



Choose Scandinavian trust

# RADIO TEST REPORT

Project ID

**PRJ0045373**

Report ID

**REP021030**

Applicant:

**Barrett Communications Pty Ltd**

Model (HVIN):

**PRC-4090 System Docking Station**

Product name (PMN):

**SDR Transceiver**

FCC identifier:

**FCC ID: OW4-PRC4090MB**

ISED certification number:

**IC: 6468A-4090MB**

Specifications:

**FCC 47 CFR Part 90**

Private Land Mobile Radio Services

Date of issue: **July 10, 2025**

**Kevin Rose, EMC/RF Specialist**

Tested by

Signature

**Fahar A Sukkoor, EMC/RF Specialist**

Reviewed by

Signature

Nemko Canada Inc., a testing laboratory, is accredited by ANSI National Accreditation Board (ANAB).

The tests included in this report are within the scope of this accreditation.

The ANAB symbol is an official symbol of the ANSI National Accreditation Board, used under licence.

ANAB File Number: AT-3195 (Ottawa); AT-3193 (Pointe-Claire); AT-3194 (Cambridge)



Part 90.docx; Date: Nov 2017



## Lab locations

---

|                        |                                                                                                                                                                    |                                                                                            |                                                                                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Company name           | Nemko Canada Inc.                                                                                                                                                  |                                                                                            |                                                                                           |
| Facilities             | <i>Ottawa site:</i><br>303 River Road<br>Ottawa, Ontario<br>Canada<br>K1V 1H2                                                                                      | <i>Montréal site:</i><br>292 Labrosse Avenue<br>Pointe-Claire, Québec<br>Canada<br>H9R 5L8 | <i>Cambridge site:</i><br>1-130 Saltsman Drive<br>Cambridge, Ontario<br>Canada<br>N3E 0B2 |
|                        | Tel: +1 613 737 9680<br>Fax: +1 613 737 9691                                                                                                                       | Tel: +1 514 694 2684<br>Fax: +1 514 694 3528                                               | Tel: +1 519 650 4811                                                                      |
| Test site registration | <b>Organization</b> <b>Recognition numbers and location</b><br>FCC/ISED FCC: CA2040; IC: 2040A-4 (Ottawa); FCC: CA2041; IC: 2040G-5 (Montreal); CA0101 (Cambridge) |                                                                                            |                                                                                           |
| Website                | <a href="http://www.nemko.com">www.nemko.com</a>                                                                                                                   |                                                                                            |                                                                                           |

## Limits of responsibility

---

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

## Copyright notification

---

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

## Table of contents

|                                                                                                                                  |           |
|----------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Table of contents .....</b>                                                                                                   | <b>3</b>  |
| <b>Section 1. Report summary .....</b>                                                                                           | <b>4</b>  |
| 1.1 Applicant and manufacturer .....                                                                                             | 4         |
| 1.2 Test specifications .....                                                                                                    | 4         |
| 1.3 Test methods.....                                                                                                            | 4         |
| 1.4 Statement of compliance .....                                                                                                | 4         |
| 1.5 Exclusions.....                                                                                                              | 4         |
| 1.6 Test report revision history .....                                                                                           | 4         |
| <b>Section 2. Summary of test results.....</b>                                                                                   | <b>5</b>  |
| 2.1 FCC Part 90 test results .....                                                                                               | 5         |
| <b>Section 3. Equipment under test (EUT) details .....</b>                                                                       | <b>6</b>  |
| 3.1 Sample information.....                                                                                                      | 6         |
| 3.2 EUT information .....                                                                                                        | 6         |
| 3.3 Technical information .....                                                                                                  | 6         |
| 3.4 Product description and theory of operation .....                                                                            | 7         |
| 3.5 EUT exercise details.....                                                                                                    | 7         |
| 3.6 EUT setup diagram .....                                                                                                      | 8         |
| 3.7 EUT sub assemblies .....                                                                                                     | 8         |
| 3.8 EUT Support Equipment.....                                                                                                   | 8         |
| <b>Section 4. Engineering considerations.....</b>                                                                                | <b>9</b>  |
| 4.1 Modifications incorporated in the EUT.....                                                                                   | 9         |
| 4.2 Technical judgment .....                                                                                                     | 9         |
| 4.3 Deviations from laboratory tests procedures.....                                                                             | 9         |
| <b>Section 5. Test conditions.....</b>                                                                                           | <b>10</b> |
| 5.1 Atmospheric conditions .....                                                                                                 | 10        |
| 5.2 Power supply range .....                                                                                                     | 10        |
| <b>Section 6. Measurement uncertainty.....</b>                                                                                   | <b>11</b> |
| 6.1 Uncertainty of measurement .....                                                                                             | 11        |
| <b>Section 7. Test equipment .....</b>                                                                                           | <b>12</b> |
| 7.1 Test equipment list.....                                                                                                     | 12        |
| <b>Section 8. Testing data .....</b>                                                                                             | <b>13</b> |
| 8.1 FCC 90.205(a),(b) Power Limits .....                                                                                         | 13        |
| 8.2 FCC 2.1047 Modulation characteristic.....                                                                                    | 16        |
| 8.3 FCC 90.210(a) and (b) Emission limits, emission mask .....                                                                   | 20        |
| 8.4 FCC 90.210(a) Emission limits, conducted method .....                                                                        | 24        |
| 8.5 FCC 90.210(a) Emission limits, radiated method .....                                                                         | 28        |
| 8.6 FCC §90.213(a) Frequency stability .....                                                                                     | 31        |
| <b>Section 9. Block diagrams of test set-ups .....</b>                                                                           | <b>32</b> |
| 9.1 Radiated emissions set-up for frequencies below 1 GHz.....                                                                   | 32        |
| 9.2 Radiated emissions set-up for frequencies above 1 GHz.....                                                                   | 32        |
| 9.3 Frequency stability .....                                                                                                    | 33        |
| 9.4 Power limits, Modulation Characteristics, Emission limits, emission mask, bandwidth, Emission limits, conducted method ..... | 33        |

## Section 1. Report summary

---

### 1.1 Applicant and manufacturer

---

|                 |                                |
|-----------------|--------------------------------|
| Company name    | Barrett Communications Pty Ltd |
| Address         | 47 Discovery Drive, Bibra Lake |
| City            | Perth                          |
| Province/State  | Western Australia              |
| Postal/Zip code | 6163                           |
| Country         | Australia                      |

### 1.2 Test specifications

---

|                    |                                    |
|--------------------|------------------------------------|
| FCC 47 CFR Part 90 | Private Land Mobile Radio Services |
|--------------------|------------------------------------|

### 1.3 Test methods

---

|                  |                                                                                                   |
|------------------|---------------------------------------------------------------------------------------------------|
| ANSI C63.26:2015 | American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services |
|------------------|---------------------------------------------------------------------------------------------------|

### 1.4 Statement of compliance

---

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.5 Exclusions

---

None

### 1.6 Test report revision history

---

| Revision # | Details of changes made to test report |
|------------|----------------------------------------|
| REP021030  | Original report issued                 |

## Section 2. Summary of test results

---

### 2.1 FCC Part 90 test results

---

| Part         | Test description                  | Verdict  |
|--------------|-----------------------------------|----------|
| 90.205(a)(b) | Power limits                      | Pass     |
| 2.1047       | Modulation characteristics        | Reported |
| 90.209       | Bandwidth Limitations             | Reported |
| 90.210(a)    | Emission limits, emission mask    | Pass     |
| 90.210(a)    | Emission limits, conducted method | Pass     |
| 90.210(a)    | Emission limits, radiated method  | Pass     |
| 90.213(a)    | Frequency stability               | Pass     |

Notes: None

## Section 3. Equipment under test (EUT) details

---

### 3.1 Sample information

---

|                        |                  |
|------------------------|------------------|
| Receipt date           | October 10, 2023 |
| Nemko sample ID number | PRJ00453730001   |

### 3.2 EUT information

---

|               |                                 |
|---------------|---------------------------------|
| Product name  | SDR Transceiver                 |
| Model         | PRC-4090 System Docking Station |
| Serial number | 402412160                       |

### 3.3 Technical information

---

|                            |                                          |
|----------------------------|------------------------------------------|
| Operating band             | 1.5–30 MHz                               |
| Test frequencies           | 1.722, 16.1, and 27.86 MHz               |
| Modulation type            | J3E and H3E                              |
| Authorized bandwidth (99%) | 2.7 kHz (J3E), 3 kHz (H3E)               |
| Power requirements         | 24 Vdc                                   |
| Emission designator        | 2K70J3E, 3K00H3E                         |
| Antenna information        | Various antenna type based on the manual |

### 3.4 Product description and theory of operation

---

The PRC-4090 System Docking Station is an SDR based HF SSB transceiver with a frequency range of 1.705 to 30 MHz in transmit and 250 kHz to 30 MHz in receive. The Barrett PRC-4090 is designed using the latest technology enabling a physically small package with a full feature complement.

Designed to operate in the most arduous environments, as encountered in portable, off-road vehicles, vessels and aircraft environments, the Barrett PRC-4090 will provide many years of efficient and trouble free service.

The Barrett PRC-4090 supports features such as digital voice, data transmission and remote diagnostics as well as established features such as Selective Call (Selcall), direct dial telephone connection to base stations fitted with telephone interconnect systems (Telcall), GPS location, 2G and 3G ALE (Automatic Link Establishment) and frequency hopping. These features make the Barrett PRC- 4090 transceiver one of the most economical and versatile HF transceivers available today.

