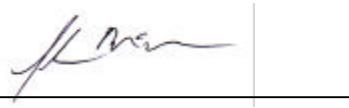


## CERTIFICATE OF COMPLIANCE SAR EVALUATION

**Test Lab:**  
**CELLTECH RESEARCH INC.**  
Testing and Engineering Lab  
1955 Moss Court  
Kelowna, B.C.  
Canada V1Y 9L3  
Phone: 250 - 860-3130  
Fax: 250 - 860-3110  
Toll Free: 1-877-545-6287  
e-mail: info@celltechlabs.com  
web site: www.celltechlabs.com


**Applicant Information:**  
**M/A-COM PRIVATE RADIO SYSTEMS, INC.**  
3315 Old Forest Road  
Lynchburg, VA 24501

|                                |                                                                                                                                                                                                            |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>FCC Rule Part(s):</b>       | <b>2.1093; ET Docket 96-326</b>                                                                                                                                                                            |
| <b>FCC ID:</b>                 | <b>OWDTR-0014-E</b>                                                                                                                                                                                        |
| <b>Model(s):</b>               | <b>Jaguar 725P</b>                                                                                                                                                                                         |
| <b>EUT Type(s):</b>            | <b>Portable FM PTT Radio Transceiver (RU101219V1)</b>                                                                                                                                                      |
| <b>Modulation:</b>             | <b>FM</b>                                                                                                                                                                                                  |
| <b>Tx Frequency Range(s):</b>  | <b>806-821 MHz (Repeater Input mode)<br/>821-824 MHz (NPSPAC, Repeater Input mode)<br/>851-866 MHz (Talk-Around mode)<br/>866-869 MHz (NPSPAC, Talk-Around mode)</b>                                       |
| <b>Conducted Output Power:</b> | <b>3.2 Watts</b>                                                                                                                                                                                           |
| <b>Antenna Type(s):</b>        | <b>1: Elevated Feed Gain Antenna (KRE1011216/01)<br/>2: Flexible Gain Antenna (KRE1011506/01)<br/>3: Whip Antenna (KRE1011223/01)</b>                                                                      |
| <b>Battery Type(s):</b>        | <b>1. High Capacity NICAD Battery (BKB191210/3)<br/>2. Extra High Capacity NiMH Battery (BKB191210/4)</b>                                                                                                  |
| <b>Accessories Tested:</b>     | <b>Speaker Microphone Antenna Version Plus (OT-V2-10120)<br/>Metal Belt-Clip (KRY1011647/1)<br/>Leather Belt-Loop (19B226627G2) &amp; Swivel Socket (19B233243G3)<br/>T-Strap Belt-Loop (KRY1011656/1)</b> |

Celltech Research Inc. declares under its sole responsibility that this device was found to be in compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in OET Bulletin 65, Supplement C (Edition 01-01), and was tested in accordance with the appropriate measurement standards, guidelines, and recommended practices specified in American National Standards Institute C95.1-1992.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

*This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Research Inc.  
The results and statements contained in this report pertain only to the device(s) evaluated.*



**Shawn McMillen  
General Manager  
Celltech Research Inc.**



## **TABLE OF CONTENTS**

|                                                     |                                          |              |
|-----------------------------------------------------|------------------------------------------|--------------|
| <b>1.0</b>                                          | <b>INTRODUCTION.....</b>                 | <b>1</b>     |
| <b>2.0</b>                                          | <b>DESCRIPTION OF EUT.....</b>           | <b>1</b>     |
| <b>3.0</b>                                          | <b>SAR MEASUREMENT SYSTEM .....</b>      | <b>2</b>     |
| <b>4.0</b>                                          | <b>MEASUREMENT SUMMARY.....</b>          | <b>3-20</b>  |
| <b>5.0</b>                                          | <b>DETAILS OF SAR EVALUATION.....</b>    | <b>21</b>    |
| <b>6.0</b>                                          | <b>EVALUATION PROCEDURES.....</b>        | <b>22</b>    |
| <b>7.0</b>                                          | <b>SAR LIMITS.....</b>                   | <b>22</b>    |
| <b>8.0</b>                                          | <b>SYSTEM VALIDATION.....</b>            | <b>23</b>    |
| <b>9.0</b>                                          | <b>TISSUE PARAMETERS.....</b>            | <b>23-24</b> |
| <b>10.0</b>                                         | <b>SIMULATED EQUIVALENT TISSUES.....</b> | <b>24</b>    |
| <b>11.0</b>                                         | <b>SYSTEM SPECIFICATIONS.....</b>        | <b>25</b>    |
| <b>12.0</b>                                         | <b>PROBE SPECIFICATION.....</b>          | <b>26</b>    |
| <b>13.0</b>                                         | <b>SAM PHANTOM.....</b>                  | <b>26</b>    |
| <b>14.0</b>                                         | <b>PLANAR PHANTOM.....</b>               | <b>26</b>    |
| <b>15.0</b>                                         | <b>DEVICE HOLDER.....</b>                | <b>26</b>    |
| <b>16.0</b>                                         | <b>TEST EQUIPMENT LIST.....</b>          | <b>27</b>    |
| <b>17.0</b>                                         | <b>MEASUREMENT UNCERTAINTIES.....</b>    | <b>28</b>    |
| <b>18.0</b>                                         | <b>REFERENCES.....</b>                   | <b>29</b>    |
| <b>APPENDIX A - SAR MEASUREMENT DATA.....</b>       |                                          | <b>30</b>    |
| <b>APPENDIX B - DIPOLE VALIDATION.....</b>          |                                          | <b>31</b>    |
| <b>APPENDIX C - PROBE CALIBRATION.....</b>          |                                          | <b>32</b>    |
| <b>APPENDIX D - SAR SENSITIVITIES.....</b>          |                                          | <b>33</b>    |
| <b>APPENDIX E - SAR TEST SETUP PHOTOGRAPHS.....</b> |                                          | <b>34</b>    |
| <b>APPENDIX F - EUT PHOTOGRAPHS.....</b>            |                                          | <b>35</b>    |

## 1.0 INTRODUCTION

This measurement report shows that the M/A-COM PRS INC. Model: Jaguar 725P Portable FM PTT Radio Transceiver FCC ID: OWDTR-0014-E with three alternate antennas complies with the regulations and procedures specified in FCC Rule Part 2.1093, ET Docket 96-326 for mobile and portable devices (controlled exposure). The test procedures, as described in American National Standards Institute C95.1-1992 (See Reference [1]), and FCC OET Bulletin 65, Supplement C (Edition 01-01) (See Reference [2]) were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

## 2.0 DESCRIPTION of Equipment Under Test (EUT)

|                           |                                      |                                                                                                                                                                                                             |                                                                                                                                                            |
|---------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Rule Part(s)</b>       | FCC 2.1093;<br>ET Docket 96-326      | <b>Modulation</b>                                                                                                                                                                                           | FM                                                                                                                                                         |
| <b>EUT Type</b>           | Portable FM PTT<br>Radio Transceiver | <b>Tx Frequency<br/>Range</b>                                                                                                                                                                               | 806-821 MHz (Repeater Input mode)<br>821-824 MHz (NPSPAC, Repeater Input mode)<br>851-866 MHz (Talk-Around mode)<br>866-869 MHz (NPSPAC, Talk-Around mode) |
| <b>FCC ID</b>             | OWDTR-0014-E                         | <b>RF Conducted<br/>Output Power</b>                                                                                                                                                                        | 3.2 Watts                                                                                                                                                  |
| <b>Model(s)</b>           | Jaguar 725P                          | <b>Antenna Type(s)</b>                                                                                                                                                                                      | 1. Elevated Feed Gain (KRE1011216/01)<br>2. Flexible Gain (KRE1011506/01)<br>3. Whip (KRE1011223/01)                                                       |
| <b>Serial No.</b>         | Pre-production                       | <b>Battery Type(s)</b>                                                                                                                                                                                      | 1. 7.5 VDC Nickel Cadmium (BKB191210/3)<br>2. 7.5 VDC Nickel Metal Hydride (BKB191210/4)                                                                   |
| <b>Accessories Tested</b> |                                      | 1. Speaker Microphone Antenna Version Plus (OT-V2-10120)<br>2. Metal Belt-Clip (KRY1011647/1)<br>3. Leather Belt-Loop (19B226627G2)<br>& Swivel Socket (19B233243G3)<br>4. T-Strap Belt-Loop (KRY1011656/1) |                                                                                                                                                            |

### 3.0 SAR MEASUREMENT SYSTEM

Celltech Research SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.



DASY3 SAR Measurement System with small planar phantom

#### 4.0 MEASUREMENT SUMMARY

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in Appendix A.

##### Face-Held SAR Measurements – EUT with Elevated Feed Gain Antenna (KRE1011216/01)

| Freq.<br>(MHz)                                                                  | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type                                                                                                                             | Antenna<br>P/N | Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|---------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|-----------------------|----------------------|
|                                                                                 |       |      |                                 |                                |                                                                                                                                             |                |                                | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                         | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                        | KRE1011216/01  | 2.5                            | 3.37                  | 1.69                 |
| 815.000                                                                         | Mid   | CW   | 3.2                             | 3.1                            | NiCd                                                                                                                                        | KRE1011216/01  | 2.5                            | 3.37                  | 1.69                 |
| 823.975                                                                         | High  | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                        | KRE1011216/01  | 2.5                            | 3.59                  | 1.80                 |
| 850.970                                                                         | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                        | KRE1011216/01  | 2.5                            | 2.52                  | 1.26                 |
| 860.520                                                                         | Mid   | CW   | 3.2                             | 3.1                            | NiCd                                                                                                                                        | KRE1011216/01  | 2.5                            | 1.99                  | 1.00                 |
| 868.970                                                                         | High  | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                        | KRE1011216/01  | 2.5                            | 1.84                  | 0.92                 |
| 823.975                                                                         | High  | CW   | 3.2                             | 3.2                            | NiMH                                                                                                                                        | KRE1011216/01  | 2.5                            | 3.48                  | 1.74                 |
| <b>Mixture Type: Brain<br/>Dielectric Constant: 41.2<br/>Conductivity: 0.90</b> |       |      |                                 |                                | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br/>Spatial Peak Controlled Exposure / Occupational<br/>BRAIN: 8.0 W/kg (averaged over 1 gram)</b> |                |                                |                       |                      |

##### Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest face-held SAR value found was 3.59 w/kg (100% duty cycle).
3. The EUT was tested for face-held SAR with a 2.5 cm separation distance between the front of the EUT and the outer surface of the planar phantom.
4. Test Date: October 15, 2001
5. Ambient TEMPERATURE: 23.0 °C  
Relative HUMIDITY: 57.4 %  
Atmospheric PRESSURE: 100.3 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Face-Held SAR Measurements – EUT with Flexible Gain Antenna (KRE1011506/01)**

| Freq.<br>(MHz)                                                                              | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type                                                                                                                                         | Antenna<br>P/N | Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|---------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|-----------------------|----------------------|
|                                                                                             |       |      |                                 |                                |                                                                                                                                                         |                |                                | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                     | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                    | KRE1011506/01  | 2.5                            | 2.45                  | 1.23                 |
| 815.000                                                                                     | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                    | KRE1011506/01  | 2.5                            | 2.58                  | 1.29                 |
| 823.975                                                                                     | High  | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                    | KRE1011506/01  | 2.5                            | 2.53                  | 1.23                 |
| 850.970                                                                                     | Low   | CW   | 3.2                             | 3.1                            | NiCd                                                                                                                                                    | KRE1011506/01  | 2.5                            | 2.21                  | 1.11                 |
| 860.520                                                                                     | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                    | KRE1011506/01  | 2.5                            | 2.06                  | 1.03                 |
| 868.970                                                                                     | High  | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                    | KRE1011506/01  | 2.5                            | 1.88                  | 0.94                 |
| 815.000                                                                                     | Mid   | CW   | 3.2                             | 3.1                            | NiMH                                                                                                                                                    | KRE1011506/01  | 2.5                            | 2.41                  | 1.21                 |
| <b>Mixture Type: Brain</b><br><b>Dielectric Constant: 41.2</b><br><b>Conductivity: 0.90</b> |       |      |                                 |                                | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BRAIN: 8.0 W/kg (averaged over 1 gram)</b> |                |                                |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest face-held SAR value found was 2.58 w/kg (100% duty cycle).
3. The EUT was tested for face-held SAR with a 2.5 cm separation distance between the front of the EUT and the outer surface of the planar phantom.
4. Test Date: October 15, 2001
5. Ambient TEMPERATURE: 23.0 °C  
Relative HUMIDITY: 57.4 %  
Atmospheric PRESSURE: 100.3 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Face-Held SAR Measurements – EUT with Whip Antenna (KRE1011223/01)**

