FCC CERTIFICATION On Behalf of DAKANG HOLDING CO., LTD

Wireless Transmitter Model No.: RF-915

FCC ID: OVI-RF915

Prepared for DAKANG HOLDING CO.,LTD.

Address Anji Economic Development Zone, Hu Zhou, Zhejiang

Province, 313300, China

Prepared by ACCURATE TECHNOLOGY CO. LTD

Address F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20121483 Date of Test : Jul. 4-Jul. 19, 2012

Date of Report : Jul. 19, 2012

TABLE OF CONTENTS

De	scripti	on Pag	ge
Tes	st Rep	ort Certification	
1.	GEN	ERAL INFORMATION	₫
		Description of Device (EUT)	
		Description of Test Facility	
_		Measurement Uncertainty	
2.		SURING DEVICE AND TEST EQUIPMENT	
3.		MARY OF TEST RESULTS	
4.		DAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.249(A	
		Block Diagram of Test Setup	-
		The Emission Limit	
		Configuration of EUT on Measurement	
4		Operating Condition of EUT	
4		Test Procedure	
4	.6.	The Field Strength of Radiation Emission Measurement Results	11
5.	SPUF	RIOUS RADIATED EMISSION FOR SECTION 15.249(D)	13
5		Block Diagram of Test Setup	
5		The Emission Limit For Section 15.249(d)	
5		EUT Configuration on Measurement	
5		Operating Condition of EUT	
		Test Procedure	
5	.6.	The Emission Measurement Result	16
6.	BAN	D EDGES	18
6	.1.	The Requirement	18
6	.2. I	EUT Configuration on Measurement	18
6	.3.	Operating Condition of EUT	18
		Test Procedure	
6	.5.	The Measurement Result	18
7.	ANT	ENNA REQUIREMENT	21
7	.1.	The Requirement	21
7	.2. A	Antenna Construction	21

APPENDIX I (TEST CURVES)

Test Report Certification

Applicant : DAKANG HOLDING CO., LTD

Manufacturer : SHENZHEN CITY PENGLIN ELECTROVIC CO., LTD

EUT Description: Wireless Transmitter

(A) MODEL NO.: RF-915(B) Trade Name.: XRocker

(C) POWER SUPPLY: 3V DC ("AAA" batteries $2\times$)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.249 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Jul. 4-Jul. 19, 2012	
Prepared by :	Terry. Yorg	
	(Engineer)	
Approved & Authorized Signer:	Seal -	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Wireless Transmitter

Model Number : RF-915

Power Supply : 3V DC ("AAA" batteries $2 \times$)

Operate Frequency : 914MHz,914.5MHz,915MHz

Applicant : DAKANG HOLDING CO.,LTD

Address : Anji Economic Development Zone, Hu Zhou, Zhejiang

Province, 313300, China

Manufacturer : SHENZHEN CITY PENGLIN ELECTROVIC CO., LTD

Address : Building 5, Tangtou Third Industry Area, ShiYan Town,

BaoAn District, Shenzhen city, GuangDong Province

China

Date of sample received: Jul. 19, 2012

Date of Test : Jul.4-Jul. 19, 2012

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty 3.08dB, k=2(9kHz-30MHz)

Radiated emission expanded uncertainty (30MHz-1000MHz)

4.42dB, k=2

Radiated emission expanded uncertainty 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 7, 2012	Jan. 7, 2013
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 7, 2012	Jan. 7, 2013
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 7, 2012	Jan. 7, 2013
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 7, 2012	Jan. 7, 2013
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 7, 2012	Jan. 7, 2013
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 7, 2012	Jan. 7, 2013
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 7, 2012	Jan. 7, 2013
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 7, 2012	Jan. 7, 2013

3. SUMMARY OF TEST RESULTS

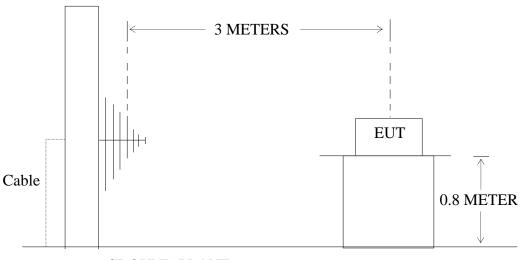
FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.249(a)	Fundamental Radiated Emission	Compliant
Section 15.249(d)	Spurious Radiated Emission	Compliant
Section 15.249(d)	Band Edge	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

