8. OPERATIONAL DESCRIPTION - MODEL Axcera-LU2000AL

8.1 General Description

The LU2000AL is a complete 2000-watt UHF solid-state, internally diplexed television translator. It operates at a nominal visual output power of 2000 watts peak sync and an average aural output power of 200 watts, at an A/V ratio of 10 dB, 10% sound.

8.2 Technical Specifications

	Type of Emissions: Visual
	Frequency Range470 MHz to 860 MHz (any 6-MHz channel)
	Output Power Visual
	Maximum Power Rating Visual
	Power Consumption 6700 watts
8.3 Perfo	rmance Specifications
	<u>Visual Performance</u>
	Operating Frequency Range
	RF output - Nominal: 2000 watts peak sync Impedance 50 ohms Connector 7/8" EIA
	Visual Sideband Response: -1.25 MHz and below20B -0.75 to -0.5 MHz+0.5, -2.0dB -0.5 MHz to +3.58 MHz±0.5 dB 3.58 MHz to 4.18 MHz+0.5, -1.0 dB
	Variation of Frequency Response with Brightness
	Signal-to-Noise Ratio

2t K-Factor2%Harmonic Radiation-60 dBSpurious (>3 MHz from channel edge)-50 dBCarrier Frequency Stability±1000 HzNoise Figure w/Input Preamp3 dB (Max.)Input Dynamic Range (no Preamp)60 to -15 dBm
<u>Aural Performance</u>
RF Output - Nominal Power
Electrical Requirements
Power Line Voltage
<u>Environmental</u>
Maximum Altitude
<u>Mechanical</u>
Dimensions: Width

8.4. System Overview

The LU2000AL (1303828) is made up of the (3) trays listed in Table 8-1.

Table 8-1. LU2000AL Major Trays and Assemblies

MAJOR ASSEMBLY DESIGNATOR	TRAY/ASSEMBLY NAME	DRAWING NUMBER
A1	Receiver	1265-1100
A2	UHF Exciter	1303268
A3, A4	External Amplifier Assembly	1303828

The (A2) UHF Exciter can operate using a 45.75 MHz IF carrier from either the (A1) Receiver tray's output, or that from a Modulator tray. Both of these carriers must be diplexed with a 41.25 MHz aural carrier, at an A/V ratio not to exceed –10dB.

8.4.1 Receiver Tray

The RF Input to the Tray, (-61 dBm to -26 dBm in Level), is fed through J1 to the input 50Ω Filter or through J5 to the 75Ω input Filter, which are of a double tuned design that is adjusted to the desired Input UHF or VHF Channel Frequency. Note: If the input signal is greater then -25dBm, an attenuator should be used to limit the level to -25dBm. +12 VDC, for use by an (Optional) external Preamplifier Assembly, connects to the filter through F1 a 1 Amp Fuse. This +12 VDC is DC Multiplexed onto the input signal cable from the Preamplifier. DS1 a Red LED located on TB1 in the Tray will be lit if the +12 VDC is present on the input cable. If a Preamplifier is not used, F1 should be removed and DS1 should not be lit.

The signal is next amplified +12 dB to approximately the -49 to -4 dBm level by a low noise amplifier located on the Dual Stage Amplifier Board that is contained in (A8) the Dual Stage Amplifier Assembly. The board has approximately +13 dB or +26 dB of gain, depending on whether Jumper W1 on J5 is in place. The signal is then filtered in (A9) a Channel Filter and then applied back to (A8-A1) the Dual Stage Board where the same amplification takes place. Jumper W1 on J7, located on the Dual Stage Board, should be removed if the Receiver Input level is greater than -40dBm. The output is connected to (A10) the Downconverter Amplifier Assembly that contains (A10-A1) the Downconverter Amplifier Board The RF, at the -47 dBm to -2 dBm Level, connects to the "R" Input Jack of the Mixer Z1 located on the Downconverter Amplifier Board.

The Local Oscillator Signal is derived from a cut to channel crystal mounted in an oven that is factory set at 45° C. The Oscillator operates at 1/8 for UHF, 1/4 for VHF High Band or 1/2 for VHF Low Band of the desired local oscillator frequency. The crystal is mounted on (A4-A1) the Channel Oscillator Board, Dual Oven that is part of the Channel Oscillator Assembly. The oscillator circuitry is a modified Colpitts design operating in a separate oven set at 50° C. for improved stability.

