

## **FCC CERTIFICATION TEST REPORT**

for

Logis-Tech, Inc.  
5775 Barclay Drive  
Suite 4  
Alexandria, VA 22315

**FCC ID: OVU-LTI-A-0100**

10 May 2000

**WLL PROJECT #: 5263X**

*This report may not be reproduced, except in full, without the prior written consent of Washington Laboratories, Ltd.*

# TABLE OF CONTENTS

## STATEMENT OF QUALIFICATIONS

|            |                                                  |          |
|------------|--------------------------------------------------|----------|
| <b>1.0</b> | <b>INTRODUCTION</b>                              | <b>1</b> |
| 1.1        | SUMMARY                                          | 1        |
| <b>2.0</b> | <b>DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)</b> | <b>1</b> |
| 2.1        | ON-BOARD OSCILLATORS                             | 1        |
| <b>3.0</b> | <b>TEST CONFIGURATION</b>                        | <b>2</b> |
| 3.1        | TESTING ALGORITHM                                | 2        |
| 3.2        | CONDUCTED EMISSIONS TESTING                      | 2        |
| 3.3        | RADIATED EMISSIONS TESTING                       | 2        |
| 3.3.1      | <i>Radiated Data Reduction and Reporting</i>     | 2        |

## TABLES

|          |                                          |
|----------|------------------------------------------|
| Table 1. | FCC 15.231 3M Radiated Emissions Results |
| Table 2. | System Under Test                        |
| Table 3. | Interface Cables Used                    |
| Table 4. | Measurement Equipment Used               |

## EXHIBITS

|            |                        |
|------------|------------------------|
| Exhibit A. | Carrier Bandwidth Data |
|------------|------------------------|

## APPENDICES

|             |                                      |
|-------------|--------------------------------------|
| Appendix A. | Statement of Measurement Uncertainty |
|-------------|--------------------------------------|



## WASHINGTON LABORATORIES, LTD.

7560 Lincoln Drive • Gaithersburg, Maryland 20879 • (301) 417-0220 • Fax (301) 417-9069 • (800) 839-1649  
website: <http://www.wll.com> • e-mail: [info@wll.com](mailto:info@wll.com)

### STATEMENT OF QUALIFICATIONS

for

Herbert W. Meadows

Washington Laboratories, Ltd.

I hold a Bachelor of Science in Electronics Engineering Technology. I have over three years of EMI testing experience and nine years of RF and microwave testing experience. I am qualified to perform EMC testing to the methods described in this test report. The measurements taken within this report are accurate within my ability to perform the tests and within the tolerance of the measuring instrumentation.

By:

A handwritten signature in black ink that reads "Herbert W. Meadows".

Herbert W. Meadows  
Compliance Engineer

Date: May 10, 2000

# FCC CERTIFICATION TEST REPORT

for

**FCC ID: OVU-LTI-A-0100**

## 1.0 Introduction

This report has been prepared on behalf of Company to support the attached Application for Equipment Authorization. The test and application are submitted for a Periodic Intentional Radiator under Part 15.231 of the FCC Rules and Regulations. The Equipment Under Test was the Logis-Tech, Inc. 315 MHz Low Power Transmitter used in an Automated Inventory Maintenance Management System.

All measurements herein were performed according to the 1992 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and field Strength Instrumentation. Calibration checks are made periodically to verify proper performance of the measuring instrumentation.

All measurements are performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

All results reported herein relate only to the equipment tested. The measurement uncertainty of the data contained herein is  $\pm 2.3$  dB. Refer to Appendix A for Statement of Measurement Uncertainty. This report shall not be used to claim product endorsement by NVLAP or any agency of the US Government.

### 1.1 Summary

The Logis-Tech, Inc, 315 MHz Low Power Transmitter, part of an Automated Inventory Maintenance Management System, complies with the limits for a Periodic Intentional Radiator under Part 15.231 of the FCC Rules and Regulations.