| Freq.<br>(MHz)                                                                              | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                                          | Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|---------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------|
|                                                                                             |       |      |                                 |                                |                 |                                                                                                                                                         |                                | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                     | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.93                  | 1.47                 |
| 815.000                                                                                     | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 3.02                  | 1.51                 |
| 823.975                                                                                     | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.37                  | 1.19                 |
| 850.970                                                                                     | Low   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.06                  | 1.03                 |
| 860.520                                                                                     | Mid   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 1.88                  | 0.94                 |
| 868.970                                                                                     | High  | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 1.63                  | 0.82                 |
| 815.000                                                                                     | Mid   | CW   | 3.2                             | 3.2                            | NiMH            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.95                  | 1.48                 |
| <b>Mixture Type: Brain</b><br><b>Dielectric Constant: 41.2</b><br><b>Conductivity: 0.90</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BRAIN: 8.0 W/kg (averaged over 1 gram)</b> |                                |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest face-held SAR value found was 3.02 w/kg (100% duty cycle).
3. The EUT was tested for face-held SAR with a 2.5 cm separation distance between the front of the EUT and the outer surface of the planar phantom.
4. Test Date: October 15, 2001
5. Ambient TEMPERATURE: 23.0 °C  
Relative HUMIDITY: 57.4 %  
Atmospheric PRESSURE: 100.3 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Face-Held SAR Measurements – Speaker Microphone Antenna Version Plus (OT-V2-10120)**

**with Elevated Feed Gain Antenna (KRE1011216/01)**

| Freq.<br>(MHz)                                                                  | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                              | Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|---------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------|
|                                                                                 |       |      |                                 |                                |                 |                                                                                                                                             |                                | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                         | Low   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011216/01                                                                                                                               | 2.5                            | 4.25                  | 2.13                 |
| 815.000                                                                         | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                               | 2.5                            | 5.82                  | 2.91                 |
| 823.975                                                                         | High  | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011216/01                                                                                                                               | 2.5                            | 5.38                  | 2.69                 |
| 850.970                                                                         | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                               | 2.5                            | 5.77                  | 2.89                 |
| 860.520                                                                         | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                               | 2.5                            | 4.58                  | 2.29                 |
| 868.970                                                                         | High  | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011216/01                                                                                                                               | 2.5                            | 4.04                  | 2.02                 |
| <b>Mixture Type: Brain<br/>Dielectric Constant: 41.1<br/>Conductivity: 0.90</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br/>Spatial Peak Controlled Exposure / Occupational<br/>BRAIN: 8.0 W/kg (averaged over 1 gram)</b> |                                |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest face-held SAR value found was 5.82 w/kg (100% duty cycle).
3. The EUT was tested for face-held SAR with a 2.5 cm separation distance between the front of the EUT and the outer surface of the planar phantom.
4. Test Date: October 16, 2001
5. Ambient TEMPERATURE: 23.2 °C  
Relative HUMIDITY: 57.1 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Face-Held SAR Measurements – Speaker Microphone Antenna Version Plus (OT-V2-10120)**

**with Flexible Gain Antenna (KRE1011506/01)**

| Freq.<br>(MHz)                                                         | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                     | Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------|
|                                                                        |       |      |                                 |                                |                 |                                                                                                                                    |                                | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                      | 2.5                            | 3.06                  | 1.53                 |
| 815.000                                                                | Mid   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011506/01                                                                                                                      | 2.5                            | 3.91                  | 1.96                 |
| 823.975                                                                | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                      | 2.5                            | 3.95                  | 1.98                 |
| 850.970                                                                | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                      | 2.5                            | 4.42                  | 2.21                 |
| 860.520                                                                | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                      | 2.5                            | 4.02                  | 2.01                 |
| 868.970                                                                | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                      | 2.5                            | 3.87                  | 1.94                 |
| Mixture Type: Brain<br>Dielectric Constant: 41.1<br>Conductivity: 0.90 |       |      |                                 |                                |                 | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak Controlled Exposure / Occupational<br>BRAIN: 8.0 W/kg (averaged over 1 gram) |                                |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest face-held SAR value found was 4.42 w/kg (100% duty cycle).
3. The EUT was tested for face-held SAR with a 2.5 cm separation distance between the front of the EUT and the outer surface of the planar phantom.
4. Test Date: October 16, 2001
5. Ambient TEMPERATURE: 23.2 °C  
Relative HUMIDITY: 57.1 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Face-Held SAR Measurements – Speaker Microphone Antenna Version Plus (OT-V2-10120)**

**with Whip Antenna (KRE1011223/01)**

| Freq.<br>(MHz)                                                                              | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                                          | Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|---------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------|
|                                                                                             |       |      |                                 |                                |                 |                                                                                                                                                         |                                | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                     | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.26                  | 1.13                 |
| 815.000                                                                                     | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 3.36                  | 1.68                 |
| 823.975                                                                                     | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 1.93                  | 0.97                 |
| 850.970                                                                                     | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.12                  | 1.06                 |
| 860.520                                                                                     | Mid   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.36                  | 1.18                 |
| 868.970                                                                                     | High  | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                                           | 2.5                            | 2.48                  | 1.24                 |
| <b>Mixture Type: Brain</b><br><b>Dielectric Constant: 41.1</b><br><b>Conductivity: 0.90</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BRAIN: 8.0 W/kg (averaged over 1 gram)</b> |                                |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest face-held SAR value found was 3.36 w/kg (100% duty cycle).
3. The EUT was tested for face-held SAR with a 2.5 cm separation distance between the front of the EUT and the outer surface of the planar phantom.
4. Test Date: October 16, 2001
5. Ambient TEMPERATURE: 23.2 °C  
Relative HUMIDITY: 57.1 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – Speaker Microphone Antenna Version Plus (OT-V2-10120)**

**with Elevated Feed Gain Antenna (KRE1011216/01)**

| Freq.<br>(MHz)                                                                             | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                                         | Metal Clip<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|----------------------|
|                                                                                            |       |      |                                 |                                |                 |                                                                                                                                                        |                                              | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 1.4                                          | 3.50                  | 1.75                 |
| 815.000                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 1.4                                          | 4.31                  | 2.16                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011216/01                                                                                                                                          | 1.4                                          | 5.51                  | 2.76                 |
| 850.970                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 1.4                                          | 5.05                  | 2.53                 |
| 860.520                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 1.4                                          | 3.98                  | 1.99                 |
| 868.970                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 1.4                                          | 3.45                  | 1.73                 |
| <b>Mixture Type: Body</b><br><b>Dielectric Constant: 55.0</b><br><b>Conductivity: 0.96</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                                              |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest body-worn SAR value found was 5.51 w/kg (100% duty cycle).
3. The EUT was tested for body-worn SAR with the attached metal clip providing a 1.4 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 16, 2001
5. Ambient TEMPERATURE: 23.2 °C  
Relative HUMIDITY: 57.1 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – Speaker Microphone Antenna Version Plus (OT-V2-10120)**

**with Flexible Gain Antenna (KRE1011506/01)**

| Freq.<br>(MHz)                                                                             | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                                         | Metal Clip<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|----------------------|
|                                                                                            |       |      |                                 |                                |                 |                                                                                                                                                        |                                              | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                                          | 1.4                                          | 2.98                  | 1.49                 |
| 815.000                                                                                    | Mid   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011506/01                                                                                                                                          | 1.4                                          | 3.57                  | 1.79                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                                          | 1.4                                          | 4.26                  | 2.13                 |
| 850.970                                                                                    | Low   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011506/01                                                                                                                                          | 1.4                                          | 3.80                  | 1.90                 |
| 860.520                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                                          | 1.4                                          | 3.57                  | 1.79                 |
| 868.970                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                                          | 1.4                                          | 3.53                  | 1.78                 |
| <b>Mixture Type: Body</b><br><b>Dielectric Constant: 55.0</b><br><b>Conductivity: 0.96</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                                              |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest body-worn SAR value found was 4.26 w/kg (100% duty cycle).
3. The EUT was tested for body-worn SAR with the attached metal clip providing a 1.4 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 16, 2001
5. Ambient TEMPERATURE: 23.2 °C  
Relative HUMIDITY: 57.1 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – Speaker Microphone Antenna Version Plus (OT-V2-10120)**

**with Whip Antenna (KRE1011223/01)**

| Freq.<br>(MHz)                                                                             | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                                         | Metal Clip<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|----------------------|
|                                                                                            |       |      |                                 |                                |                 |                                                                                                                                                        |                                              | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                          | 1.4                                          | 4.88                  | 2.44                 |
| 815.000                                                                                    | Mid   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                                          | 1.4                                          | 3.11                  | 1.56                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                          | 1.4                                          | 2.78                  | 1.39                 |
| 850.970                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                          | 1.4                                          | 2.62                  | 1.31                 |
| 860.520                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE101123/01                                                                                                                                           | 1.4                                          | 3.03                  | 1.52                 |
| 868.970                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                                          | 1.4                                          | 3.29                  | 1.65                 |
| <b>Mixture Type: Body</b><br><b>Dielectric Constant: 55.0</b><br><b>Conductivity: 0.96</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                                              |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest body-worn SAR value found was 4.88 w/kg (100% duty cycle).
3. The EUT was tested for body-worn SAR with the attached metal belt-clip providing a 1.4 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 16, 2001
5. Ambient TEMPERATURE: 23.2 °C  
Relative HUMIDITY: 57.1 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Elevated Feed Gain Antenna (KRE1011216/01)**

**With Metal Belt-Clip (KRY1011647/1)**

| Freq.<br>(MHz)                                                                             | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type                                                                                                                                        | Antenna<br>P/N | Belt-Clip<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------|-----------------------|----------------------|
|                                                                                            |       |      |                                 |                                |                                                                                                                                                        |                |                                             | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011216/01  | 1.1                                         | 9.39                  | 4.70                 |
| 815.000                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011216/01  | 1.1                                         | 12.8                  | 6.40                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011216/01  | 1.1                                         | 13.1                  | 6.55                 |
| 850.970                                                                                    | Low   | CW   | 3.2                             | 3.1                            | NiCd                                                                                                                                                   | KRE1011216/01  | 1.1                                         | 10.5                  | 5.25                 |
| 860.520                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011216/01  | 1.1                                         | 9.23                  | 4.62                 |
| 868.970                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011216/01  | 1.1                                         | 7.47                  | 3.74                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiMH                                                                                                                                                   | KRE1011216/01  | 1.1                                         | 12.1                  | 6.05                 |
| <b>Mixture Type: Body</b><br><b>Dielectric Constant: 55.0</b><br><b>Conductivity: 0.96</b> |       |      |                                 |                                | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                |                                             |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure, 50% duty cycle).
2. The highest body-worn SAR value found was 6.55 w/kg (50% duty cycle).
3. The EUT was tested for body-worn SAR with the attached metal belt-clip providing a 1.1 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 05, 2001
5. Ambient TEMPERATURE: 23.5°C  
Relative HUMIDITY: 57.5 %  
Atmospheric PRESSURE: 100.6 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Flexible Gain Antenna (KRE1011506/01)**