The output of the Channel Oscillator is connected to the (A5-A1) the x8 Multiplier Board for UHF, the x4 Multiplier Board for VHF HB or the x2 Multiplier Board for VHF LB, which is located in (A5) the Multiplier Enclosure. The proper multiplier board takes the output of the Channel Oscillator (+3 dBm) and multiplies it eight, four or two times by a series of three, two or one x2 Broadband Doublers (2x2x2 = x8), which produces the L.O. signal on the desired frequency needed for the upconversion process. The signal is then amplified to the +16 dBm level. A sample of the multiplied L.O. Signal is fed to a detector circuit, which lights the Green LED DS1 that indicates that the L.O. is present at the Output Jack J2 of the Multiplier Board. This Green LED is seen through a hole the lid of the Multiplier Assembly and is an indication, when lit, that there is a signal present at the output of the Multiplier Board. The L.O. signal is filtered in (A6) a L.O. Filter and then sent (+15 dBm) to J2 on (A10-A1) the Downconverter Amplifier Board. The L.O. Input to the Downconverter Amplifier Board is connected thru a 3 dB matching pad to the "L" Input of the Mixer (Z1) at a +12 dBm level.

The L.O. and the RF signals are mixed in the Mixer Stage of the Downconverter Amplifier Board to produce the desired IF difference frequency at -55 dBm to -10 dBm in level, depending on the RF Input Level. The Combined IF Signal is routed to (A11-A1) the IF Filter/ALC Board, which is mounted in (A11) the IF Filter/ALC Enclosure. The IF Filter/ALC Board contains a Pin Diode Attenuator circuit, which is part of the Automatic Level Control (ALC) that controls the level of the IF Signal to the two-stage amplifier ICs U1 and U2.

The (Optional) (A11-A2) SAW Filter/Amplifier Board is also contained in the IF Filter/ALC Enclosure. The SAW Filter/Amplifier Board connects to J5 and J6 of the IF Filter/ALC Board if more attenuation of the Out Of Band products is needed. If the SAW Filter/Amplifier Board is not needed, a jumper connects the Combined IF from J5 to J6 on the IF Filter/ALC Board.

The Combined IF is then bandpass filtered to the needed 6 MHz IF bandwidth around the 41.25 MHz + 45.75 MHz Combined IF signal and amplified by U3 to the -41 dBm to +4 dBm Level before it is split. One output is detected by U4 for use as the ALC reference level to the Pin Diode Attenuator Circuit. The ALC comparator drives the Pin Diode Attenuator Circuit to maintain the desired output level, typically +2 dBm. The other split output connects to J2 the Combined IF Output of the board that is cabled to the IF Output Jack of the Tray at J4 (+2 dBm).

The AC input to the Tray is 117 VAC or 230 VAC and is directed thru Jack J2, of the (A1) Power Entry Module to the step down Toroid (A2). The Power Entry Module contains an On/Off Switch, a 4 Amp Slo-Blo Fuse and three MOVs, which protect the Tray from transients or surges which may occur on the AC Input Lines. When the On/Off Switch is switched On, AC is applied to the (A2) Toroid. The Toroid steps down the voltage into two 16 VAC outputs which are fed to (A3) the +12V(3A)/-12V Power Supply Board The 16 VAC Inputs are connected to the two full wave bridge networks one for +12 VDC and one for -12 VDC. The output of the +12 VDC rectifier is fed to three 7812 IC regulators (U1, U2 and U3) and the output of the -12 VDC rectifier is fed to one 7912 IC regulator (U4). The $\pm 12V$ Power Supply Board provides the voltage regulated and current limited +12 VDC and -12 VDC to the rest of the boards in the Tray.

8.4.2 Exciter Tray (Driver)/External Amplifier Tray

The input to the Exciter Tray is a modulated Internally Diplexed IF signal. This signal is connected to the input of the IF Processor Module. The output of the Exciter Tray (driver) drives the input to the External Amplifier Tray.

8.4.2.1 IF Processor Module (Driver)

The (A3) IF Processor Assembly contains the IF Processor Board (1301977). The IF Processor provides pre-correction to ensure broadcast quality output signal. The pre-correction consists of amplitude linearity correction, Incidental Carrier Phase Modulation (ICPM) correction and frequency response correction.