## 2.0 Description of Equipment Under Test (EUT)

The Logis-Tech, Inc. Transponder (EUT) is a 315 MHz transmitter unit that is part of a system used for tracking assets in a controlled area. The overall system is the Automated Inventory and Maintenance Management System (AIMMS). The system consists of a transceiver (separate certification, FCC ID: OVU-LTI-A-0101) which transmits a 132 kHz to a portal antenna which is used to activate the 315 MHz Transponder. The Transponder is located on the vehicle as the vehicle passes through the doorway. The vehicle Transponder then transmits a fixed length code that is received by the portal antenna and receiver (separate receiver DOC). This received signal then turns on an indicator light and changes a status from "out" to "in" which stops a timer from counting. The EUT operates from a 3V Lithium battery.

### 2.1 On-board Oscillators

The Logis-Tech, Inc. 315 MHz Transponder contains the following oscillators: 315 MHz SAW oscillator.

## **3.0 Test Configuration**

To complete the test configuration required by the FCC, the transmitter was tested in all three orthogonal planes.

### **3.1 Testing Algorithm**

The transmitter was turned on and constantly transmitting. The system was tested in all three orthogonal planes.

Worst case emissions are recorded in the data tables.

### **3.2 Conducted Emissions Testing**

No conducted emissions testing was performed as the EUT is battery powered.

### **3.3 Radiated Emissions Testing**

The EUT was placed on an 80 cm high 1 x 1.5 meters non-conductive motorized turntable for radiated testing on a 3 meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Broadband antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. Both the horizontal and vertical field components were measured.

The output from the antenna was connected, via a preamplifier, to the input of the spectrum analyzer. The detector function was set to quasi-peak or peak, as appropriate. The measurement bandwidth on the spectrum analyzer system was set to at least 120 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth. For emissions above 1 GHz, the measurement bandwidth on the spectrum analyzer system was set to at least 1 MHz, with all post-detector filtering no less than 10 times the measurement bandwidth.

#### **3.3.1 Radiated Data Reduction and Reporting**

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antennas and other measurement accessories. These factors are grouped into a composite antenna factor (AFc) and are supplied in the AFc column of Table 1. The AFc in dB/m is algebraically added to the Spectrum Analyzer Voltage in dB $\mu$ V to obtain the Radiated Electric Field in dB $\mu$ V/m. This level is then compared with the FCC limit.

Example:

|                             |                                          |
|-----------------------------|------------------------------------------|
| Spectrum Analyzer Voltage:  | VdB $\mu$ V                              |
| Composite Antenna Factor:   | AFc dB/m                                 |
| Electric Field:             | EdB $\mu$ V/m = VdB $\mu$ V + AFc dB/m   |
| To convert to linear units: | E $\mu$ V/m = antilog (EdB $\mu$ V/m/20) |

Data is recorded in Table 1.

**TABLE 1**  
**FCC 15.231 3M Radiated Emissions Data**

CLIENT: Logis Tech  
 MODEL NO: 315MHz Transponder  
 DATE: 11/1/99  
 BY: Herb Meadows  
 JOB #: 5263X