The Barrett PRC-4090 transceiver caters for increased use of HF data transmission for Internet email access and point-to-point data applications, by providing a comprehensive data modem interface port, high speed transmit-to-receive switching, a high stability frequency standard and an efficient cooling system option.

The Barrett PRC-4090 is operated by a smartphone-style touchscreen, full colour Control Handset. The handset integrates seamlessly into manpack, vehicle and base station installations when used with the cradle and cradle docking station. The streamlined design and unobtrusive size can easily mount to a vehicle dashboard or vessel helm.

The Barrett PRC-4090 transceiver can be controlled from all major mobile and desktop platforms. Full remote control is available via the Barrett PRC-4090 Remote Control app, providing unprecedented access to all transceiver functionality across all major platforms.

Teamed with other matching Barrett products which include antennas, power supplies, vehicle tracking packages and HF modems, the Barrett PRC-4090 transceiver becomes a powerful tool, providing solutions to many long distance communication requirements.

Operated 24 V DC supply, the transmitter is rated at 150 watt PEP (when connected to DC via the System Docking Station (SDS)) respectively in voice and data mode and is protected from over-voltage or reverse-voltage application.

Auxiliary features such as Selcall, Telcall, scanning, mute status, alarm system etc. can be individually enabled or disabled for every channel as required to suit your operation.

### 3.5 EUT exercise details

---

The EUT was programmed for the low, mid, and high channels

J3E modulation used 400 and 1800 Hz audio input tone

H3E modulation used 1500 Hz audio input tone

### 3.6 EUT setup diagram

---

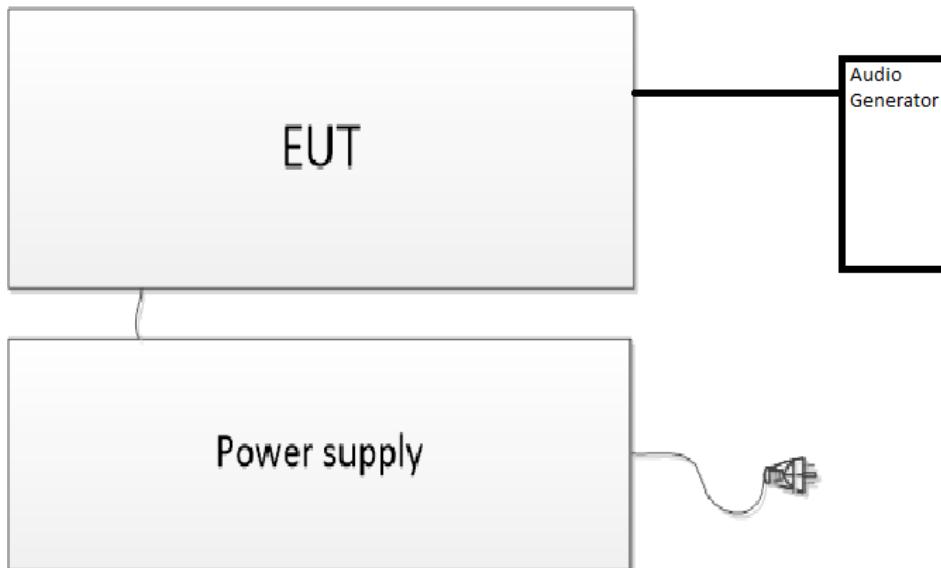



Figure 3.6-1: Setup diagram

### 3.7 EUT sub assemblies

---

Table 3.7-1: EUT sub assemblies

| Description         | Brand name | Model/Part number | Serial number |
|---------------------|------------|-------------------|---------------|
| Power supply 24 VDC | Barrett    | PRC-4022          | 402412150     |
| SDR Transceiver     | Barrett    | PRC-4090          | 402412160     |

### 3.8 EUT Support Equipment

---

Table 3.8-1: EUT support equipment

| Description     | Brand name | Model/Part number | Serial number |
|-----------------|------------|-------------------|---------------|
| Audio generator | Agilent    | 33500B            | N/A           |

## Section 4. Engineering considerations

---

### 4.1 Modifications incorporated in the EUT

---

There were no modifications performed to the EUT during this assessment.

### 4.2 Technical judgment

---

None

### 4.3 Deviations from laboratory tests procedures

---

No deviations were made from laboratory procedures.

## Section 5. Test conditions

---

### 5.1 Atmospheric conditions

---

|                   |               |
|-------------------|---------------|
| Temperature       | 15–30 °C      |
| Relative humidity | 20–75 %       |
| Air pressure      | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

### 5.2 Power supply range

---

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages  $\pm 5\%$ , for which the equipment was designed.

## Section 6. Measurement uncertainty

---

### 6.1 Uncertainty of measurement

---

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of  $K = 2$  with 95% certainty.

| Test name                         | Measurement uncertainty, dB |
|-----------------------------------|-----------------------------|
| All antenna port measurements     | 0.55                        |
| Conducted spurious emissions      | 1.13                        |
| Radiated spurious emissions       | 3.78                        |
| AC power line conducted emissions | 3.55                        |

## Section 7. Test equipment

---

### 7.1 Test equipment list

---

**Table 7.1-1: Equipment list**

| Equipment                         | Manufacturer    | Model no.      | Asset no. | Cal./Ver. cycle | Next cal./ver.    |
|-----------------------------------|-----------------|----------------|-----------|-----------------|-------------------|
| 3 m EMI test chamber              | TDK             | SAC-3          | FA002047  | 1 year          | January 19, 2024  |
| Flush mount turntable             | SUNAR           | FM2022         | FA003006  | —               | NCR               |
| Controller                        | SUNAR           | SC110V         | FA002976  | —               | NCR               |
| Antenna mast                      | SUNAR           | TLT2           | FA003007  | —               | NCR               |
| AC Power source                   | Chroma          |                | FA003020  | —               | NCR               |
| Receiver/spectrum analyzer        | Rohde & Schwarz | ESU 40         | FA002071  | 1 year          | March 2, 2024     |
| Bilog antenna (20–3000 MHz)       | Sunol           | JB3            | FA002108  | 1 year          | March 7, 2024     |
| Active loop antenna (0.01–30 MHz) | Com-Power       | AL-130         | FA002722  | 1 year          | April 3, 2024     |
| Spectrum analyzer                 | Rohde & Schwarz | FSW50          | FA002971  | 1 year          | December 31, 2023 |
| Temperature chamber               | Thermotron      | SM-16C         | FA001030  | 1 year          | January 24, 2024  |
| Audio Generator                   | Agilent         | 33500 B series | None      | N/A             | NCR               |
| Attenuator                        | Narda           | 776B-20        | FA001153  | —               | VOU               |
| Attenuator                        | Narda           | 769-20         | FA001394  | —               | VOU               |

Note: NCR - no calibration required, VOU - verify on use

## Section 8. Testing data

---

### 8.1 FCC 90.205(a),(b) Power Limits

---

#### 8.1.1 Definitions and limits

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation. Except where otherwise specifically provided for, the maximum power that will be authorized to applicants whose license applications for new stations are filed after August 18, 1995 is as follows:

- (a) *Below 25 MHz*. For single sideband operations (J3E emission), the maximum transmitter peak envelope power is 1000 watts.
- (b) *25-50 MHz*. The maximum transmitter output power is 300 watts.

#### 8.1.2 Test summary

---

|           |            |           |                   |
|-----------|------------|-----------|-------------------|
| Verdict   | Pass       | Test date | November 16, 2023 |
| Tested by | Kevin Rose |           |                   |

#### 8.1.3 Observations, settings and special notes

---

##### Test conditions

|             |         |
|-------------|---------|
| Audio input | 1500 Hz |
| Modulation  | H3E     |
| OBW         | 3.0 kHz |

|             |                    |
|-------------|--------------------|
| Audio input | 400 Hz and 1800 Hz |
| Modulation  | J3E                |
| OBW         | 2.7 kHz            |

##### Test receiver settings:

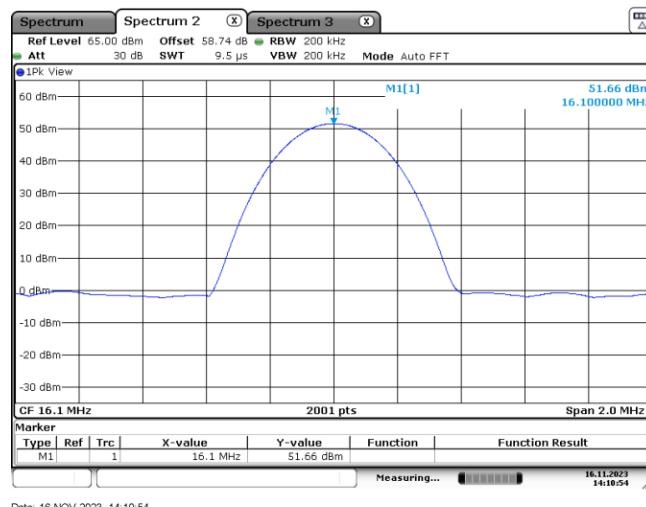
|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | >OBW     |
| Video bandwidth      | =>RBW    |
| Trace mode           | Max Hold |
| Measurement time     | Auto     |

#### 8.1.4 Test data

**Table 8.1-1: Output power results 150 W system operation J3E**

| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| J3E        | 1.722          | 50.97                | 60.00      | 9.03       |
| J3E        | 16.1           | 51.61                | 60.00      | 8.39       |
| J3E        | 27.86          | 51.10                | 54.77      | 3.67       |