**With Metal Belt-Clip (KRY1011647/1)**

| Freq.<br>(MHz)                                                                 | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type                                                                                                                            | Antenna<br>P/N | Belt-Clip<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------|-----------------------|----------------------|
|                                                                                |       |      |                                 |                                |                                                                                                                                            |                |                                             | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                        | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                       | KRE1011506/01  | 1.1                                         | 7.53                  | 3.77                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                       | KRE1011506/01  | 1.1                                         | 6.65                  | 3.33                 |
| 823.975                                                                        | High  | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                       | KRE1011506/01  | 1.1                                         | 8.79                  | 4.40                 |
| 850.970                                                                        | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                       | KRE1011506/01  | 1.1                                         | 7.69                  | 3.85                 |
| 860.520                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                       | KRE1011506/01  | 1.1                                         | 8.53                  | 4.27                 |
| 868.970                                                                        | High  | CW   | 3.2                             | 3.1                            | NiCd                                                                                                                                       | KRE1011506/01  | 1.1                                         | 7.76                  | 3.88                 |
| 823.975                                                                        | High  | CW   | 3.2                             | 3.2                            | NiMH                                                                                                                                       | KRE1011506/01  | 1.1                                         | 8.65                  | 4.33                 |
| <b>Mixture Type: Body<br/>Dielectric Constant: 55.0<br/>Conductivity: 0.96</b> |       |      |                                 |                                | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br/>Spatial Peak Controlled Exposure / Occupational<br/>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                |                                             |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure, 50% duty cycle).
2. The highest body-worn SAR value found was 4.40 w/kg (50% duty cycle).
3. The EUT was tested for body-worn SAR with the attached metal belt-clip providing a 1.1 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 05, 2001
5. Ambient TEMPERATURE: 23.5 °C  
Relative HUMIDITY: 57.5 %  
Atmospheric PRESSURE: 100.6 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Whip Antenna (KRE1011223/01)**

**With Metal Belt-Clip (KRY1011647/1)**

| Freq.<br>(MHz)                                                        | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W)                                                                                                    | Battery<br>Type | Antenna<br>P/N | Belt-Clip<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|-----------------------------------------------------------------------|-------|------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------------------------------------|-----------------------|----------------------|
|                                                                       |       |      |                                 |                                                                                                                                   |                 |                |                                             | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                               | Low   | CW   | 3.2                             | 3.2                                                                                                                               | NiCd            | KRE1011223/01  | 1.1                                         | 8.16                  | 4.08                 |
| 815.000                                                               | Mid   | CW   | 3.2                             | 3.2                                                                                                                               | NiCd            | KRE1011223/01  | 1.1                                         | 6.80                  | 3.40                 |
| 823.975                                                               | High  | CW   | 3.2                             | 3.1                                                                                                                               | NiCd            | KRE1011223/01  | 1.1                                         | 7.11                  | 3.56                 |
| 850.970                                                               | Low   | CW   | 3.2                             | 3.2                                                                                                                               | NiCd            | KRE1011223/01  | 1.1                                         | 6.15                  | 3.08                 |
| 860.520                                                               | Mid   | CW   | 3.2                             | 3.2                                                                                                                               | NiCd            | KRE1011223/01  | 1.1                                         | 5.78                  | 2.89                 |
| 868.970                                                               | High  | CW   | 3.2                             | 3.2                                                                                                                               | NiCd            | KRE1011223/01  | 1.1                                         | 4.85                  | 2.43                 |
| 806.000                                                               | Low   | CW   | 3.2                             | 3.2                                                                                                                               | NiMH            | KRE1011223/01  | 1.1                                         | 6.50                  | 3.25                 |
| Mixture Type: Body<br>Dielectric Constant: 55.0<br>Conductivity: 0.96 |       |      |                                 | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak Controlled Exposure / Occupational<br>BODY: 8.0 W/kg (averaged over 1 gram) |                 |                |                                             |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure, 50% duty cycle).
2. The highest body-worn SAR value found was 4.08 w/kg (50% duty cycle).
3. The EUT was tested for body-worn SAR with the attached metal belt-clip providing a 1.1 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 05, 2001
5. Ambient TEMPERATURE: 23.5 °C  
Relative HUMIDITY: 57.5 %  
Atmospheric PRESSURE: 100.6 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Elevated Feed Gain Antenna (KRE1011216/01)**

**With Leather Belt-Loop (19B226627G2) & Swivel Socket (19B233243G3)**

| Freq.<br>(MHz)                                                                             | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                                         | Belt-Loop<br>& Swivel<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|----------------------|
|                                                                                            |       |      |                                 |                                |                 |                                                                                                                                                        |                                                         | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 3.3                                                     | 3.80                  | 1.90                 |
| 815.000                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 3.3                                                     | 3.88                  | 1.94                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011216/01                                                                                                                                          | 3.3                                                     | 4.00                  | 2.00                 |
| 850.970                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011216/01                                                                                                                                          | 3.3                                                     | 3.02                  | 1.51                 |
| 860.520                                                                                    | Mid   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011216/01                                                                                                                                          | 3.3                                                     | 2.72                  | 1.36                 |
| 868.970                                                                                    | High  | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011216/01                                                                                                                                          | 3.3                                                     | 2.25                  | 1.13                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.2                            | NiMH            | KRE1011216/01                                                                                                                                          | 3.3                                                     | 3.80                  | 1.90                 |
| <b>Mixture Type: Body</b><br><b>Dielectric Constant: 55.0</b><br><b>Conductivity: 0.96</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                                                         |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest body-worn SAR value found was 4.00 w/kg (100% duty cycle).
3. The EUT was tested for body-worn SAR with the attached leather belt-loop and swivel socket providing a 3.3 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 10, 2001
5. Ambient TEMPERATURE: 23.4 °C  
Relative HUMIDITY: 57.3 %  
Atmospheric PRESSURE: 100.4 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Flexible Gain Antenna (KRE1011506/01)**

**With Leather Belt-Loop (19B226627G2) & Swivel Socket (19B233243G3)**

| Freq.<br>(MHz)                                                                 | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                             | Belt-Loop<br>& Swivel<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|----------------------|
|                                                                                |       |      |                                 |                                |                 |                                                                                                                                            |                                                         | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                        | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                              | 3.3                                                     | 2.48                  | 1.24                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                              | 3.3                                                     | 2.68                  | 1.34                 |
| 823.975                                                                        | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                              | 3.3                                                     | 2.62                  | 1.31                 |
| 850.970                                                                        | Low   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011506/01                                                                                                                              | 3.3                                                     | 2.17                  | 1.09                 |
| 860.520                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                              | 3.3                                                     | 1.92                  | 0.96                 |
| 868.970                                                                        | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011506/01                                                                                                                              | 3.3                                                     | 1.82                  | 0.91                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiMH            | KRE1011506/01                                                                                                                              | 3.3                                                     | 2.20                  | 1.10                 |
| <b>Mixture Type: Body<br/>Dielectric Constant: 55.0<br/>Conductivity: 0.96</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br/>Spatial Peak Controlled Exposure / Occupational<br/>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                                                         |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest body-worn SAR value found was 2.68 w/kg (100% duty cycle).
3. The EUT was tested for body-worn SAR with the attached leather belt-loop and swivel socket providing a 3.3 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 10, 2001
5. Ambient TEMPERATURE: 23.4 °C  
Relative HUMIDITY: 57.3 %  
Atmospheric PRESSURE: 100.4 kPa
6. Fluid Temperature 23.0°C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Whip Antenna (KRE1011223/01)**

**With Leather Belt-Loop (19B226627G2) & Swivel Socket (19B233243G3)**

| Freq.<br>(MHz)                                                                 | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                             | Belt-Loop<br>& Swivel<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|----------------------|
|                                                                                |       |      |                                 |                                |                 |                                                                                                                                            |                                                         | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                        | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 3.3                                                     | 2.39                  | 1.20                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 3.3                                                     | 2.40                  | 1.20                 |
| 823.975                                                                        | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 3.3                                                     | 2.26                  | 1.13                 |
| 850.970                                                                        | Low   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                              | 3.3                                                     | 2.19                  | 1.10                 |
| 860.520                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 3.3                                                     | 2.03                  | 1.02                 |
| 868.970                                                                        | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 3.3                                                     | 1.74                  | 0.87                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiMH            | KRE1011223/01                                                                                                                              | 3.3                                                     | 2.35                  | 1.18                 |
| <b>Mixture Type: Body<br/>Dielectric Constant: 55.0<br/>Conductivity: 0.96</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br/>Spatial Peak Controlled Exposure / Occupational<br/>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                                                         |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure).
2. The highest body-worn SAR value found was 2.40 w/kg (100% duty cycle).
3. The EUT was tested for body-worn SAR with the attached leather belt-loop and swivel socket providing a 3.3 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 10, 2001
5. Ambient TEMPERATURE: 23.4 °C  
Relative HUMIDITY: 57.3 %  
Atmospheric PRESSURE: 100.4 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Elevated Feed Gain Antenna (KRE1011216/01)**

**With T-Strap (KRY1011656/1)**

| Freq.<br>(MHz)                                                                 | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W)                                                                                                             | Battery<br>Type | Antenna<br>P/N | T-Strap<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------------------------------------|-----------------------|----------------------|
|                                                                                |       |      |                                 |                                                                                                                                            |                 |                |                                           | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                        | Low   | CW   | 3.2                             | 3.2                                                                                                                                        | NiCd            | KRE1011216/01  | 1.6                                       | 11.3                  | 5.65                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                                                                                                                                        | NiCd            | KRE1011216/01  | 1.6                                       | 10.3                  | 5.15                 |
| 823.975                                                                        | High  | CW   | 3.2                             | 3.2                                                                                                                                        | NiCd            | KRE1011216/01  | 1.6                                       | 10.9                  | 5.45                 |
| 850.970                                                                        | Low   | CW   | 3.2                             | 3.1                                                                                                                                        | NiCd            | KRE1011216/01  | 1.6                                       | 10.7                  | 5.35                 |
| 860.520                                                                        | Mid   | CW   | 3.2                             | 3.2                                                                                                                                        | NiCd            | KRE1011216/01  | 1.6                                       | 9.21                  | 4.61                 |
| 868.970                                                                        | High  | CW   | 3.2                             | 3.1                                                                                                                                        | NiCd            | KRE1011216/01  | 1.6                                       | 6.59                  | 3.30                 |
| 806.000                                                                        | Low   | CW   | 3.2                             | 3.2                                                                                                                                        | NiMH            | KRE1011216/01  | 1.6                                       | 10.9                  | 5.45                 |
| <b>Mixture Type: Body<br/>Dielectric Constant: 55.0<br/>Conductivity: 0.96</b> |       |      |                                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br/>Spatial Peak Controlled Exposure / Occupational<br/>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                 |                |                                           |                       |                      |

Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure, 50% duty cycle).
2. The highest body-worn SAR value found was 5.65 w/kg (50% duty cycle).
3. The EUT was tested for body-worn SAR with the attached T-strap providing a 1.6 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 09, 2001
5. Ambient TEMPERATURE: 23.3 °C  
Relative HUMIDITY: 57.4 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Flexible Gain Antenna (KRE1011506/01)**

**With T-Strap (KRY1011656/1)**

| Freq.<br>(MHz)                                                                             | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type                                                                                                                                        | Antenna<br>P/N | T-Strap<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|-----------------------|----------------------|
|                                                                                            |       |      |                                 |                                |                                                                                                                                                        |                |                                           | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011506/01  | 1.6                                       | 9.83                  | 4.92                 |
| 815.000                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011506/01  | 1.6                                       | 7.57                  | 3.79                 |
| 823.975                                                                                    | High  | CW   | 3.2                             | 3.1                            | NiCd                                                                                                                                                   | KRE1011506/01  | 1.6                                       | 6.75                  | 3.38                 |
| 850.970                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011506/01  | 1.6                                       | 7.07                  | 3.54                 |
| 860.520                                                                                    | Mid   | CW   | 3.2                             | 3.2                            | NiCd                                                                                                                                                   | KRE1011506/01  | 1.6                                       | 5.99                  | 3.00                 |
| 868.970                                                                                    | High  | CW   | 3.2                             | 3.1                            | NiCd                                                                                                                                                   | KRE1011506/01  | 1.6                                       | 4.64                  | 2.32                 |
| 806.000                                                                                    | Low   | CW   | 3.2                             | 3.2                            | NiMH                                                                                                                                                   | KRE1011506/01  | 1.6                                       | 7.74                  | 3.87                 |
| <b>Mixture Type: Body</b><br><b>Dielectric Constant: 55.0</b><br><b>Conductivity: 0.96</b> |       |      |                                 |                                | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b><br><b>Spatial Peak Controlled Exposure / Occupational</b><br><b>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                |                                           |                       |                      |

