

Certification Report for M/A-COM MASTRIII VHF Base Station with Data Module

FCC Part 90, Part 22, and RSS-119

Document Number: KP001000-CR-RAD-01-01
Release Date: December 22, 2004

Prepared for: M/A-COM, Inc.
221 Jefferson Ridge Parkway
Lynchburg, Virginia
U.S.A., 24501

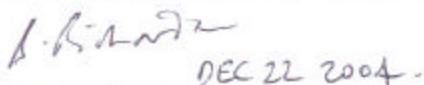
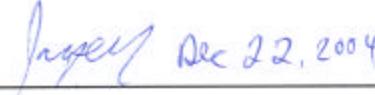
Author: Denis Lalonde
Radio Compliance Discipline Leader

Solectron EMS Canada Inc.
21 Richardson Side Road,
Kanata, Ontario, K2K 2C1
<http://www.solectrontechnicalctr.com/>

© Copyright Solectron EMS Canada Inc. December 22, 2004

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Solectron EMS Canada Inc. accepts no liability for the content of this document except when it is reproduced in its entirety by a method acceptable to Solectron EMS Canada Inc.

Release Control Record

This document is based on document template KG000347-TR-EMC-03.

Release no.	Reason for change	Date released
01	Original Release	December 21, 2004

Approvals

Function	Name	Job title	Signature
Document Release Approval	Simon Richardson	Project Manager	 DEC 22 2004
Author	Denis Lalonde	Radio Compliance Discipline Leader	 Dec. 22. 2004
Technical Reviewer	Jacques Rollin	EMC Advisor	 Jacques Rollin Dec 22, 2004

Accreditations

Solectron EMS Canada test facilities are accredited by the Standards Council of Canada (SCC) in accordance with the scope of accreditation outlined at the following web site <http://www.scc.ca/scopes/reg126-eng-s.pdf>. [1]. The SCC is a member of the APLAC [14] and ILAC [15] organizations which, through mutual recognition arrangements, provide accreditation of test facilities in the member countries.

The Solectron Design and Engineering 10-meter Ambient Free Chamber (AFC) complies with the Industry Canada (IC) requirements for Test Facilities and Test Methods [16] under reference file number 4180. Through IC MRAs, EMC measurements are accepted in the following countries: USA, Australia, Singapore, Chinese Taipei (Taiwan), and the Republic of Korea. Further information can be found at the IC Certification and Engineering Bureau web site <http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/Home> under the "conformity assessment bodies" link.

The VCCI [12] lab registration numbers associated with our test facilities are: R-1641, C-1749, C-1750, T-148, and T-149.

Solectron EMS Canada is ISO 9001:2000 and ISO-IEC 17025 certified and its processes are documented in the Solectron EMS Canada Quality Manual [2] and Lab Operations Manual [3].

Table of Contents

RELEASE CONTROL RECORD.....	2
APPROVALS	2
ACCREDITATIONS	2
TABLE OF CONTENTS	3
LIST OF FIGURES	5
LIST OF TABLES	6
1. EXECUTIVE SUMMARY.....	8
2. COMPLIANCE SUMMARY.....	9
3. EQUIPMENT UNDER TEST (EUT)	10
3.1 PRODUCT FUNCTIONAL DESCRIPTION	10
3.2 MANUFACTURER INFORMATION.....	10
3.3 TRANSMITTER SPECIFICATIONS.....	10
3.4 SYSTEM COMPONENTS	11
3.5 SUPPORT EQUIPMENT	11
3.6 SYSTEM SET-UP AND TEST CONFIGURATIONS	12
3.7 EUT INTERFACES AND CABLES	12
3.8 SYSTEM MODIFICATIONS	13
4. GENERAL TEST CONDITIONS	14
4.1 TEST FACILITY	14
4.2 MEASUREMENT INSTRUMENTATION.....	14
5. DETAILED TEST RESULTS.....	15
5.1 RF POWER	15
5.1.1 Test Specification	15
5.1.1.1 Limits	15
5.1.2 Test Facility Information.....	15
5.1.3 Test Procedure	15
5.1.4 Test Results.....	15
5.1.5 Test Conclusion	16
5.1.6 Test Equipment List.....	16
5.2 CONDUCTED SPURIOUS EMISSIONS	16
5.2.1 Test Specification	16
5.2.1.1 Limits	16
5.2.2 Test Facility Information.....	17
5.2.3 Test Procedure	17
5.2.4 Test Results.....	17

5.2.5	Test Conclusion	17
5.2.6	Test Equipment List.....	18
5.3	EMISSION MASK.....	18
5.3.1	Test Specification	18
5.3.1.1	Limits	18
5.3.2	Test Facility Information.....	19
5.3.3	Test Procedure	19
5.3.4	Test Results.....	19
5.3.5	Test Conclusion	19
5.3.6	Test Equipment List.....	19
5.4	FIELD STRENGTH OF SPURIOUS EMISSIONS	20
5.4.1	Test Specification	20
5.4.1.1	Limits	20
5.4.2	Test Facility Information.....	20
Test Procedure	20	
5.4.3	Test Results.....	21
5.4.4	Test Conclusion	22
5.4.5	Test Equipment List.....	22
5.5	FREQUENCY STABILITY.....	23
5.5.1	Test Specification	23
5.5.1.1	Limits	23
5.5.2	Test Facility Information.....	23
5.5.3	Test Procedure	23
5.5.4	Test Results.....	24
5.5.5	Test Conclusion	24
5.5.6	Test Equipment List.....	24
5.6	TRANSIENT FREQUENCY BEHAVIOR.....	25
5.6.1	Test Specification	25
5.6.1.1	Limits	25
5.6.2	Test Facility Information.....	25
5.6.3	Test Procedure	25
5.6.4	Test Results.....	26
5.6.5	Test Conclusion	26
5.6.6	Test Equipment List.....	26
5.7	OCCUPIED BANDWIDTH.....	26
5.7.1	Test Specification	26
5.7.2	Test Facility Information.....	27
5.7.3	Test Procedure	27
5.7.4	Test Results.....	27
5.7.5	Test Equipment List.....	28
5.8	RECEIVE ANTENNA PORT CONDUCTED EMISSIONS	28
5.8.1	Test Specification	28

5.8.1.1	Limits	28
5.8.2	Test Facility Information	29
5.8.3	Test Configurations	29
5.8.4	Test Procedure	29
5.8.5	Test Results:.....	30
5.8.6	Test Conclusion	30
5.8.7	Test Equipment List.....	30
6.	REFERENCES	31
7.	APPENDICES.....	32
7.1	APPENDIX A: GLOSSARY	32
7.2	APPENDIX B: TEST SET-UP PHOTOGRAPHS	33
7.3	APPENDIX C: CONDUCTED SPURIOUS EMISSIONS PLOTS	34
7.4	APPENDIX D: EMISSION MASK PLOTS.....	38
7.5	APPENDIX E: FIELD STRENGTH OF SPURIOUS EMISSIONS PLOTS.....	39
7.6	APPENDIX F: TRANSIENT FREQUENCY BEHAVIOR PLOTS	47
7.7	APPENDIX G: OCCUPIED BANDWIDTH PLOTS.....	48
7.8	APPENDIX H: CONDUCTED RECEIVER EMISSIONS PLOTS.....	49

List of Figures

FIGURE 3-1	PRODUCT DESCRIPTION.....	10
FIGURE 3-2:	MODULE CONFIGURATION	12
FIGURE 3-3:	SYSTEM CONFIGURATION	12
FIGURE 5-1:	RX ANTENNA PORT TEST METHOD	29
FIGURE 7-1:	M/A-COM MASTRIII VHF BASE STATION WITH DATA MODULE RADIATED EMISSIONS SET-UP	33
FIGURE 7-2:	TX AT 150.025 MHz, 10 W POWER, 30 MHz TO 250 MHz	34
FIGURE 7-3:	TX AT 150.025 MHz, 10 W POWER, 250 MHz TO 1.74 GHz.....	34
FIGURE 7-4:	TX AT 150.025 MHz, 110 W POWER, 30 MHz TO 250 MHz	35
FIGURE 7-5:	TX AT 150.025 MHz, 110 W POWER, 250 MHz TO 1.74 GHz.....	35
FIGURE 7-6:	TX AT 173.975 MHz, 10 W POWER, 30 MHz TO 250 MHz	36
FIGURE 7-7:	TX AT 173.975 MHz, 10 W POWER, 250 MHz TO 1.74 GHz.....	36
FIGURE 7-8:	TX AT 173.975 MHz, 110 W POWER, 30 MHz TO 250 MHz	37
FIGURE 7-9:	TX AT 173.975 MHz, 110 W POWER, 250 MHz TO 1.74 GHz.....	37
FIGURE 7-10:	2 LEVEL 9600 BAUD SIGNAL WITH +/- 3 KHZ DEVIATION (110 W)	38
FIGURE 7-11:	FIELD STRENGTH WITH 110 W Tx, 30 MHz TO 1 GHz, 153.975 MHz	39
FIGURE 7-12:	FIELD STRENGTH WITH 110 W Tx, 1 GHz TO 1.8 GHz, 153.975 MHz	40

FIGURE 7-13: FIELD STRENGTH WITH 110 W Tx, 30 MHZ TO 1 GHz, 173.975 MHz	41
FIGURE 7-14: FIELD STRENGTH WITH 110 W Tx, 1 GHz TO 1.8 GHz, 173.975 MHz	42
FIGURE 7-15: FIELD STRENGTH WITH 10 W Tx, 30 MHZ TO 1 GHz, 153.975 MHz	43
FIGURE 7-16: FIELD STRENGTH WITH 10 W Tx, 1 GHz TO 1.8 GHz, 153.975 MHz	44
FIGURE 7-17: FIELD STRENGTH WITH 10 W Tx, 30 MHZ TO 1 GHz, 173.975 MHz	45
FIGURE 7-18: FIELD STRENGTH WITH 10 W Tx, 1 GHz TO 1.8 GHz, 173.975 MHz	46
FIGURE 7-19 TRANSIENT FREQUENCY BEHAVIOR, WIDEBAND, TRANSMITTER ON.....	47
FIGURE 7-20 TRANSIENT FREQUENCY BEHAVIOR, WIDEBAND, TRANSMITTER OFF	47
FIGURE 7-21: 2 LEVEL 9600 BAUD SIGNAL WITH 3 KHZ DEVIATION	48
FIGURE 7-27: RX AT 172.975 MHz, 30 MHZ TO 1GHz.....	49

List of Tables

TABLE 2-1: COMPLIANCE RESULTS SUMMARY.....	9
TABLE 3-1: TRANSMITTER SPECIFICATIONS.....	11
TABLE 3-2: MASTRIII VHF BTS COMPONENTS.....	11
TABLE 3-3: SUPPORT EQUIPMENT	11
TABLE 3-4: SYSTEM CABLES	13
TABLE 5-1: RF POWER REQUIREMENTS	15
TABLE 5-2: RF POWER LIMIT	15
TABLE 5-3: RF POWER LEVELS	16
TABLE 5-4: TEST EQUIPMENT USED FOR RF POWER	16
TABLE 5-5: CONDUCTED SPURIOUS EMISSIONS REQUIREMENT	16
TABLE 5-6: CONDUCTED SPURIOUS EMISSION LIMIT	17
TABLE 5-7: CONDUCTED SPURIOUS EMISSIONS	17
TABLE 5-8: TEST EQUIPMENT USED FOR CONDUCTED SPURIOUS EMISSIONS	18
TABLE 5-9: EMISSION MASK REQUIREMENT	18
TABLE 5-10: EMISSION MASK LIMITS	18
TABLE 5-11: EMISSION MASK RESULTS	19
TABLE 5-12: TEST EQUIPMENT USED FOR EMISSION MASK	19
TABLE 5-13: FIELD STRENGTH OF SPURIOUS EMISSIONS REQUIREMENT	20
TABLE 5-14: FIELD STRENGTH OF SPURIOUS EMISSIONS LIMIT	20
TABLE 5-15: FIELD STRENGTH OF SPURIOUS EMISSIONS	22
TABLE 5-16: TEST EQUIPMENT USED FOR FIELD STRENGTH OF SPURIOUS EMISSIONS.....	22
TABLE 5-17: FREQUENCY STABILITY REQUIREMENT	23

TABLE 5-18: FREQUENCY STABILITY LIMITS	23
TABLE 5-19: FREQUENCY STABILITY RESULTS.....	24
TABLE 5-20: TEST EQUIPMENT USED FOR SIGNAL LEADS CONDUCTED EMISSIONS	24
TABLE 5-21: TRANSIENT FREQUENCY BEHAVIOR REQUIREMENT.....	25
TABLE 5-22: TRANSIENT FREQUENCY BEHAVIOR LIMIT	25
TABLE 5-23: TRANSIENT FREQUENCY BEHAVIOR TEST RESULTS	26
TABLE 5-24: TEST EQUIPMENT USED FOR TRANSIENT FREQUENCY BEHAVIOR MEASUREMENT ...	26
TABLE 5-25: OCCUPIED BANDWIDTH.....	27
TABLE 5-26: OCCUPIED BANDWIDTH VALUES	27
TABLE 5-27: TEST EQUIPMENT USED FOR OCCUPIED BANDWIDTH.....	28
TABLE 5-28: RECEIVE PORT CONDUCTED EMISSIONS REQUIREMENT	28
TABLE 5-29: RECEIVE ANTENNA PORT CONDUCTED EMISSIONS LIMITS	28
TABLE 5-30: TEST EQUIPMENT USED FOR CONDUCTED SPURIOUS EMISSIONS	30

1. Executive Summary

This test report documents the measurements performed on the M/A-COM MASTRIII VHF Base Station with Data Module as part of an original application for the FCC Part 90, Part 22, and Industry Canada RSS-119 certifications.