**Table 8.1-2: Output power results 125 W system operation J3E**


| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| J3E        | 1.722          | 50.58                | 60.00      | 9.42       |
| J3E        | 16.1           | 51.05                | 60.00      | 8.95       |
| J3E        | 27.86          | 51.19                | 54.77      | 3.58       |

**Table 8.1-3: Output power results 30 W system operation J3E**

| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| J3E        | 1.722          | 44.72                | 60.00      | 15.28      |
| J3E        | 16.1           | 45.20                | 60.00      | 14.8       |
| J3E        | 27.86          | 44.87                | 54.77      | 9.9        |

**Table 8.1-4: Output power results 10 W system operation J3E**

| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| J3E        | 1.722          | 40.33                | 60.00      | 19.67      |
| J3E        | 16.1           | 40.66                | 60.00      | 19.34      |
| J3E        | 27.86          | 40.33                | 54.77      | 14.44      |



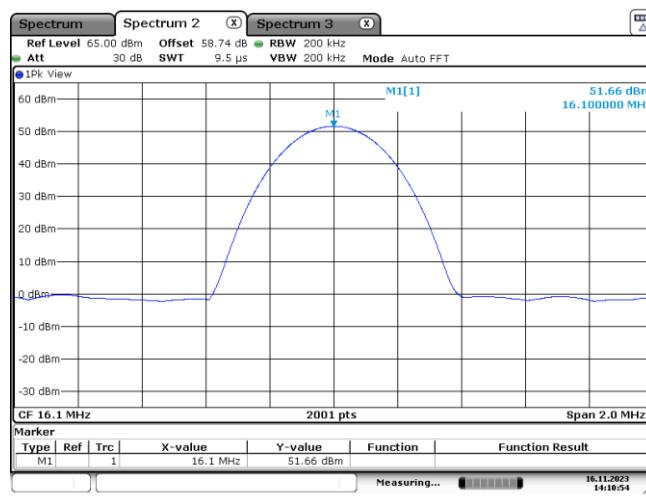
**Figure 8.1-1: J3E modulation, output power Example**

Test data continued

**Table 8.1-5: Output power results 150 W system operation H3E**

| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| H3E        | 1.722          | 51.57                | 60.00      | 8.43       |
| H3E        | 16.10          | 51.66                | 60.00      | 8.34       |
| H3E        | 27.86          | 51.34                | 54.77      | 3.43       |

**Table 8.1-6: Output power results 125 W system operation H3E**


| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| H3E        | 1.722          | 50.52                | 60.00      | 9.48       |
| H3E        | 16.10          | 51.05                | 60.00      | 8.95       |
| H3E        | 27.86          | 51.18                | 54.77      | 3.59       |

**Table 8.1-7: Output power results 30 W system operation H3E**

| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| H3E        | 1.722          | 44.72                | 60.00      | 15.28      |
| H3E        | 16.10          | 45.20                | 60.00      | 14.8       |
| H3E        | 27.86          | 45.10                | 54.77      | 9.67       |

**Table 8.1-8: Output power results 10 W system operation H3E**

| Modulation | Frequency, MHz | RF output power, dBm | Limit, dBm | Margin, dB |
|------------|----------------|----------------------|------------|------------|
| H3E        | 1.722          | 40.23                | 60.00      | 19.77      |
| H3E        | 16.10          | 40.67                | 60.00      | 19.33      |
| H3E        | 27.86          | 40.33                | 54.77      | 14.44      |



**Figure 8.1-2: H3E modulation, output power Example**

## 8.2 FCC 2.1047 Modulation characteristic

---

### 8.2.1 Definitions and limits

---

§2.1047 Measurements required: Modulation characteristics.

(a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitries installed between the modulation limiter and the modulated stage shall be submitted.

(c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.

### 8.2.2 Test summary

---

|           |            |           |                   |
|-----------|------------|-----------|-------------------|
| Verdict   | Pass       | Test date | November 16, 2023 |
| Tested by | Kevin Rose |           |                   |

### 8.2.3 Observations, settings and special notes

---

None

|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 100 kHz  |
| Video bandwidth      | RBW x 3  |
| Trace mode           | Max Hold |

8.2.1 Test data

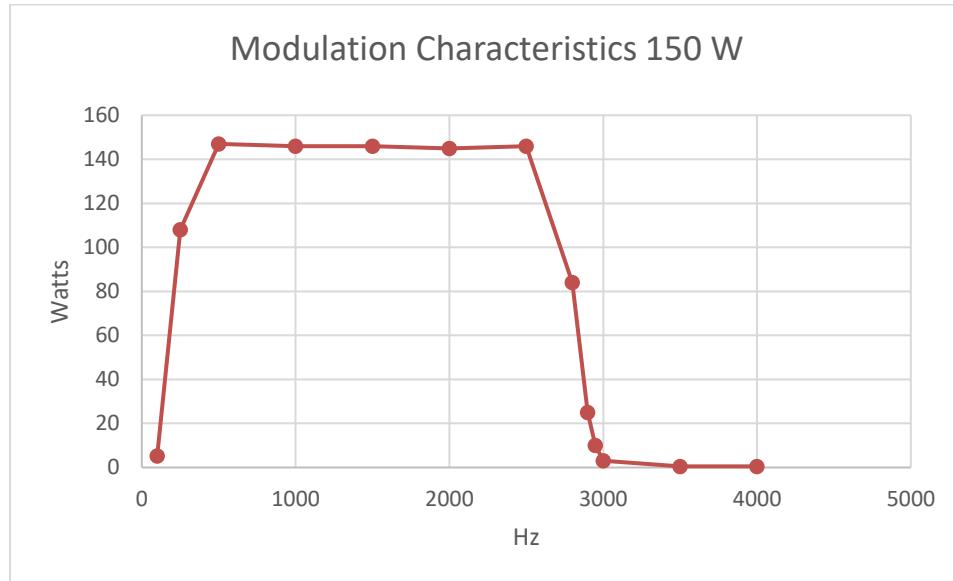



Figure 8.2-1: Modulation Characteristic Audio Frequency Response

Table 8.2-1: Modulation characteristics, frequency response results 150 Watts

| Input Frequency, Hz | Output power, Watts |
|---------------------|---------------------|
| 100                 | 5.25                |
| 250                 | 108                 |
| 500                 | 147                 |
| 1000                | 146                 |
| 1500                | 146                 |
| 2000                | 145                 |
| 2500                | 146                 |
| 2800                | 84                  |
| 2900                | 25                  |
| 2950                | 10                  |
| 3000                | 3                   |
| 3500                | 0.5                 |
| 4000                | 0.5                 |
| 5000                | 0.5                 |

Note: the input level we reduced to see the true audio response. The EUT shuts down when it exceeds the limit.

Table 8.2-2: Modulation characteristics, modulation limiting results 150 Watts

| 1.722 MHz          |                     | 16.1 MHz           |                     | 27.86 MHz          |                     |
|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|
| Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts |
| 0.1                | 1.72                | 0.1                | 0.3                 | 0.1                | 0.7                 |
| 0.2                | 5.6                 | 0.2                | 1.5                 | 0.2                | 2.9                 |
| 0.3                | 13                  | 0.3                | 3.7                 | 0.3                | 6.5                 |
| 0.4                | 26                  | 0.4                | 7.4                 | 0.4                | 11.3                |
| 0.5                | 43                  | 0.5                | 12.3                | 0.5                | 17                  |
| 0.6                | 68                  | 0.6                | 19                  | 0.6                | 24                  |
| 0.7                | 100                 | 0.7                | 30                  | 0.7                | 33                  |
| 0.8                | 135                 | 0.8                | 44                  | 0.8                | 44                  |
| 0.9                | 150                 | 0.9                | 57                  | 0.9                | 54                  |
| 1                  | 150                 | 1                  | 70                  | 1                  | 64                  |
| 1.1                | 151                 | 1.1                | 84                  | 1.1                | 75                  |
| 1.5                | 150                 | 1.2                | 100                 | 1.2                | 87                  |
|                    |                     | 1.3                | 118                 | 1.3                | 100                 |
|                    |                     | 1.4                | 134                 | 1.4                | 115                 |
|                    |                     | 1.5                | 147                 | 1.5                | 129                 |
|                    |                     | 1.6                | 148                 | 1.6                | 132                 |
|                    |                     | 1.7                | 148                 | 1.7                | 139                 |
|                    |                     | 1.8                | 148                 | 1.8                | 139                 |
|                    |                     | 1.9                | 148                 | 1.9                | 139                 |
|                    |                     | 2                  | 149                 | 2                  | 139                 |