4. FUNDAMENTAL RADIATED EMISSION FOR SECTION

4.1.Block Diagram of Test Setup

15.249(A)


4.1.1.Block diagram of connection between the EUT and simulators

(EUT: Wireless Transmitter)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

(EUT: Wireless Transmitter)

4.2. The Emission Limit

4.2.1.For intentional radiators, According to section 15.249(a), Operation within the frequency band of 902MHz to 928MHz, The fundamental field strength shall not exceed 94 dB μ V/m and the harmonics shall not exceed 54 dB μ V/m.

Fundamental	Field Strength of Fundamental	Field Strength of harmonics	
Frequency	(millivolts/meter)	(microvolts/meter)	
902-928MHz	50	500	
2400-2483.5MHz	50	500	
5725-5875MHz	50	500	
24.0-24.25GHz	250	2500	

4.2.2.According to section 15.249(e), as shown in section 15.35(b), the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3. Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. Wireless Transmitter (EUT)

Model Number : RF-915 Serial Number : N/A

Manufacturer : SHENZHEN CITY PENGLIN ELECTROVIC

CO.,LTD.

4.4.Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX modes measure it.. We are select 914MHz, and 915MHz TX frequency to transmit.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120 kHz.

4.6. The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test:Jul18, 2012Temperature:25°CEUT:Wireless TransmitterHumidity:50%Model No.:RF-915Power Supply:3V DC ("AAA" batteries 2×)Test Mode:TX 914.00MHzTest Engineer:Ricky

Fundamental Radiated Emissions

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
914.000	61.11	28.90	90.01	94.00	-3.99	Vertical
914.000	63.75	28.90	92.65	94.00	-1.35	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of peak values.

Date of Test:Jul 18, 2012Temperature:25°CEUT:Wireless TransmitterHumidity:50%Model No.:RF-915Power Supply:3V DC ("AAA" batteries 2×)Test Mode:TX 915MHzTest Engineer:Ricky

Fundamental Radiated Emissions

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
915.000	58.30	28.92	87.22	94.00	-6.78	Vertical
915.000	58.34	28.92	87.26	94.00	-6.74	Horizontal

Note:

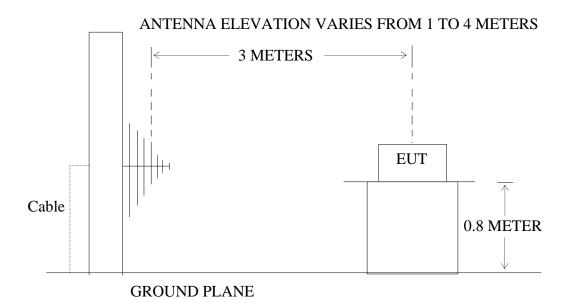
- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of peak values.

5. SPURIOUS RADIATED EMISSION FOR SECTION 15.249(D)


5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: Wireless Transmitter)

5.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: Wireless Transmitter)

5.2. The Emission Limit For Section 15.249(d)

5.2.1.Emission radiated outside of the specified frequency bands, except for harmonics, shall be comply with the general radiated emission limits in Section 15.209.

Radiation Emission Measurement Limits According to Section 15.209

1			
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolt/m)	Field Strength of Quasi-peak Value (dBµV/m)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is
30 - 88	100	40	performed with Average detector.
88 - 216	150	43.5	Except those frequency bands mention above, the
216 - 960	200	46	final measurement for frequencies below
Above 960	500	54	1000MHz is performed with Quasi Peak detector.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1. Wireless Transmitter (EUT)

Model Number : RF-915 Serial Number : N/A

Manufacturer : SHENZHEN CITY PENGLIN ELECTROVIC.,LTD

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 914-915MHz. We are select 914MHz, 915MHz TX frequency to transmit.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120 kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 10000MHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

5.6. The Emission Measurement Result

PASS.