Reference: - FCCID: OWDTR-0031-E
 - IC: 3636B-0031

On the basis of measurements performed in December 2004, the M/A-COM MASTRIII VHF Base Station with Data Module is verified to be compliant with FCC Part 90, Part 22, and Industry Canada RSS-119 requirements. The test data included in this report applies to the product titled above manufactured by M/A-COM, Inc. A detailed summary of compliance results is found in Table 2-1: Compliance Results Summary on page 9.

2. Compliance Summary

This section summarizes all the measurements performed on M/A-COM MASTRIII VHF Base Station with Data Module and its compliance to FCC Part 90, Part 22, and Industry Canada RSS-119.

Table 2-1: Compliance Results Summary

Product Summary					
Product Name:		M/A-COM MASTRIII VHF Base Station with Data Module	Project Manager:		Simon Richardson
Product Code:		TR-0031	Measurements by :		Denis Lalonde
Product Status:			Date:		December 2004
Test Cases					
Performed	Description	Specification	Test Results		Notes
			Pass	Fail	
■	RF Power	FCC Part 90.205 and 2.1046 RSS-119 sect. 5.4	■	□	
■	Conducted Spurious Emissions	FCC Part 90.210, 22.359, and 2.1051 RSS-119 sect. 6.3	■	□	
■	Emission Mask	FCC Part 90.210, 22.359, and 2.1049 RSS-119 sect. 6.4	■	□	
■	Field Strength of Spurious Emissions	FCC Part 90.210, 22.359, and 2.1053	■	□	
■	Frequency Stability	FCC Part 90.213, 22.355, and 2.1055 RSS-119 sect. 7	■	□	
□	Audio Frequency Response	FCC 2.1047	□	□	
□	Audio Low Pass Filter	FCC 2.1047 RSS-119 sect. 6.6	□	□	
□	Modulation Limiting	FCC 2.1047	□	□	
■	Occupied Bandwidth	FCC 2.202 RSP 100 sect. 7.2	■	□	
■	Transient Frequency Behavior	FCC 90.214 RSS-119 sect. 6.5	■	□	
□	RF Exposure	FCC 1.1310 RSS-119 sect. 9.0	□	□	To be evaluated during licensing of equipment
■	Receiver Conducted Emissions	FCC Part 15.111 RSS-119 sect. 8	■	□	

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc.. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

3. Equipment Under Test (EUT)

3.1 Product Functional Description

The product trade name of the unit tested was “M/A-COM MASTRIII VHF Base Station with Data Module”.

Figure 3-1 provides a brief description of the tested product.

Figure 3-1 Product Description

The MASTR III P25 digital Base Station, built on the tradition of the popular MASTR series of repeaters, is an industry leader in interoperability, performance, and reliability. The MASTR III P25 provides secure digital communications for mission critical applications. The station is capable of both conventional Project 25 digital communications and conventional analog communications for maximum flexibility. The addition of a SitePro Controller provides the capability of delivering Internet Protocol (IP) data and voice to a M/A-COM P25® network.

3.2 Manufacturer Information

Company Name	M/A-COM, Inc.
Mailing Address	221 Jefferson Ridge Parkway, Lynchburg, Virginia, U.S.A., 24501
Product Name	M/A-COM MASTRIII VHF Base Station with Data Module

3.3 Transmitter Specifications

Table 3-1 lists the specifications of the transmitter under test.

Table 3-1: Transmitter Specifications

Circuit Pack	Fundamental Frequencies (MHz)
Tx power	10 to 110 W
Tx frequency	150 to 174 MHz
Channel spacing	25 kHz

3.4 System Components

The system tested consists of the following units, as shown in Table 3-2.

Table 3-2: MASTRIII VHF BTS Components

Component	Model	Serial Number
MASTRIII shelf	SXGPNX	9861756
Tx Synthesizer module	EA101685V2	SLR 0330 1362
Tx Synthesizer module	EA101685V2	SLR 0330 1366
Rx Synthesizer module	EA101684V2	SLR 0330 1730
Rx Front End module	19D902782G2	CSLR 0246 2831
Data module	19D504558 G1	SLR 04160954
IF module	EA101401V1	SLR 03150255
System module	19D902590G6	SLR 03040661
Power module	19D902589G2	CKA 01390368
12 V Battery	Dynasty Tel 12-125	
Power supply	PS103010V120	QG12659
RF Power Amplifier	EA101292V12 Rev. R1A (Note 1)	09430361

Note 1: Revision R1A power amplifiers are prototypes of revision R2A.

3.5 Support Equipment

The support equipment used for operation and monitoring of the EUT is described in Table 3-3.

Table 3-3: Support Equipment

Description	Model Number
IBM Thinkpad PC	600E
GE Digital Test Generator	19A149117P2

3.6 System Set-up and Test Configurations

The system configuration used for all test cases is presented in Figure 3-2 and Figure 3-3.

Figure 3-2: Module Configuration

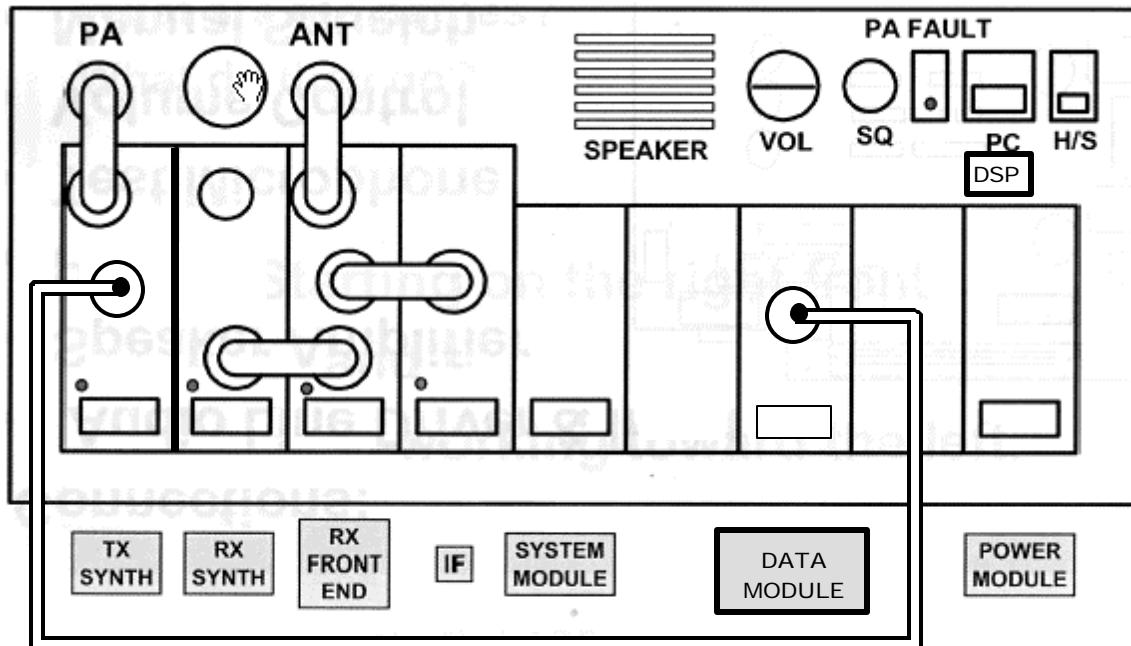
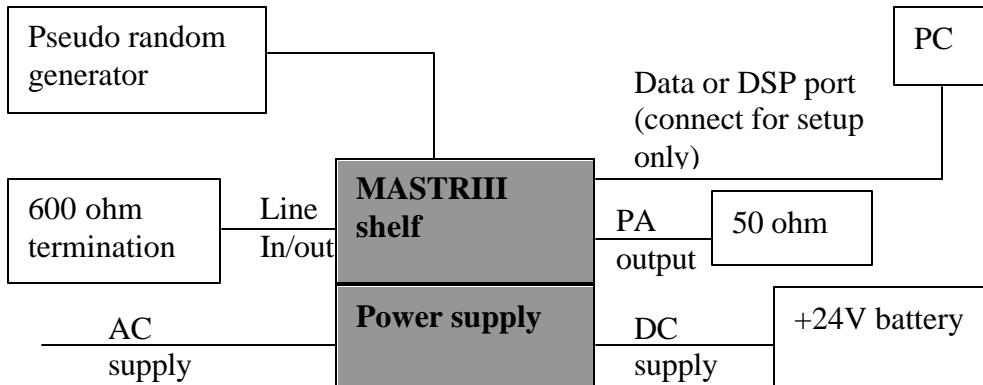



Figure 3-3: System Configuration

A photograph of the test setup used in this test report is presented in Appendix B: Test Set-up Photographs, on page 33.

3.7 EUT Interfaces and Cables

The system contains the following interfaces, as shown in Table 3-4.

Table 3-4: System Cables

Interface Type	EUT Connection	Description	Type	Length	Qty
AC Mains	AC power supply	3 wire AC cord	unshielded	6 feet	1
DC Mains	Battery connector of power supply	2 wire battery cable	unshielded	12 feet	1
Telephone line in/out	MASTRIII shelf	2 twisted pair	unshielded	6 feet	1

3.8 System Modifications

No modifications were required to pass the requirements.

4. General Test Conditions

4.1 Test Facility

Radiated emissions testing was performed in a 10-meter Ambient Free Chamber (AFC) located at 21 Richardson Side road, Kanata, Ontario, Canada. The AFC consists of a shielded room lined with ferrite tiles and anechoic material.

These test facilities are accredited by the Standards Council of Canada (SCC) [1]. Through a Mutual Recognition Agreement (MRA) between the National Voluntary Laboratory Accreditation Program (NVLAP) and SCC, the accreditation status of the AFC facility is valid for the U.S.

4.2 Measurement Instrumentation

The measurement instrumentation conforms to ANSI C63.2 [5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5. Detailed Test Results

5.1 RF Power

5.1.1 Test Specification

The system was tested to the requirements listed in Table 5-1:

Table 5-1: RF Power Requirements

Requirement	Part / Section
FCC	90.205, 2.1046
RSS-119	5.4

5.1.1.1 Limits

The system was tested to the rated power of the EUT, listed in Table 5-2.

Table 5-2: RF Power Limit

Rated power
10 to 110 W (40 to 50.4 dBm)

5.1.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1
Date tested: December 20, 2004
Tested by: Denis Lalonde

5.1.3 Test Procedure

The output of the power amplifier was connected to a power meter using a calibrated RF attenuator and cable.

The unmodulated RF signal was set at both extremities and in the middle of the frequency band. The lowest and highest possible power levels were evaluated..

5.1.4 Test Results

Test results are shown in Table 5-3.

Table 5-3: RF Power Levels

Channel (MHz)	Low Power (dBm)	Hi Power (dBm)
150.025	40.0	50.4
153.975	40.0	50.4
162.0	40.0	50.4
173.975	40.1	50.4

5.1.5 Test Conclusion

The test results met the requirement.

5.1.6 Test Equipment List

Table 5-4: Test Equipment used for RF Power

Category	Manufacture	Model Number	Description	Serial Number	Cal. Due
Attenuator	Weinschel	47-6-43	6 dB, 50 W	SSG012076	22 April 2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22 April 2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	25 Oct. 2005
Power meter	Anritsu	M2438A	Power meter	SSG012588	27 April 2005
Power sensor	Anritsu	M2424A	Power sensor	SSG012587	27 April 2005

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.2 Conducted Spurious Emissions

5.2.1 Test Specification

The system was tested to the limits of the requirements listed in Table 5-5:

Table 5-5: Conducted Spurious Emissions Requirement

Requirement	Part / Section
FCC	90.210, 22.359, 2.1051
RSS-119	6.3

5.2.1.1 Limits

The following specification levels are applicable to this test:

Table 5-6: Conducted Spurious Emission Limit

Frequency Range (MHz)	Limit (dBm)
30 to 1740	-13

The limit is calculated in section 5.4.

5.2.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1
Date tested: December 20, 2004
Tested by: Denis Lalonde

5.2.3 Test Procedure

Conducted spurious emissions were measured at the bottom and top of the 150 to 174 MHz frequency band. The measurements were repeated while the power amplifier was operating at 10 W and 110 W.

The signal was modulated by the Data Module with a 9600 baud digital wide band signal (+/- 3000 Hz deviation).

The measurement was separated in 2 frequency bands;

1. 30 MHz to 250 MHz: the power amplifier output is connected to the spectrum analyzer through a 26 dB attenuator.
2. 250 MHz to 1.74 GHz: the power amplifier output is connected to the spectrum analyzer through a 20 dB attenuator, and a 250 MHz high pass filter.

5.2.4 Test Results

The test result are shown in Table 5-7.

Table 5-7: Conducted Spurious Emissions

Channel (MHz)	Low Power (dBm)	Hi Power (dBm)	Reference Plots
150.025	<-30.3 dBm	<-29.5 dBm	Figure 7-2 to Figure 7-5
173.975	<-29.3 dBm	<-29.0 dBm	Figure 7-6 to Figure 7-9

5.2.5 Test Conclusion

The test results met the requirement.

5.2.6 Test Equipment List

Table 5-8: Test Equipment used for Conducted Spurious Emissions

Category	Manufacture	Model Number	Description	Serial Number	Cal. Due
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22 April 2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	25 Oct. 2005
Attenuator	Weinschel	47-6-43	6 dB, 50 W	SSG012076	22 April 2005
Spectrum analyzer	HP	8564E	40 GHz	SSG012069	28 Apr. 2005
High Pass filter	Mini Circuits	NHP-200	200 MHz high pass	19950	NA
Network Analyzer	HP	8753C	6 GHz NA	SSG012382	12 Feb. 2005

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.3 Emission Mask

5.3.1 Test Specification

The system was tested to the limits of the requirements listed in Table 5-9:

Table 5-9: Emission Mask Requirement

Requirement	Part / Section
FCC	90.210, 22.359, 2.1049
RSS-119	6.4

5.3.1.1 Limits

The specification levels in Table 5-10 were used.