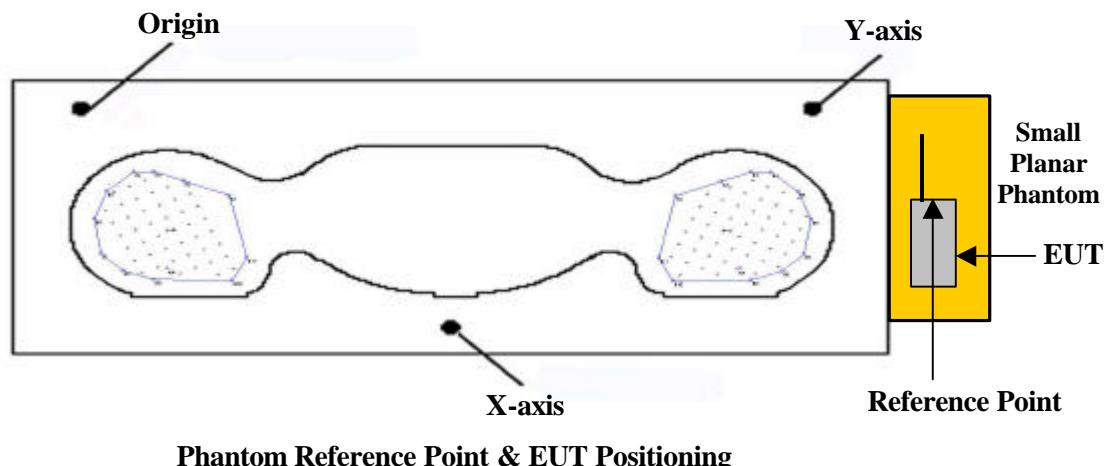
Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure, 50% duty cycle).
2. The highest body-worn SAR value found was 4.92 w/kg (50% duty cycle).
3. The EUT was tested for body-worn SAR with the attached T-strap providing a 1.6 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 09, 2001
5. Ambient TEMPERATURE: 23.3 °C  
Relative HUMIDITY: 57.4 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

**Body-Worn SAR Measurements – EUT with Whip Antenna (KRE1011223/01)**

**With T-Strap (KRY1011656/1)**

| Freq.<br>(MHz)                                                                 | Chan. | Mode | Cond.<br>Power<br>Before<br>(W) | Cond.<br>Power<br>After<br>(W) | Battery<br>Type | Antenna<br>P/N                                                                                                                             | T-Strap<br>Separation<br>Distance<br>(cm) | SAR<br>(w/kg)         |                      |
|--------------------------------------------------------------------------------|-------|------|---------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|----------------------|
|                                                                                |       |      |                                 |                                |                 |                                                                                                                                            |                                           | 100%<br>Duty<br>Cycle | 50%<br>Duty<br>Cycle |
| 806.000                                                                        | Low   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 1.6                                       | 6.64                  | 3.32                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 1.6                                       | 9.69                  | 4.85                 |
| 823.975                                                                        | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 1.6                                       | 8.40                  | 4.20                 |
| 850.970                                                                        | Low   | CW   | 3.2                             | 3.1                            | NiCd            | KRE1011223/01                                                                                                                              | 1.6                                       | 8.71                  | 4.36                 |
| 860.520                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 1.6                                       | 8.84                  | 4.42                 |
| 868.970                                                                        | High  | CW   | 3.2                             | 3.2                            | NiCd            | KRE1011223/01                                                                                                                              | 1.6                                       | 7.21                  | 3.61                 |
| 815.000                                                                        | Mid   | CW   | 3.2                             | 3.2                            | NiMH            | KRE1011223/01                                                                                                                              | 1.6                                       | 7.67                  | 3.84                 |
| <b>Mixture Type: Body<br/>Dielectric Constant: 55.0<br/>Conductivity: 0.96</b> |       |      |                                 |                                |                 | <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br/>Spatial Peak Controlled Exposure / Occupational<br/>BODY: 8.0 W/kg (averaged over 1 gram)</b> |                                           |                       |                      |


Notes:

1. The SAR values found were below the maximum limit of 8.0 w/kg (controlled exposure, 50% duty cycle).
2. The highest body-worn SAR value found was 4.85 w/kg (50% duty cycle).
3. The EUT was tested for body-worn SAR with the attached T-strap providing a 1.6 cm separation distance between the back of the EUT and the outer surface of the planar phantom.
4. Test Date: October 09, 2001
5. Ambient TEMPERATURE: 23.3 °C  
Relative HUMIDITY: 57.4 %  
Atmospheric PRESSURE: 100.2 kPa
6. Fluid Temperature 23.0 °C
7. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

## 5.0 DETAILS OF SAR EVALUATION

The M/A-COM PRS INC. Model: Jaguar 725P Portable FM PTT Radio Transceiver FCC ID: OWDTR-0014-E was found to be compliant for localized Specific Absorption Rate (Controlled Exposure) based on the following test provisions and conditions:

1. The EUT and speaker microphone with antenna were tested in a face-held configuration with the front of the device placed parallel to the outer surface of the small planar phantom and with a 2.5 cm separation distance.
2. The speaker microphone with antenna was tested in a body-worn configuration with the back of the EUT placed parallel to the outer surface of the small planar phantom, with the attached metal clip touching the outer surface of the small planar phantom and providing a 1.4 cm separation distance.
3. The EUT was tested in a body-worn configuration with the back of the EUT placed parallel to the outer surface of the small planar phantom, with the attached metal belt-clip touching the outer surface of the small planar phantom and providing a 1.1 cm separation distance.
4. The EUT was tested in a body-worn configuration with the back of the EUT placed parallel to the outer surface of the small planar phantom, with the attached leather belt-loop and swivel socket touching the outer surface of the small planar phantom, and providing a 3.3 cm separation distance.
5. The EUT was tested in a body-worn configuration with the back of the EUT placed parallel to the outer surface of the small planar phantom, with the attached T-strap touching the outer surface of the small planar phantom, and providing a 1.6 cm separation distance.
6. The EUT was evaluated for SAR at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimize drift. The conducted power levels were checked before and after each test. If the conducted power level dropped more than 5% of the initial power level, then the EUT was retested. Any unusual anomalies over the course of the test also warranted a re-evaluation.
7. The conducted power was measured according to the procedures described in FCC Part 2.1046.
8. The device was operated continuously in the transmit mode for the duration of the test.
9. The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the device and its antenna.
10. The EUT was tested with NiCd & NiMH battery options (fully charged).



Phantom Reference Point & EUT Positioning

## 6.0 EVALUATION PROCEDURES

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated in accordance with FCC OET Bulletin 65, Supplement C (Edition 01-01) using the SAM phantom.  
(ii) For body-worn and face-held devices a planar phantom was used. Depending on the phantom used for the evaluation, all other phantoms were drained of fluid.
- b. The SAR was determined by a pre-defined procedure within the DASY3 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm.
- c. A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d. The depth of the simulating tissue in the planar phantom used for the SAR evaluation was no less than 15.0 cm.
- e. The target tissue parameters for 835MHz were used in the SAR evaluation software. If there was any appreciable variation in the measured tissue parameters from the target values specified then the SAR was adjusted using the sensitivities to SAR (see "Appendix D - SAR Sensitivities").
- f. The E-field probe conversion factors for 835MHz were determined as follows:
  - In brain and muscle tissue between 750MHz and 1GHz, the conversion factor decreases approximately 1.3% per 100MHz frequency increase.
  - In brain and muscle tissue between 1.6GHz and 2GHz, the conversion factor decreases approximately 1% per 100MHz frequency increase.

## 7.0 SAR SAFETY LIMITS

| EXPOSURE LIMITS                                                  | SAR (W/Kg)                                               |                                                  |
|------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|
|                                                                  | (General Population / Uncontrolled Exposure Environment) | (Occupational / Controlled Exposure Environment) |
| Spatial Average<br>(averaged over the whole body)                | 0.08                                                     | 0.4                                              |
| Spatial Peak<br>(averaged over any 1 g of tissue)                | 1.60                                                     | 8.0                                              |
| Spatial Peak<br>(hands/wrists/feet/ankles<br>averaged over 10 g) | 4.0                                                      | 20.0                                             |

Notes: 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.  
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

## 8.0 SYSTEM VALIDATION

Prior to the assessment, the system was verified in the small planar phantom with a 900MHz dipole. A forward power of 250 mW was applied to the dipole and system was verified to a tolerance of  $\pm 10\%$ . The applicable verifications are as follows (see Appendix B for validation test plots):

| Dipole Validation Kit | Target SAR 1g (w/kg) | Measured SAR 1g (w/kg) & Validation Date |                  |                  |                  |                  |
|-----------------------|----------------------|------------------------------------------|------------------|------------------|------------------|------------------|
| D900V2                | 2.78                 | 2.83<br>10/05/01                         | 2.83<br>10/09/01 | 2.86<br>10/10/01 | 2.79<br>10/15/01 | 2.77<br>10/16/01 |

## 9.0 TISSUE PARAMETERS

The dielectric parameters of the fluids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer. The dielectric parameters of the fluid are as follows:

| BRAIN TISSUE PARAMETERS FOR DIPOLE VALIDATION & EUT EVALUATION |                                     |                                  |                          |
|----------------------------------------------------------------|-------------------------------------|----------------------------------|--------------------------|
| Equivalent Tissue                                              | Dielectric Constant<br>$\epsilon_r$ | Conductivity<br>$\sigma$ (mho/m) | $r$ (Kg/m <sup>3</sup> ) |
| 900MHz Brain (Target)                                          | 41.5 $\pm 5\%$                      | 0.97 $\pm 5\%$                   | 1000                     |
| 835MHz Brain (Target)                                          | 41.5 $\pm 5\%$                      | 0.90 $\pm 5\%$                   |                          |
| 900MHz Brain (Measured)<br>10/05/01                            | 41.3                                | 0.97                             | 1000                     |
| 900MHz Brain (Measured)<br>10/09/01                            | 41.4                                | 0.96                             | 1000                     |
| 900MHz Brain (Measured)<br>10/10/01                            | 41.6                                | 0.98                             | 1000                     |
| 900MHz Brain (Measured)<br>10/15/01                            | 41.2                                | 0.97                             | 1000                     |
| 835MHz Brain (Measured)                                        | 41.2                                | 0.90                             |                          |
| 900MHz Brain (Measured)<br>10/16/01                            | 41.1                                | 0.97                             | 1000                     |
| 835MHz Brain (Measured)                                        | 41.1                                | 0.90                             |                          |

**TISSUE PARAMETERS (Continued)**

| <b>BODY TISSUE PARAMETERS FOR EUT EVALUATION</b> |                                                        |                                                |                                          |
|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------------------|
| <b>Equivalent Tissue</b>                         | <b>Dielectric Constant<br/><math>\epsilon_r</math></b> | <b>Conductivity<br/><math>s</math> (mho/m)</b> | <b><math>r</math> (Kg/m<sup>3</sup>)</b> |
| 835MHz Body (Target)                             | 55.2 $\pm$ 5%                                          | 0.97 $\pm$ 5%                                  | 1000                                     |
| 10/05/01<br>835MHz Body (Measured)               | 55.0 $\pm$ 5%                                          | 0.96 $\pm$ 5%                                  | 1000                                     |
| 10/09/01<br>835MHz Body (Measured)               | 55.0 $\pm$ 5%                                          | 0.96 $\pm$ 5%                                  | 1000                                     |
| 10/10/01<br>835MHz Body (Measured)               | 55.0 $\pm$ 5%                                          | 0.96 $\pm$ 5%                                  | 1000                                     |
| 10/16/01<br>835MHz Body (Measured)               | 55.0 $\pm$ 5%                                          | 0.96 $\pm$ 5%                                  | 1000                                     |

