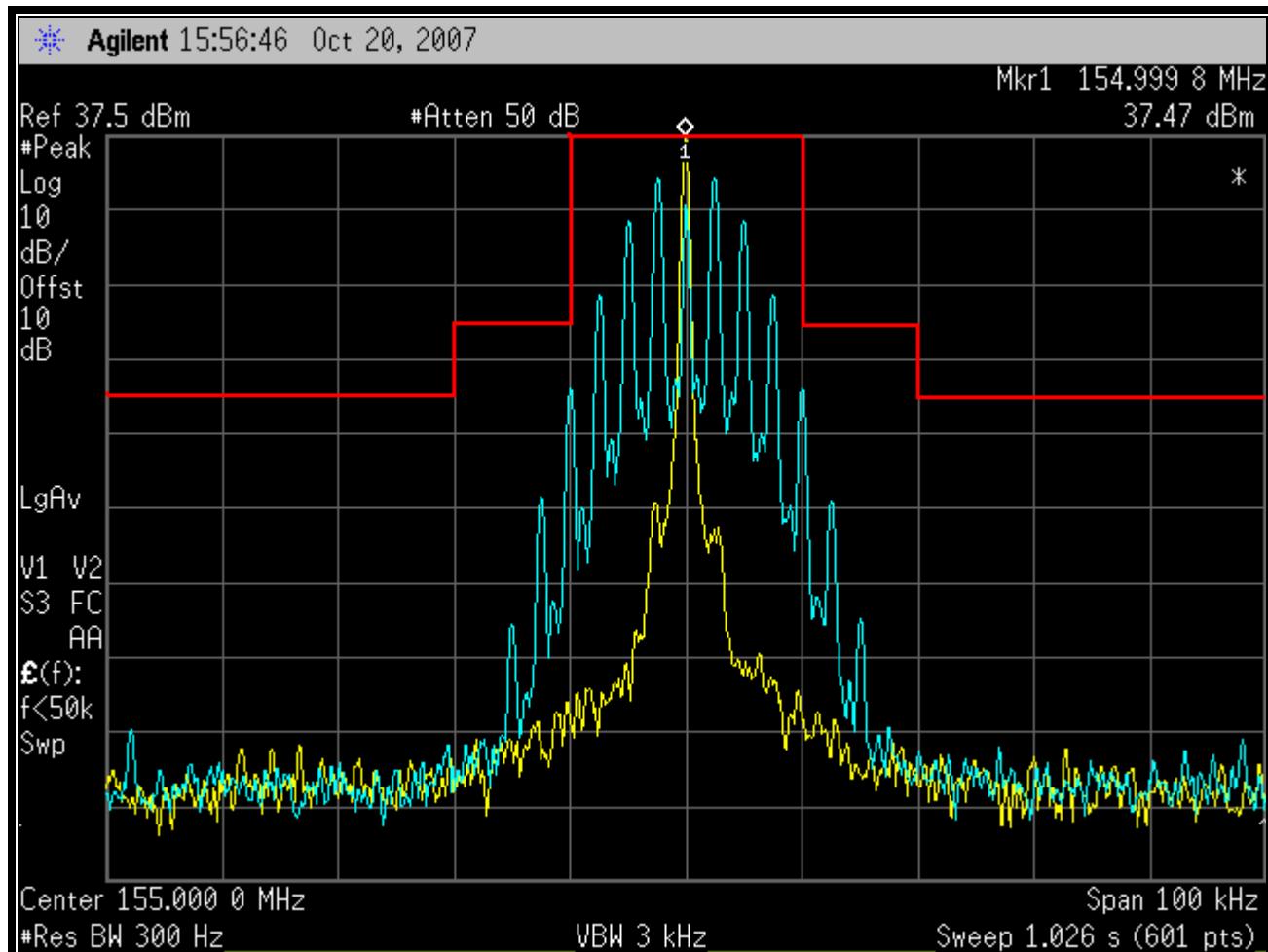
Analog Modulation: The transmitter is terminated with a 50 ohm load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1,000 Hz.

The device uses digital modulation modulated to its maximum extent using a pseudo-random data sequence of 9600 bps.

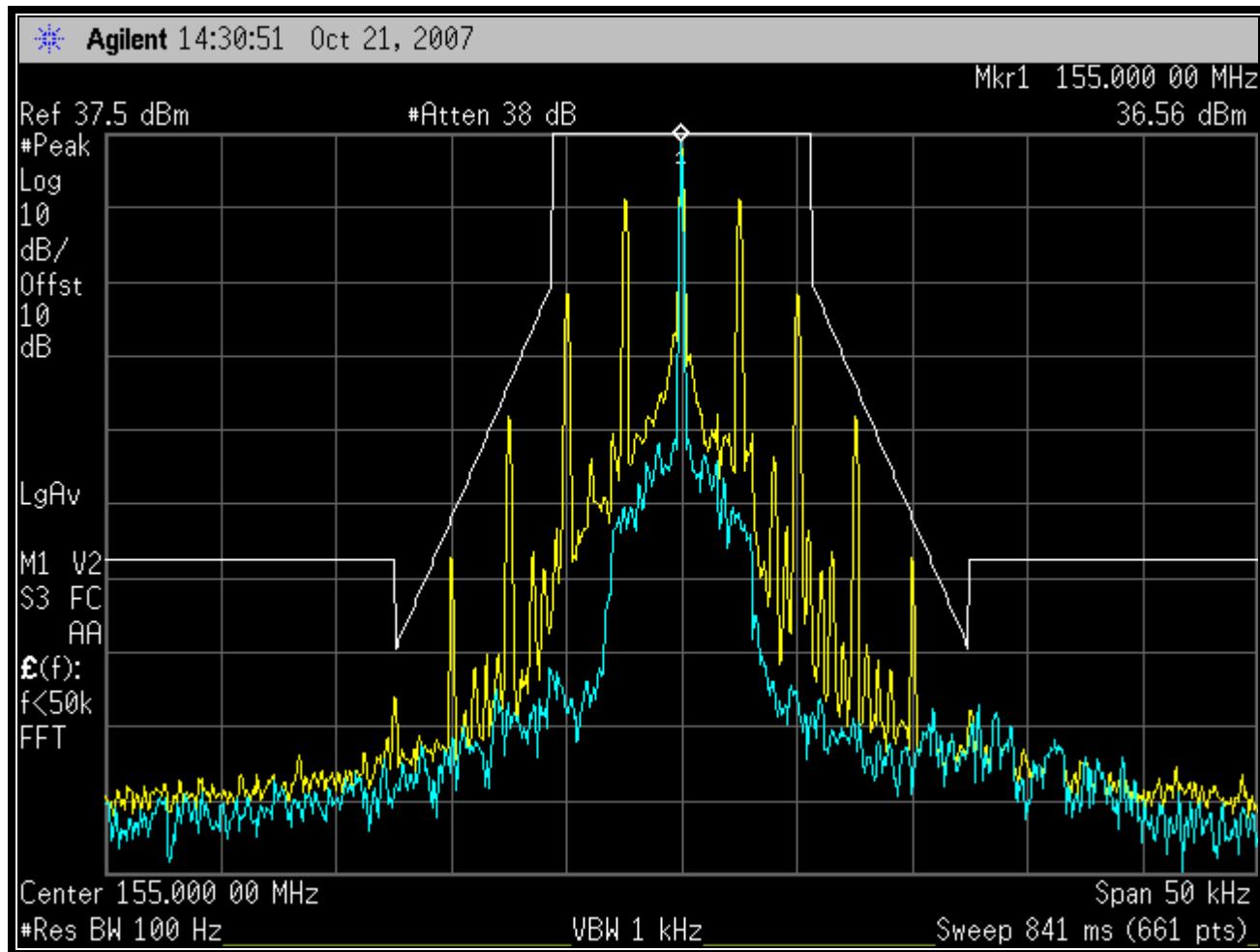
Limit Mask B:

- (1) On any frequency removed from the assigned frequency by more than 50%, but not more than 100% of the authorized bandwidth: **at least 25 dB**;
- (2) On any frequency removed from the assigned frequency by more than 100%, but not more than 250% of the authorized bandwidth: **at least 35 dB**;
- (3) On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth: **at least 43 + 10 log (P) dB**.