Table 5-10: Emission Mask Limits

Channel spacing (kHz)	2 level/9600 baud modulation
25	Part 90 Mask B
25	Part 22 Digital Mask

The equipment was tested to Part 90 Mask B because the Data Module contains an audio low pass filter.

5.3.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1
Date tested: December 20, 2004
Tested by: Denis Lalonde

5.3.3 Test Procedure

One emission mask measurement was performed at 162 MHz with the transmitter set with a power level of 110 W. The signal was setup as follows:

1. 2 level 9600 baud modulation: The MASTRIII Base Station was modulated with a 2 level 9600 baud pseudo-random TTL-level signal. The Data Module was adjusted to produce +/- 3 kHz deviation at the power amplifier RF output.

For this measurements, the power amplifier output was connected to the spectrum analyzer through a 36 dB attenuator.

5.3.4 Test Results

Table 5-11 lists the highest emissions measured:

Table 5-11: Emission Mask Results

Type of signal	Test result	Reference
2 level 9600 baud +/- 3 kHz deviation	Pass	Figure 7-10

5.3.5 Test Conclusion

The test results met the requirement.

5.3.6 Test Equipment List

Table 5-12: Test Equipment used for Emission Mask

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Attenuator	Weinschel	47-6-43	6 dB, 50 W	SSG012076	22 April 2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22 April 2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	25 Oct. 2005
Spectrum analyzer	HP	8564E	40 GHz	SSG012069	28 Apr. 2005

The measurement instrumentation conforms to ANSI C63.2[5]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.4 Field Strength of Spurious Emissions

5.4.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-13: Field Strength of Spurious Emissions Requirement

Requirement	Part / Section
FCC	90.210, 22.359, 2.1053

5.4.1.1 Limits

The following specification levels are worst-case limits taken from all test specifications.

Table 5-14: Field Strength of Spurious Emissions Limit

Frequency Range (MHz)	ERP Limit (dBm)
30 to 1740	-13

The ERP limit was calculated using the minimum attenuation requirement of FCC 90.210 d3).

$$\begin{aligned}\text{Attenuation} &= 43 + 10 \log (P) \text{ dB} \\ &= 43 + 10 \log (110) \\ &= 63.4 \text{ dB}\end{aligned}$$

$$\begin{aligned}\text{ERP limit} &= 10 \log (110 \text{ W}) - 63.4 \text{ dB} \\ &= -13 \text{ dBm}\end{aligned}$$

5.4.2 Test Facility Information

Location: Solectron Design and Engineering 10m Ambient Free Chamber

Date tested: December 10, 2004

Tested by: S. Cullen, and Denis Lalonde

Test Procedure

Verifications of the test equipment and AFC were performed prior to the installation of the EUT in accordance with the quality assurance procedures in KP000270-LP-EMC-01-04 [Error! Reference source not found.]. The test was performed as per the relevant Test procedures: ANSI C63.4 [4].

The system was tested in the following manner:

- The EUT was placed on a turntable inside the AFC and it was configured as in normal operation. The system and its cables were separated from the ground plane by an insulating support 10 mm in height. The system was grounded in accordance with its normal installation specifications. No additional grounding connections are allowed.
- For tests between 30 MHz and 1 GHz a broadband bilog antenna was placed at a 10 m distance; a horn antenna, placed also at 10 m distance from the EUT, was used for measurements between 1 GHz and 1.8 GHz.
- A pre-scan was performed to find emissions (frequencies) requiring detail measurement. The pre-scan (using a peak detector) was performed by rotating the system 360 degrees while recording all emissions (frequency and amplitude). This procedure was repeated for antenna heights of 1 to 4 meters, in steps of 1 meter, and for horizontal and vertical polarizations of the receiving antenna (for measurements above 30 MHz).
- Prescan optimization was performed based on the pre-scan data. All frequencies, having emission levels within 10 dB of the specification(s) limits, were optimized. For each such frequency, the EUT was rotated in azimuth over 360 degrees and the direction of maximum emission was noted. Antenna height was then varied from 1 to 4 meters at this azimuth to obtain maximum emissions. The procedure was repeated for both horizontal and vertical polarizations of the search antenna. Then the maximum level measured was recorded.
- The frequency range investigated was 30 MHz to 1.8 GHz.
- Between 30 MHz and 1 GHz, a resolution bandwidth of 120 kHz was used.
- Above 1 GHz, a 1 MHz resolution bandwidth and 1 MHz video bandwidth were used.
- The highest emissions were evaluated using the substitution method. This is accomplished by replacing the EUT by a calibrated antenna, cable and signal generator. This equipment is used to transmit a signal that will generate a RF meter reading level identical to the one recorded when the EUT was present. The signal generator power level, the calibration data of the cable and antenna is then used to evaluate the Effective Radiated Power (ERP) of the EUT. The following formula is used:

$$\text{ERP} = \text{Signal generator level} - \text{Cable losses} + \text{Antenna gain (dBi)} - \text{Gain of tuned dipole (dBi)}$$

$$\text{Margin} = \text{Limit} - \text{ERP}$$

The measurement was performed at 2 frequencies (153.975 and 173.975MHz) while the power amplifier was operating at 10 W and 110 W. A 2 level pseudo random 9600 baud signal was used to modulate the transmitter. A 50 ohm load was connected to the power amplifier output.

5.4.3 Test Results

Table 5-15 lists the highest emissions measured, all other emissions had more than 20 dB margin:

Table 5-15: Field Strength of Spurious Emissions

Tx Channel	Channel (MHz)	Signal Generator Level Hi Power (dBm)	Antenna Gain (dBi)	Cable losses (dB)	ERP Low Power (dBm)	ERP Hi Power (dBm)	Margin (dB)	Reference
153.975 MHz	1231.8 (8 Tx)	-44.8	7.2	1.2	-65.2	-41.0	28.0	Figure 7-11 to Figure 7-18
173.975 MHz	1043.85 (6 Tx) 1217.825 (7 Tx)	-47.5 -45.1	6.1 7.0	1.1 1.2	-63.3 -63.5	-44.7 -41.5	31.7 28.5	Figure 7-11 to Figure 7-18

5.4.4 Test Conclusion

The test results met the requirement.

5.4.5 Test Equipment List

Table 5-16: Test Equipment used for Field Strength of Spurious Emissions

Category	Manufacture	Model	Serial Number	Cal. Due
Bilog Antenna	Antenna Research	LPB 2520A	SSG012299	3/2/2005
Double Ridged Horn	Emco	3115	SSG012298	12/29/2004
Pre-Amplifier	BNR	LNA	SSG012360	2/11/2005
Quasi-Peak Adapter, HP85650A, (EMI # 2)	HP	85650A	SSG013046	10/13/2005
RF Amplifier, HP8447 # 1	Agilent	8447D	SSG013045	10/13/2005
Spec. A, RF PreSelector, HP85685A (AFC #1)	HP	85685A	SSG012010	4/29/2005
Spectrum Analyzer Display, HP 85662A	HP	85662A	SSG012433	4/29/2005
Spectrum Analyzer, HP8566B, (AFC #1)	HP	8566B	SSG012521	4/29/2005
Sucoflex Cable, EMC Cable # 1	Huber & Suhner	106A	SSG012454	2/12/2005
Sucoflex Cable, EMC Cable # 2	Huber & Suhner	106A	SSG012453	2/12/2005
Sucoflex Cable, EMC Cable # 5	Huber & Suhner	104PEA	SSG012359	2/11/2005
Sucoflex Cable, EMC Cable # 6	Huber & Suhner	106A	SSG012456	2/12/2005
Utiflex Cable, EMC Cable # 4	Micro-Coax	UFA 147B-1-0300-70X70	SSG012309	10/13/2005
Signal generator	HP	83732A	SSG012125	13/10/2005
Horn Antenna	EMCO	3115	2703	24/02/05

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.5 Frequency Stability

5.5.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-17: Frequency Stability Requirement

Requirement	Part / Section
FCC	90.213, 22.355, 2.1055
RSS-119	7.0

5.5.1.1 Limits

The specification levels are listed in Table 5-18.

Table 5-18: Frequency Stability Limits

Frequency Range (MHz)	Minimum Frequency Stability (ppm)
150 to 174	5

5.5.2 Test Facility Information

Location: Solectron Design and Engineering Lab 9

Date tested: December 15, 2004

Tested by: Denis Lalonde

5.5.3 Test Procedure

The unmodulated output of the power amplifier was connected through attenuators into a frequency counter. A 10 MHz rubidium frequency reference was used to provide improved frequency accuracy to the spectrum analyzer.

The base station was installed in an environmental chamber. The temperature was changed from – 30 degree Celsius up to 50 degree Celsius in 10 degree increments while the EUT was powered off. The temperature was allowed to stabilize for 1 hour after changing the temperature. The measurement of frequency was done 5 minutes after the base station was powered on.

Frequency accuracy measurement were also performed at 20 degree Celsius while modifying the voltage of the AC mains from 85% (102 VAC) to 115% (138 VAC) of the nominal value (120 VAC).

5.5.4 Test Results

Table 5-19 lists the frequency stability measurement results:

Table 5-19: Frequency Stability Results

Temperature (degree. Celsius)	AC Voltage (V)	Frequency (MHz)	Frequency Error (ppm)
-30	120	161.999896	-0.64
-20	120	161.99991	-0.56
-10	120	161.999998	-0.01
0	120	161.999991	-0.06
10	120	162.000026	0.16
20	102	162.000005	0.03
20	120	162.000005	0.03
20	138	162.000005	0.03
30	120	161.999964	-0.22
40	120	161.999887	-0.70
50	120	161.999824	-1.09

5.5.5 Test Conclusion

The test results met the requirement.

5.5.6 Test Equipment List

Table 5-20: Test Equipment used for Signal Leads Conducted Emissions

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Frequency Reference	UCT	2008	Rubidium 10 MHz	A1010	27 April 2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22 April 2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	25 Oct. 2005
Attenuator	Weinschel	47-6-43	6 dB, 50 W	SSG012076	22 April 2005
Frequency Counter	HP	5385A		SS013044	12/07/2005

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.6 Transient Frequency Behavior

5.6.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-21: Transient Frequency Behavior Requirement

Requirement	Part / Section
FCC	90.214
RSS-119	6.5

5.6.1.1 Limits

The specification levels are listed in Table 5-22.

Table 5-22: Transient Frequency Behavior Limit

Channel Spacing (kHz)	Time interval (ms)	Maximum Frequency Difference (kHz)
25	T1 = 5	+/- 25
	T2= 20	+/12.5
	T3= 5	+/- 25

Note:

T1 is the time period immediately following Txon

T2 is the time period immediately following t1.

T3 is the time period from the instant when the transmitter is turned off until Txoff.

5.6.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: December 20, 2004

Tested by: Denis Lalonde

5.6.3 Test Procedure

The test procedure of EIA/TIA-603B-2002 section 2.2.19 (modulation domain analyzer method) was used.

5.6.4 Test Results

Table 5-23 shows the transient frequency behavior measurement results. Each graph shows the transmitted signal at the center of the +/- 250 Hz frequency scale over the first and last 25 msec of transmission.

Table 5-23: Transient Frequency Behavior Test Results

Channel Spacing (kHz)	Time interval (ms)	Maximum Frequency Difference (kHz)	Df Low frequency split Measured Frequency Difference (kHz)	Measurement Reference Plots
25	T1 = 5	+/- 25	-0.2 < Δf < 0.2	Figure 7-19
	T2 = 20	+/- 12.5	-0.2 < Δf < 0.2	Figure 7-19 & Figure 7-20
	T3 = 5	+/- 25	-0.2 < Δf < 0.2	Figure 7-20

5.6.5 Test Conclusion

The test results met the requirement.

5.6.6 Test Equipment List

Table 5-24: Test Equipment used for Transient Frequency Behavior Measurement

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Attenuator	Weinschel	47-6-43	6 dB, 50 W	SSG012076	22 April 2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22 April 2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	25 Oct. 2005
Modulation Domain analyzer	HP	53310A		3121A01217	27 April 2005

Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.7 Occupied Bandwidth

5.7.1 Test Specification

The system occupied bandwidth was evaluated according to the specifications listed in Table 5-25:

Table 5-25: Occupied Bandwidth

Requirement	Part / Section
FCC	2.202
RSP-100	7.2

5.7.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1
Date tested: December 20, 2004
Tested by: Denis Lalonde

5.7.3 Test Procedure

One occupied bandwidth measurement was performed at 162 MHz with the transmitter set at a power level of 110 W. The signal was setup as follows:

1. 2 level 9600 baud modulation: The MASTRIII Base Station was modulated with a 2 level 9600 baud pseudo-random TTL-level signal. The Data Module was adjusted to produce +/- 3 kHz deviation at the power amplifier RF output.

For this measurement, the power amplifier output was connected to the spectrum analyzer through a 36 dB attenuator.

The occupied bandwidth was measured using the 99% bandwidth measuring feature of the spectrum analyzer.