Table 8.2-3: Modulation characteristics, modulation limiting results 125 Watts

| 1.722 MHz          |                     | 16.1 MHz           |                     | 27.86 MHz          |                     |
|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|
| Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts |
| 0.1                | 0.4                 | 0.1                | 1.6                 | 0.1                | 2.3                 |
| 0.2                | 2                   | 0.2                | 7                   | 0.2                | 9                   |
| 0.3                | 6.8                 | 0.3                | 18                  | 0.3                | 19                  |
| 0.4                | 16                  | 0.4                | 37                  | 0.4                | 33                  |
| 0.5                | 30                  | 0.5                | 61                  | 0.5                | 50                  |
| 0.6                | 53                  | 0.6                | 92                  | 0.6                | 72                  |
| 0.7                | 83                  | 0.7                | 122                 | 0.7                | 97                  |
| 0.8                | 116                 | 0.8                | 127                 | 0.8                | 114                 |
| 0.9                | 126                 | 0.9                | 127                 | 0.9                | 115                 |
| 1                  | 126                 | 1                  | 127                 | 1                  | 115                 |
| 1.1                | 126                 | 1.1                | 127                 | 1.1                | 115                 |
| 1.5                | 126                 | 1.2                | 127                 | 1.2                | 115                 |
|                    |                     | 1.3                | 127                 | 1.3                | 115                 |
|                    |                     | 1.4                | 127                 | 1.4                | 115                 |
|                    |                     | 1.5                | 127                 | 1.5                | 115                 |
|                    |                     | 1.6                | 127                 | 1.6                | 115                 |
|                    |                     | 1.7                | 127                 | 1.7                | 115                 |
|                    |                     | 1.8                | 127                 | 1.8                | 115                 |
|                    |                     | 1.9                | 127                 | 1.9                | 115                 |
|                    |                     | 2                  | 127                 | 2                  | 115                 |

Table 8.2-4: Modulation characteristics, modulation limiting results 30 Watts

| 1.722 MHz          |                     | 16.1 MHz           |                     | 27.86 MHz          |                     |
|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|
| Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts |
| 0.1                | 0.2                 | 0.1                | 0.5                 | 0.1                | 0.5                 |
| 0.2                | 0.9                 | 0.2                | 2                   | 0.2                | 2                   |
| 0.3                | 2                   | 0.3                | 4.5                 | 0.3                | 4.5                 |
| 0.4                | 4                   | 0.4                | 8                   | 0.4                | 7.5                 |
| 0.5                | 0.6                 | 0.5                | 12.4                | 0.5                | 11                  |
| 0.6                | 10                  | 0.6                | 18.5                | 0.6                | 15.4                |
| 0.7                | 15                  | 0.7                | 26                  | 0.7                | 21                  |
| 0.8                | 22                  | 0.8                | 33                  | 0.8                | 27.5                |
| 0.9                | 29.9                | 0.9                | 33                  | 0.9                | 31.3                |
| 1                  | 30                  | 1                  | 33                  | 1                  | 31.3                |
| 1.1                | 30                  | 1.1                | 33                  | 1.1                | 31.3                |
| 1.5                | 30                  | 1.2                | 33                  | 1.2                | 31.3                |
|                    | 1.3                 | 33                 | 1.3                 | 31.3               |                     |
|                    | 1.4                 | 33                 | 1.4                 | 31.3               |                     |
|                    | 1.5                 | 33                 | 1.5                 | 31.3               |                     |
|                    | 1.6                 | 33                 | 1.6                 | 31.3               |                     |
|                    | 1.7                 | 33                 | 1.7                 | 31.3               |                     |
|                    | 1.8                 | 33                 | 1.8                 | 31.3               |                     |
|                    | 1.9                 | 33                 | 1.9                 | 31.3               |                     |
|                    | 2                   | 33                 | 2                   | 31.3               |                     |

Table 8.2-5: Modulation characteristics, modulation limiting results 10 Watts

| 1.722 MHz          |                     | 16.1 MHz           |                     | 27.86 MHz          |                     |
|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|
| Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts | Input Audio, V p-p | Output power, Watts |
| 0.1                | 0.2                 | 0.1                | 0.5                 | 0.1                | 0.5                 |
| 0.2                | 1                   | 0.2                | 2.1                 | 0.2                | 1.8                 |
| 0.3                | 2.5                 | 0.3                | 4.8                 | 0.3                | 4.1                 |
| 0.4                | 4.5                 | 0.4                | 8.4                 | 0.4                | 6.9                 |
| 0.5                | 7.3                 | 0.5                | 11.8                | 0.5                | 10.24               |
| 0.6                | 10.5                | 0.6                | 11.5                | 0.6                | 10.7                |
| 0.7                | 10                  | 0.7                | 11.5                | 0.7                | 10.8                |
| 0.8                | 10                  | 0.8                | 11.5                | 0.8                | 10.8                |
| 0.9                | 10.3                | 0.9                | 11.5                | 0.9                | 10.8                |
| 1                  | 10.3                | 1                  | 11.5                | 1                  | 10.8                |
| 1.1                | 10.4                | 1.1                | 11.5                | 1.1                | 10.8                |
| 1.5                | 10.4                | 1.2                | 11.5                | 1.2                | 10.8                |
|                    | 1.3                 | 11.5               | 1.3                 | 10.8               |                     |
|                    | 1.4                 | 11.5               | 1.4                 | 10.8               |                     |
|                    | 1.5                 | 11.5               | 1.5                 | 10.8               |                     |
|                    | 1.6                 | 11.5               | 1.6                 | 10.8               |                     |
|                    | 1.7                 | 11.5               | 1.7                 | 10.8               |                     |
|                    | 1.8                 | 11.5               | 1.8                 | 10.8               |                     |
|                    | 1.9                 | 11.5               | 1.9                 | 10.8               |                     |
|                    | 2                   | 11.5               | 2                   | 10.8               |                     |

## 8.3 FCC 90.210(a) and (b) Emission limits, emission mask

### 8.3.1 Definitions and limits

(a) Emission Mask A. For transmitters utilizing J3E emission, the carrier must be at least 40 dB below the peak envelope power and the power of emissions must be reduced below the output power (P in watts) of the transmitter as follows:

- 1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 150 percent of the authorized bandwidth: At least 25 dB.
- 2) On any frequency removed from the assigned frequency by more than 150 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- 3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least  $43 + 10 \log P$  dB.

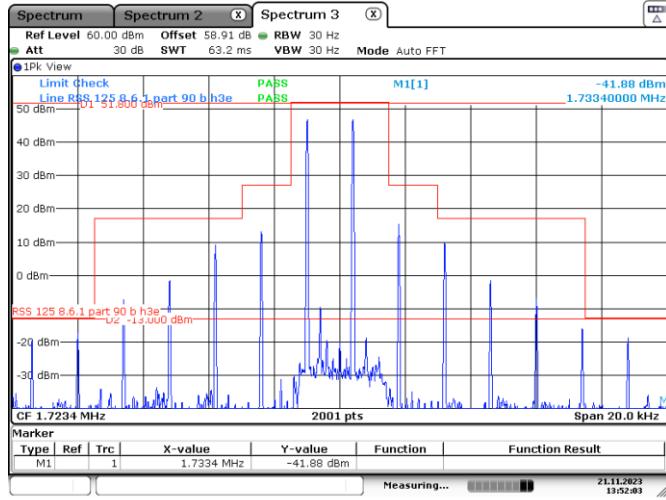
(b) Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- 2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 190 percent of the authorized bandwidth: At least 35 dB.
- 3) On any frequency removed from the assigned frequency by more than 190 percent of the authorized bandwidth: At least  $43 + 10 \log P$  dB.

### 8.3.2 Test summary

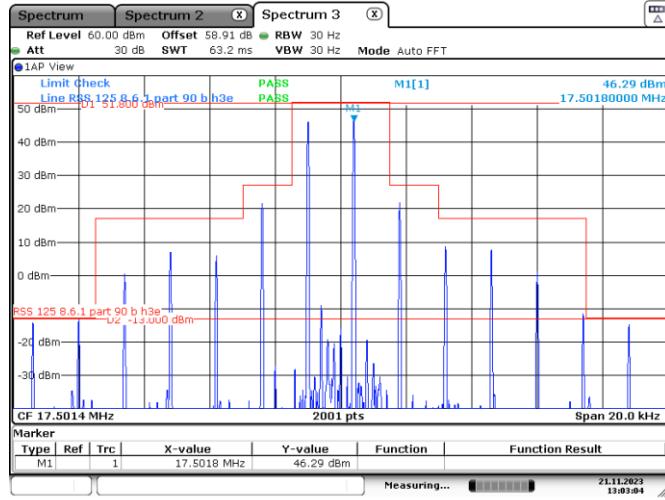
|         |      |           |            |           |                   |
|---------|------|-----------|------------|-----------|-------------------|
| Verdict | Pass | Tested by | Kevin Rose | Test date | November 16, 2023 |
|---------|------|-----------|------------|-----------|-------------------|

### 8.3.3 Observations, settings and special notes


The mask B that is more stringent than the mask A and therefore it was used for both modulations. Mask offsets were calculated using 2.7 kHz and 3 kHz authorized bandwidths.