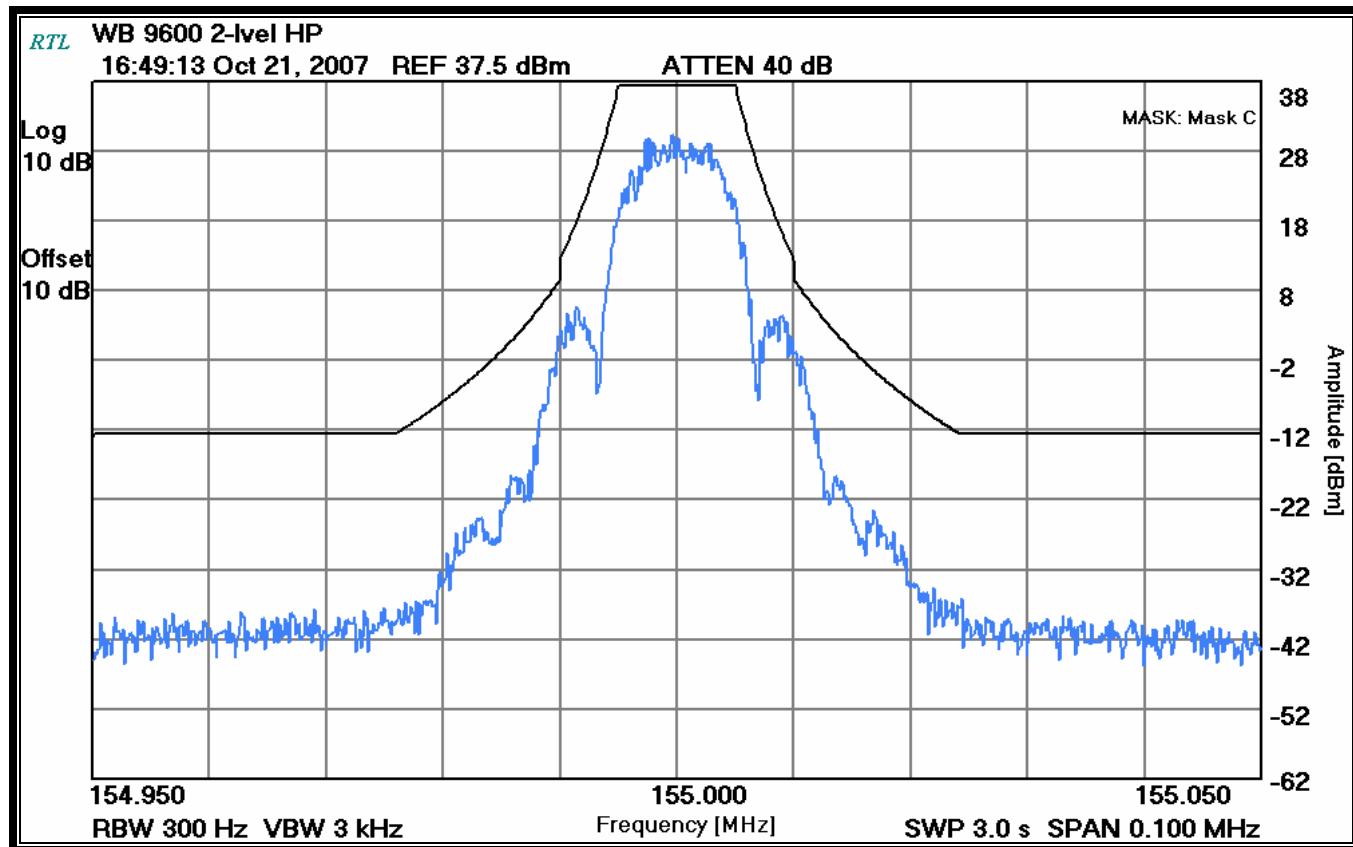
Limit Mask C:

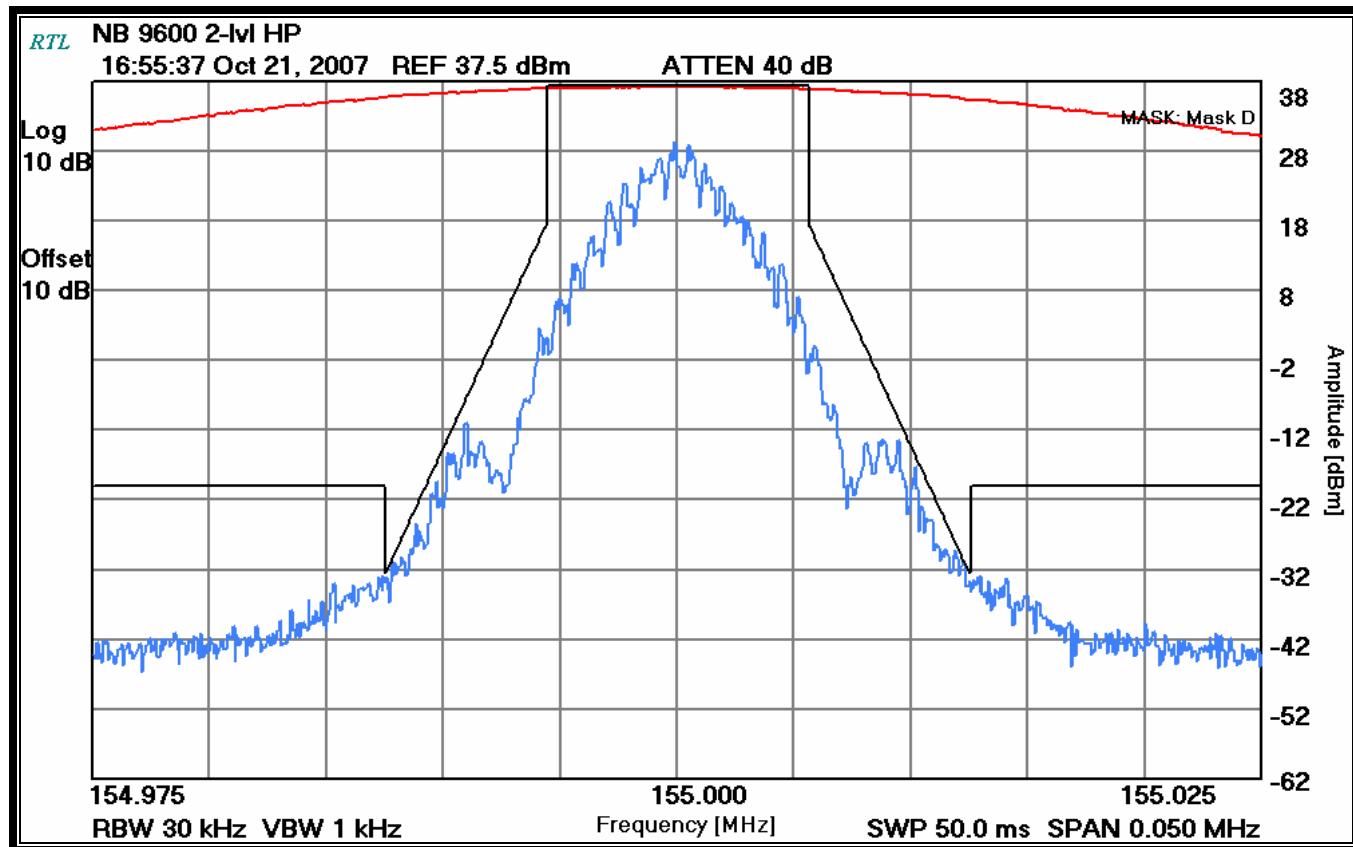

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: **at least 83 log (fd/5) dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: **at least 29 log (fd²/11) dB or 50 dB, whichever is the lesser attenuation**;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: **at least 43 + 10 log (P) dB**.