5.7.4 Test Results

Table 5-26 lists the occupied bandwidth calculated and measured results:

Table 5-26: Occupied bandwidth values

Type of signal	Calculation	Measurement (kHz)	Emission designator
2 level 9600 baud / 3 KHz deviation	Max. modulation (B) = 9.6 kHz Max. deviation (D) = 3.0 kHz K = 1 Bn = B + 2DK Bn = 15.6 kHz	10.8 kHz Figure 7-21	15K6F1D 15K6F1E

5.7.5 Test Equipment List

Table 5-27: Test Equipment used for Occupied bandwidth

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22 April 2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	25 Oct. 2005
Attenuator	Weinschel	47-6-43	6 dB, 50 W	SSG012076	22 April 2005
Spectrum analyzer	HP	8564E	40 GHz	SSG012069	28 Apr. 2005

The measurement instrumentation conforms to ANSI C63.2[5]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.8 Receive Antenna Port Conducted Emissions

These tests are performed to assure that the product does not produce excessive conducted emissions on the receive antenna port.

5.8.1 Test Specification

The system was tested to the requirements listed in Table 5-28:

Table 5-28: Receive Port Conducted Emissions Requirement

Requirement	Section	Country of Application
RSS-119	8	Canada
FCC Part 15, Subpart B	15.111	USA

5.8.1.1 Limits

The specification levels in Table 5-29 are worst-case limits taken from all test specifications.

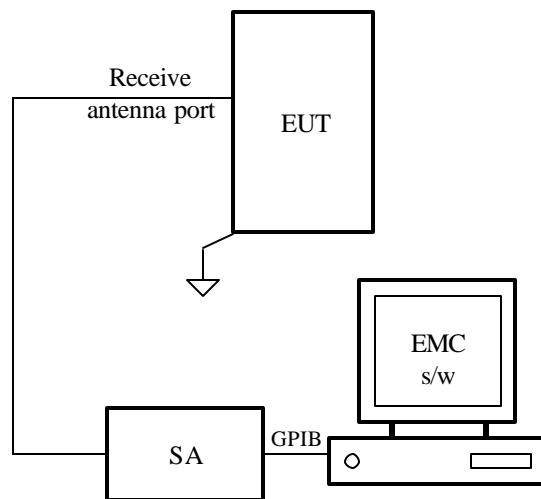
Table 5-29: Receive Antenna Port Conducted Emissions Limits

Frequency Range (MHz)	FCC Part 15 / RSS-119 (dBm)
30 - 1000	-57

5.8.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1
Date tested: December 20, 2004
Tested by: Denis Lalonde

5.8.3 Test Configurations


For conducted emissions test cases, the EUT hardware configuration / software load used is described in sections 3.6 (see Figure 3-2).

5.8.4 Test Procedure

Verifications of the test equipment were performed prior to the installation of the EUT in accordance with the quality assurance procedures in KP000270-LP-EMC-01-01 [Error! Reference source not found.]. The test was performed as per the relevant Test procedures: ANSI C63.4 [4], RSS-119[10].

The test method shown in Figure 5-1 was used for conducted emission measurements on the receive antenna port.

Figure 5-1: Rx Antenna Port Test Method

Abbreviations used in the above figures:

EUT Equipment under test
SA Spectrum Analyzer

- The connection of the antenna port cable was representative of installation practice as shown in the figure above.

- Conducted emissions were measured by connecting the spectrum analyzer input to the antenna port of the Receiver Front End Module
- A pre-scan was taken for all the frequency range from the requirement, using a peak detector on the spectrum analyzer. The pre-scan data was then compared to the specification limits. All emissions within 10 dB from the limit lines were recorded.

5.8.5 Test Results:

This section presents the conducted emissions on the receive antenna port test results. Graphical representations of the measurements taken appear in Appendix H: Conducted Receiver Emissions Plots .

All emissions had more than 10 dB margin.

5.8.6 Test Conclusion

The EUT has passed the Receive Antenna Port Conducted Emissions tests with respect to FCC Part 15 and RSS-119 with more than 10 dB of margin.

5.8.7 Test Equipment List

Table 5-30: Test Equipment used for Conducted Spurious Emissions

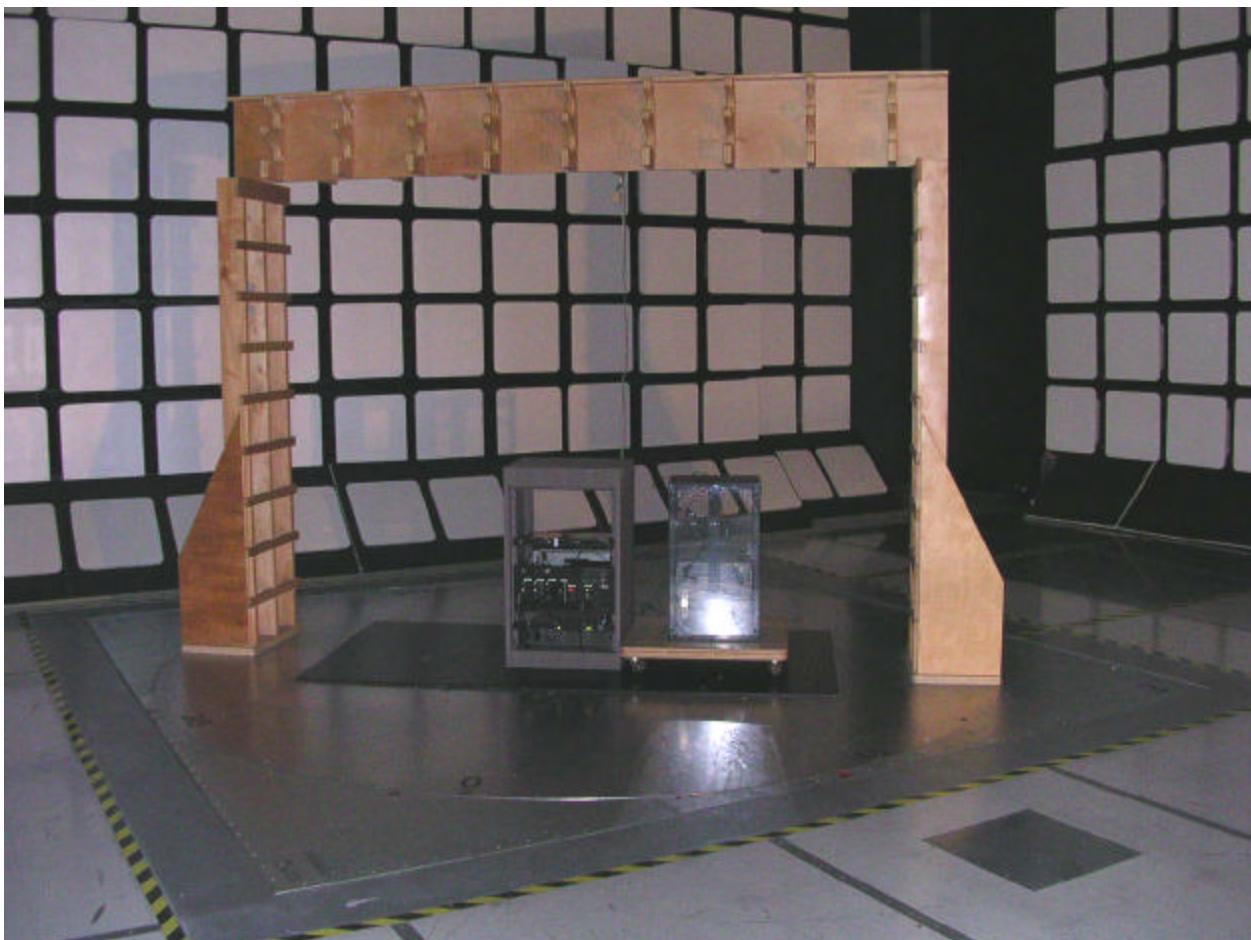
Category	Manufacture	Model Number	Description	Serial Number	Cal. Due
Spectrum analyzer	HP	8564A	40 GHz	SSG012069	28/04/2005

The measurement instrumentation conforms to ANSI C63.2 [5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

6. References

1. Standards Council of Canada Scope of Accreditation Letter SCC 1003-15/163 dated 2002-12-16 (Scope of accreditation is effective until 2005-10-05 and includes FCC Part 15 and ICES-003). This scope of accreditation is outlined at the following web site <http://www.scc.ca/scopes/reg126-eng-s.pdf>.
2. Solectron EMS Canada Inc. Quality Manual, K0000608-QD-QM-01-07, 2004.
3. Solectron EMS Canada Inc. Lab Operations Manual KG000347-QD-LAB-01-05, June 2004.
4. ANSI C63.4-2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz, 17 June 2001.
5. ANSI C63.2-1996, American National Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz – Specifications.
6. CISPR 16-1, Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods - Part 1: Radio Disturbance and Immunity Measuring Apparatus, Edition 2.0, 1999-10.
7. Solectron EMS Canada Inc., EMC General Lab Test Procedure, KP000270-LP-EMC-01-04 July 2004.
8. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations), Part 2, U.S. Federal Communications Commission.
9. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations), Part 90, U.S. Federal Communications Commission.
10. RSS-119, Issue 6, "Land Mobile and Fixed Radio, Transmitters and Receivers, 27.41 to 960 MHz" March 25, 2000.
11. ANSI/TIA-603-B-2002, "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards", November 7, 2002
12. VCCI, V-3/02.04 16th edition, April 2002. Title: AGREEMENT OF VOLUNTARY CONTROL COUNCIL FOR INTERFERENCE BY INFORMATION TECHNOLOGY EQUIPMENT
13. Chinese National Standard (CNS) 13438: 1997, "Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment".
14. APLAC, Asia Pacific Laboratory Accreditation Cooperation, Website (February 10th, 2004): <http://www.aplac.org>.
15. ILAC, International Laboratory Accreditation Cooperation, Website (February 10th, 2004): <http://www.ilac.org/>
16. Industry Canada, RSS 212, Test Facilities and Test Methods for Radio Equipment, Issue 1 (Provisional), February 27, 1999.

7. Appendices


7.1 Appendix A: Glossary

Included below are definitions and abbreviations of terms used in this document.

Term	Definition
AC	Alternating Current
AFC	Ambient Free Chamber
AM	Amplitude modulation
ANSI	American National Standards Institute
AVG	Average detector
CISPR	Comité International Spécial Perturbation Radioélectrique (International Special Committee on Radio Interference)
Class A	Class A Limits for typical commercial establishments
Class B	Class B Limits for typical domestic and residential establishments
dB	Decibel
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
EN	European Normative
EUT	Equipment Under Test
FCC	Federal Communications Commission, USA
GND	Ground
IC	Industry Canada
PA	Broadband Power Amplifier
RBW	Resolution Bandwidth
RF	Radio-Frequency
RFI	Radio-Frequency Interference
SCC	Standards Council of Canada

7.2 Appendix B: Test Set-up Photographs

Figure 7-1: M/A-COM MASTRIII VHF Base Station with Data Module radiated emissions set-up