#### Test conditions

|                      |                    |
|----------------------|--------------------|
| Audio input          | 1500 Hz            |
| Modulation           | H3E                |
| Audio input          | 400 Hz and 1800 Hz |
| Modulation           | J3E                |
| Detector mode        | Peak               |
| Resolution bandwidth | 30 Hz              |
| Video bandwidth      | = >RBW             |
| Trace mode           | Max Hold           |


Note: the EUT has an Audio low-pass filter

### 8.3.4 Test data



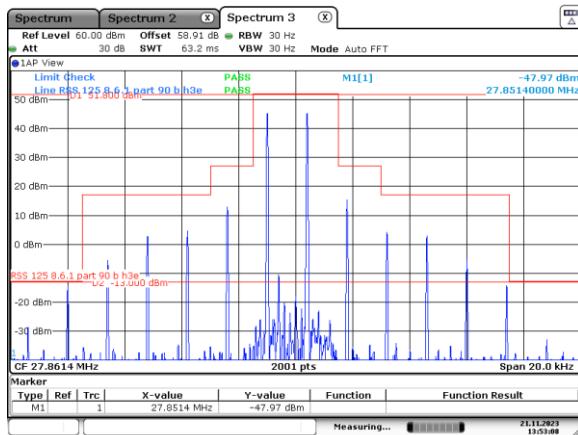
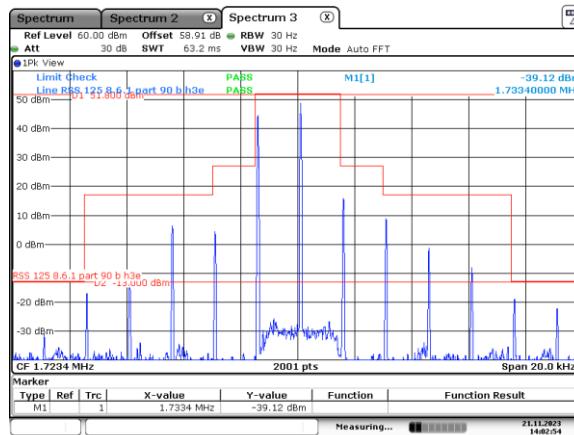

Date: 21.NOV.2023 13:52:04

Figure 8.3-1: Low channel Mask 150W 400 Hz and 1800 Hz

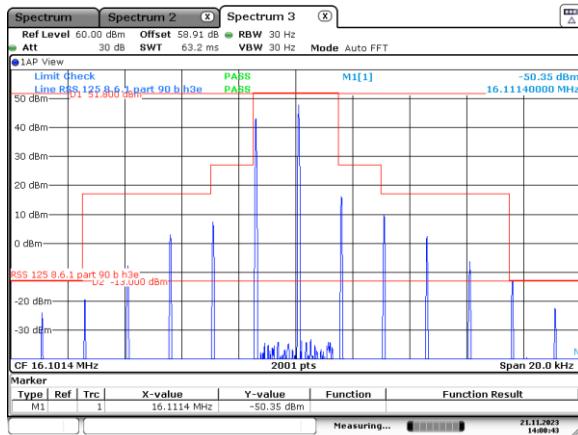


Date: 21.NOV.2023 13:03:05


Figure 8.3-2: Mid channel Mask 150W 400 Hz and 1800 Hz



Date: 21.NOV.2023 13:53:08


Figure 8.3-3: High channel Mask 150W 400 Hz and 1800 Hz

Note: Mask B was used



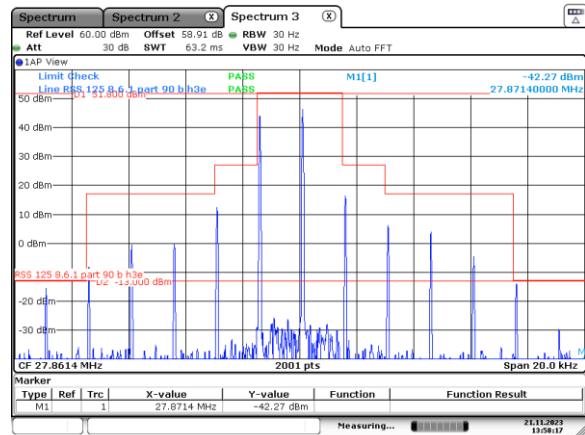

Date: 21.NOV.2023 14:02:55

Figure 8.3-4: Low channel Mask 150W 1500 Hz



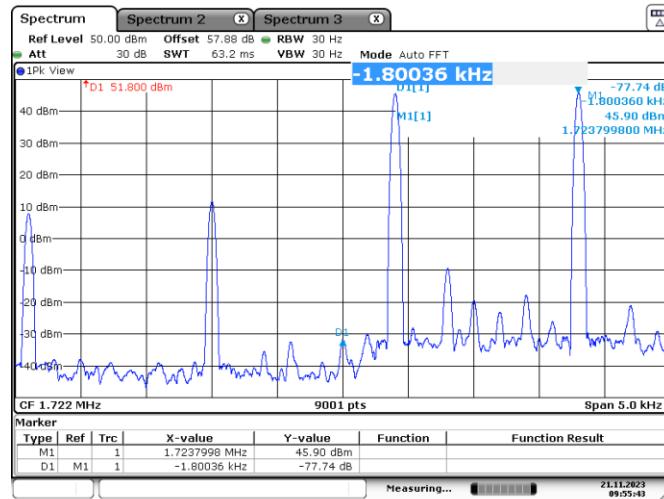
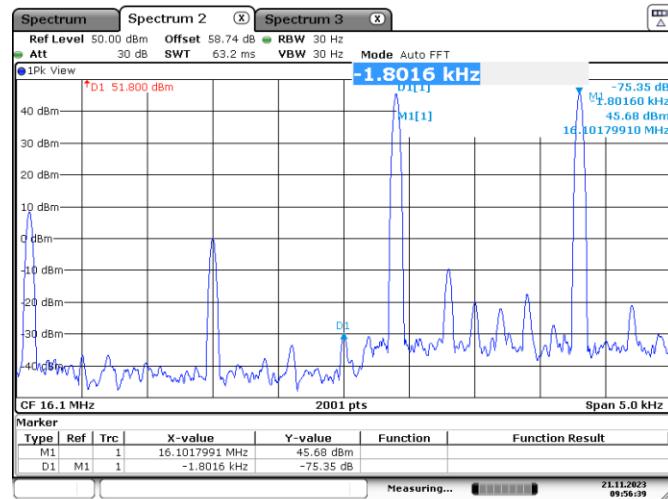

Date: 21.NOV.2023 14:00:43

Figure 8.3-5: Mid channel Mask 150W 1500 Hz



Date: 21.NOV.2023 13:58:18


Figure 8.3-6: High channel Mask 150W 1500 Hz



Date: 21.NOV.2023 09:55:43

Figure 8.3-7: Low channel 150W 400 Hz and 1800 Hz

40 dB Carrier suppression



Date: 21.NOV.2023 09:56:39

Figure 8.3-8: Mid channel 150W 400 Hz and 1800 Hz

40 dB Carrier suppression

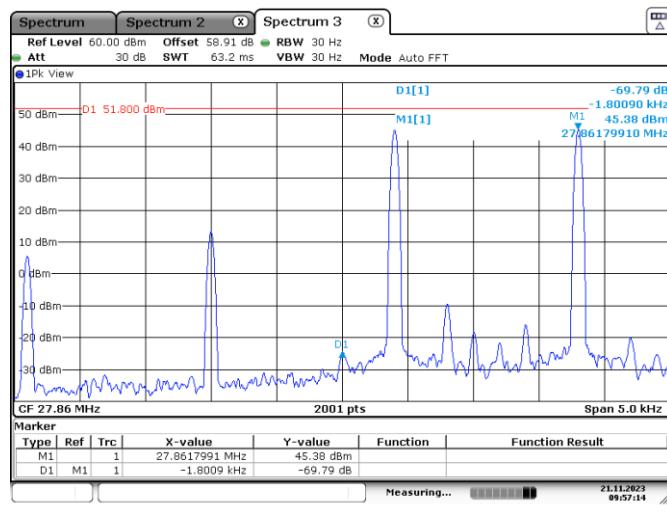



Figure 8.3-9: High channel 150W 400 Hz and 1800 Hz

Table 8.3-1: 40 dB Carrier suppression

| Channel | Carrier suppression, dBc | Minimum Limit, dBc | Margin, dB |
|---------|--------------------------|--------------------|------------|
| Low     | 77.74                    | 40                 | 37.74      |
| Mid     | 75.35                    | 40                 | 35.35      |
| High    | 67.79                    | 40                 | 27.79      |

## 8.4 FCC 90.210(a) Emission limits, conducted method

### 8.4.1 Definitions and limits

(a) Emission Mask A and Mask B: On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log P dB.

### 8.4.2 Test summary

|           |            |           |                   |
|-----------|------------|-----------|-------------------|
| Verdict   | Pass       | Test date | November 16, 2023 |
| Tested by | Kevin Rose |           |                   |

### 8.4.3 Observations, settings and special notes

#### Test conditions

|             |         |
|-------------|---------|
| Audio input | 1500 Hz |
| Modulation  | H3E     |

|             |                    |
|-------------|--------------------|
| Audio input | 400 Hz and 1800 Hz |
| Modulation  | J3E                |

#### Below 30 MHz

|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 10 kHz   |
| Video bandwidth      | = >RBW   |
| Trace mode           | Max Hold |

#### Above 30 MHz

|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 100 kHz  |
| Video bandwidth      | = >RBW   |
| Trace mode           | Max Hold |