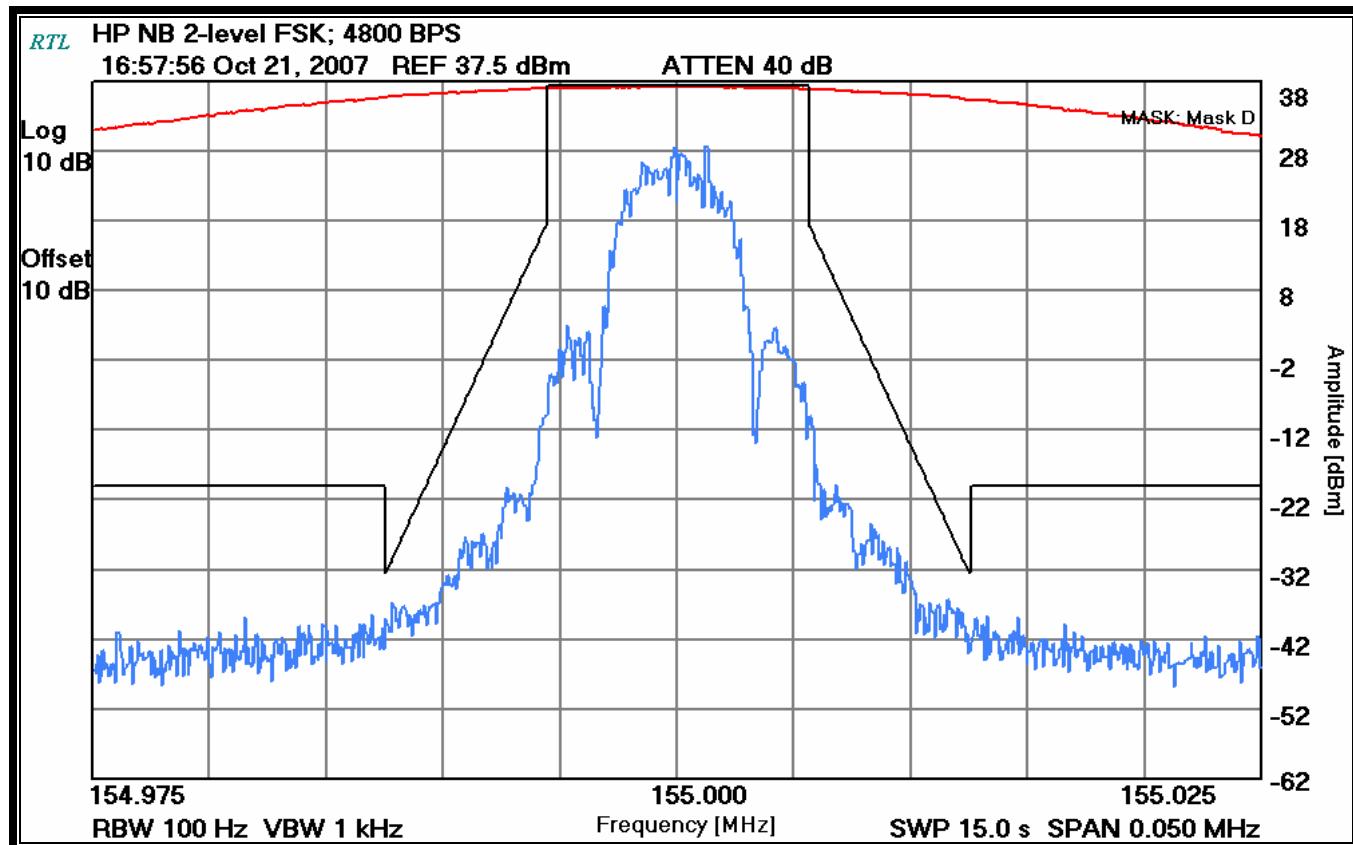
Limit Mask D:


- (1) On any frequency removed from the center of the authorized bandwidth f_0 : **zero dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz, but not more than 12.5 kHz: **at least 7.27(fd-2.88 kHz) dB**;
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: **at least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation**.

7.2 Test Data


Plot 7-1: Occupied Bandwidth – 155 MHz; Mask B; WB Analog; High Power


Plot 7-2: Occupied Bandwidth – 155 MHz; Mask D; NB Analog; High Power


Plot 7-3: Occupied Bandwidth – 155 MHz; Mask C; WB 2-level FSK; 9600 BPS

Plot 7-4: Occupied Bandwidth – 155 MHz; Mask D; NB 2-level FSK; 9600 BPS

Plot 7-5: Occupied Bandwidth – 155 MHz; Mask D; NB 2-level FSK; 4800 BPS

Plot 7-6: Occupied Bandwidth – 155 MHz; Mask D; 4-level C4FM (P25 mode); 4800 SPS

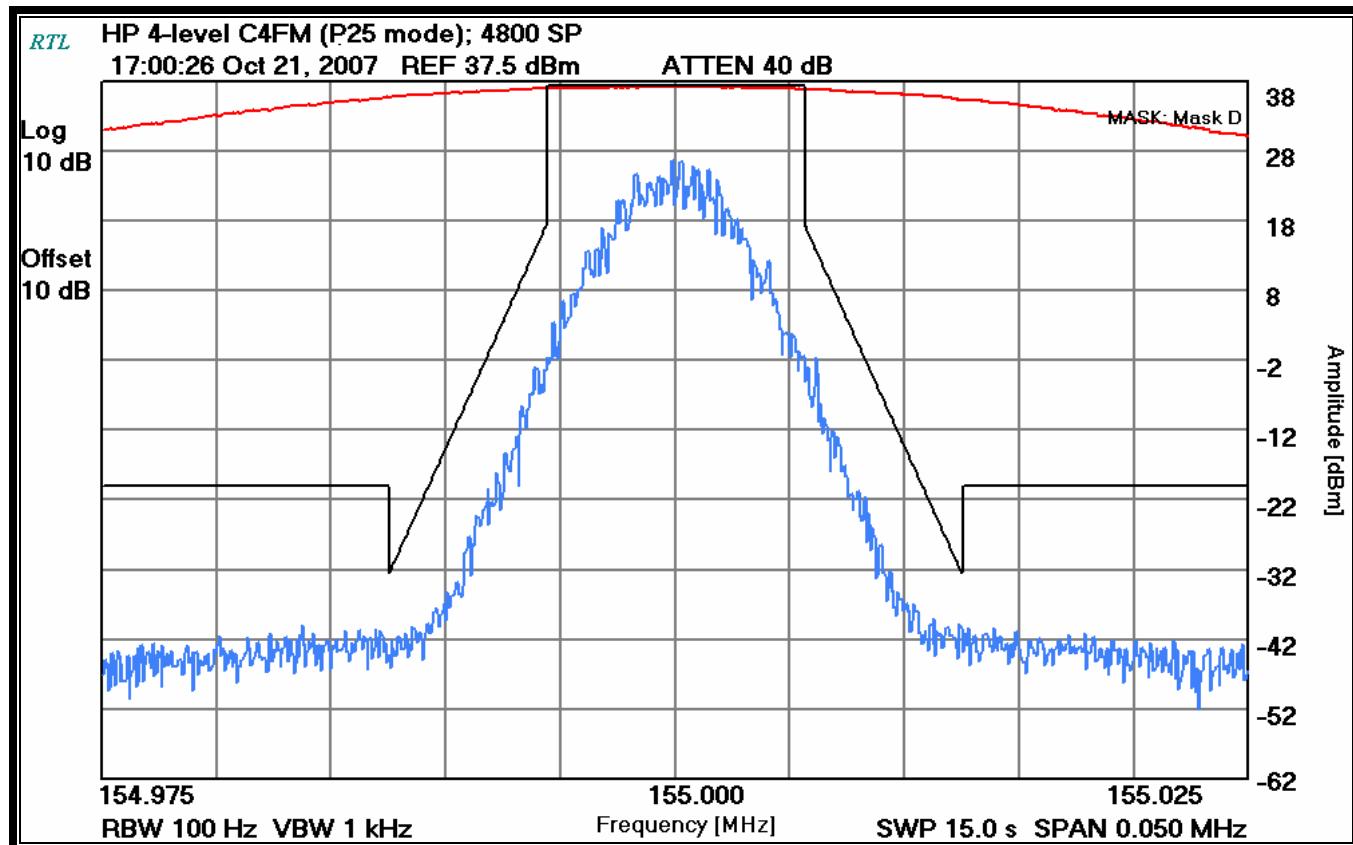


Table 7-1: Test Equipment for Testing Masks

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901413	Agilent Technologies	E4448A	PSA Series Spectrum Analyzer	US44020346	06/13/08
900819	Weinschel Corporation	BF0830	Attenuator 10 db	N/A	12/02/08
900931	Hewlett Packard	8566B	Spectrum Analyzer	3138A07771	05/22/08

Test Personnel:

Dan Baltzell		October 20 and 21, 2007
Test Technician/Engineer	Signature	Dates of Tests

8 FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability

8.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.2.

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30°C to +60°C.

The temperature was initially set to -30°C and an hour elapsed for stabilization of the EUT. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10°C through the range. A ½ hour period was observed to stabilize the EUT at each measurement step, and the frequency stability was measured within one minute after application of primary power to the transmitter. Additionally, the power supply voltage of the EUT was varied from the battery operating end point to +/-15% of nominal value.

The worst-case test data are shown below in Table 8-1 and Table 8-3.