The IF Processor module is configured either for an analog or digital system. Pin 13C of the IF Processor module is grounded in analog systems and left not connected in digital systems. An IF Processor Interlock signal is used to report the presence of the IF Processor module to the Control Monitoring board. If the IF Processor interlock signal is not present, the Pioneer 100 Watt Translator/Exciter Driver RF output is Muted (turned off). If an analog IF Processor module is installed and the Modulation Present signal is not true, the Pioneer 100 Watt Translator / Exciter Driver output is Muted (turned off).

The Control & Monitoring/Power Supply module uses the IF Processor module for System output power control. Through the front panel display or a remote interface, an operator can set the translator's RF output power. The range of RF power adjustment is between 0% (full off) and 105% (full power plus). A front panel IF Processor module potentiometer sets the upper limit of RF power at 120%. The system's Control

Monitoring board compares the RF Power Monitoring module RF power level with the desired level and uses the IF Power Control PWM line to correct for errors.

In digital systems, a digital level control (DLC) voltage is generated on the IF Processor module and sent to an external digital modulator (DT1C or DT2B). RF power control is implemented by changing the DLC voltage provided to the external digital modulator. The 'RF High' potentiometer sets the upper adjusted range of RF control circuit output to 120%.

The IF Processor module provides a reference ALC voltage to the system's Upconverter. When the ALC voltage decreases, the Upconverter automatically lowers the system output power through the AGC circuits.

The IF Processor module has a front panel switch to select Auto or Manual ALC. When Manual ALC is selected, the reference ALC voltage is set by a front panel potentiometer. In this condition, the RF power level control circuit is removed from use. When the ALC select switch is changed to Auto, the RF power level control circuit will start at low power and increase the RF output until the desired output power is attained.

The IF Processor module Modulation Present signal is monitored. If the modulation level is too low or non-existent, a Modulation Present fault is reported to the Control Monitoring board. When the controller detects this fault, it can be set to Automatically Mute the translator or in Manual mode the translator will continue to operate at 25% output.

The IF Processor module Input Signal level is monitored. If the signal level is too low or non-existent, an Input fault is reported on the Control Monitoring board. When the IF Processor board detects an Input Signal fault it automatically Mutes the translator. The system controller does not Mute on an IF Processor Input fault.

8.4.2.2 L.O. / Upconverter Module (Driver)

The (A5) LO/Upconverter Module Assembly contains a front panel LED display board (1303033), a UHF Filter (1007-1101), a UHF Generator Board (1585-1265) and a LO/Upconverter Assembly (1303039). The LO/Upconverter Assembly contains the LO/Upconverter Board (1302132).

The Pioneer Upconverter converts an IF input signal to a RF output signal on the desired channel frequency using a high stability oven controlled oscillator with very low phase noise and an Automatic Level Control (ALC) for stable output signal level.

Several control voltages are used for translator power control. Automatic gain control (AGC) circuits set the RF output level of the translator system.

AGC #1 is provided by the 50-Watt Translator/Exciter Driver Power Amplifier module. This voltage is used by the Upconverter to maintain a constant RF output level at the Power Amplifier module output. If this voltage exceeds 0.9 VDC, the system is in an over-drive condition. The 0.9 VDC over-driver threshold is set by a front panel Upconverter module potentiometer. When an over-drive condition is detected, the Upconverter module reduces its RF output level. For values less than 0.9 VDC, the Upconverter uses the AGC #1 voltage for automatic gain control by setting it's RF output to maintain AGC #1 equal to the AGC voltage set by another front panel potentiometer. When the Upconverter is set for manual gain, the RF output of the Upconverter is set by

the front panel AGC potentiometer. In manual gain operation, the AGC #1 feedback voltage from the PA is not used to adjust the RF level unless an over-drive condition is detected.

AGC #2 is provided by each of the optional external amplifier modules. Diodes are used in each of the external amplifier forward power circuits to capture the highest detected sample voltage. This voltage is used by the Upconverter to maintain a constant RF output of the system. As with AGC #1, the Upconverter module reduces its RF output level if AGC #2 is too high. AGC #1 and ACG #2 are diode ORed together in the Upconverter gain circuit. Both AGC voltages are first reduced by an on-board potentiometer before being amplified. If an over-drive condition does not exist, the higher of the two AGC voltages is used to control the Upconverter gain circuit.