7.3 Appendix C: Conducted Spurious Emissions Plots

Figure 7-2: Tx at 150.025 MHz, 10 W Power, 30 MHz to 250 MHz

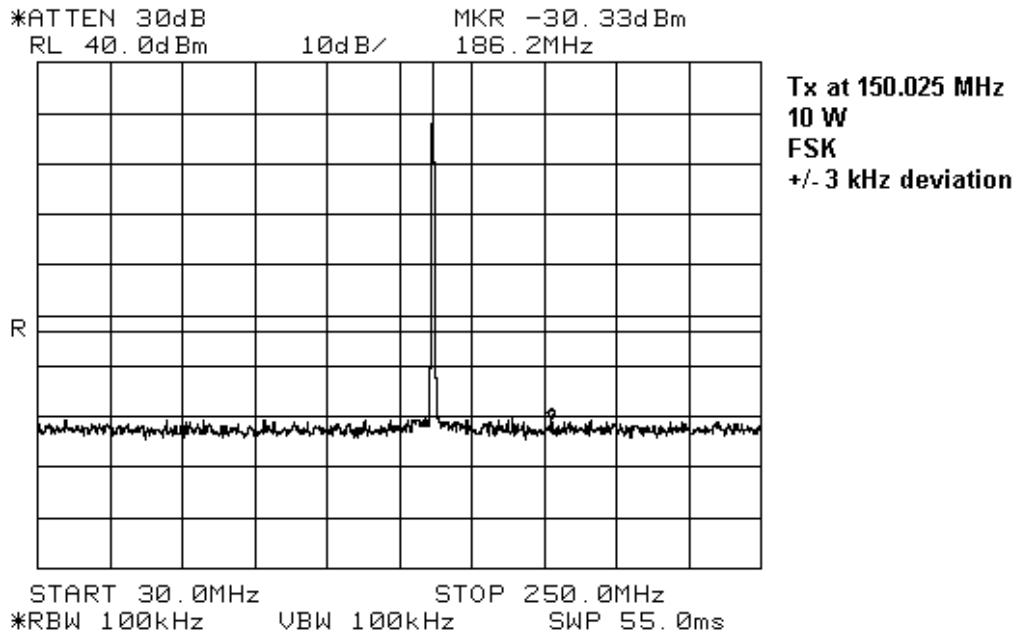


Figure 7-3: Tx at 150.025 MHz, 10 W Power, 250 MHz to 1.74 GHz

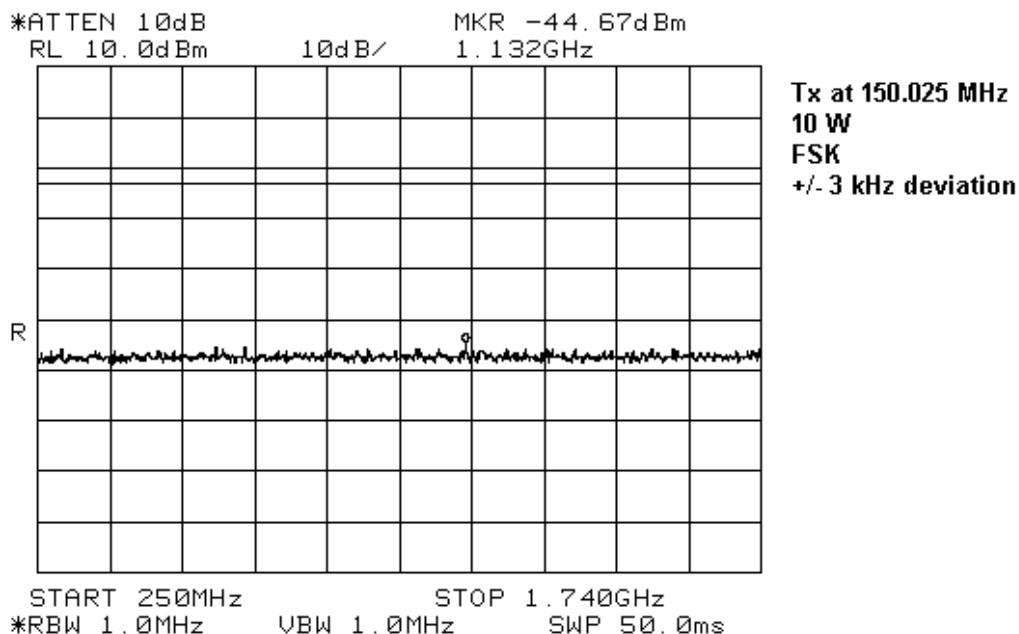


Figure 7-4: Tx at 150.025 MHz, 110 W Power, 30 MHz to 250 MHz

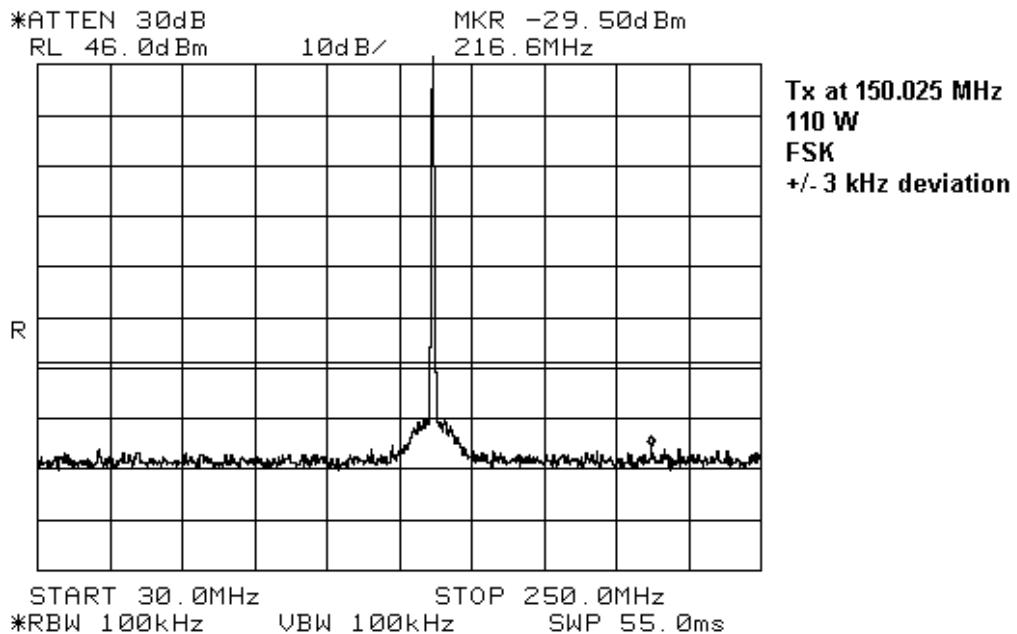


Figure 7-5: Tx at 150.025 MHz, 110 W Power, 250 MHz to 1.74 GHz

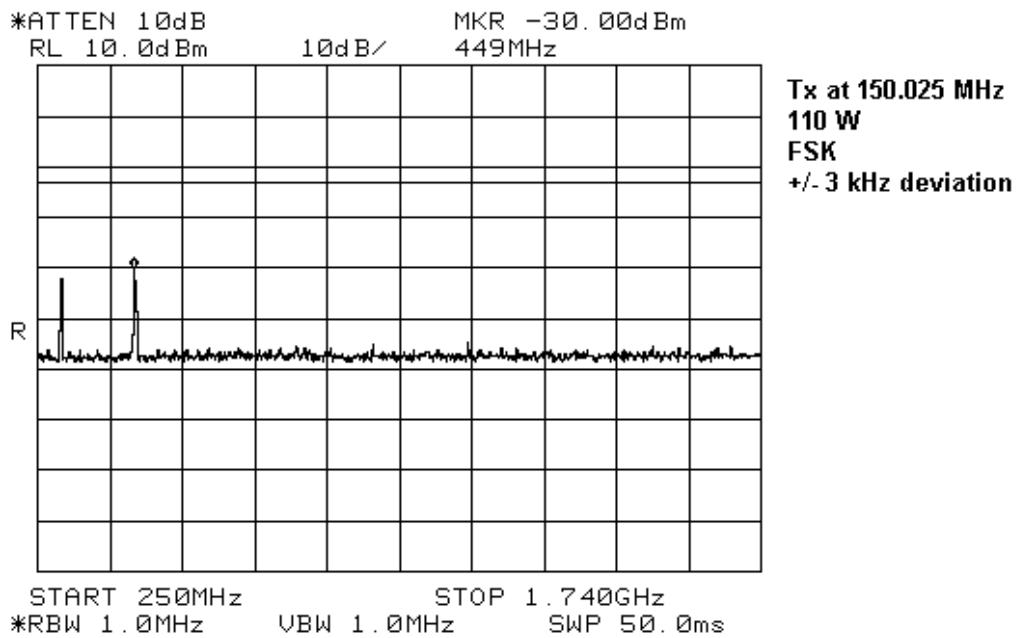


Figure 7-6: Tx at 173.975 MHz, 10 W Power, 30 MHz to 250 MHz

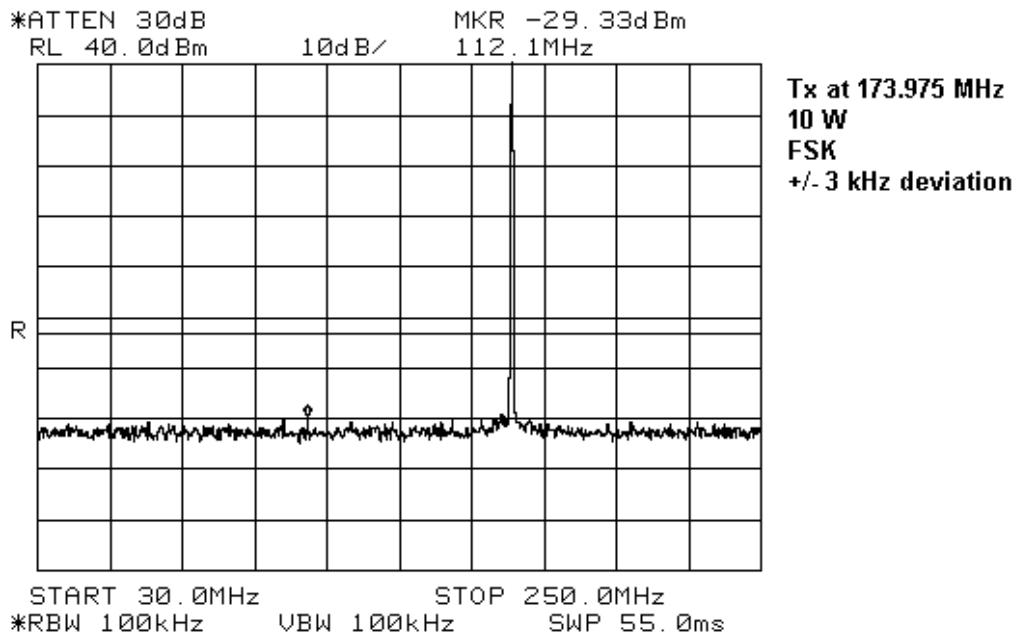


Figure 7-7: Tx at 173.975 MHz, 10 W Power, 250 MHz to 1.74 GHz

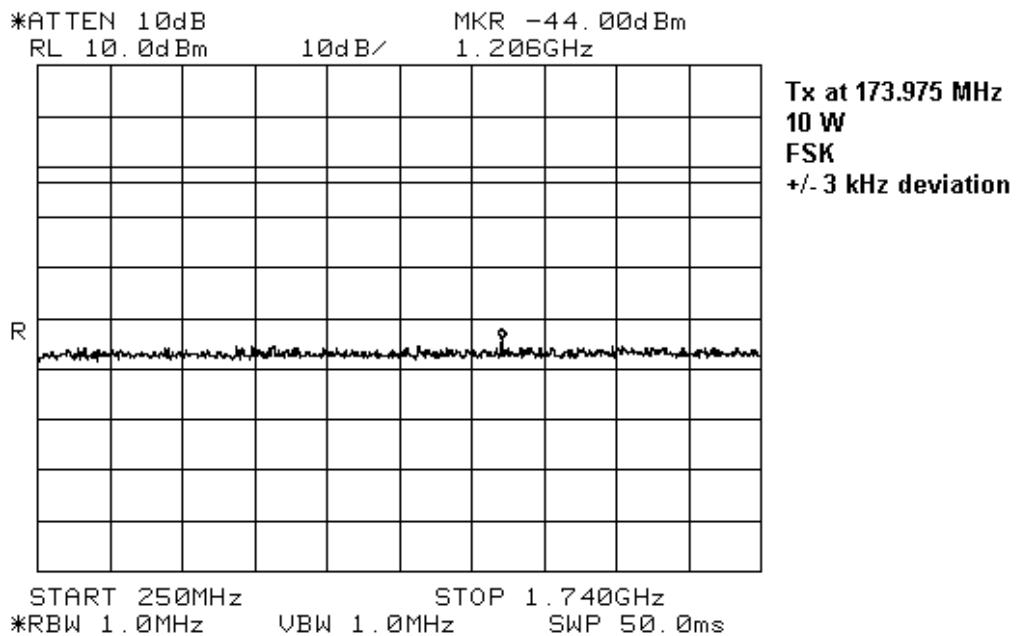
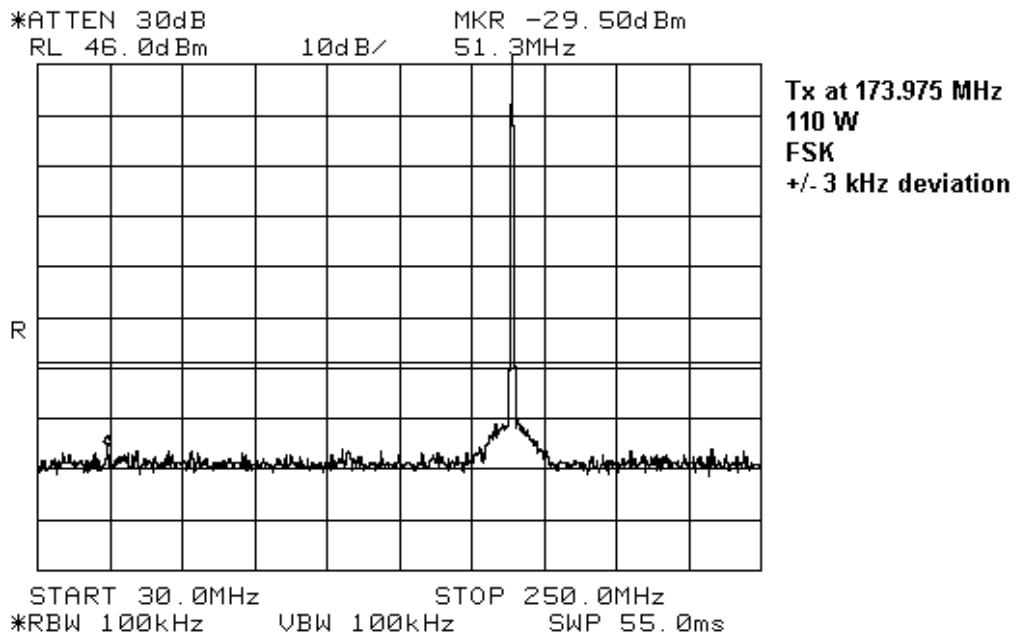
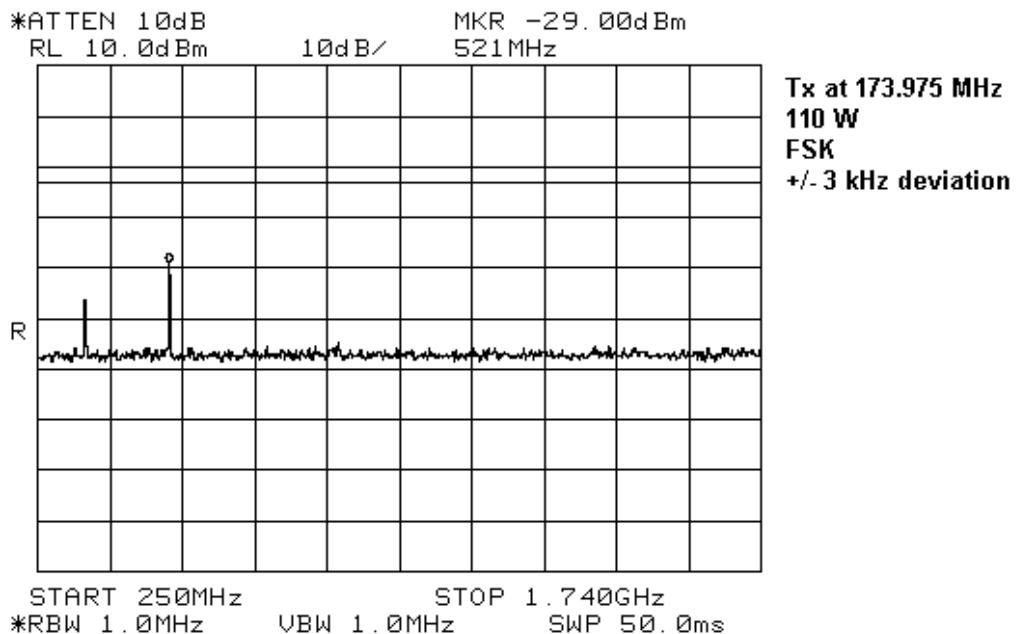
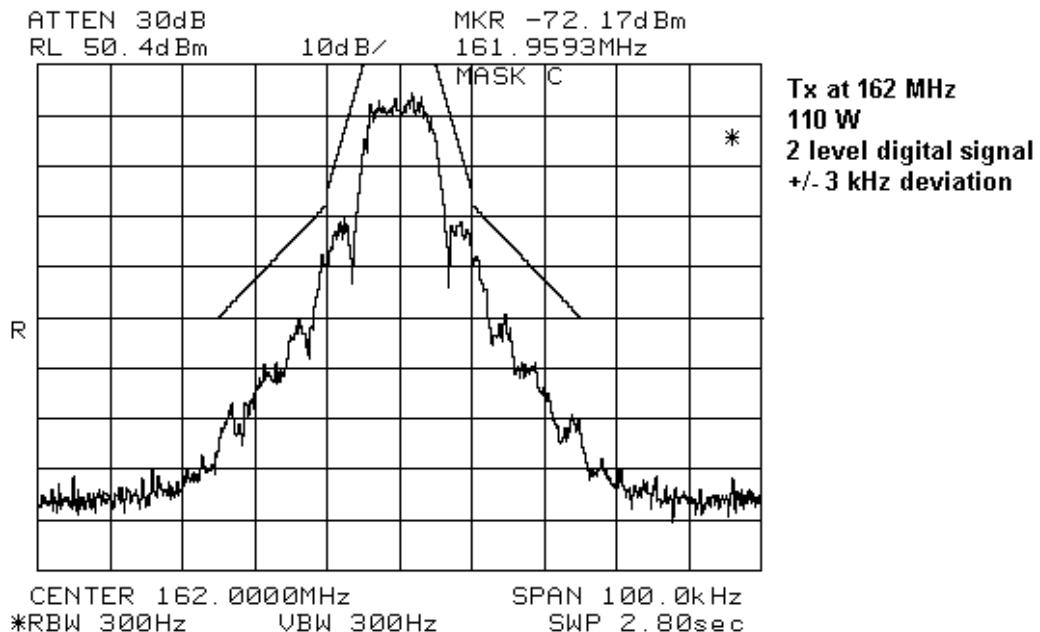