8.2 Test Data

8.2.1 CFR 47 Part 90.213 Requirements

For mobile transmitters over 2 Watts output power:

150-174 MHz band: 5 ppm

Note: In the 150–174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth, or designed to operate on a frequency specifically designated for itinerant use, or designed for low-power operation of two watts or less, must have a frequency stability of 5.0 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm

8.2.2 Frequency Stability/Temperature Variation

Plot 8-1: Temperature Frequency Stability – 155 MHz Channel

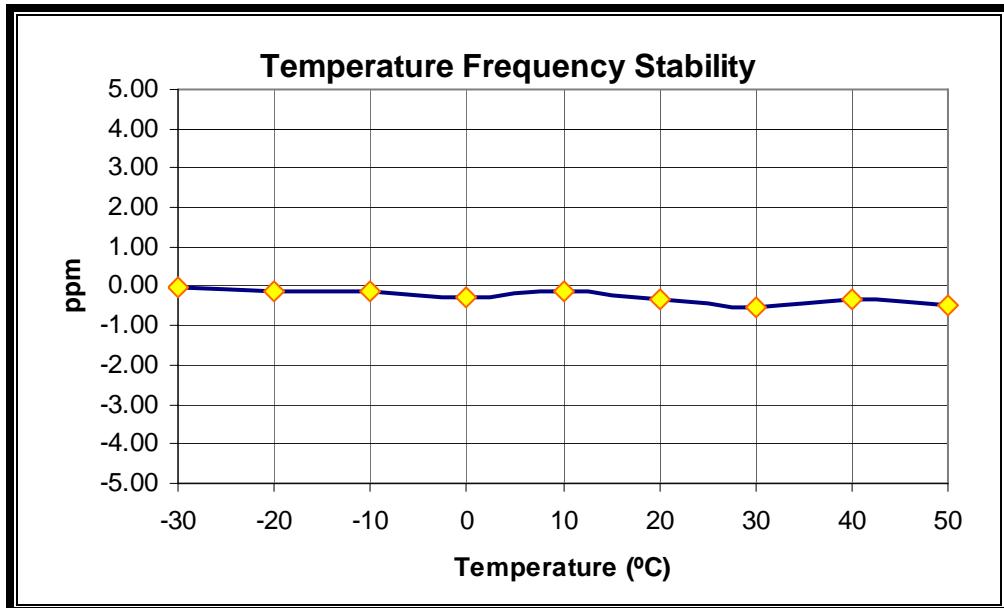


Table 8-1: Frequency Stability/Temperature Variation – 155 MHz

Temperature °C	Measured Frequency (MHz)	ppm
-30	154.999993	-0.04
-20	154.999982	-0.12
-10	154.999978	-0.14
0	154.999955	-0.29
10	154.999981	-0.12
20	154.999950	-0.32
30	154.999915	-0.55
40	154.999948	-0.33
50	154.999922	-0.51

8.2.3 Frequency Stability/Voltage Variation

Plot 8-2: Voltage Frequency Stability – 155 MHz Channel

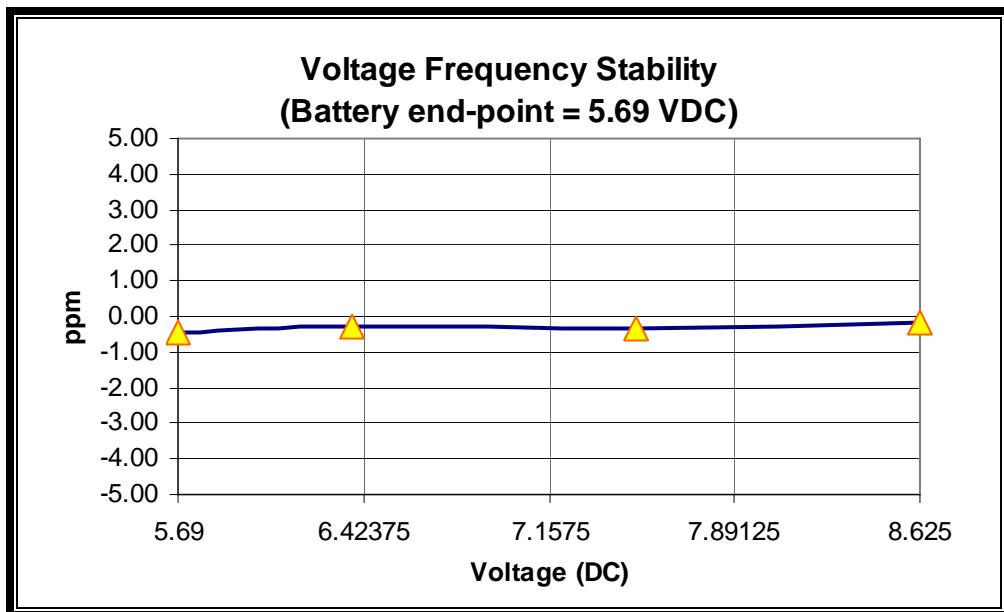
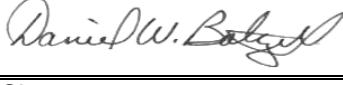


Table 8-2: Frequency Stability/Voltage Variation – 155 MHz


Voltage (VDC)	Measured Frequency (MHz)	ppm
5.690*	154.999929	-0.46
6.375	154.999956	-0.28
7.500	154.999950	-0.32
8.625	154.999977	-0.15

*measured battery end-point

Table 8-3: Test Equipment for Testing Frequency Stability

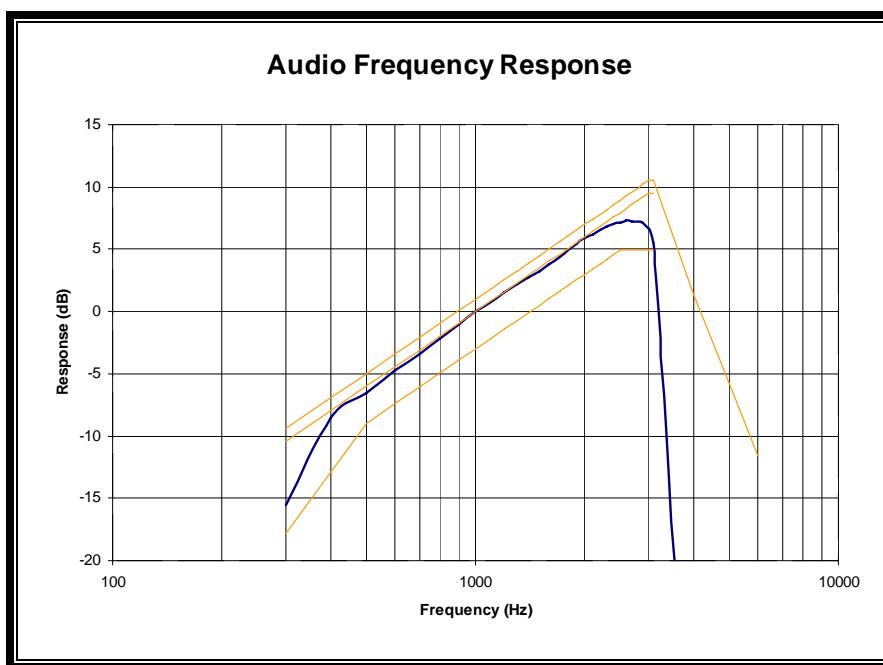
RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901300	Agilent Technologies	53131A	Frequency Counter	MY40001345	12/15/07
900819	Weinschel Corporation	BF0830	Attenuator 10 db	N/A	12/02/08
901247	Wavetek	DM25XT	Digital Multimeter	40804098	12/07/07
900946	Tenney Engineering, Inc.	TH65	Temperature Chamber with Humidity	11380	01/20/08

Test Personnel:

Dan Baltzell		October 21, 2007
Test Engineer	Signature	Date Of Test

9 FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics - Audio Frequency Response

9.1 Test Procedure


ANSI TIA-603-C-2004, section 2.2.6.