**10.0 EQUIVALENT TISSUES**

The brain and body mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

| <b>TISSUE MIXTURE FOR DIPOLE VALIDATION &amp; EUT EVALUATION</b> |                                                                            |                                               |
|------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|
| <b>INGREDIENT</b>                                                | <b>900MHz Validation &amp;<br/>835MHz Evaluation<br/>Brain Mixture (%)</b> | <b>835MHz Evaluation<br/>Body Mixture (%)</b> |
| Water                                                            | 40.71                                                                      | 53.79                                         |
| Sugar                                                            | 56.63                                                                      | 45.13                                         |
| Salt                                                             | 1.48                                                                       | 0.98                                          |
| HEC                                                              | 0.99                                                                       | -                                             |
| Bactericide                                                      | 0.19                                                                       | 0.1                                           |

## 11.0 ROBOT SYSTEM SPECIFICATIONS

### Specifications

**POSITIONER:** Stäubli Unimation Corp. Robot Model: RX60L  
**Repeatability:** 0.02 mm  
**No. of axis:** 6

### Data Acquisition Electronic (DAE) System

#### Cell Controller

**Processor:** Pentium III  
**Clock Speed:** 450 MHz  
**Operating System:** Windows NT  
**Data Card:** DASY3 PC-Board

#### Data Converter

**Features:** Signal Amplifier, multiplexer, A/D converter, and control logic  
**Software:** DASY3 software  
**Connecting Lines:** Optical downlink for data and status info.  
Optical uplink for commands and clock

### PC Interface Card

**Function:** 24 bit (64 MHz) DSP for real time processing  
Link to DAE3  
16-bit A/D converter for surface detection system  
serial link to robot  
direct emergency stop output for robot

### E-Field Probe

**Model:** ET3DV6  
**Serial No.:** 1590  
**Construction:** Triangular core fiber optic detection system  
**Frequency:** 10 MHz to 6 GHz  
**Linearity:**  $\pm 0.2$  dB (30 MHz to 3 GHz)

### Phantom Type(s)

**Type 1:** SAM V4.0C  
**Shell Material:** Fiberglass  
**Thickness:**  $2.0 \pm 0.1$  mm  
**Volume:** Approx. 20 liters  
**Type 2:** Small Planar Phantom  
**Shell Material:** Plexiglas  
**Bottom Thickness:**  $2.0 \text{ mm} \pm 0.1\text{mm}$   
**Dimensions:** Box: 36.5cm (L) x 22.5cm (W) x 20.3cm (H); Back Plane: 25.3cm (H)

## 12.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core  
Built-in shielding against static charges  
PEEK enclosure material (resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz  
In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy  $\pm$  8%)

Frequency: 10 MHz to  $>6$  GHz; Linearity:  $\pm$ 0.2 dB  
(30 MHz to 3 GHz)

Directivity:  $\pm$ 0.2 dB in brain tissue (rotation around probe axis)  
 $\pm$ 0.4 dB in brain tissue (rotation normal to probe axis)

Dynam. Rnge: 5  $\mu$ W/g to  $>100$  mW/g; Linearity:  $\pm$ 0.2 dB

Srfce. Detect.  $\pm$ 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

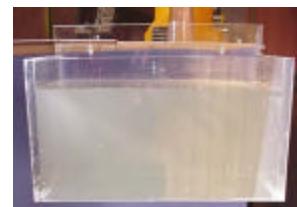
Dimensions: Overall length: 330 mm  
Tip length: 16 mm  
Body diameter: 12 mm  
Tip diameter: 6.8 mm  
Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz  
Compliance tests of mobile phone



ET3DV6 E-Field Probe

## 13.0 SAM PHANTOM V4.0C


The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections.



SAM Phantom

## 14.0 SMALL PLANAR PHANTOM

The small planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations. The small planar phantom is mounted onto the outer left hand section of the DASY3 compact system.



Small Planar Phantom

## 15.0 DEVICE HOLDER

The DASY3 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.



Device Holder

## 16.0 TEST EQUIPMENT LIST

| <b>SAR MEASUREMENT SYSTEM</b>                                                                                                                                            |                                                      |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| <b><u>EQUIPMENT</u></b>                                                                                                                                                  | <b><u>SERIAL NO.</u></b>                             | <b><u>CALIBRATION DATE</u></b>                                       |
| <b>DASY3 System</b><br>-Robot<br>-ET3DV6 E-Field Probe<br>-DAE<br>-900MHz Validation Dipole<br>-1800MHz Validation Dipole<br>-SAM Phantom V4.0C<br>-Small Planar Phantom | 599396-01<br>1590<br>370<br>054<br>247<br>N/A<br>N/A | N/A<br>Mar 2001<br>Sept 1999<br>June 2001<br>June 2001<br>N/A<br>N/A |
| <b>85070C Dielectric Probe Kit</b>                                                                                                                                       | N/A                                                  | N/A                                                                  |
| <b>Gigatronics 8652A Power Meter</b><br>-Power Sensor 80701A<br>-Power Sensor 80701A                                                                                     | 1835272<br>1833535<br>1833542                        | Oct 1999<br>Jan 2001<br>Feb 2001                                     |
| <b>E4408B Spectrum Analyzer</b>                                                                                                                                          | US39240170                                           | Nov 1999                                                             |
| <b>8594E Spectrum Analyzer</b>                                                                                                                                           | 3543A02721                                           | Mar 2000                                                             |
| <b>8753E Network Analyzer</b>                                                                                                                                            | US38433013                                           | Nov 1999                                                             |
| <b>8648D Signal Generator</b>                                                                                                                                            | 3847A00611                                           | N/A                                                                  |
| <b>5S1G4 Amplifier Research Power Amplifier</b>                                                                                                                          | 26235                                                | N/A                                                                  |

## 17.0 MEASUREMENT UNCERTAINTIES

| Uncertainty Description                        | Error   | Distribution | Weight | Standard Deviation | Offset  |
|------------------------------------------------|---------|--------------|--------|--------------------|---------|
| <b>Probe Uncertainty</b>                       |         |              |        |                    |         |
| Axial isotropy                                 | ±0.2 dB | U-Shaped     | 0.5    | ±2.4 %             |         |
| Spherical isotropy                             | ±0.4 dB | U-Shaped     | 0.5    | ±4.8 %             |         |
| Isotropy from gradient                         | ±0.5 dB | U-Shaped     | 0      | ±                  |         |
| Spatial resolution                             | ±0.5 %  | Normal       | 1      | ±0.5 %             |         |
| Linearity error                                | ±0.2 dB | Rectangle    | 1      | ±2.7 %             |         |
| Calibration error                              | ±3.3 %  | Normal       | 1      | ±3.3 %             |         |
| <b>SAR Evaluation Uncertainty</b>              |         |              |        |                    |         |
| Data acquisition error                         | ±1 %    | Rectangle    | 1      | ±0.6 %             |         |
| ELF and RF disturbances                        | ±0.25 % | Normal       | 1      | ±0.25 %            |         |
| Conductivity assessment                        | ±5 %    | Rectangle    | 1      | ±5.8 %             |         |
| <b>Spatial Peak SAR Evaluation Uncertainty</b> |         |              |        |                    |         |
| Extrapolated boundary effect                   | ±3 %    | Normal       | 1      | ±3 %               | ±5 %    |
| Probe positioning error                        | ±0.1 mm | Normal       | 1      | ±1 %               |         |
| Integrated and cube orientation                | ±3 %    | Normal       | 1      | ±3 %               |         |
| Cube Shape inaccuracies                        | ±2 %    | Rectangle    | 1      | ±1.2 %             |         |
| Device positioning                             | ±6 %    | Normal       | 1      | ±6 %               |         |
| <b>Combined Uncertainties</b>                  |         |              |        |                    | ±11.7 % |

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ±1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ±2dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is ±5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ±3 dB.

## **18.0 REFERENCES**

- (1) ANSI, *ANSI/IEEE C95.1: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 Ghz*, The Institute of Electrical and Electronics Engineers, Inc., New York, NY: 1992.
- (2) Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields”, OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- (3) Thomas Schmid, Oliver Egger, and Neils Kuster, “Automated E-field scanning system for dosimetric assessments”, *IEEE Transaction on Microwave Theory and Techniques*, Vol. 44, pp. 105 – 113: January 1996.
- (4) Niels Kuster, Ralph Kastle, and Thomas Schmid, “Dosimetric evaluation of mobile communications equipment with known precision”, *IEICE Transactions of Communications*, vol. E80-B, no. 5, pp. 645 – 652: May 1997.

#### **APPENDIX A - SAR MEASUREMENT DATA**

For each handheld radio test configuration a complete area scan was performed in order to determine the location of the internal field gradients relative to the device. If, on the full area scan, the internal field distribution showed clear evidence that only one hot spot occurred, then only the region around the hot spot was investigated. For the whip antenna (KRE1011223/01) scans, two hot spot locations occurred when loaded onto the handheld radio, and in this case the entire device was evaluated.

**FACE SAR TEST PLOTS**

**WITH HANDHELD RADIO & ELEVATED FEED GAIN ANTENNA (KRE1011216/01)**

**(2.5cm Separation Distance)**

**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

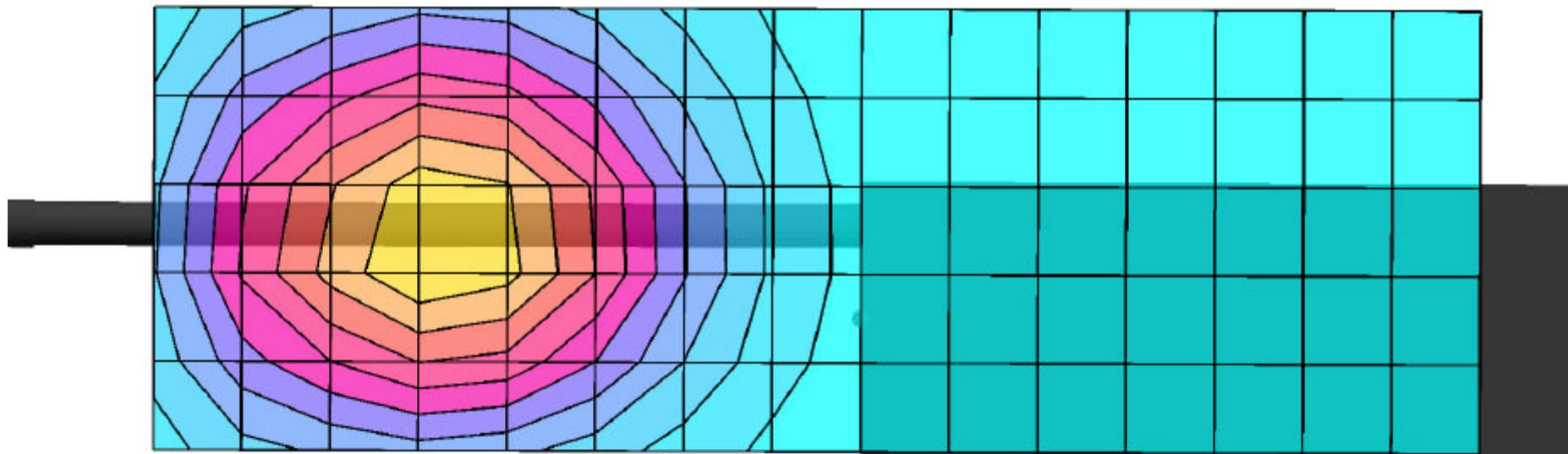
**This large area scan is intended to show the peak SAR location relative to the device**

**Face SAR at 2.5 cm Separation Distance - FULL AREA SCAN**

**Portable FM PTT Radio Transceiver**

**Elevated Feed Gain Antenna (KRE1011216/01)**

Nickel Cadmium Battery (BKB191210/3)


M/A-Com Model: Jaguar 725P

Continuous Wave Mode

High Channel [823.975 MHz]

Conducted Power: 3.2 Watts

Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 3.37 mW/g, SAR (10g): 2.46 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Elevated Feed Gain Antenna (KRE1011216/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Low Channel [806.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 3.37 mW/g, SAR (10g): 2.45 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Elevated Feed Gain Antenna (KRE1011216/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Mid Channel [815.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 3.59 mW/g, SAR (10g): 2.62 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Elevated Feed Gain Antenna (KRE1011216/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
High Channel [823.975 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.52 mW/g, SAR (10g): 1.82 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Elevated Feed Gain Antenna (KRE1011216/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Low Channel [850.970 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 1.99 mW/g, SAR (10g): 1.43 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Elevated Feed Gain Antenna (KRE1011216/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Mid Channel [860.520 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom: Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 1.84 mW/g, SAR (10g): 1.33 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Elevated Feed Gain Antenna (KRE1011216/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
High Channel [868.970 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