Date of Test:	Jul 18, 2012	Temperature:	25°C
EUT:	Wireless Transmitter	Humidity:	50%
Model No.:	RF-915	Power Supply:	3V DC ("AAA" batteries $2\times$)
Test Mode:	TX 914MHz	Test Engineer:	Ricky

spurious Radiated Emissions (≤1000MHz)

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	$(dB\mu V/m)$	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
456.7909	18.35	23.15	41.50	46.00	-4.50	Vertical
456.7909	14.86	23.15	38.01	46.00	-7.99	Horizontal

spurious Radiated Emissions (>1000MHz)

Frequency	Reading(c	dBμV/m)	Factor(dB)	Result(dBμV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
1828.00	57.57	70.37	-9.94	47.63	60.43	54	74	-6.37	-13.57	Vertical
1828.00	54.23	66.26	-9.94	44.29	56.32	54	74	-9.71	-17.68	Horizontal
2742.00	44.96	58.76	-6.17	38.79	52.59	54	74	-15.21	-21.41	Vertical
2742.00	46.87	60.53	-6.17	40.70	54.36	54	74	-13.30	-19.64	Horizontal
3656.00	38.28	51.13	-2.64	35.64	48.49	54	74	-18.36	-25.51	Vertical
3656.00	43.65	55.20	-2.64	41.01	52.56	54	74	-12.90	-21.44	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of peak values.

Date of Test: 25°C Jul 18, 2012 Temperature: EUT: Wireless Transmitter Humidity: 50% 3V DC ("AAA" batteries $2\times$) Model No.: RF-915 Power Supply: Test Mode: **TX 915MHz** Test Engineer: Ricky

spurious Radiated Emissions (≤1000MHz)

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
458.3989	11.02	23.19	34.21	46.00	-11.79	Vertical
458.3987	12.86	23.19	36.05	46.00	-9.95	Horizontal

spurious Radiated Emissions (>1000MHz)

Frequency	Reading(dBμV/m)	Factor(dB)	Result(dBμV/m)		Limit(dl	BμV/m)	Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
1830.00	57.87	68.48	-9.89	47.98	58.59	54	74	-6.02	-15.41	Vertical
1830.00	56.33	68.33	-9.89	46.44	58.44	54	74	-7.56	-15.56	Horizontal
2745.00	47.46	59.14	-6.14	41.32	53.00	54	74	-12.68	-21.00	Vertical
2745.00	44.21	58.05	-6.17	38.04	51.88	54	74	-15.96	-22.12	Horizontal
3660.00	41.06	53.44	-2.61	38.45	50.83	54	74	-15.55	-23.17	Vertical
3660.00	42.25	54.22	-2.61	39.64	51.61	54	74	-14.36	-22.39	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of peak values.

6. BAND EDGES

6.1.The Requirement

6.1.1.Band Edge from 914MHz to 915MHz. Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

6.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1. Wireless Transmitter (EUT)

Model Number : RF-915 Serial Number : N/A

Manufacturer : SHENZHEN CITY PENGLIN ELECTROVIC

CO., Ltd.

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 4.1.
- 6.3.2. Turn on the power of all equipment.
- 6.3.3. Let the EUT work in TX modes measure it. The transmit frequency are 914-915MHz. We are select 914MHz, 915MHz TX frequency to transmit.

6.4.Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

The Measurement Result

Pass.

Date of Test:	Jul 18, 2012	Temperature:	25°C
EUT:	Wireless Transmitter	Humidity:	50%
Model No.:	RF-915	Power Supply:	3V DC ("AAA" batteries $2\times$)
Test Mode:	TX 914MHz	Test Engineer:	Rickey

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
902.00	10.32	28.78	39.10	46.00	-6.90	Vertical
902.00	10.02	28.78	38.80	46.00	-7.20	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of QP (up to 1G) and peak (above 1G) values.