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic. The input audio level at 1000 Hz was set to produce 20% of the rated system deviation. This point is shown as the 0 dB reference level, noted DEVref. The audio signal generator was varied from 100 Hz to 5 kHz with the input level held constant. The deviation in kHz was recorded using a modulation analyzer as DEVfreq. The response in dB relative to 1 kHz was calculated as follows:

$$\text{Audio Frequency Response} = 20 \log (\text{DEVfreq}/\text{DEVref})$$

9.2 Test Data

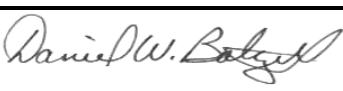

Plot 9-1: Modulation Characteristics - Audio Frequency Response

Table 9-1: Test Equipment for Testing Audio Frequency Response

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	12/19/07
901118	Hewlett Packard	8901A	Modulation Analyzer	2406A00178	07/21/08
900819	Weinschel Corporation	BF0830	Attenuator 10 db	N/A	12/02/08

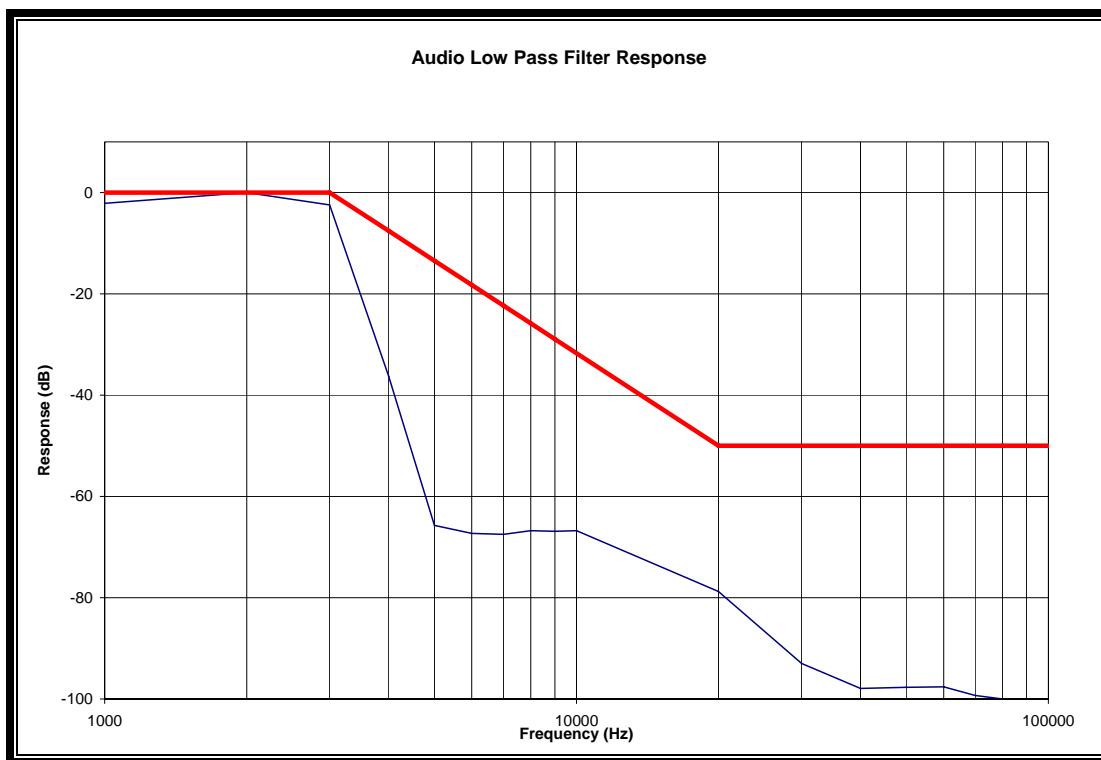
Test Personnel:

Dan Baltzell		October 20, 2007
Test Technician/Engineer	Signature	Date Of Test

10 FCC Rules and Regulations Part 2 §2.1047(a): Modulation Characteristics – Audio Low Pass Filter

10.1 Test Procedure

2.1047(a) Voice modulated communication equipment: a curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage, shall be submitted.


ANSI TIA-603-C-2004, 2.2.15

The Audio Low Pass Filter Response is the frequency response of the post limiter low pass filter circuit above 3000 Hz.

The audio frequency response of the post-limiter filter can not be measured directly as it is embedded within DSP code. The following plot is a simulation of the audio low pass filter circuitry, and is deemed "equivalent data" per 2.1047(a).