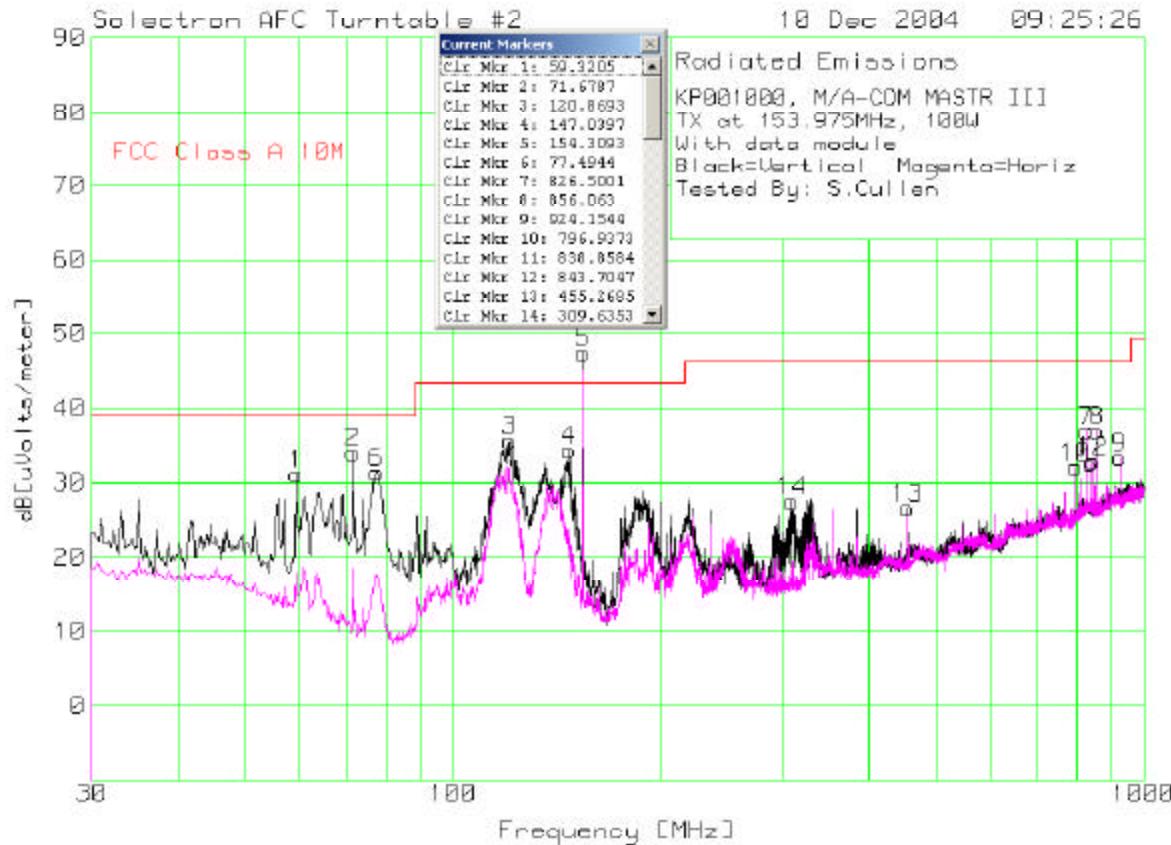
Figure 7-8: Tx at 173.975 MHz, 110 W Power, 30 MHz to 250 MHz


Figure 7-9: Tx at 173.975 MHz, 110 W Power, 250 MHz to 1.74 GHz

7.4 Appendix D: Emission Mask Plots

This appendix presents all emission mask plots for the test cases measured.


Figure 7-10: 2 level 9600 baud signal with +/- 3 kHz deviation (110 W)

7.5 Appendix E: Field Strength of Spurious Emissions Plots

This appendix presents all field strength plots for the test cases measured.

Figure 7-11: Field Strength with 110 W Tx, 30 MHz to 1 GHz, 153.975 MHz

Note: the emissions at 154 MHz is leakage of the transmitted signal.

Figure 7-12: Field Strength with 110 W Tx, 1 GHz to 2 GHz, 153.975 MHz

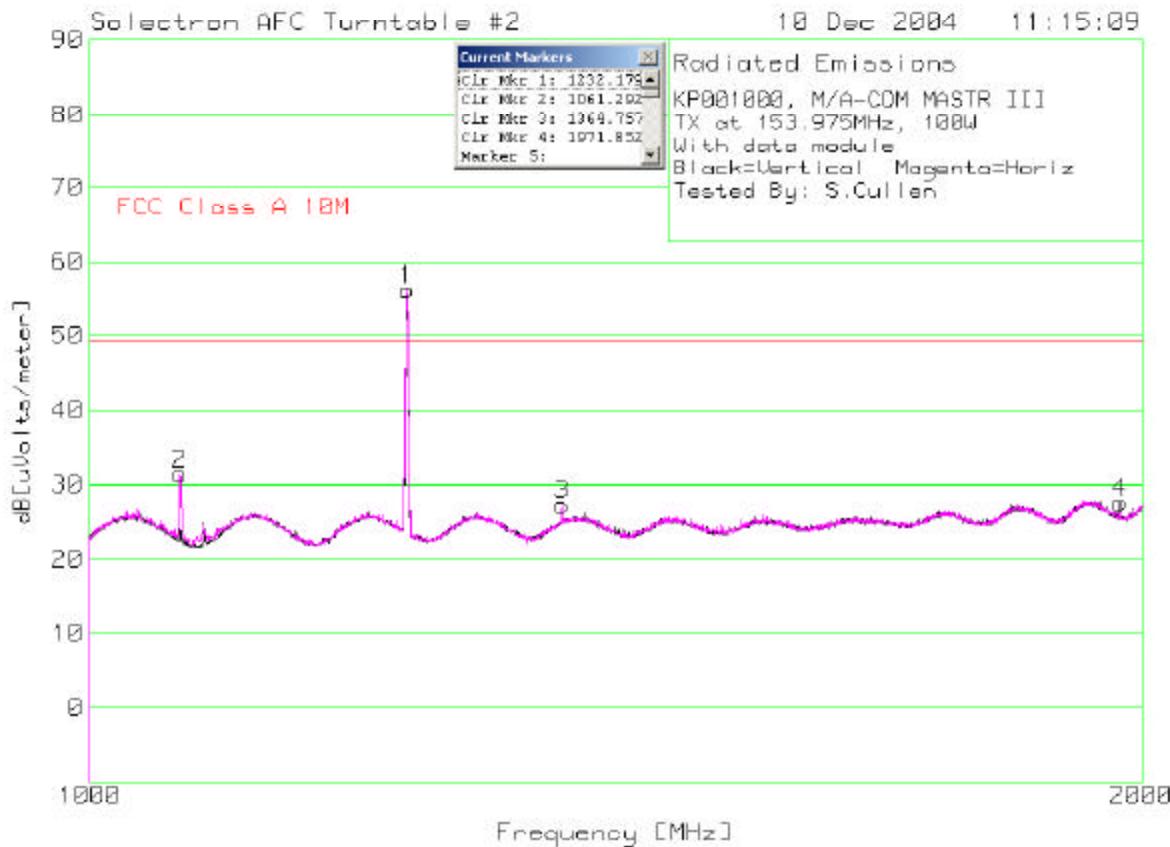
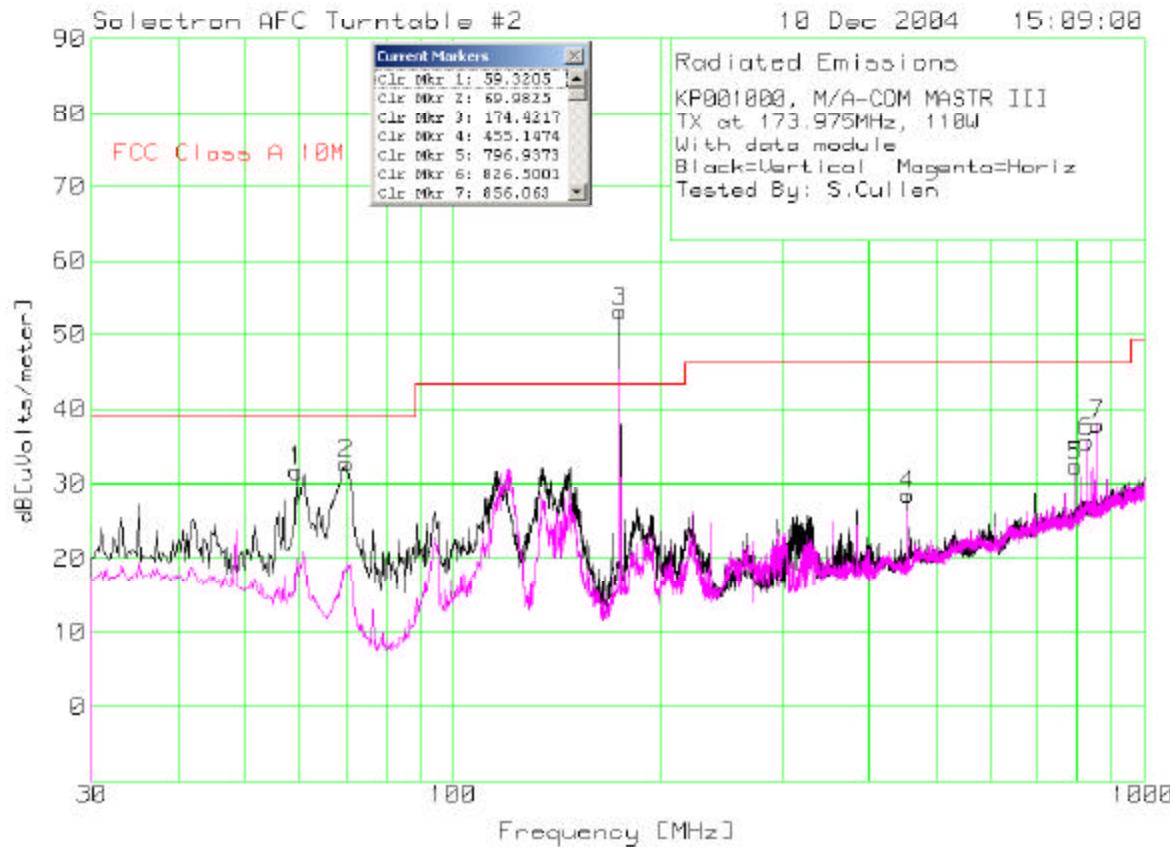



Figure 7-13: Field Strength with 110 W Tx, 30 MHz to 1 GHz, 173.975 MHz

Note: the emissions at 174 MHz is leakage of the transmitted signal.