An AFC Voltage is generated to control the VCXO of the UHF Generator portion of the Upconverter module. The typical AFC voltage is 1.5 VDC but it can be as high as +5 VDC.

The Upconverter can operate on either it's internal 10 MHz source or on a 10 MHz external reference signal. When an external 10 MHz source is present on J10, it is automatically selected. An external reference present signal is provided to the controller for display purposes. The selected 10 MHz signal from the Upconverter is buffered then sent to the backplane on two ports. One port is sent to the Modulator module, if present, and the other is routed to a BNC connect or (J11) on the backplane for a system 10 MHz output signal.

A National Semiconductor frequency synthesizer IC is used in the frequency conversion of the IF signal to a RF signal. The frequency synthesizer IC uses a 10MHz reference frequency for signal conversion. Typically the IF input frequency is 45.75 MHz for analog system and 44 MHz for DTV. To obtain different output RF frequencies, the synthesizer IC is serial programmed by the Control Monitoring board. The part is programmed to use a 5 kHz phase detection frequency. With a 10 MHz input signal, the R counter is set to 2000. With these settings the N counter is set to the desired LO frequency in kHz / 5 kHz. The maximum LO frequency setting with these parameters is 1310.715 MHz.

Example:

For a Frequency RF Out = 517.125 MHz, N = 517125 kHz / 5 kHz = 103425

An Upconverter PLL Lock indicator is used to insure that the frequency control circuits are operating properly. When the Upconverter PLL is locked, the frequency synthesizer IC is programmed and the Power Amplifier module(s) can be enabled.

The RF output of the LO/Upconverter Module is at J23 on the rear chassis

8.4.2.3 Control & Monitoring / Power Supply Module (Driver)

The (A4) Control & Monitoring/Power Supply Assembly is made up of a Control Board (1302021), a Power Protection Board (1302837) and a Switch Board (1527-1406). The Assembly also contains a switching power supply that provides ± 12 VDC to the rest of the modules in the chassis and ± 32 VDC to the Power Amplifier module.

The Assembly provides all translator control and monitoring functions. The Front panel LCD allows monitoring of system parameters, including forward and reflected power, transistor currents, module temperatures and power supply voltages.

8.4.2.4 Power Amplifier Module (Driver)

The (A6) Power Amplifier Module Assembly is made up of a Coupler Board Assembly (1301949), an Amplifier Control Board (1301962), a 1 Watt Module Assembly (1302891), a TFS 40W UHF Module (1206693) and a RF Module Pallet, Philips (1300116).

The Power Amplifier Module contains Broadband LDMOS amplifiers that cover the entire UHF band with no tuning required. They amplify the RF to the 10W to 50W output power level of the translator.

The Power Amplifier of the Translator/Exciter Driver is used to amplify the RF output of the Upconverter module. A cable, located on the rear chassis, connects the RF output from the LO/Upconverter at J23 to J24 the RF input to the PA Assembly. This module contains RF monitoring circuitry for both an analog and a digital system. Control and monitoring lines to the Power Amplifier module are routed through the floating blindmate connector of the Control & Monitoring/Power Supply module.

The 50 Watt Translator/Exciter Driver Power Amplifier module and any External Amplifier modules contain the same control and monitoring board. This board monitors RF output power, RF reflected power, the current draw of amplifier sections, the supply voltage, and the temperature of the PA heat sink.

The RF power detector circuit outputs vary with operating frequency. These circuits must be calibrated at their intended operating frequency. Front panel adjustment potentiometers are used to calibrate the following:

Table 1: Power Amplifier Calibration Adjustments in Analog Systems

- R201 Reflected Power Cal
- R202 Visual / Forward Power Cal
- R203 Aural Power Cal
- R204 Visual Offset Zero
- R205 Aural Null

In analog systems, the Aural power of an Exciter Driver Power Amplifier and the Aural power of any external amplifier will not be reported by the system Control Monitoring module. Additionally the Visual power of these amplifiers, is reported as Forward Power just like in digital systems. In analog systems, aural and visual power will only be reported for the final system RF output.