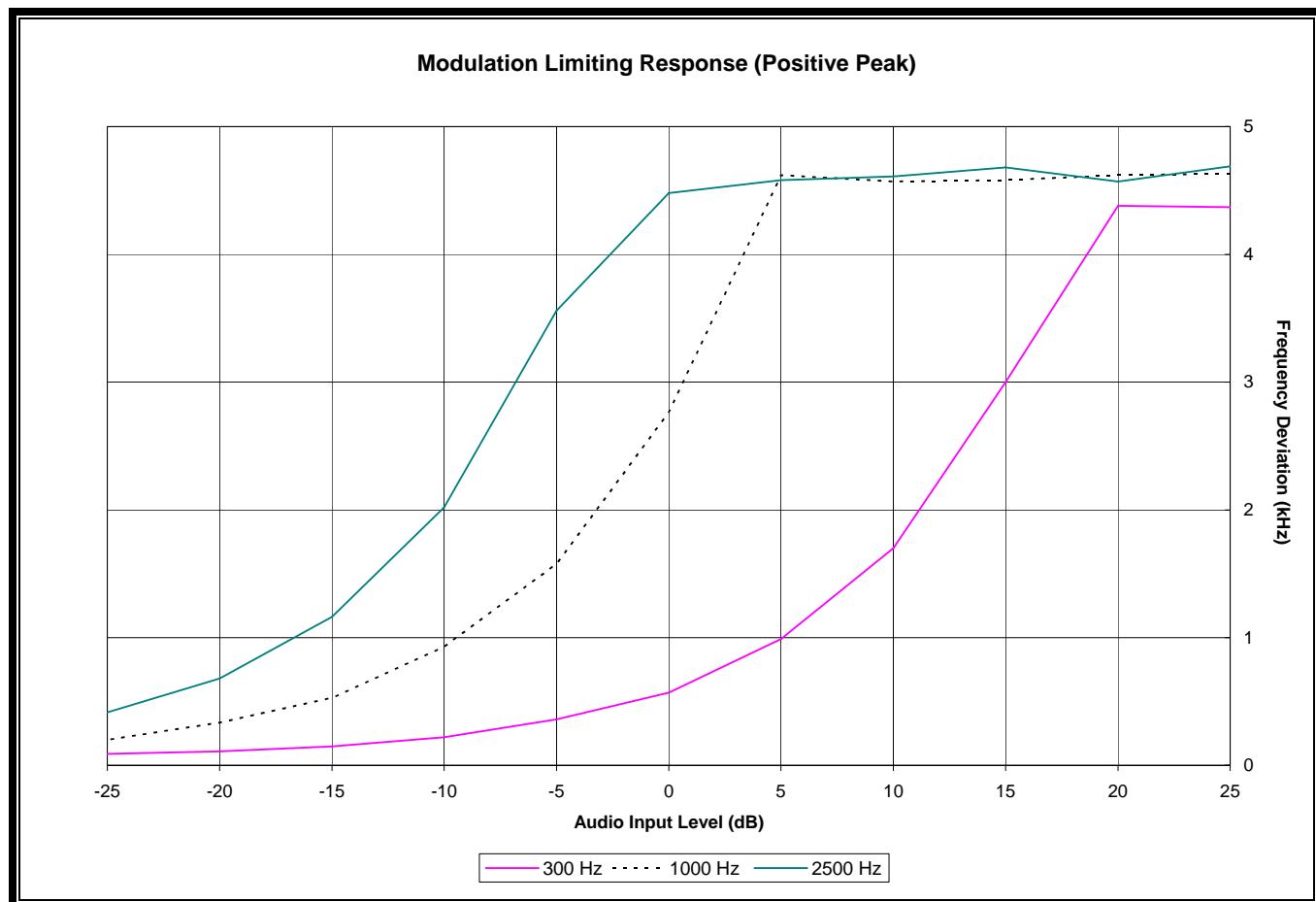
10.2 Test Data

Plot 10-1: Modulation Characteristics – Audio Low Pass Filter

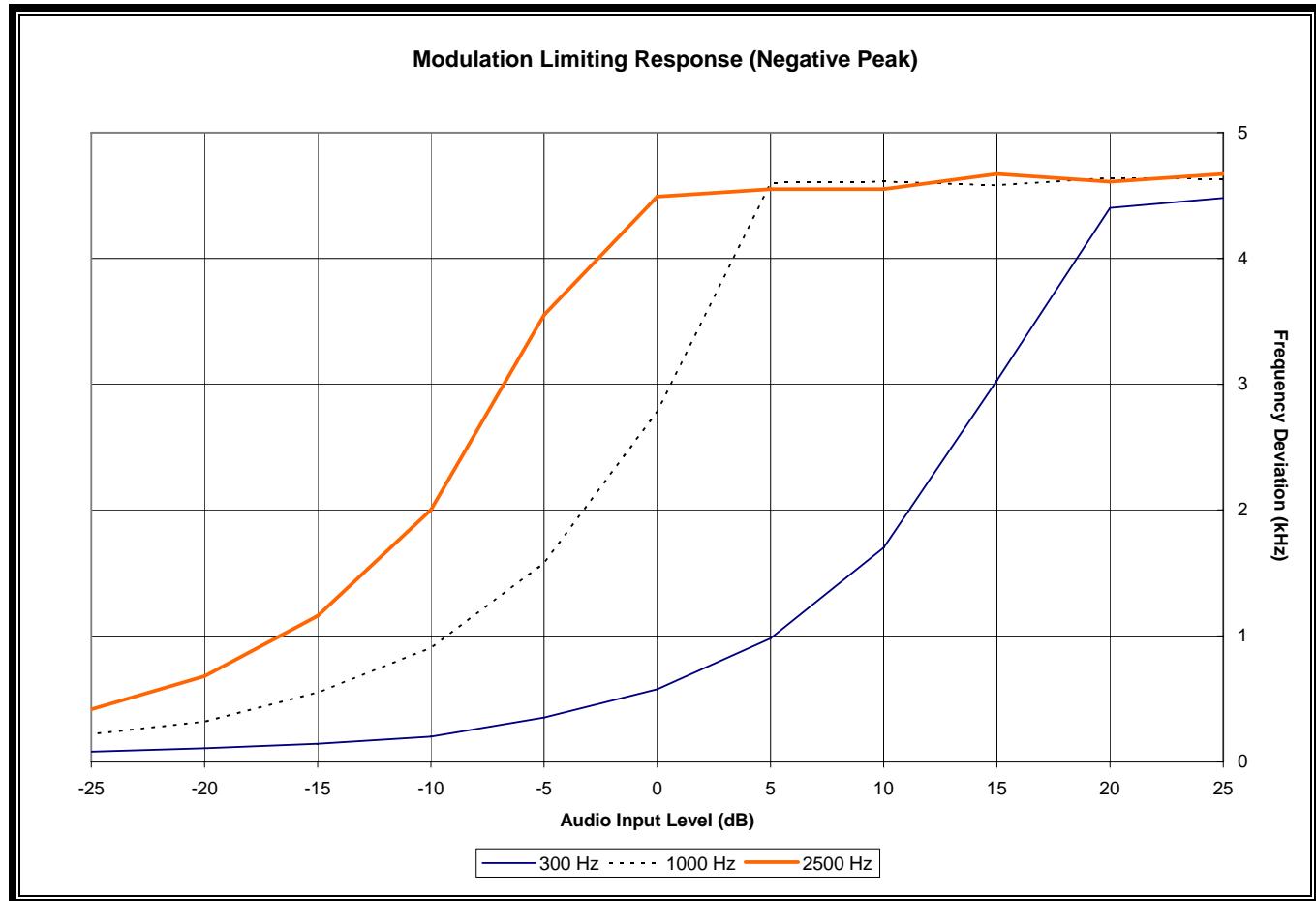
Test Personnel:

Dan Baltzell		October 20, 2007
Test Technician/Engineer	Signature	Date Of Test

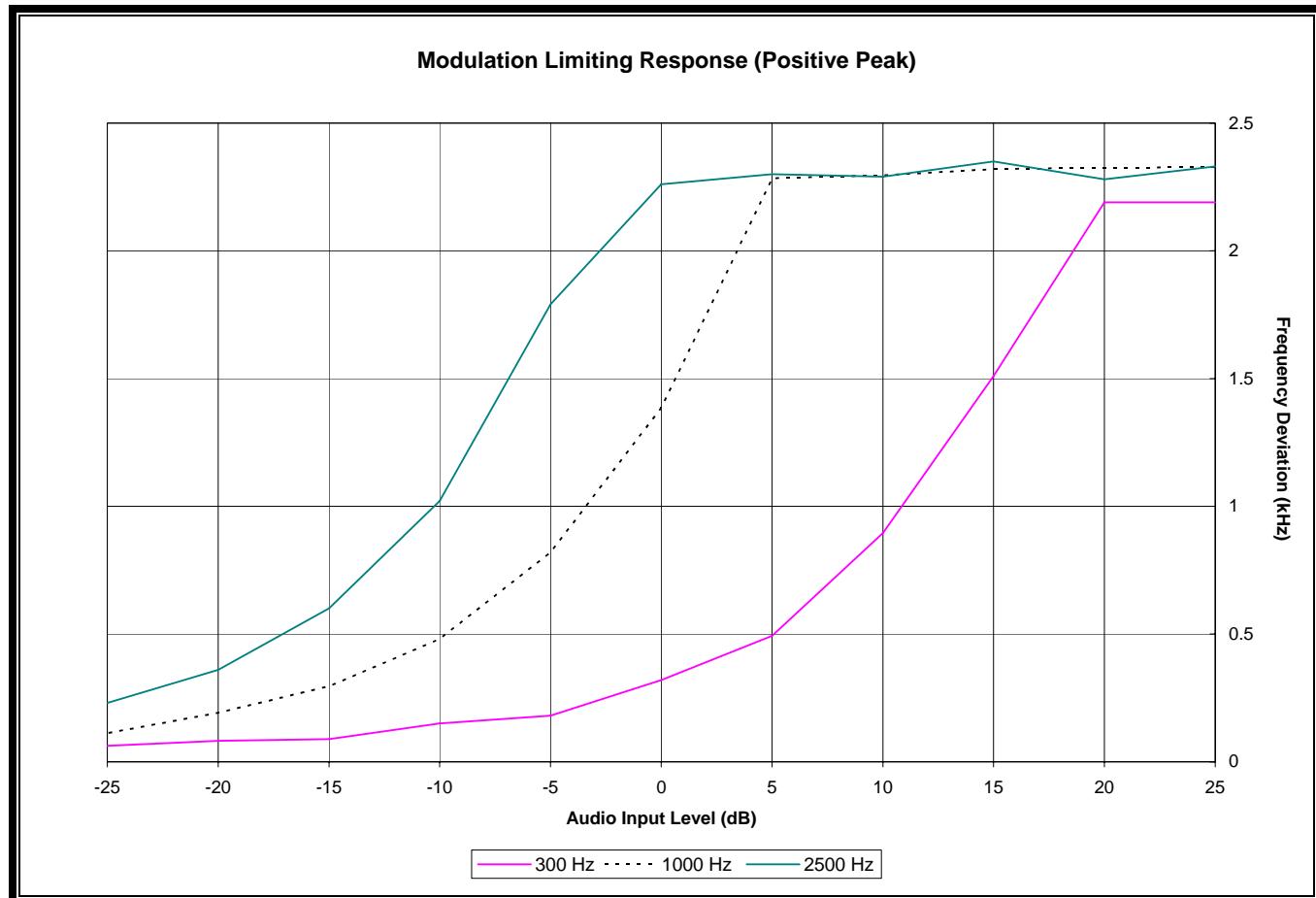
11 FCC Rules and Regulations Part 2 §2.1047(b): Modulation Characteristics - Modulation Limiting