Small Planar Phantom: Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 3.48 mW/g, SAR (10g): 2.52 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Elevated Feed Gain Antenna (KRE1011216/01)  
Nickel Metal Hydride Battery (BKB191210/4)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
High Channel [823.975 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**FACE SAR TEST PLOTS**

**WITH HANDHELD RADIO & FLEXIBLE GAIN ANTENNA (KRE1011506/01)**

**(2.5cm Separation Distance)**

**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

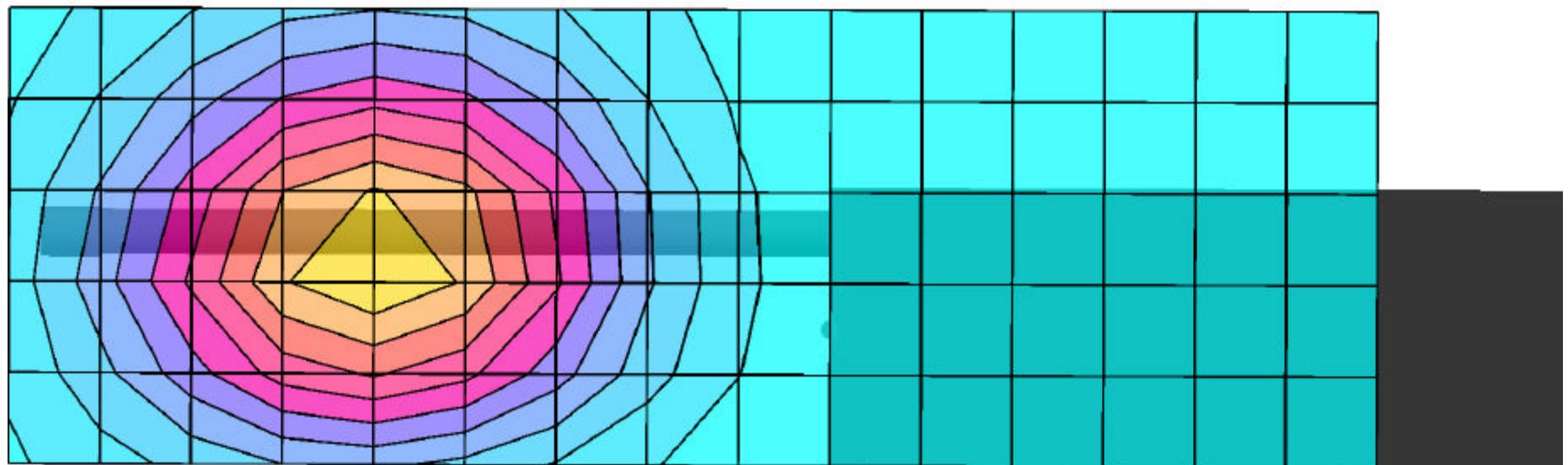
**This large area scan is intended to show the peak SAR location relative to the device**

**Face SAR at 2.5 cm Separation Distance - FULL AREA SCAN**

**Portable FM PTT Radio Transceiver**

**Flexible Gain Antenna (KRE1011506/01)**

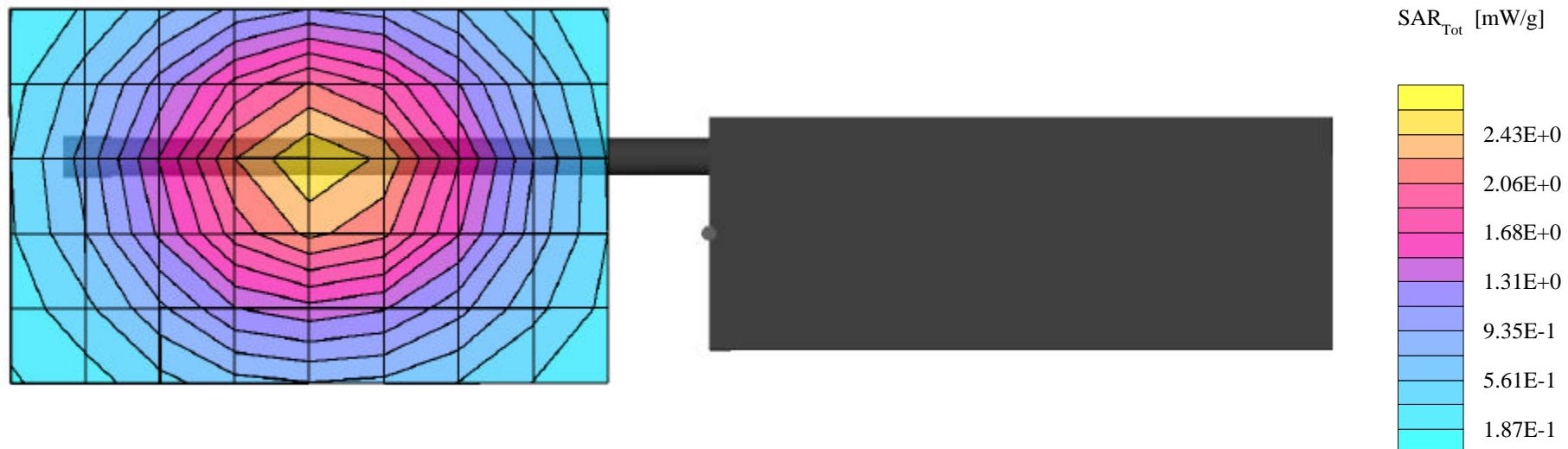
Nickel Cadmium Battery (BKB191210/3)


M/A-Com Model: Jaguar 725P

Continuous Wave Mode

Mid Channel [815.000 MHz]

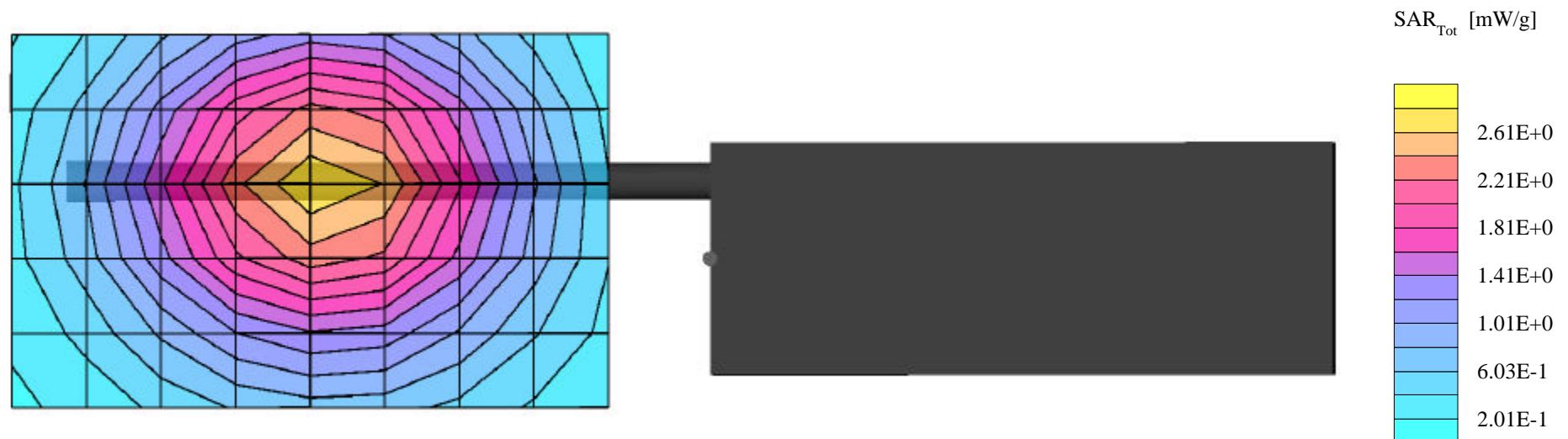
Conducted Power: 3.2 Watts


Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

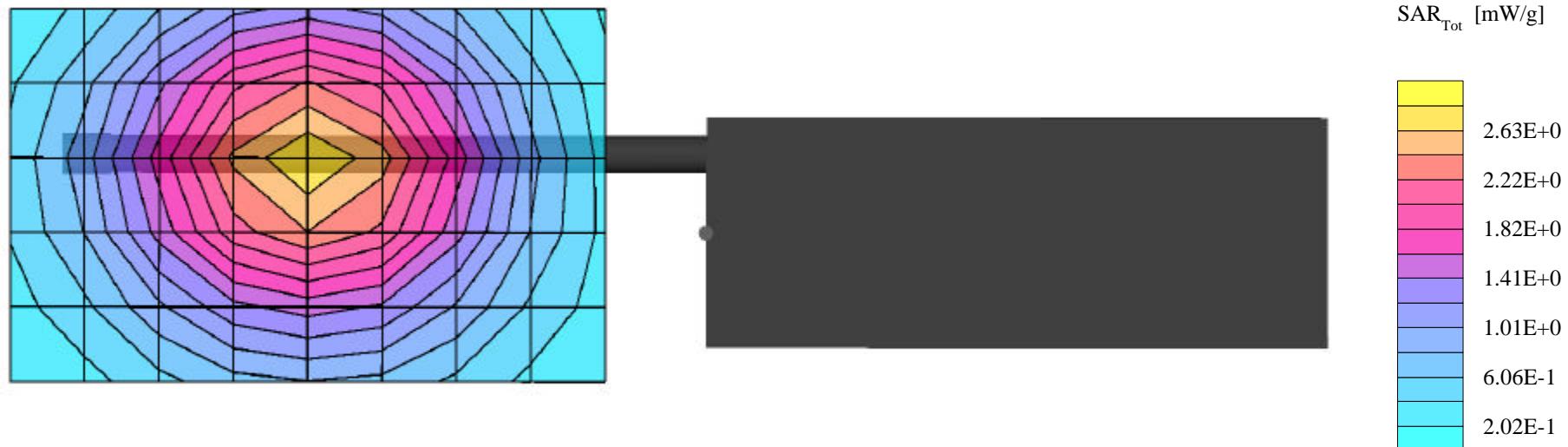
Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.45 mW/g, SAR (10g): 1.77 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Flexible Gain Antenna (KRE1011506/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Low Channel [806.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

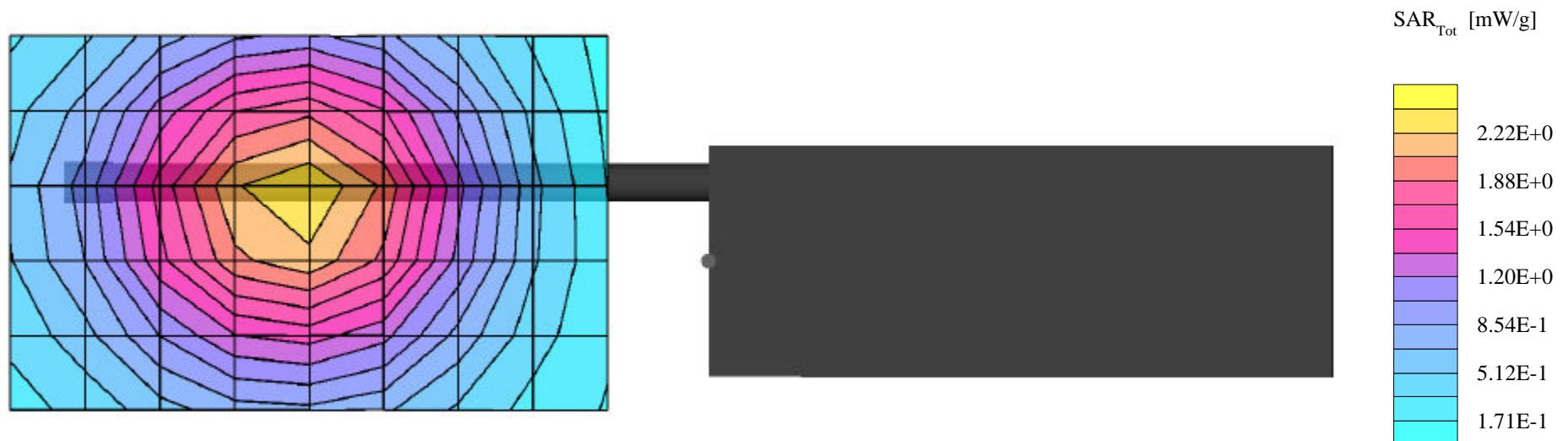
Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.58 mW/g, SAR (10g): 1.88 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Flexible Gain Antenna (KRE1011506/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Mid Channel [815.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