| Frequency<br>MHz | Polarity<br>H/V | Azimuth<br>Degree | Antenna<br>Height<br>m | SA Level<br>(QP)<br>dBuV | AFc<br>dB/m | E-Field<br>dBuV/m | E-Field<br>uV/m | Limit<br>uV/m | Margin<br>dB |
|------------------|-----------------|-------------------|------------------------|--------------------------|-------------|-------------------|-----------------|---------------|--------------|
| 315.00           | H               | 225.00            | 1.0                    | 48.8                     | 16.5        | 65.3              | 1838.2          | 6042.0        | -10.3        |
| 315.00           | V               | 90.00             | 1.0                    | 39.1                     | 16.5        | 55.6              | 601.7           | 6042.0        | -20.0        |
| 630.00           | H               | 315.00            | 1.0                    | 23.8                     | 24.1        | 47.9              | 248.7           | 604.0         | -7.7         |
| 630.00           | V               | 292.50            | 1.0                    | 25.1                     | 24.1        | 49.2              | 288.8           | 604.0         | -6.4         |
| 945.00           | V               | 0.00              | 1.0                    | 15.8                     | 28.8        | 44.6              | 169.9           | 604.0         | -11.0        |
| 945.00           | H               | 202.50            | 1.0                    | 12.4                     | 28.8        | 41.2              | 114.9           | 604.0         | -14.4        |
| 1260.00          | H               | 180.00            | 1.0                    | 46.2                     | -10.6       | 35.6              | 60.3            | 604.0         | -20.0        |
| 1260.00          | V               | 337.50            | 1.0                    | 43.2                     | -10.6       | 32.6              | 42.7            | 604.0         | -23.0        |
| 1575.00          | H               | 0.00              | 1.0                    | 38.3                     | -8.5        | 29.8              | 31.0            | 500.0         | -24.1        |
| 1575.00          | V               | 0.00              | 1.0                    | 39.0                     | -8.5        | 30.5              | 33.7            | 500.0         | -23.4        |
| 1890.00          | H               | 0.00              | 1.0                    | 38.7                     | -6.7        | 32.0              | 39.7            | 604.0         | -23.6        |
| 1890.00          | V               | 0.00              | 1.0                    | 38.8                     | -6.7        | 32.1              | 40.2            | 604.0         | -23.5        |
| 2205.00          | H               | 0.00              | 1.0                    | 37.7                     | -5.7        | 32.0              | 39.6            | 500.0         | -22.0        |
| 2205.00          | V               | 0.00              | 1.0                    | 38.2                     | -5.7        | 32.5              | 41.9            | 500.0         | -21.5        |
| 2520.00          | H               | 0.00              | 1.0                    | 38.3                     | -5.2        | 33.1              | 45.2            | 500.0         | -20.9        |
| 2520.00          | V               | 0.00              | 1.0                    | 38.0                     | -5.2        | 32.8              | 43.7            | 500.0         | -21.2        |
| 2835.00          | H               | 0.00              | 1.0                    | 37.9                     | -4.7        | 33.2              | 45.7            | 500.0         | -20.8        |
| 2835.00          | V               | 0.00              | 1.0                    | 38.5                     | -4.7        | 33.8              | 48.9            | 500.0         | -20.2        |
| 3150.00          | H               | 0.00              | 1.0                    | 39.7                     | -4.3        | 35.4              | 59.0            | 500.0         | -18.6        |
| 3150.00          | V               | 0.00              | 1.0                    | 39.4                     | -4.3        | 35.1              | 57.0            | 500.0         | -18.9        |

Note: All measurements from 1575MHz to 3150MHz are ambient levels. No emissions were detected.