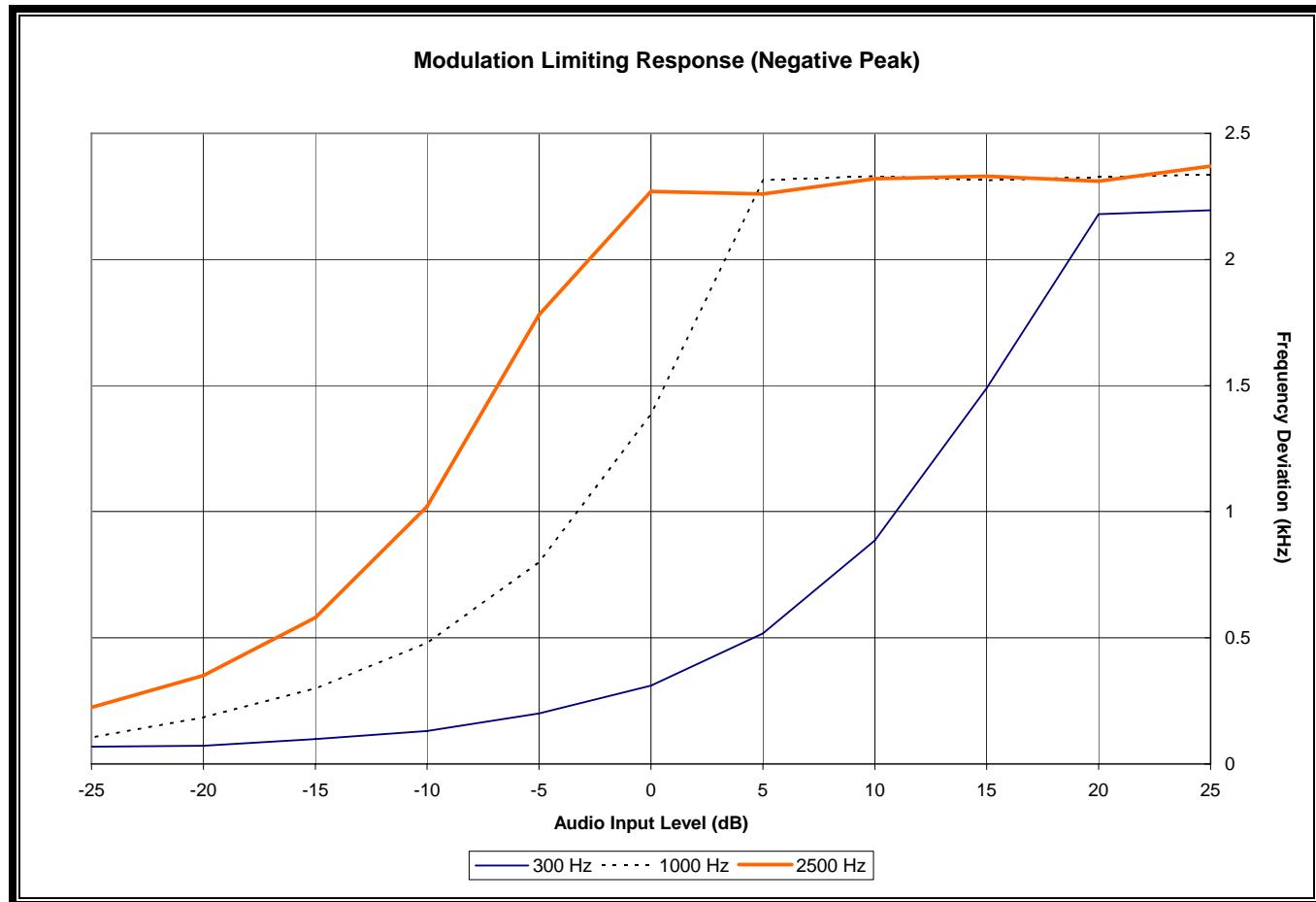

11.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.3.


The transmitter was adjusted for full rated system deviation. The audio input level was adjusted for 60% of rated system deviation at 1000 Hz. Using this level as a reference (0 dB), the audio input level was varied from the reference +/-20 dB for modulation frequencies of 300 Hz, 1,000 Hz, and 2,500 Hz. The system deviation obtained as a function of the input level was recorded. Both positive and negative peak deviations were recorded.

11.2 Test Data


Plot 11-1: Modulation Characteristics – Modulation Limiting: 155 MHz; WB; Positive Peak


Plot 11-2: Modulation Characteristics – Modulation Limiting: 155 MHz; WB; Negative Peak

Plot 11-3: Modulation Characteristics – Modulation Limiting: 155 MHz; NB; Positive Peak

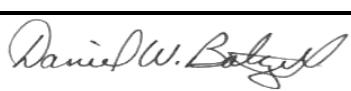
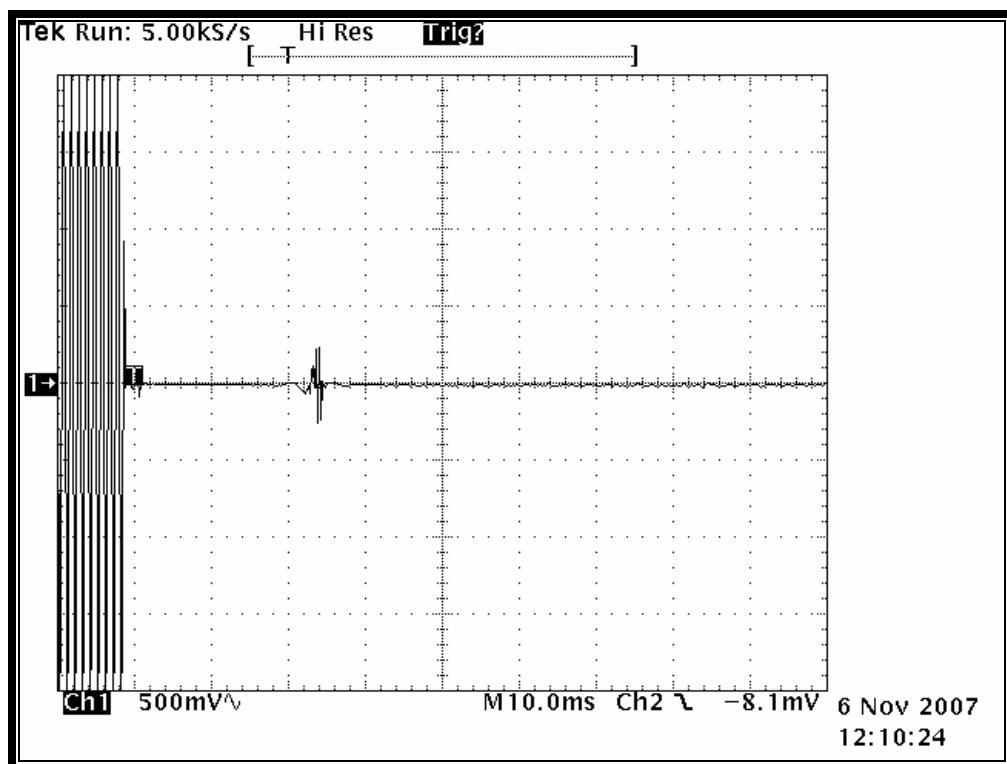

Plot 11-4: Modulation Characteristics – Modulation Limiting: 155 MHz; NB; Negative Peak

Table 11-1: Test Equipment for Testing Modulation Limiting

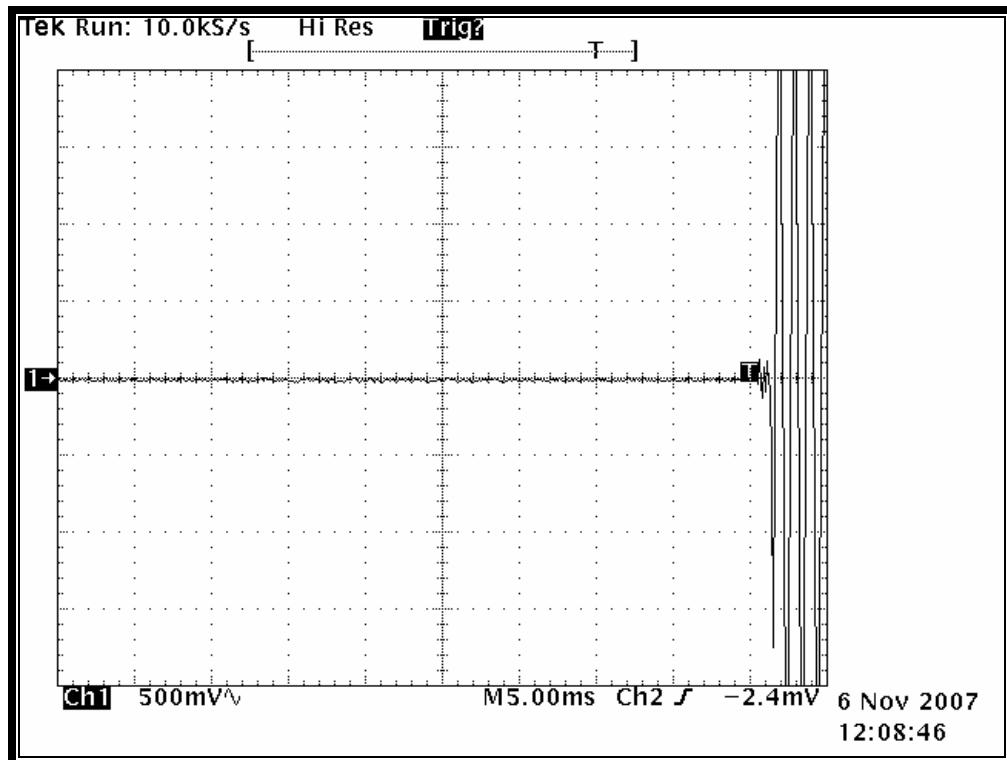
RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	12/19/07
901118	Hewlett Packard	8901A Opt. 002-003	Modulation Analyzer	2406A00178	07/21/08

Test Personnel:

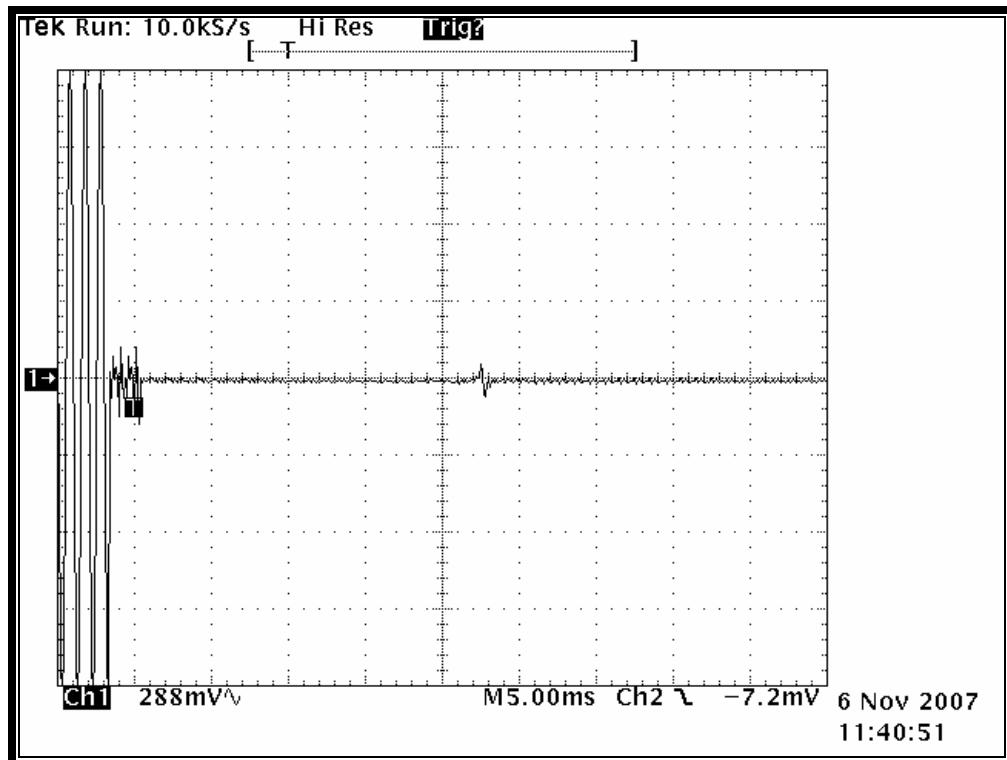
Dan Baltzell		October 20, 2007
Test Technician/Engineer	Signature	Date Of Test

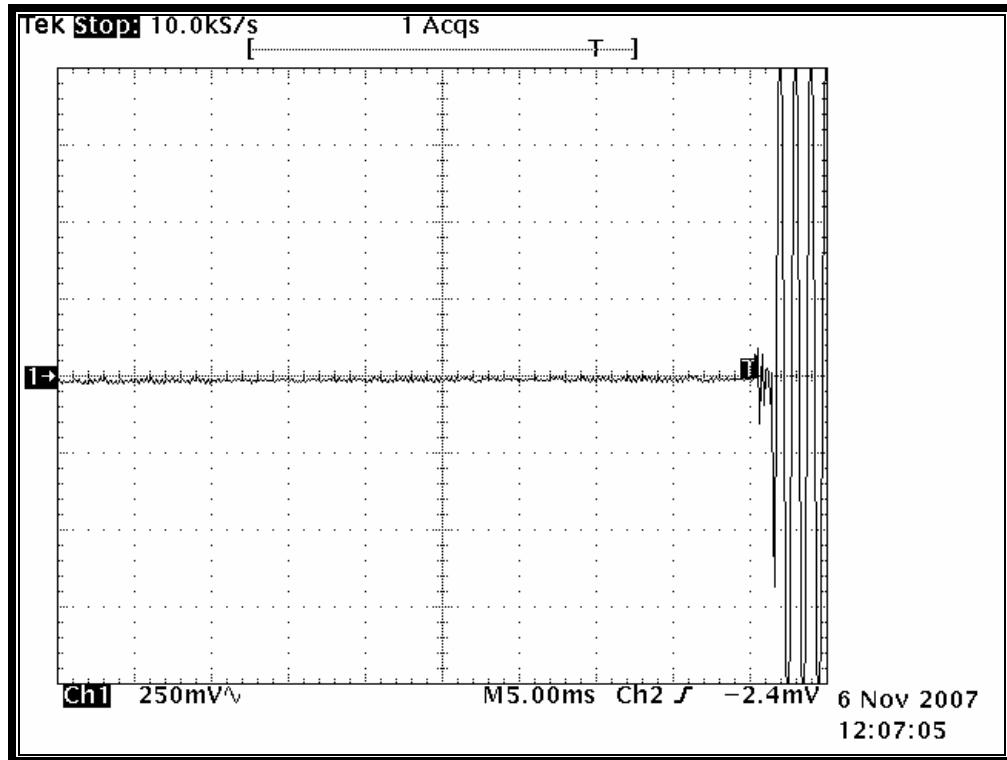

12 FCC Rules and Regulations Part 90 §90.214: Transient Frequency Behavior; RSS-119 §5.9: Transient Frequency Behavior

12.1 Test Procedure


ANSI TIA-603-C-2004, section 2.2.19.

12.2 Test Data


Plot 12-1: Transient Frequency Behavior – Carrier On Time Wideband


Plot 12-2: Transient Frequency Behavior – Carrier Off Time Wideband

Plot 12-3: Transient Frequency Behavior – Carrier On Time Narrowband

Plot 12-4: Transient Frequency Behavior – Carrier Off Time Narrowband

Table 12-1: Test Equipment for Testing Transient Frequency Behavior

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900917	Hewlett Packard	8648C	Signal Generator	3537A01741	09/05/08
901118	Hewlett Packard	8901A Opt. 002-003	Modulation Analyzer	2406A00178	08/21/08
900561	Tektronix	TDS540B	Oscilloscope	B020129	03/20/08
900352	Werlatone	C1795	Directional Coupler	4989	N/A

Test Personnel:

Dan Baltzell		November 6, 2007
Test Technician/Engineer	Signature	Date Of Test

13 FCC Rules and Regulations Part 2 §2.202: Necessary Bandwidth and Emission Bandwidth

Type of Emission: F3E, F1D, F1E

Voice – Wide Band; 25 kHz Channel Spacing

Calculation:

Max modulation (M) in kHz: 3.0
Max deviation (D) in kHz: 5.0
Constant factor (K): 1 (assumed)
 $B_n = 2xM+2xDK = 16.0$ kHz
Emission designator: 16K0F3E

Voice – Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Max modulation (M) in kHz: 3.0
Max deviation (D) in kHz: 2.5
Constant factor (K): 1 (assumed)
 $B_n = 2xM+2xDK = 11.0$ kHz
Emission designator: 11K0F3E

Digital Voice and Data – 2-level FSK; 9600 bps; Wide Band; 25 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 9600
Peak deviation of carrier (D) = 3370
 $B_n = 3.86D + 0.27R$ when $(.03 < 2D/R < 1)$ or $B_n = 2.4D + 1.0 R$ when $(1 < 2D/R < 2)$;
 $= 3.86(3370) + 0.27(9600) = 15.6$ kHz
Emission designator: 15K6F1D, 15K6F1E

Digital Voice and Data – 2-level FSK; 9600 bps; Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 9600
Peak deviation of carrier (D) = 2130
 $B_n = 3.86D + 0.27R$ when $(.03 < 2D/R < 1)$ or $B_n = 2.4D + 1.0 R$ when $(1 < 2D/R < 2)$;
 $= 3.86(2130) + 0.27(9600) = 10.8$ kHz
Emission designator: 10K8F1D, 10K8F1E

Digital Voice and Data – 2-level FSK; 4800 bps; Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Data rate in bps (R) = 4800
Peak deviation of carrier (D) = 1350
 $B_n = 3.86D + 0.27R$ when $(.03 < 2D/R < 1)$ or $B_n = 2.4D + 1.0 R$ when $(1 < 2D/R < 2)$;
 $= 3.86(1350) + 0.27(4800) = 7.8$ kHz
Emission designator: 7K8F1D, 7K8F1E

Digital Data – 4 level C4FM (P25 Standard); 9600 bps @ 2 bits/symbol=4800 sps; Narrow Band; 12.5 kHz Channel Spacing

Calculation:

Data rate in sps (R) = 4800
Peak deviation of carrier (D) = +/-1.8 kHz
Number of states in each symbol (S) = 2
 $B_n = [4800/\log_2(2) + 2(1800)(1)] = 8.400$ kHz
Emission designator: 8K40F1D, 8K40F1E

14 Conclusion

The data in this measurement report shows that the **M/A-COM, Inc. Model P5400 VHF Portable Radio, FCC ID: OWDTR-0044-E, IC: 3636B-0044**, complies with all the applicable requirements of Parts 2 and 90 of the FCC Rules and Regulations, and Industry Canada RSS-119, Issue 9, 2007.