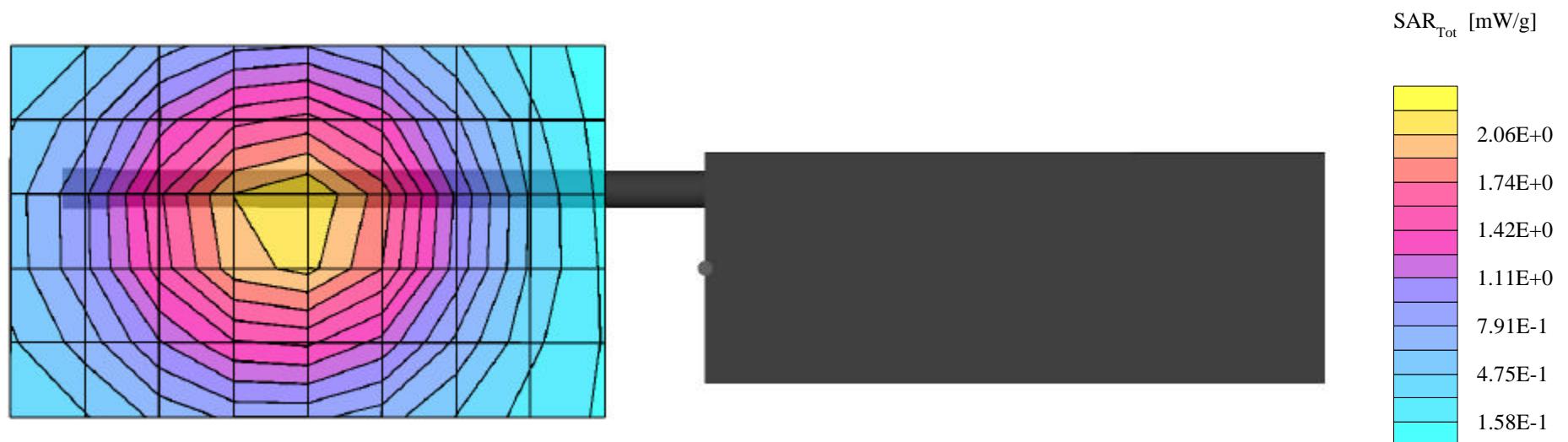
Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.53 mW/g, SAR (10g): 1.84 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Flexible Gain Antenna (KRE1011506/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
High Channel [823.975 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.21 mW/g, SAR (10g): 1.59 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Flexible Gain Antenna (KRE1011506/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Low Channel [850.970 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

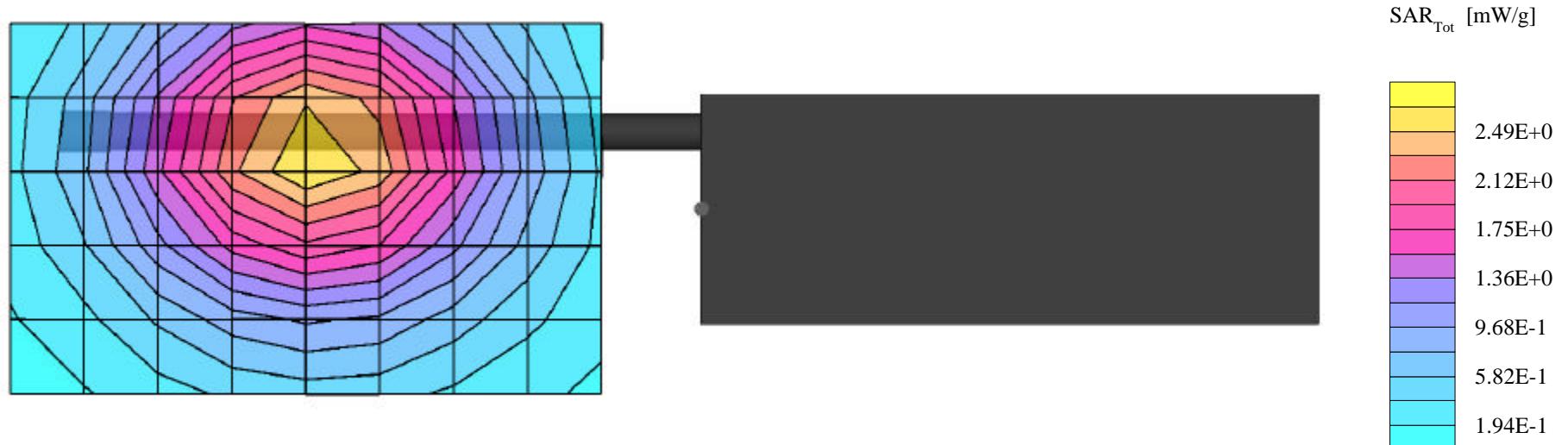
Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.06 mW/g, SAR (10g): 1.48 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Flexible Gain Antenna (KRE1011506/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Mid Channel [860.520 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 1.88 mW/g, SAR (10g): 1.35 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Flexible Gain Antenna (KRE1011506/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
High Channel [868.970 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



## M/A-COM PRS INC. FCC ID: OWDTR-0014-E

Small Planar Phantom; Planar Section; Position: (90°,270°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.41 mW/g, SAR (10g): 1.74 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Flexible Gain Antenna (KRE1011506/01)  
Nickel Metal Hydride Battery (BKB191210/4)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Mid Channel [815.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**FACE SAR TEST PLOTS**

**WITH HANDHELD RADIO & WHIP ANTENNA (KRE1011223/01)**

**(2.5cm Separation Distance)**

**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

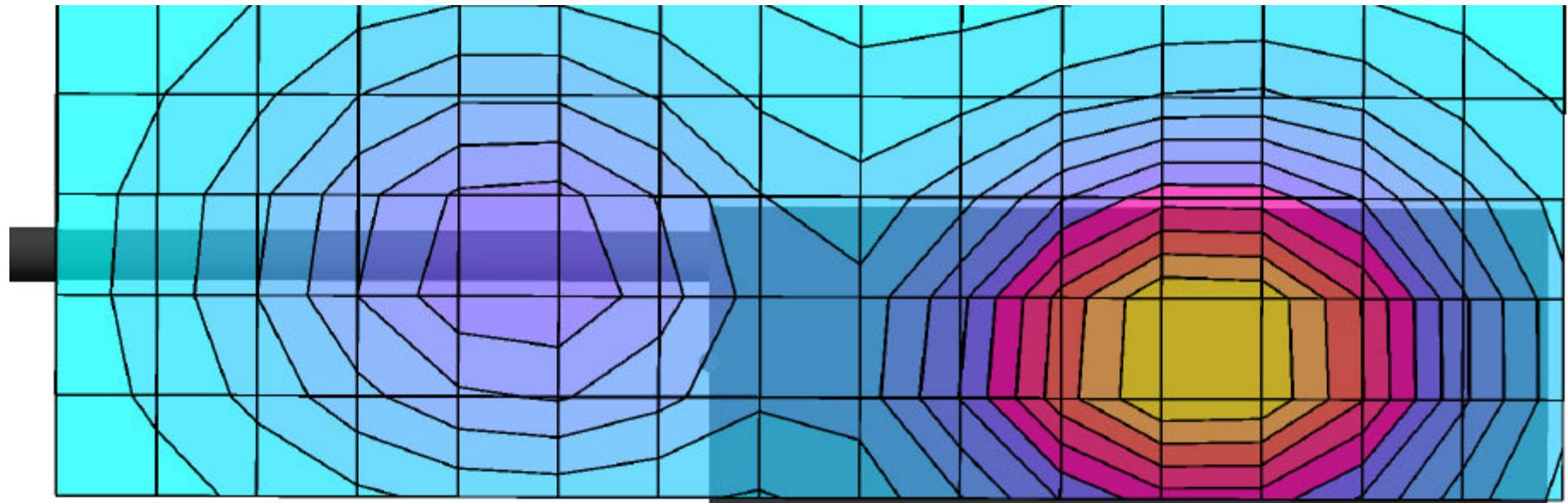
**This large area scan is intended to show the peak SAR location relative to the device**

**Face SAR at 2.5 cm Separation Distance - FULL AREA SCAN**

**Portable FM PTT Radio Transceiver**

**Whip Antenna (KRE1011223/01)**

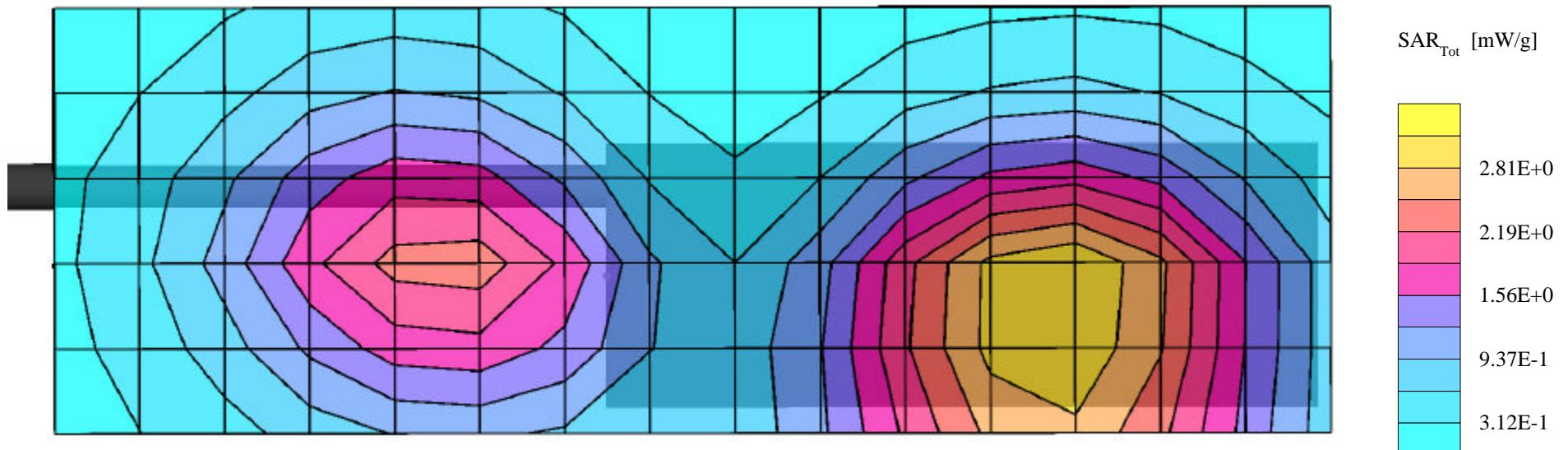
Nickel Cadmium Battery (BKB191210/3)


M/A-Com Model: Jaguar 725P

Continuous Wave Mode

Low Channel [806.000 MHz]