Figure 7-14: Field Strength with 110 W Tx, 1 GHz to 2 GHz, 173.975 MHz

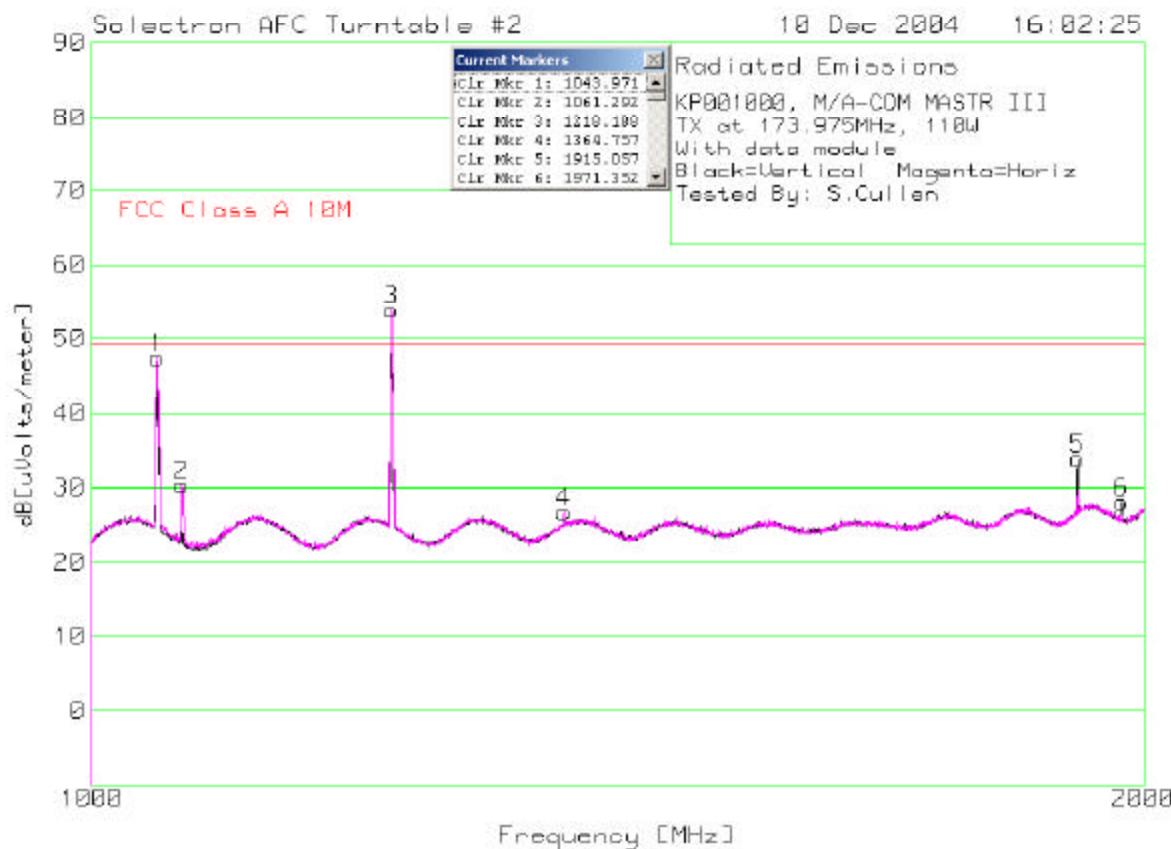
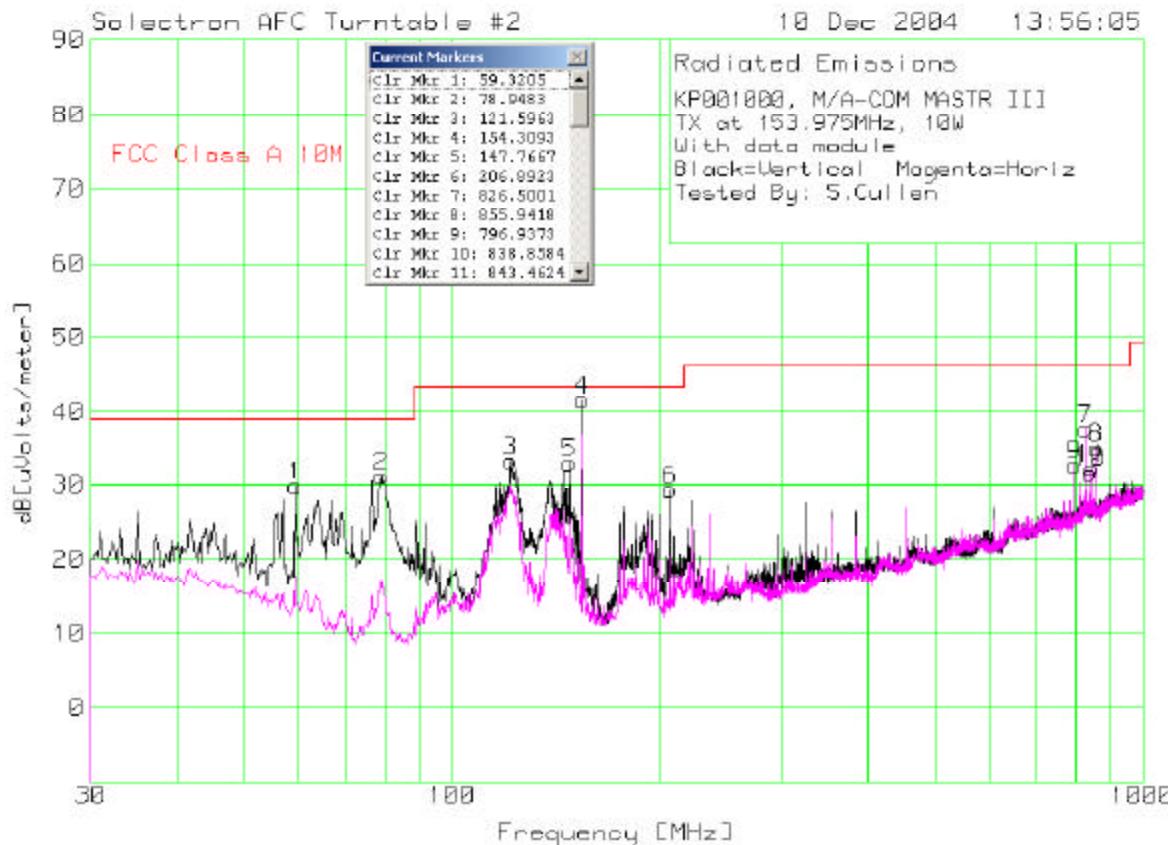



Figure 7-15: Field Strength with 10 W Tx, 30 MHz to 1 GHz, 153.975 MHz

Note: the emissions at 154 MHz is leakage of the transmitted signal

Figure 7-16: Field Strength with 10 W Tx, 1 GHz to 2 GHz, 153.975 MHz

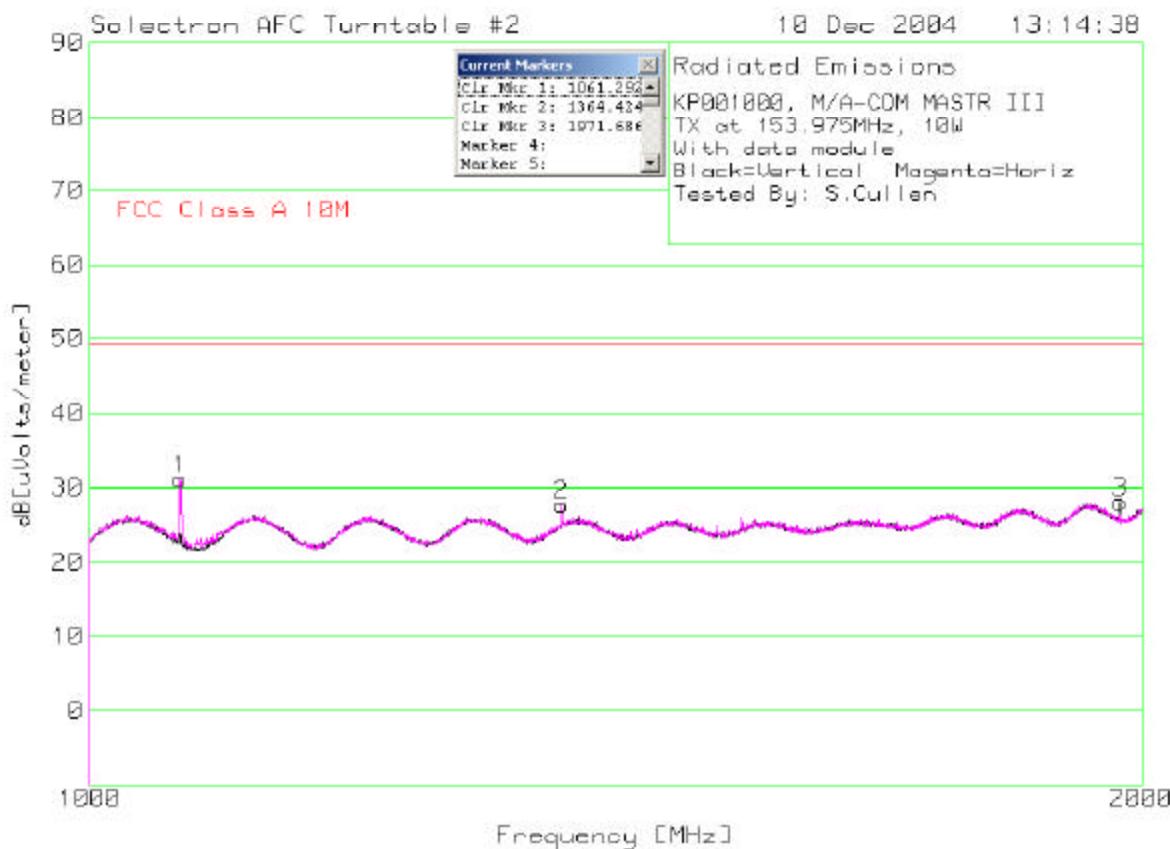
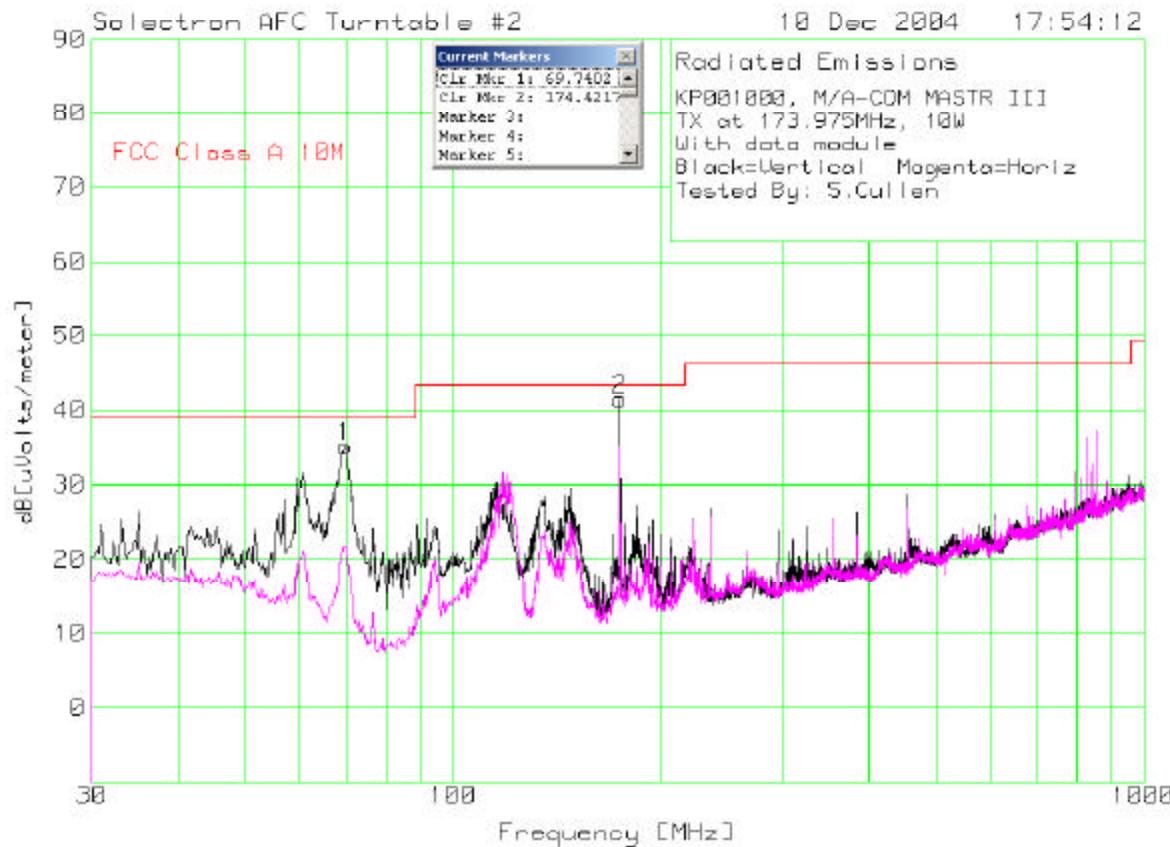
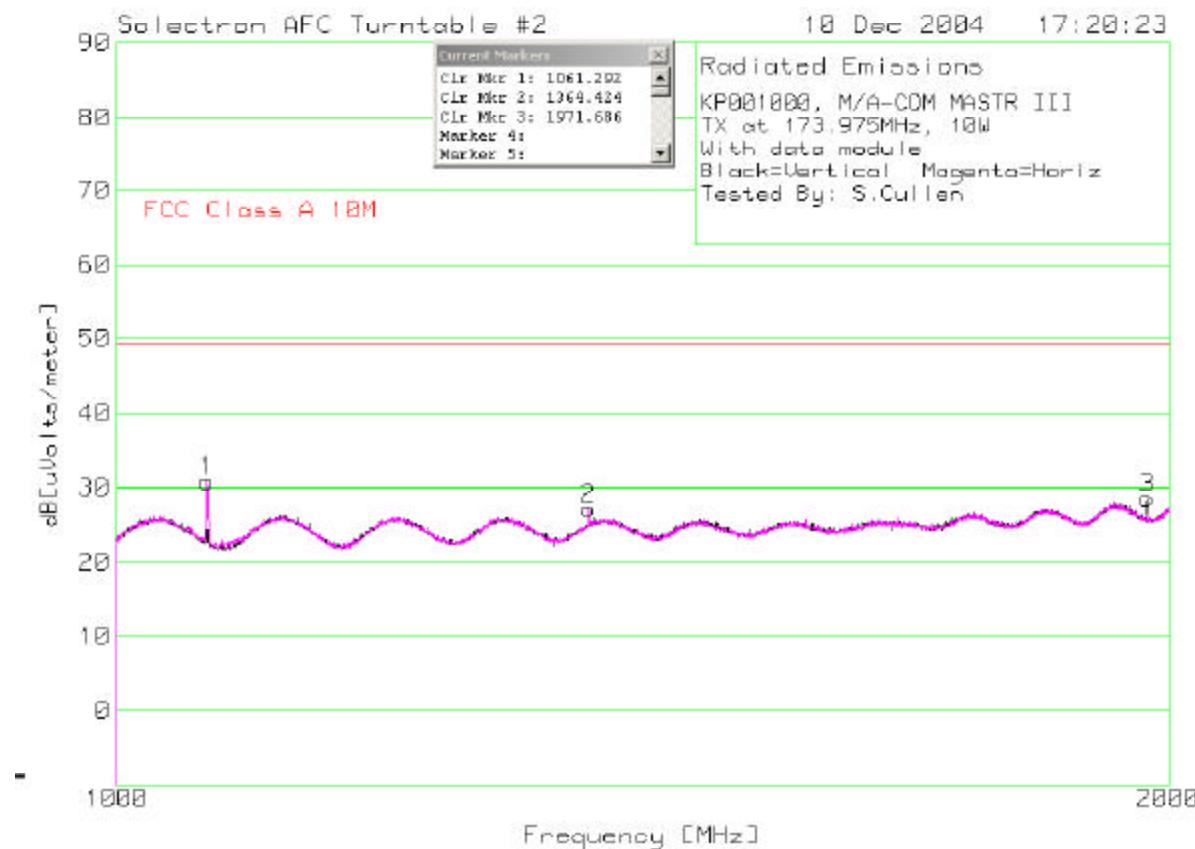