#### 8.4.1 Test data

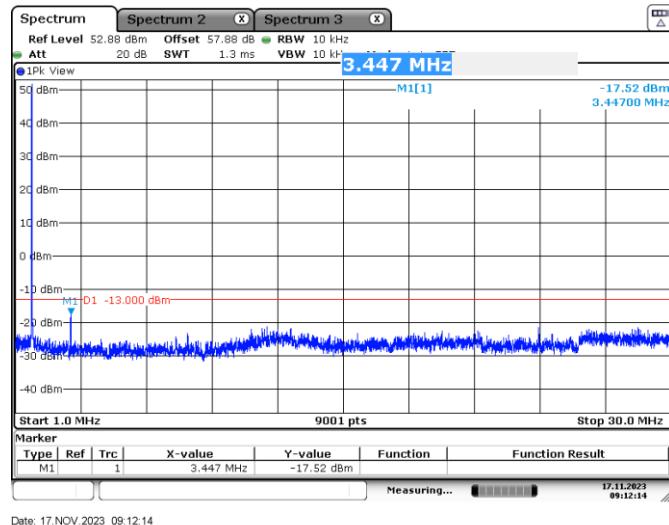



Figure 8.4-1: Low channel 1.722 MHz, H3E modulation, Conducted Spurious

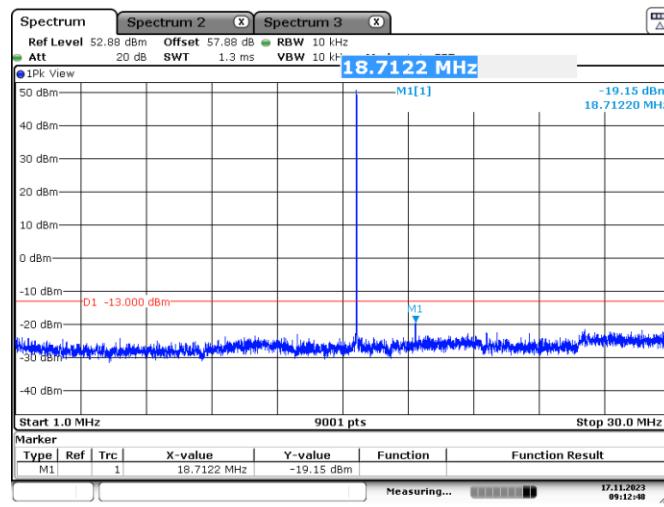



Figure 8.4-2: Mid channel 16.1 MHz, H3E modulation, Conducted Spurious

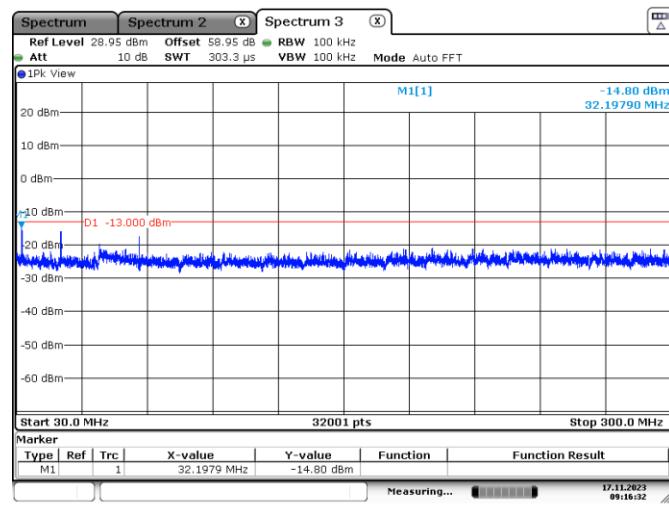
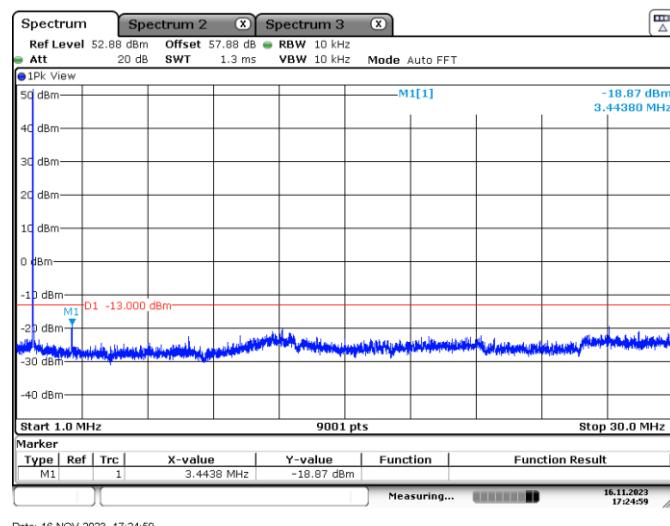
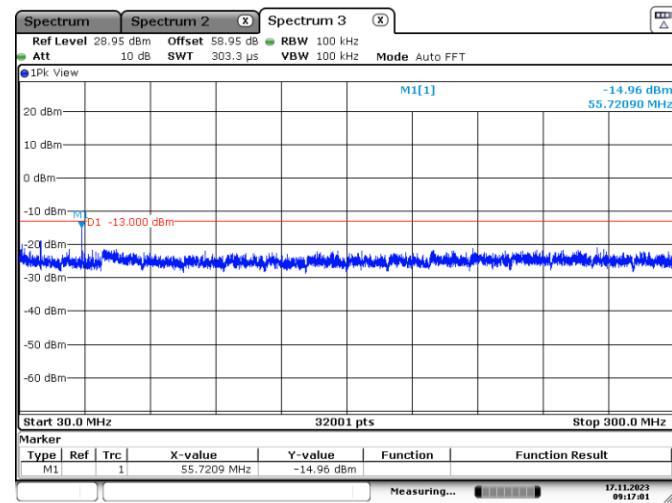
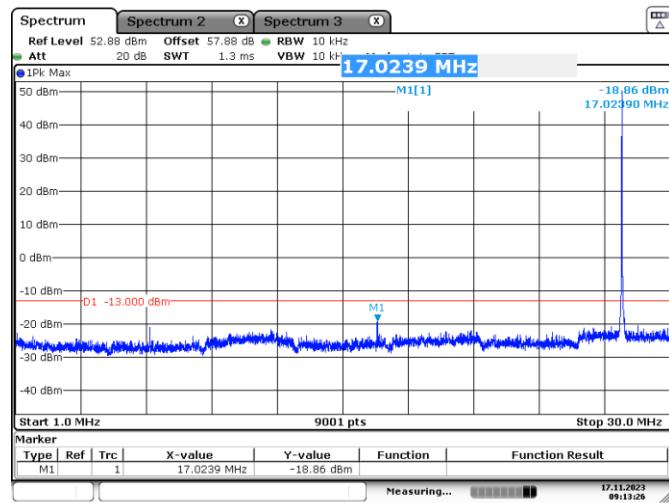