Date of Test: Jul 18, 2012 Temperature: 25°C

EUT: Wireless Transmitter Humidity: 50%

Model No.: RF-915 Power Supply: 3V DC ("AAA" batteries 2×)

Test Mode: TX 915MHz Test Engineer: Ricky

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
928.00	5.60	29.22	34.82	46.00	-11.18	Vertical
928.00	5.62	29.22	34.84	46.00	-11.16	Horizontal

Note:

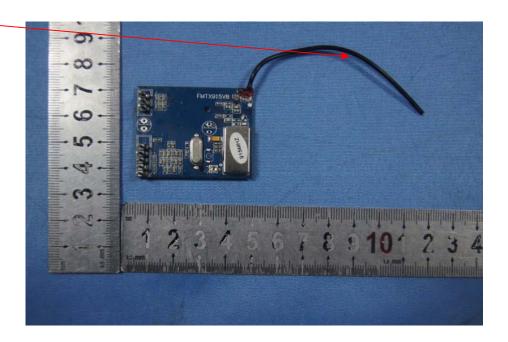
- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams in appendix I display the measurement of QP (up to 1G) and peak (above 1G) values.

7. ANTENNA REQUIREMENT


7.1.The Requirement

7.1.1.According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2. Antenna Construction

The antenna is Wire antenna.

Antenna

APPENDIX I (Test Curves)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #138

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Wireless Transmitter

Mode: Transmitting 914MHz

Model: RF-915

Manufacturer: SHENZHEN CITY PENGLIN ELECTROVIC CO.,LTD

Note:

Engineer Signature: Ricky

Distance: 3m

												limit	1: -	_
												Mar	gin: -	
89														f
79														
69														
59														
49											1			
39										. Marajas	mount	gentlement of the second	A STATE OF THE STA	
29								and the state of t	المراهر والمراجع	Wandley Color				
18.7				manyah	North-	patentary and the same	ed transference produces per	Secretary Barrers and Secretary						
3	0.000 40	, ,	50 6	50 7	0 8	30			30	00 40	0 500	600	700 10	00.0 MHz
T	Freq. (MHz)		Read (dBu\			actor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Rema	ırk
	456.79	909	18.3	35		23.15	41.50	46.00	-4.50	QP				
									-6.90					

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Horizontal

Engineer Signature: Ricky

Power Source: DC 3V

Date: 12/07/18/

Time: 8/14/39

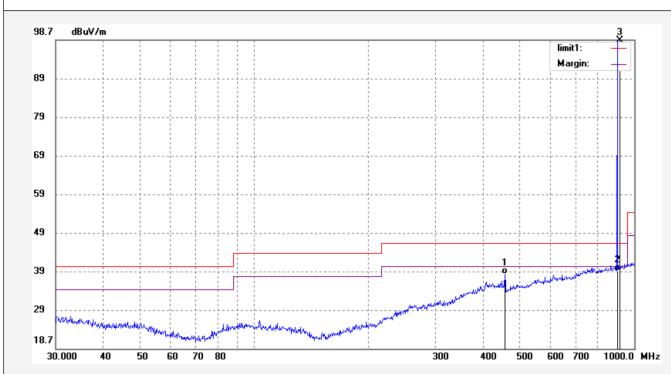
Distance: 3m

Job No.: DAZA #144

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


EUT: Wireless Transmitter

Mode: Transmitting 914MHz

Model: RF-915

Manufacturer: SHENZHEN CITY PENGLIN ELECTROVIC CO.,LTD

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	456.7909	14.86	23.15	38.01	46.00	-7.99	QP			
2	902.0000	10.02	28.78	38.80	46.00	-7.20	QP			
3	914.0000	63.75	28.90	92.65	94.00	-1.35	QP			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization:

Date: 2012/07/18

Time: 13:33:11

Distance: 3m

Power Source: DC 3V

Engineer Signature: Ricky

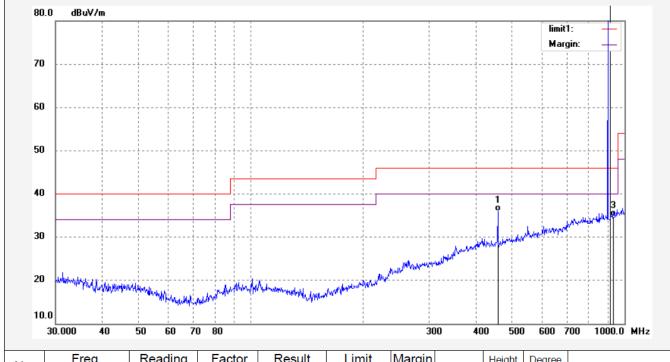
Horizontal

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #149

Standard: FCC Class B 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Wireless Transmitter