In digital systems, the Forward power of an Exciter Driver Power Amplifier and the Forward power of any external amplifier, is reported by the system Control Monitoring module.

If the Control Monitoring module is monitoring a 5-50 Watt Translator, system power is measured in the Power Amplifier module. The wired connections are transferred through the power supply connector to the backplane board on a five position header. All four positions of control board switch SW1 must be set on to route these lines as the system's RF power signals. In systems of output power greater than 50 Watts, system

power is monitored by an external module that is connected to TB31 and control board SW1 switches must be set off.

The Forward Power of the Translator/Exciter Driver Power Amplifier module is routed to the Upconverter module as AGC #1. A system over-drive condition is detected when this value rises above 0.9 VDC. When an over-drive condition is detected, the Upconverter module reduces its RF output level. For values less than 0.9 VDC, the Upconverter uses this voltage for automatic gain.

8.4.2.5 Power Amplifier Module (External Power Amplifier Assembly)

The Power Amplifier Module Assembly is made up of (A6) an Amplifier Control Board (1301962), (A1) a UHF Phase/Gain Board (1303213), (A2) a 150 Watt Driver Pallet Assembly (1303293), (A3 & A4) two RF Module Pallets, Philips (1300116), and (A5) a 2-Way Combiner Board (1303208).

The Power Amplifier Module contains Broadband LDMOS amplifiers that cover the entire UHF band with no tuning required. Each module amplifies the RF to a nominal 300W output power.

The Power Amplifier assembly is used to amplify the RF output of the Transmitter/Exciter Driver. A cable, located on the rear chassis, connects the RF output from the Exciter/Driver at J25 to J200 the RF input to the PA Assembly. This module contains RF monitoring circuitry for both an analog and a digital system. Control and monitoring lines to the Power Amplifier module are routed through the floating blindmate connector of the Control & Monitoring/Power Supply module.

The 100-Watt Transmitter/Exciter Driver Power Amplifier module and any External Amplifier modules contain the same control and monitoring board. This board monitors RF output power, RF reflected power, the current draw of amplifier sections, the supply voltage, and the temperature of the PA heat sink.

The RF power detector circuit outputs vary with operating frequency. These circuits must be calibrated at their intended operating frequency. Front panel adjustment potentiometers are used to calibrate the following:

Table 2: Power Amplifier Calibration Adjustments in Analog Systems

R201 Reflected Power Cal

R202 Forward Power Cal

R204 Meter Offset Zero

In analog systems, the Aural power of an Exciter Driver Power Amplifier and the Aural power of any external amplifier will not be reported by the system Control Monitoring module. Additionally the Visual power of these amplifiers, is reported as Forward Power just like in digital systems. In analog systems, aural and visual power will only be reported for the final system RF output.

In digital systems, the Forward power of an Exciter Driver Power Amplifier and the Forward power of any external amplifier, is reported by the system Control Monitoring module.

If the Control Monitoring module is monitoring a 5-50 Watt Digital or 10-100 Watt Analog Transmitter, system power is measured in the Power Amplifier module. The wired connections are transferred through the power supply connector to the backplane board on a five position header. All four positions of control board switch SW1 must be set on to route these lines as the system's RF power signals. In systems of output power greater than 50 Watts digital or 100 Watts aural, system power is monitored by an external module that is connected to TB31 and control board SW1 switches must be set off.

The Forward Power of the Transmitter/Exciter Driver Power Amplifier module is routed to the Upconverter module as AGC #1. A system over-drive condition is detected when this value rises above 0.9 VDC. When an over-drive condition is detected, the Upconverter module reduces its RF output level. For values less than 0.9 VDC, the Upconverter uses this voltage for automatic gain.

8.4.2.6 Power Supply Module (External Power Amplifier Assembly)

The Power Supply Module Assembly is made up of (A1) a +32V/2000W Switching Power Supply and (A2) a $\pm 12V/40W$ Switching Power Supply.

The power supply module provides the +32 VDC and the +12 VDC and -12 VDC to the power amplifier module assembly.

8.5 Control and Status

8.5.1 Receiver Tray

There are no external Control and Status indicators or switches for the Receiver Tray.