Figure 8.4-3: Mid channel 16.1 MHz, H3E modulation, Conducted Spurious



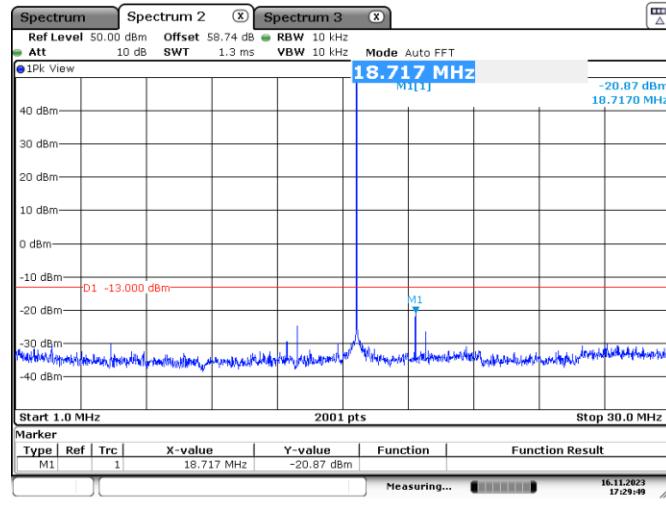



Figure 8.4-7: Mid channel 16.1 MHz, J3E modulation, Conducted Spurious

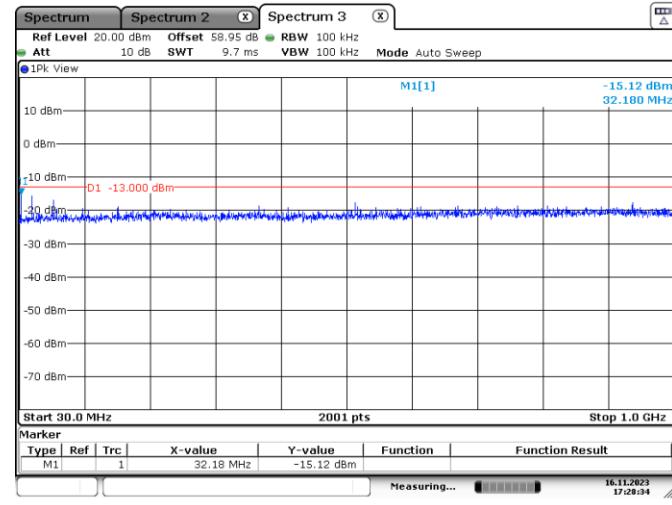



Figure 8.4-8: Mid channel 16.1 MHz, J3E modulation, Conducted Spurious

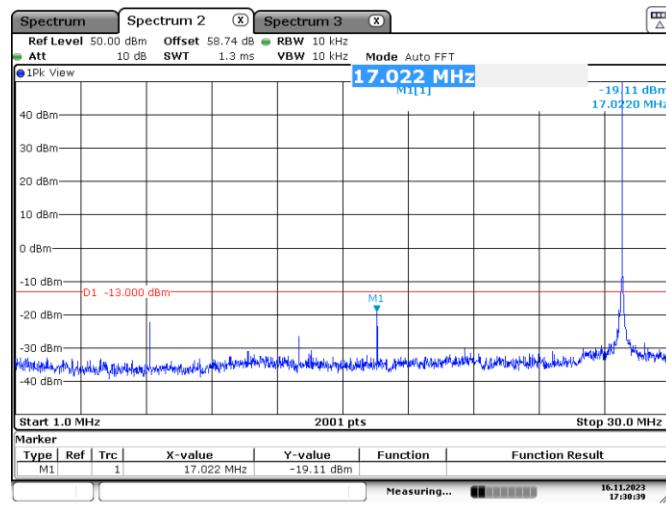



Figure 8.4-9: High channel 27.86 MHz, J3E modulation, Conducted Spurious

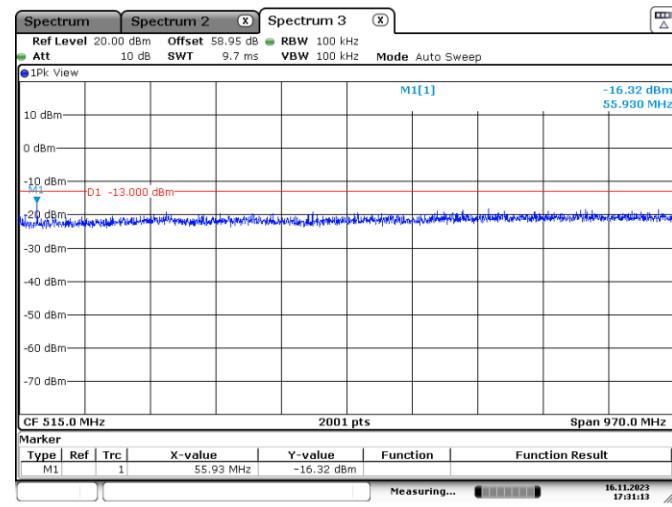



Figure 8.4-10: High channel 27.86 MHz, J3E modulation, Conducted Spurious

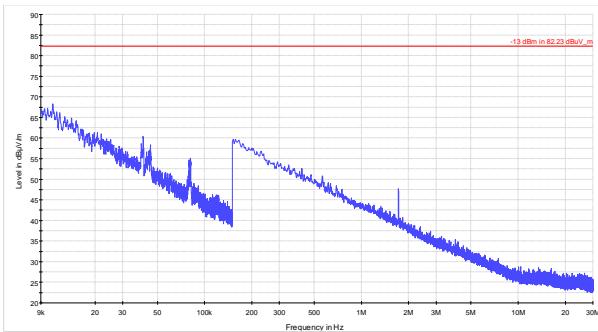
## 8.5 FCC 90.210(a) Emission limits, radiated method

### 8.5.1 Definitions and limits

(a) Emission Mask A and Mask B: On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log P dB.

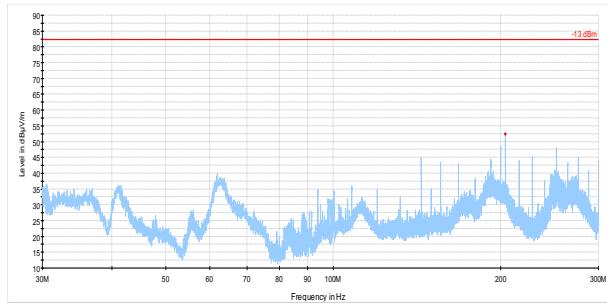
#### Test conditions

|             |                                                                                          |
|-------------|------------------------------------------------------------------------------------------|
| Audio input | 1500 Hz                                                                                  |
| Modulation  | H3E (according to TCB test plan only H3E representative modulation was used for testing) |


Spectrum analyzer settings below 30 MHz:

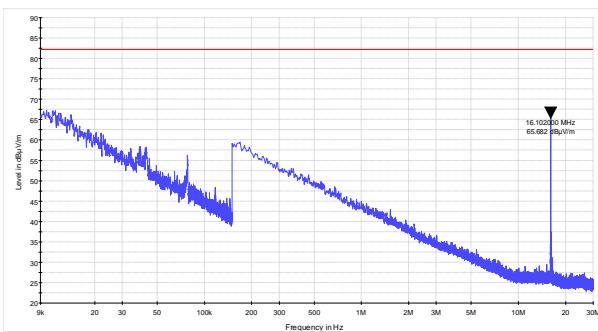
|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 10 kHz   |
| Video bandwidth      | 10 kHz   |
| Trace mode           | Max Hold |

Spectrum analyzer settings above 30 MHz:


|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 100 kHz  |
| Video bandwidth      | 100 kHz  |
| Trace mode           | Max Hold |

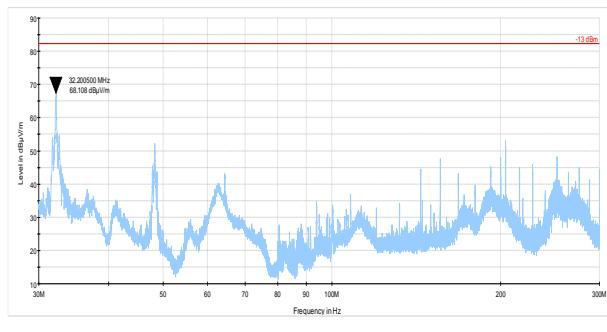
### 8.5.1 Test data




Barrett 4090 Base station REscan low channel TX 9 kHz to 30 MHz  
 AVG\_MAXH  
 PK<sub>c</sub>\_MAXH  
 <13 dBm in 82.23 dBuV/m

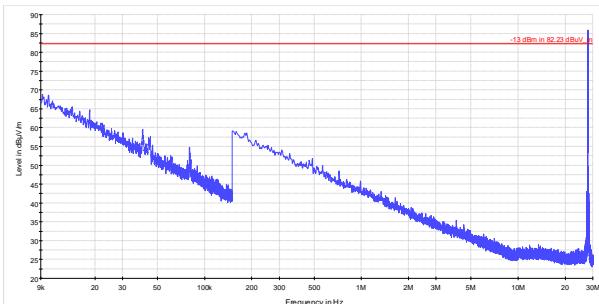
**Figure 8.5-1: Low channel Radiated Spurious**




Barrett 4090 Base station REscan low channel TX 30-1000 MHz  
 PrevResult\_Pk<sub>c</sub>  
 Critical\_Freq\_Pk<sub>c</sub>  
 FinalResult\_Qk<sub>c</sub>  
 -13 dBm

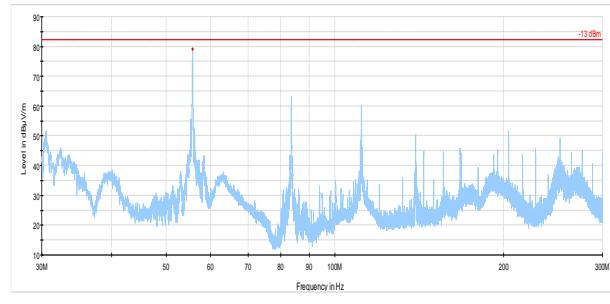
**Figure 8.5-2: Low channel Radiated Spurious**




Barrett 4090 Base station REscan mid channel TX 9 kHz to 30 MHz  
 AVG\_MAXH  
 PK<sub>c</sub>\_MAXH  
 <13 dBm in 82.23 dBuV/m

**Figure 8.5-3: Mid channel Radiated Spurious**




Barrett 4090 Base station REscan mid channel TX 30-300 MHz  
 PrevResult\_Pk<sub>c</sub>  
 Critical\_Freq\_Pk<sub>c</sub>  
 FinalResult\_Qk<sub>c</sub>  
 -13 dBm

**Figure 8.5-4: Mid channel Radiated Spurious**



Barrett 4090 Base station REscan High channel TX 9 kHz to 30 MHz  
AVG\_MAXH  
PK1\_MAXH  
-13 dBm in 82.21 dBuV/m

Figure 8.5-5: High channel Radiated Spurious



Barrett 4090 Base station REscan high channel TX 30-300 MHz  
Prev\_Results\_PK+  
Critical\_Freq\_PK+  
Final\_Results\_QK  
-13 dBm

Figure 8.5-6: High channel Radiated Spurious

## 8.6 FCC §90.213(a) Frequency stability

### 8.6.1 Definitions and limits

**FCC:**

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table:

**Table 8.6-1: Minimum frequency stability**

| Frequency range (MHz) | Fixed and base stations ( $\pm$ ppm) | Over 2 watts output power | Mobile stations ( $\pm$ ppm)<br>2 watts or less output power |
|-----------------------|--------------------------------------|---------------------------|--------------------------------------------------------------|
| Below 25              | <sup>1, 2, 3</sup> 100               | 100                       | 200                                                          |
| 25–50                 | 20                                   | 20                        | 50                                                           |

<sup>1</sup>Fixed and base stations with over 200 watts transmitter power must have a frequency stability of 50 ppm except for equipment used in the Public Safety Pool where the frequency stability is 100 ppm.