Mode: Transmitting 915MHz

Model: RF-915

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	458.3987	12.86	23.19	36.05	46.00	-9.95	QP			
2	915.0000	58.34	28.92	87.26	94.00	-6.74	QP			
3	928.0000	5.62	29.22	34.84	46.00	-11.16	QP			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization:

Date: 2012/07/18

Time: 13:24:51

Distance: 3m

Power Source: DC 3V

Engineer Signature: Ricky

Vertical

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #148

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Wireless Transmitter

Mode: Transmitting 915MHz

Model: RF-915

Manufacturer: SHENZHEN CITY PENGLIN ELECTROVIC CO.,LTD

Note:

40

30

20

	10.0										
	30.000 40	50 60 70	0 80			30	00 40	0 500	600	700 1000.0 MHz	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	458.3987	11.02	23.19	34.21	46.00	-11.79	QP				
2	915.0000	58.30	28.92	87.22	94.00	-6.78	QP				
3	928.0000	5.60	29.22	34.82	46.00	-11.18	QP				

914MHz Transmitting above 1G

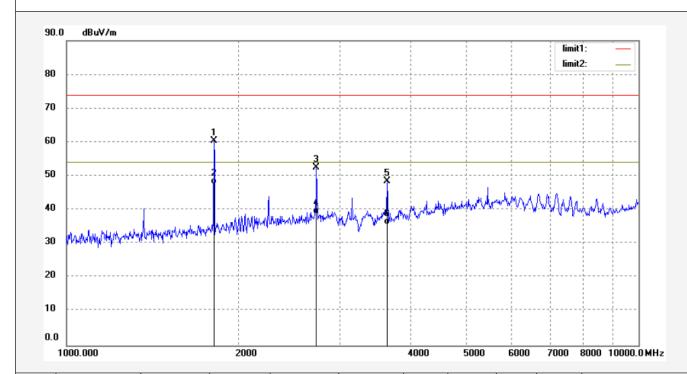
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #152 Polarization: Vertical Standard: FCC 15C PK Power Source: DC 3V Test item: Radiation Test Date: 2012/07/18

Date: 2012/07/18 Time: 18:13:11

Engineer Signature: Ricky


Distance: 3m

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Wireless Transmitter

Mode: 914MHz Model: RF-915

Manufacturer: SHENZHEN CITY PENGLIN ELECTROVIC CO.,LTD

Note: 914MHz

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1828.000	70.37	-9.94	60.43	74.00	-13.57	peak			
2	1828.000	57.57	-9.94	47.63	54.00	-6.37	AVG			
3	2742.000	58.76	-6.17	52.59	74.00	-21.41	peak			
4	2742.000	44.96	-6.17	38.79	54.00	-15.21	AVG			
5	3656.000	51.13	-2.64	48.49	74.00	-25.51	peak			
6	3656.000	38.28	-2.64	35.64	54.00	-18.36	AVG			