**TABLE 2**  
**System Under Test**

FCC ID: OVU-LTI-A-0100

EUT: Logis-Tech, Inc., M/N: Transponder  
FCC ID: OVU-LTI-A-0100

**TABLE 3**  
**Interface Cables Used**

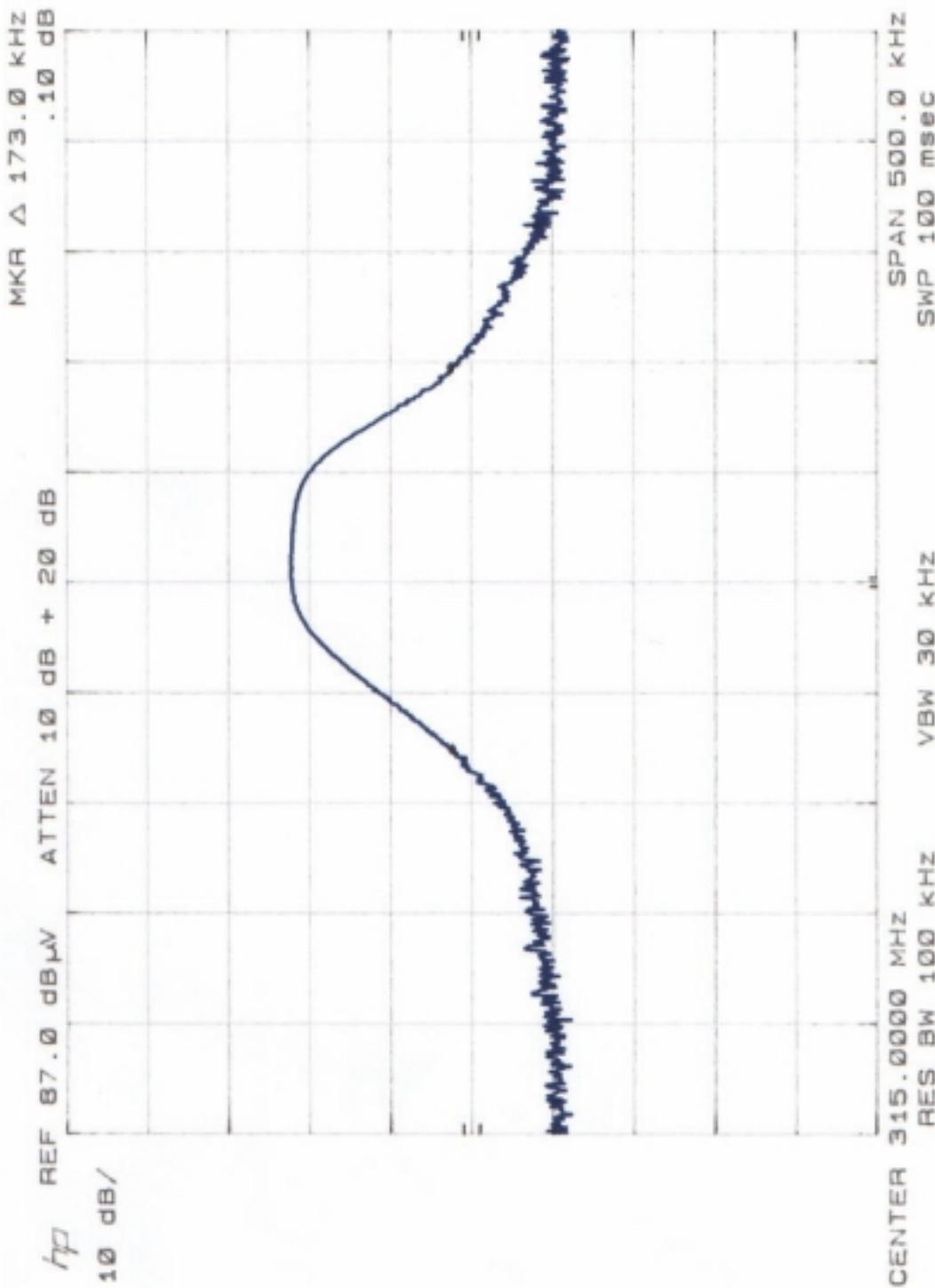
The EUT contains no I/O cables and is powered by an internal battery.

**TABLE 4**  
**Measurement Equipment Used**

The following equipment is used to perform measurements:

Hewlett-Packard Spectrum Analyzer: HP8564E  
Hewlett-Packard Spectrum Analyzer: HP8568B  
Hewlett-Packard Spectrum Analyzer: HP8593A  
Hewlett-Packard Quasi-Peak Adapter: HP85650A  
Hewlett-Packard Preselector: HP85685A  
Hewlett-Packard Preamplifier: HP8449B  
Antenna Research Associates, Inc. Biconical Log Periodic Antenna: LPB-2520A (Site 2)  
Antenna Research Associates, Inc. Horn Antenna: DRG-118/A  
Solar 50 Ω/50 µH Line Impedance Stabilization Network: 8012-50-R-24-BNC  
Solar 50 Ω/50 µH Line Impedance Stabilization Network: 8028-50-TS-24-BNC  
AH Systems, Inc. Portable Antenna Mast: AMS-4 (Site 2)  
AH Systems, Inc. Motorized Turntable (Site 2)  
RG-214 semi-rigid coaxial cable  
RG-223 double-shielded coaxial cable

**EXHIBIT A**  
**Carrier Bandwidth Data**


The 20 dB modulated bandwidth shall be no wider than 0.25% of the center frequency.

Bandwidth Limit = Carrier Frequency x .0025

Bandwidth Limit = 315 MHz x .0025 = 787.5 kHz

Measured EUT Bandwidth = 173 kHz

### Bandwidth Plot



## APPENDIX A

### Statement of Measurement Uncertainty

For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is  $\pm 2.3$  dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

$$\text{Total Uncertainty} = (A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty =  $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3$  dB.