Table 8-2. Receiver Tray samples

CONNECTOR	FUNCTION
J6 - BNC	Oscillator Sample (front panel)
J7 - BNC	IF Sample (front panel)

8.5.2 Exciter Tray (Driver)

Table 8-3. IF Processor Front Panel Switch

SWITCH	FUNCTION
	When Manual ALC is selected, the reference ALC voltage is set by the ALC Gain front panel potentiometer.
MAN/AUTO ALC	When Auto ALC is selected, the IF level control circuit will automatically increase the IF output until the desired output power is attained.

Table 8-4. IF Processor Front Panel Status Indicators

LED	FUNCTION
INPUT FAULT (Red)	When lit it indicates that there is a loss of the IF Input signal to the IF Processor. Translator can be set to Mute on an IF Input Fault.
ALC Fault (Red)	When lit it indicates that the required gain to produce the desired output power level has exceeded the operational range of the ALC circuit. The LED will also be lit when ALC is in Manual.
MUTE (Red)	When lit it indicates that the IF input signal is cut back but the enable to the Power Supply is present and the +32 VDC remains on.

Table 8-5. IF Processor Front Panel Control Adjustments

POTENTIOMETERS	DESCRIPTION
FREQUENCY RESPONSE EQUALIZER	These three variable resistors, R103, R106 & R274, adjust the depth of gain for the three stages of frequency response correction.
ALC GAIN	Adjusts the gain of the translator when the translator is in the Auto ALC position.
MAN GAIN	Adjusts the gain of the translator when the translator is in the Manual ALC position.
LINEARITY CORRECTION	These three variable resistors adjust the threshold cut in for the three stages of linearity pre-correction. R211 and R216, the top two pots, are adjusted to correct for in phase amplitude distortions. R 231, the bottom pot, is adjusted to correct for quadrature phase distortions.

Table 8-6. IF Processor Front Panel Sample

SMA CONNECTOR	DESCRIPTION
IF SAMPLE	Sample of the pre-corrected IF output of the IF Processor

Table 8-7. LO/Upconverter Front Panel Switch

SWITCH	FUNCTION
	When Manual AGC is selected, the reference AGC voltage is set by the AGC Manual Gain front panel potentiometer.
MAN/AUTO AGC	When Auto AGC is selected, the RF power level control circuit will automatically increase the RF output until the desired output power is attained.

Table 8-8. LO/Upconverter Front Panel Status Indicator

LED	FUNCTION
AGC CUTBACK (Red)	When lit it indicates that the required gain to produce the desired output power level has exceeded the level set by the AGC Cutback (Override) adjust. Translator will cut back power to 25%

Table 8-9. LO/Upconverter Front Panel Control Adjustments

POTENTIOMETERS	DESCRIPTION
MAN GAIN ADJ	Adjusts the gain of the translator when the translator is in the Manual AGC position.
AGC CUTBACK ADJ (AGC OVERRIDE)	Adjusts the point at which the translator will cut back in power when the Translator is in the Auto AGC position.

Table 8-10. LO/Upconverter Front Panel Samples

SMA CONNECTOR	DESCRIPTION
LO SAMPLE	Sample of the LO signal to the Upconverter as generated by the UHF Generator Board.
RF SAMPLE	Sample of the On Channel RF Output of the Upconverter

Table 8-11. Controller/Power Supply Display

DISPLAY	FUNCTION	
	A 4 x 20 display providing a four-line readout of the internal	
LCD	functions, external inputs, and status. See Chapter 3,	
	Controller/Power Supply Display Screens, for a listing of displays.	

Table 8-12. Controller/Power Supply Status Indicator

LED	FUNCTION	
OPERATE (green)	When lit it indicates that the translator is in the Operate Mode. If translator is Muted the Operate LED will stay lit, the translator will remain in Operate, until the input signal is returned.	
FAULT (red or green)	Red indicates that a problem has occurred in the translator. The translator will be Muted or placed in Standby until the problem is corrected.	
DC OK	Green indicates that the switchable fuse protected DC outputs that	
(red or green)	connect to the modules in the translator are OK.	

Table 8-13. Controller/Power Supply Control Adjustments

POTENTIOMETERS	DESCRIPTION	
DISPLAY CONTRAST	Adjusts the contrast of the display for desired viewing of screen.	