914MHz Transmitting above 1G

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

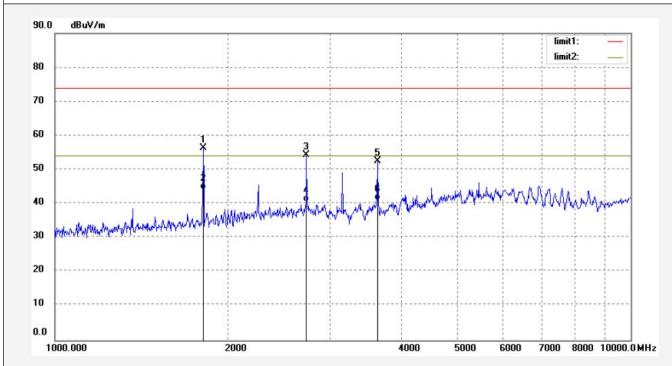
Job No.: DAZA #166 Standard: FCC 15C PK

Test item: Radiation Test
Temp.(C)/Hum.(%) 24 C / 48 %

EUT: Wireless Transmitter

Mode: 914MHz Transmitting

Model: RF-915


Manufacturer: SHENZHEN CITY PENGLIN ELECTROVIC CO.,LTD

Note: 914MHz

Engineer Signature: Ricky

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1828.000	66.26	-9.94	56.32	74.00	-17.68	peak		5	
2	1828.000	54.23	-9.94	44.29	54.00	-9.71	AVG			
3	2742.000	60.53	-6.17	54.36	74.00	-19.64	peak			
4	2742.000	46.87	-6.17	40.70	54.00	-13.30	AVG			
5	3656.000	55.20	-2.64	52.56	74.00	-21.44	peak		8	
6	3656.000	43.65	-2.64	41.01	54.00	-12.99	AVG		0	

915MHz Transmitting above 1G:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DAZA #156 Standard: FCC 15C PK Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 % EUT: Wireless Transmitter

Mode: 915MHz Transmitting

Model: RF-915

Manufacturer: SHENZHEN CITY PENGLIN ELECTROVIC CO.,LTD

Note: 915MHz

Polarization: Vertical Power Source: DC 3V Date: 2012/07/18 Time: 18:25:21

Engineer Signature: Ricky

Distance: 3m

0.0													1
10					· 								i
20					· 	 					 - 		
30	ysipediculate bywaith	had godinary with hy	usayayi)iii	Mulacina	·`	4. γ 3					! ! !		
40			a k . s . llsto	and hadden have	m Varady	AL Mand	un/les/	M. January Mary Constant M.	mylah	MW	MMA	Mary N	بمهابليم
50					Ť		Š				 		
60			*		a						 - - 	ļ 	
70											 		
80											limit	2 :	
											limit	l:	_

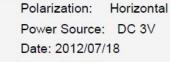
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1830.000	68.48	-9.89	58.59	74.00	-15.41	peak			
2	1830.000	57.87	-9.89	47.98	54.00	-6.02	AVG			
3	2745.000	59.14	-6.14	53.00	74.00	-21.00	peak			
4	2745.000	47.46	-6.14	41.32	54.00	-12.68	AVG			
5	3660.000	53.44	-2.61	50.83	74.00	-23.17	peak			
6	3660.000	41.06	-2.61	38.45	54.00	-15.55	AVG			

915MHz Transmitting above 1G:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

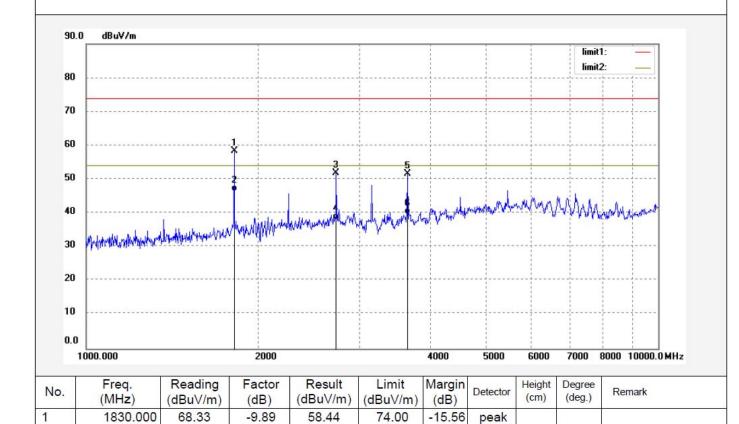
Job No.: DAZA #159
Standard: FCC 15C PK
Test item: Radiation Test


Temp.(C)/Hum.(%) 24 C / 48 % EUT: Wireless Transmitter

Mode: 915MHz Transmitting

Model: RF-915

Manufacturer: SHENZHEN CITY PENGLIN ELECTROVIC CO.,LTD


Note: 915MHz

Time: 18:40:52

Engineer Signature: Ricky

Distance: 3m

54.00

74.00

54.00

74.00

54.00

-7.56

-22.12

-15.96

-22.39

-14.36

AVG

peak

AVG

peak

AVG

2

3

4

5

6

1830,000

2745.000

2745,000

3660,000

3660.000

56.33

58.05

44.21

54.22

42.25

-9.89

-6.17

-6.17

-2.61

-2.61

46.44

51.88

38.04

51.61

39.64