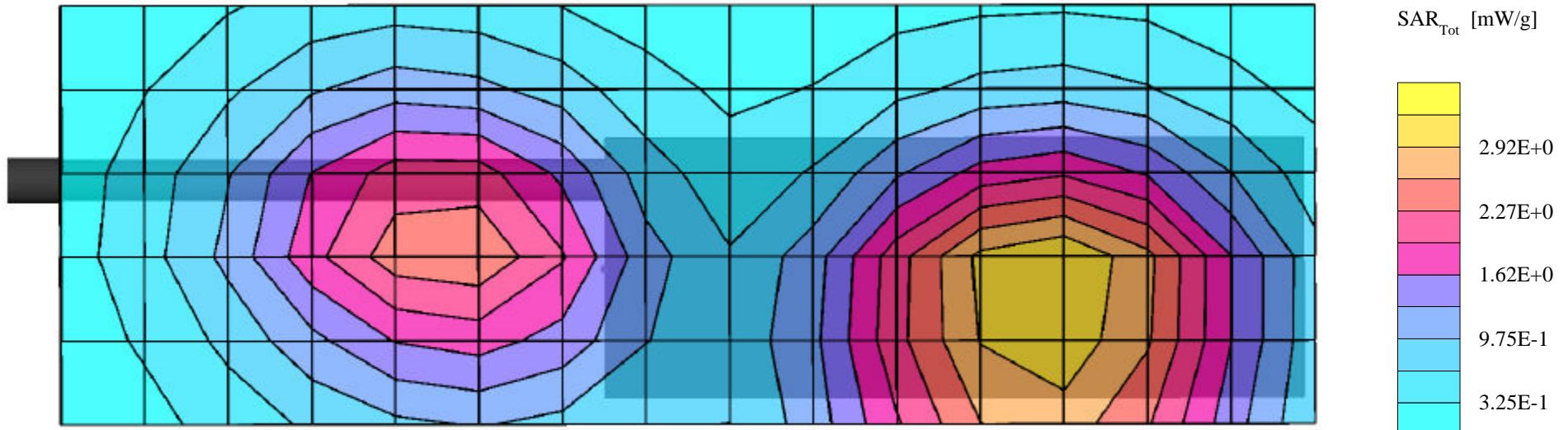
Conducted Power: 3.2 Watts


Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

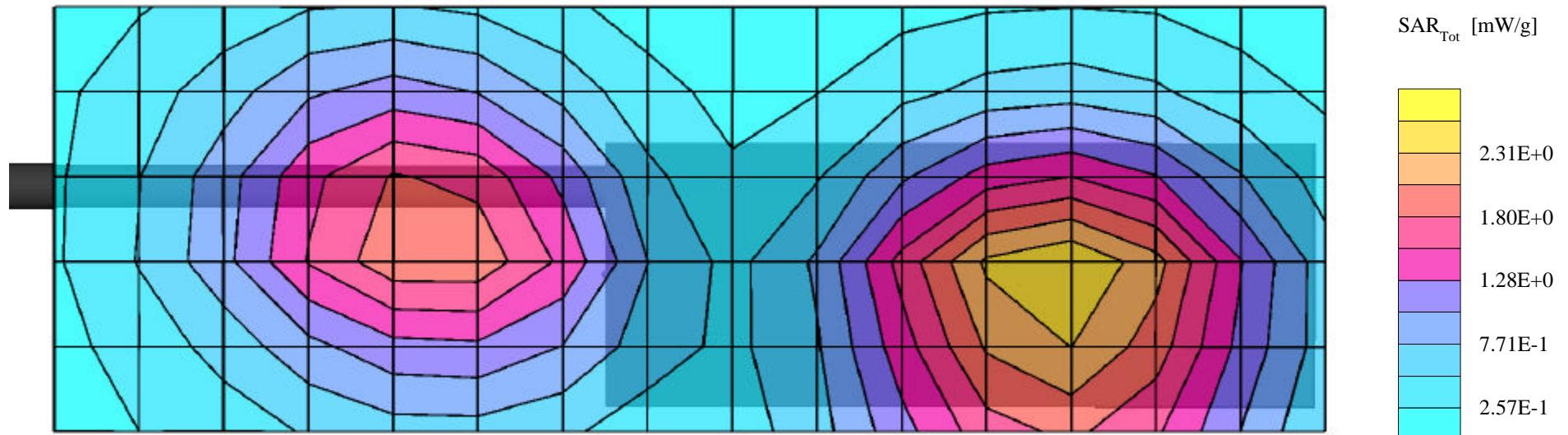
Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.93 mW/g, SAR (10g): 2.07 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Whip Antenna (KRE1011223/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Low Channel [806.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 3.02 mW/g, SAR (10g): 2.14 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Whip Antenna (KRE1011223/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Mid Channel [815.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

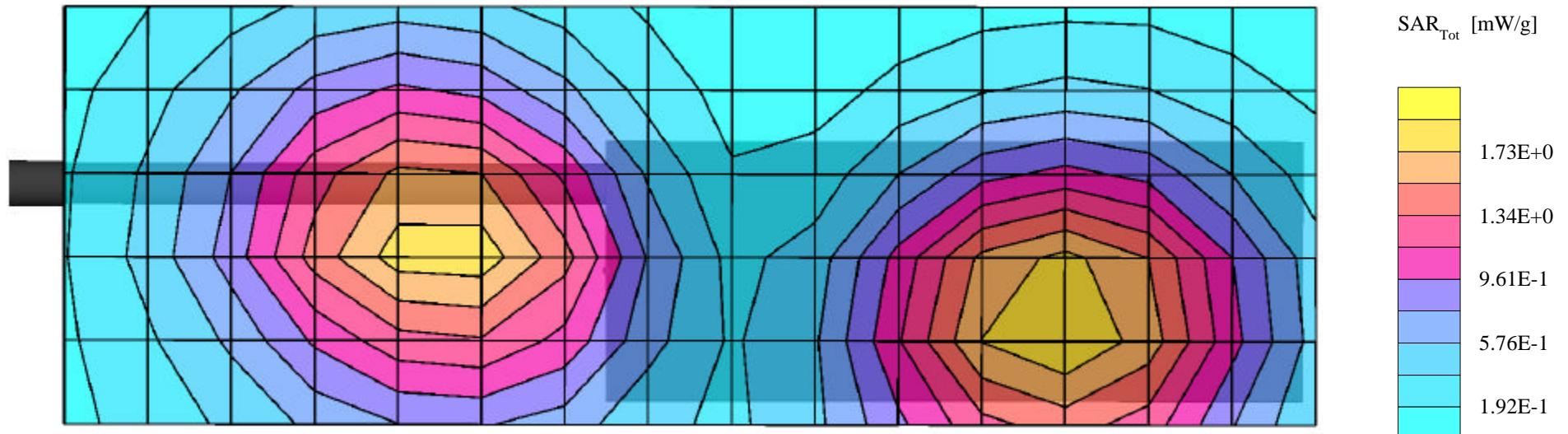
Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.37 mW/g, SAR (10g): 1.67 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Whip Antenna (KRE1011223/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
High Channel [823.975 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

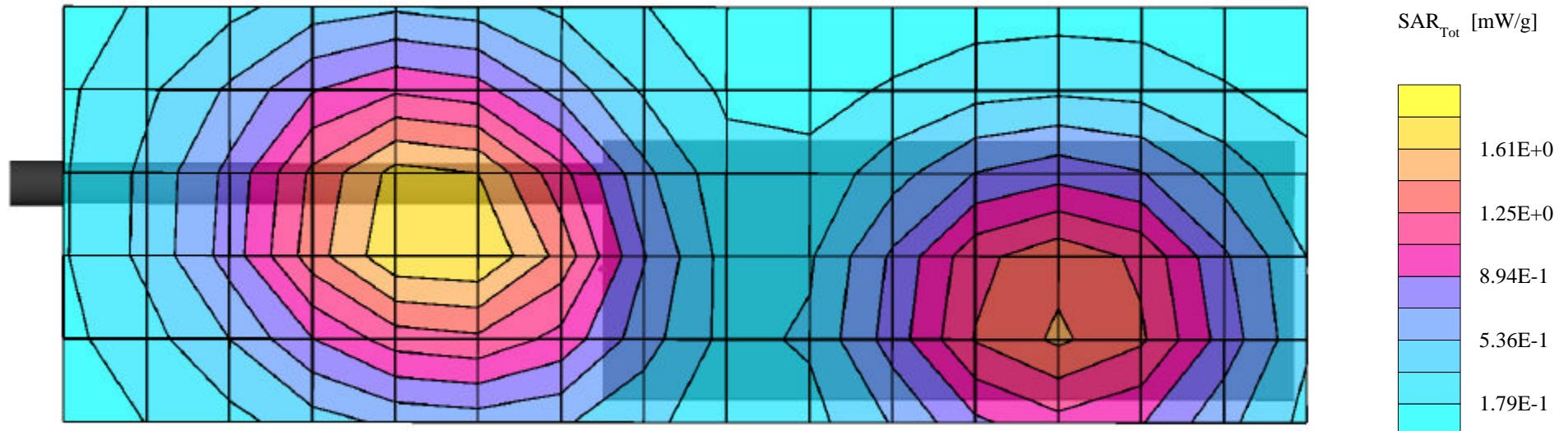
Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.06 mW/g, SAR (10g): 1.48 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Whip Antenna (KRE1011223/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Low Channel [850.970 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

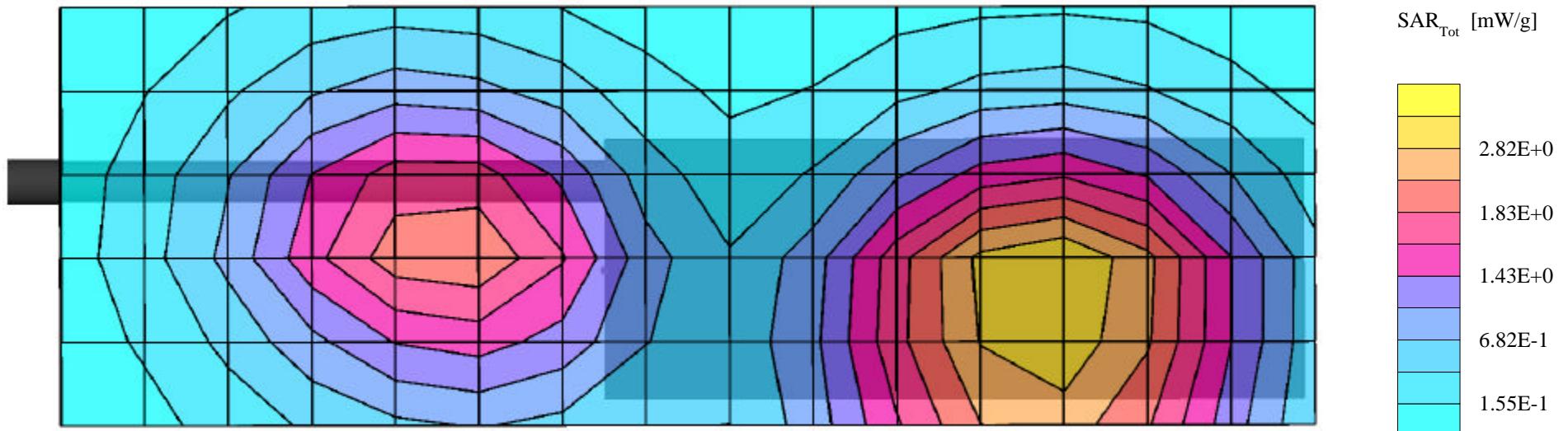
Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 1.88 mW/g, SAR (10g): 1.33 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Whip Antenna (KRE1011223/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Mid Channel [860.520 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 1.63 mW/g, SAR (10g): 1.16 mW/g


Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Whip Antenna (KRE1011223/01)  
Nickel Cadmium Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
High Channel [868.970 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001



**M/A-COM PRS INC. FCC ID: OWDTR-0014-E**

Small Planar Phantom: Planar Section; Position: (90°,0°)  
Probe: ET3DV6 - SN1590; ConvF(6.91,6.91,6.91); Crest factor: 1.0  
835 MHz Brain:  $\sigma = 0.90 \text{ mho/m}$   $\epsilon_r = 41.5$   $\rho = 1.00 \text{ g/cm}^3$   
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0  
Cube 5x5x7  
SAR (1g): 2.95 mW/g, SAR (10g): 2.09 mW/g

Face SAR at 2.5 cm Separation Distance  
Portable FM PTT Radio Transceiver  
Whip Antenna (KRE1011223/01)  
Nickel Metal Hydride Battery (BKB191210/3)  
M/A-Com Model: Jaguar 725P  
Continuous Wave Mode  
Low Channel [806.000 MHz]  
Conducted Power: 3.2 Watts  
Date Tested: October 15, 2001