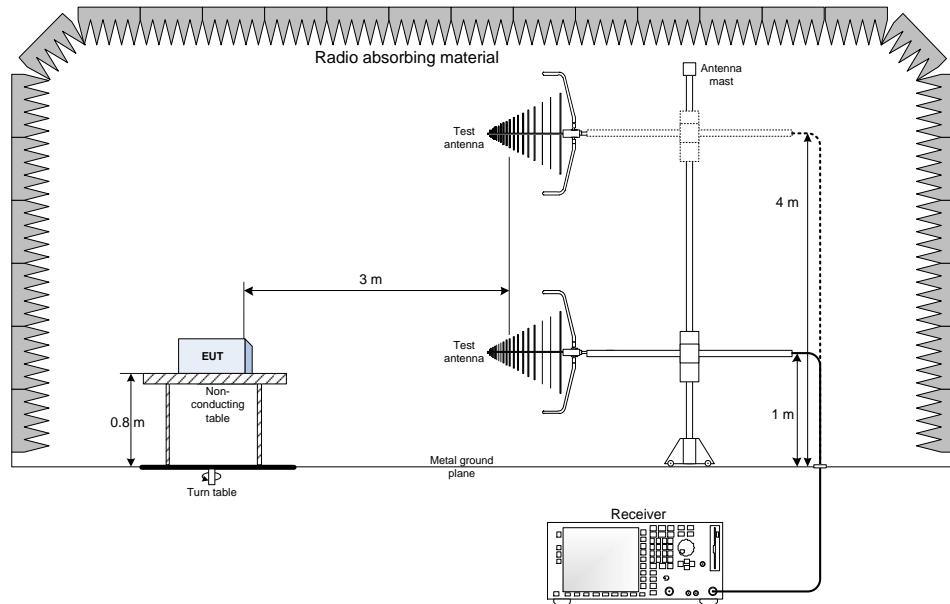
<sup>2</sup>For single sideband operations below 25 MHz, the carrier frequency must be maintained within 50 Hz of the authorized carrier frequency.

<sup>3</sup>Travelers information station transmitters operating from 530-1700 kHz and transmitters exceeding 200 watts peak envelope power used for disaster communications and long distance circuit operations pursuant to §§90.242 and 90.264 must maintain the carrier frequency to within 20 Hz of the authorized frequency.

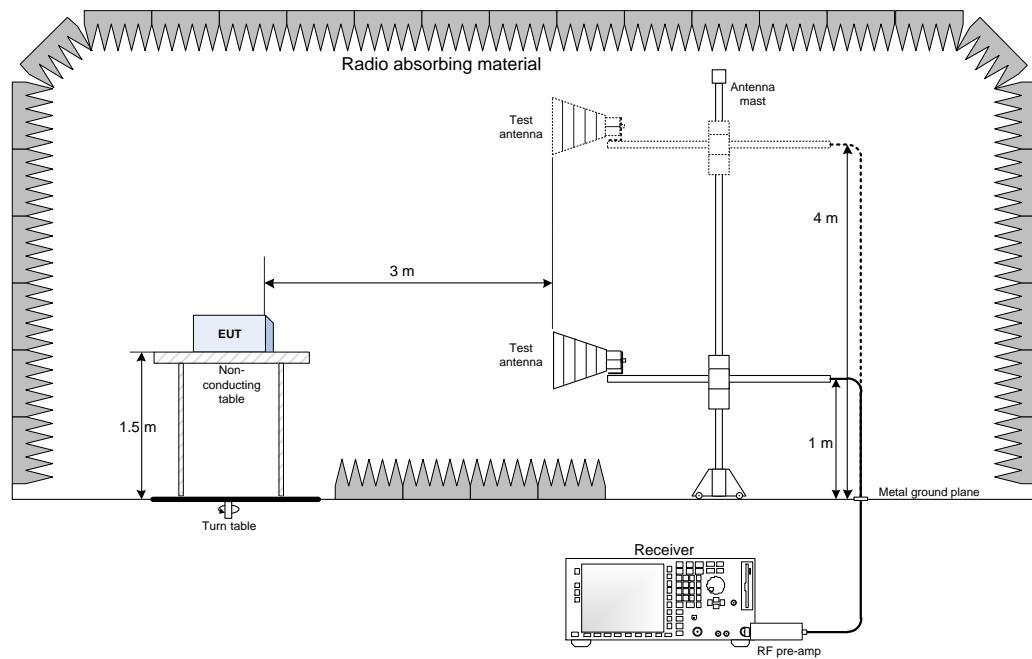
### 8.6.1 Test summary

|           |            |           |                   |
|-----------|------------|-----------|-------------------|
| Verdict   | Pass       |           |                   |
| Tested by | Kevin Rose | Test date | December 13, 2023 |

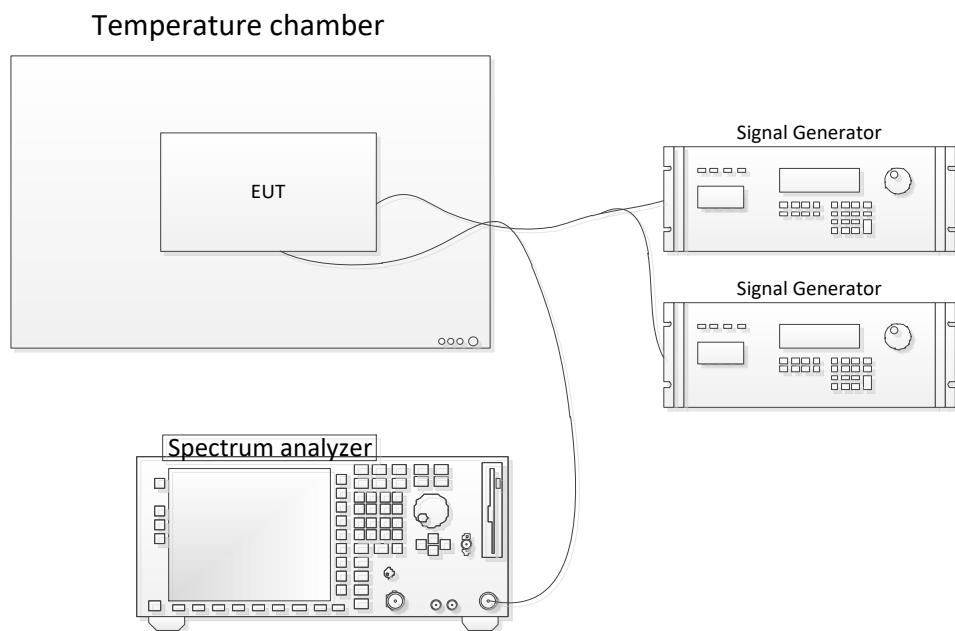
### 8.6.2 Observations, settings and special notes


1500 Hz tone was used during testing

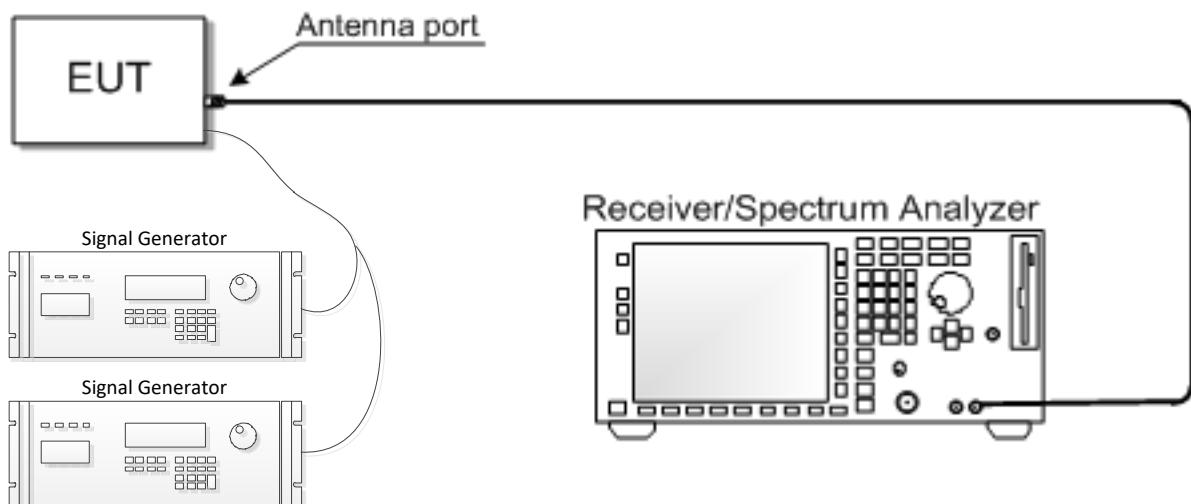
**Table 8.6-2: Frequency drift measurement FCC Part 90.213(a) results**


| Test conditions | Frequency, MHz | Drift, Hz | Limit, Hz |
|-----------------|----------------|-----------|-----------|
| +50 °C, Nominal | 16.101796      | 6         | 50 Hz     |
| +40 °C, Nominal | 16.101797      | -4        | 50 Hz     |
| +30 °C, Nominal | 16.101798      | -3        | 50 Hz     |
| +20 °C, +15 %   | 16.101802      | 0         | 50 Hz     |
| +20 °C, Nominal | 16.101802      |           | Reference |
| +20 °C, -15 %   | 16.101802      | 0         | 50 Hz     |
| +10 °C, Nominal | 16.101806      | -4        | 50 Hz     |
| 0 °C, Nominal   | 16.101806      | -4        | 50 Hz     |
| -10 °C, Nominal | 16.101806      | -4        | 50 Hz     |
| -20 °C, Nominal | 16.101807      | -5        | 50 Hz     |
| -30 °C, Nominal | 16.101807      | -5        | 50 Hz     |

## Section 9. Block diagrams of test set-ups


### 9.1 Radiated emissions set-up for frequencies below 1 GHz




### 9.2 Radiated emissions set-up for frequencies above 1 GHz



### 9.3 Frequency stability



### 9.4 Power limits, Modulation Characteristics, Emission limits, emission mask, bandwidth, Emission limits, conducted method