Figure 7-17: Field Strength with 10 W Tx, 30 MHz to 1 GHz, 173.975 MHz

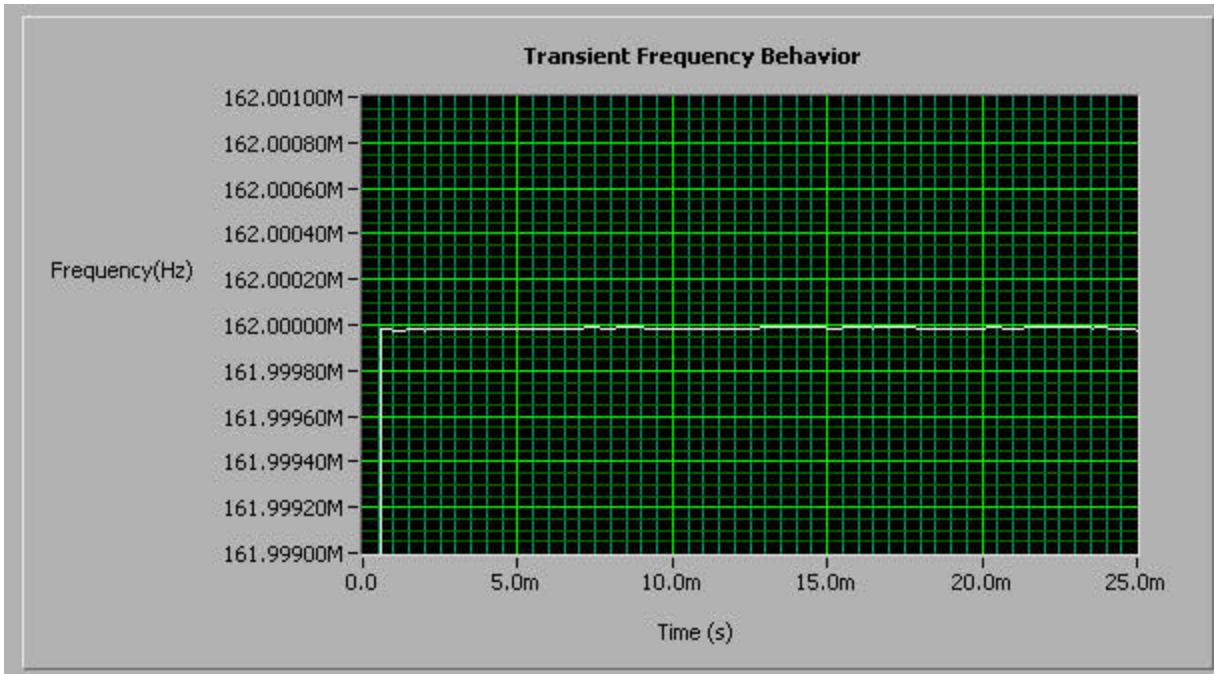
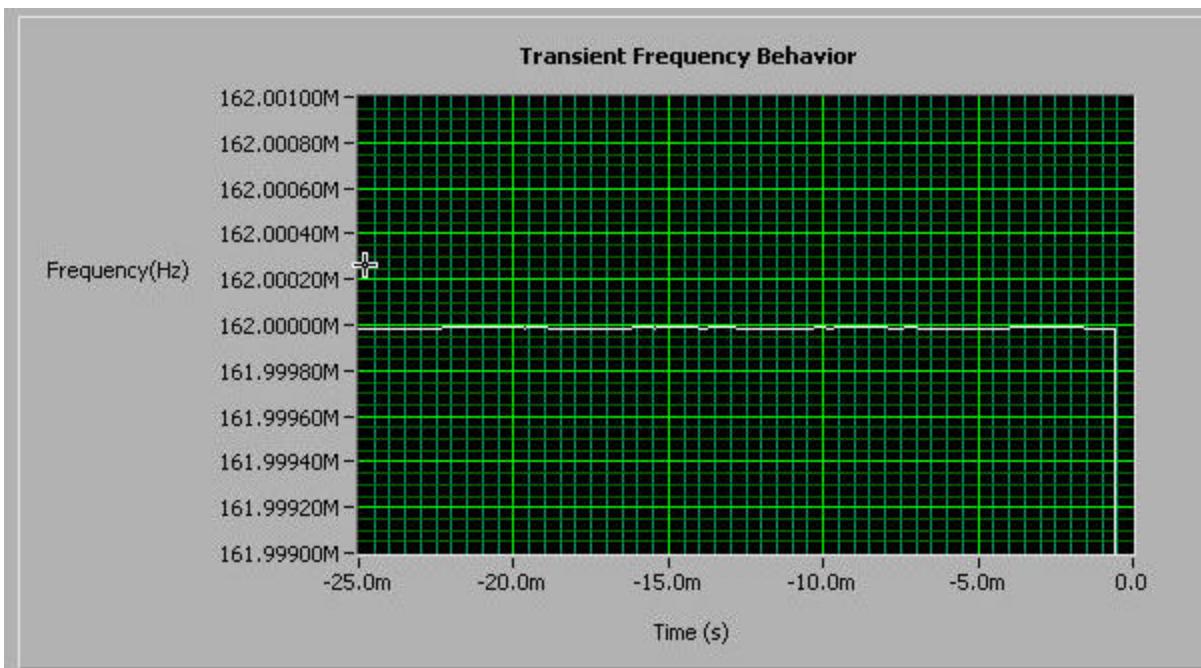
Note: the emissions at 154 MHz is leakage of the transmitted signal

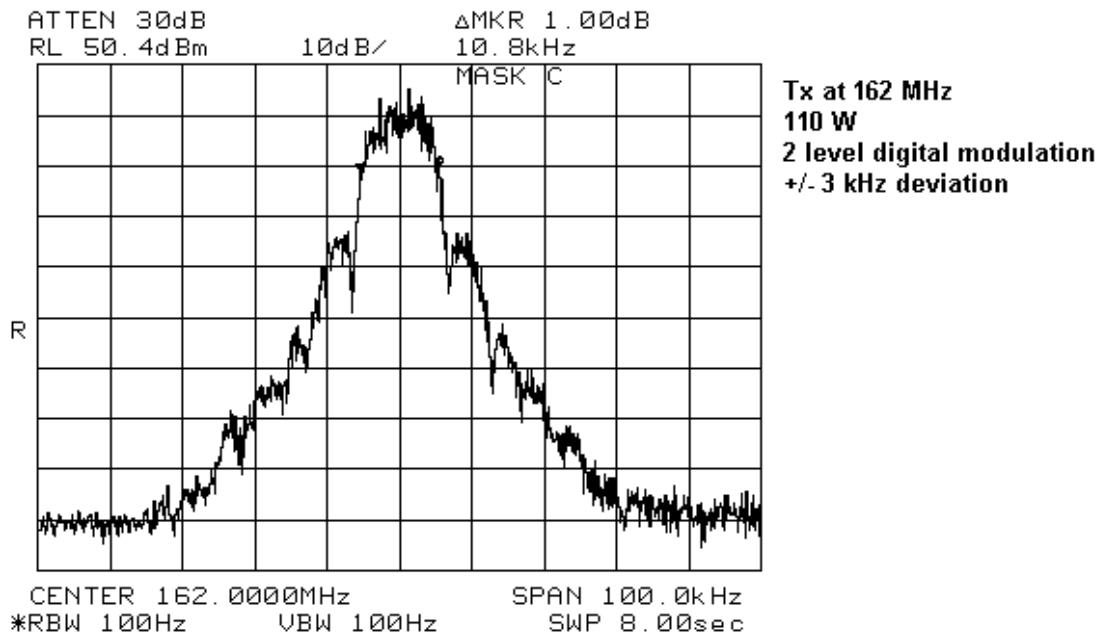
Figure 7-18: Field Strength with 10 W Tx, 1 GHz to 2 GHz, 173.975 MHz

7.6 Appendix F: Transient Frequency Behavior Plots

This appendix presents all the transient frequency behavior plots for the test cases measured.

Figure 7-19 Transient Frequency Behavior, Wideband, Transmitter on


Figure 7-20 Transient Frequency Behavior, Wideband, Transmitter off

7.7 Appendix G: Occupied Bandwidth Plots

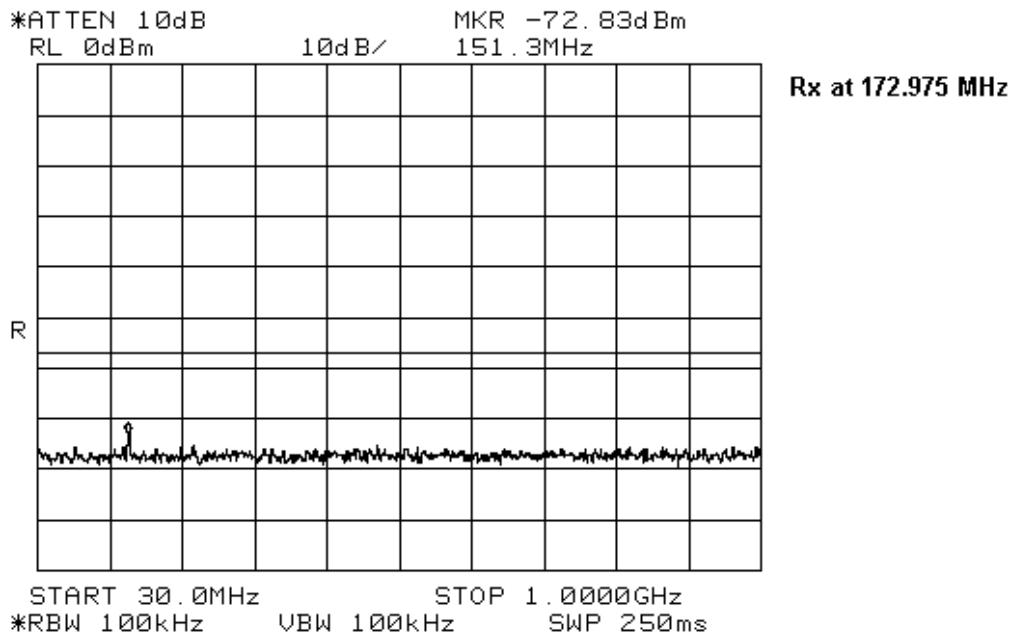

This appendix presents all occupied bandwidth plots for the test cases measured.

Figure 7-21: 2 level 9600 baud signal with 3 kHz deviation

7.8 Appendix H: Conducted Receiver Emissions Plots

Figure 7-22: Rx at 172.975 MHz, 30 MHz to 1GHz

SOLECTRON EMS CANADA INC.

Certification Report for M/A-COM MASTRIII VHF Base Station with Data Module

FCC Part 90, Part 22, and RSS-119

© Copyright Solectron EMS Canada Inc. December 22, 2004

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Solectron EMS Canada Inc. accepts no liability for the content of this document except when it is reproduced in its entirety by a method acceptable to Solectron EMS Canada Inc.

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc.. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.