Table 8-14. Power Amplifier Status Indicator

LED	FUNCTION	
ENABLED (Green)	When lit Green, it indicates that the PA is in the Operate Mode. If a Mute occurs, the PA will remain Enabled, until the input signal is returned.	
DC OK	When lit Green, it indicates that the fuse protected DC inputs to the	
(Green)	PA module are OK.	
TEMP	When lit Green, it indicates that the temperature of the heatsink	
(GREEN)	assembly in the module is below 78°C.	
MOD OK	When lit Green, it indicates that the PA Module is operating and has	
(Green)	no faults.	

Table 8-15. Power Amplifier Control Adjustments

POTENTIOMETERS	DESCRIPTION	
RFL CAL	Adjusts the gain of the Reflected Power monitoring circuit	
VISUAL CAL	Adjusts the gain of the Visual / Forward Power monitoring circuit	
AURAL CAL	Adjusts the gain of the Aural Power monitoring circuit	
VISUAL ZERO	Adjusts the offset of the Forward Power monitoring circuit	
AURAL NULL Adjusts the offset of the Forward Power monitoring circuit base the Aural signal level		

Table 8-16. Power Amplifier Sample

DISPLAY	FUNCTION
FWD SAMPLE	RF sample of the amplified signal being sent out the module on J25.

8.5.3 External Power Amplifier Tray

Table 8-17. Power Amplifier Status Indicators (External Power Amplifier Assembly)

LED	FUNCTION	
ENABLED (Green)	When lit Green, it indicates that the PA is in the Operate Mode. If a Mute occurs, the PA will remain Enabled, until the input signal is returned.	
DC OK	When lit Green, it indicates that the fuse protected DC inputs to the	
(Green)	PA module are OK.	
TEMP	When lit Green, it indicates that the temperature of the heatsink	
(Green)	assembly in the module is below 78°C.	
MOD OK	When lit Green, it indicates that the PA Module is operating and has	
(Green)	no faults.	

Table 8-18. Power Amplifier Control Adjustments (External Power Amplifier Assembly)

POTENTIOMETERS	DESCRIPTION	
RFL CAL	Adjusts the gain of the Reflected Power monitoring circuit	
VISUAL CAL	Adjusts the gain of the Visual / Forward Power monitoring circuit	
METER ZERO	Adjusts the offset of the Forward Power monitoring circuit	

Table 8-19. Power Amplifier Sample (External Power Amplifier Assembly)

DISPLAY	FUNCTION
FWD SAMPLE	RF sample of the amplified signal being sent out the module on J25.

8.6 Remote Interface Connections

8.6.1 Remote Interface Connections (Receiver)

Port	TYPE	Function	Ohm
J1	N	RF Input	50
J2	IEC	AC Input	N/A
J3	15-pin D	Remote Connections	N/A
]4	BNC	IF Output	50

8.6.2 Remote Interface Connections (Exciter)

Port	Туре	Function	Ohm
J1	IEC	AC Input	N/A
TB02	Term	Base Band Audio Input	600
J3	BNC	Composite Audio Input	75
J4	BNC	SAP / PRO Audio Input	50
J5	BNC	CW IF Input	50
J6	BNC	Modulated IF Input	50
J7	BNC	Video Input (Isolated)	75
J8	BNC	Visual IF Loop-Thru Output	50
J9	BNC	Aural IF Loop-Thru Output	50
J10	BNC	10 MHz Reference Input	50
J11	BNC	10 MHz Reference Output	50
J17	BNC	Video Loop-Thru (Isolated)	75
J18	BNC	Visual IF Loop-Thru Input	50
J19	BNC	Aural IF Loop-Thru Input	50
J23	BNC	Upconverter RF Output	50
J24	BNC	Power Amplifier RF Input	50
J25	N	Power Amplifier RF Output	50
TB30	Term	Remote Control & Monitoring	
TB31	Term	Remote Control & Monitoring	
J32	RJ-45	SCADA (Input / Loop-Thru)	CAT5
J33	RJ-45	SCADA (Input / Loop-Thru)	CAT5
J34	RJ-45	System RS-485 Serial	CAT5

8.6.3 Remote Interface Connections (External Power Amplifier Assembly)

Port	Туре	Function	Ohm
J220	Circular-3	AC Input #1	N/A
J221	Circular-3	AC Input #2	N/A
J200	N	Power Amplifier RF Input	50
J205	7-16	Power Amplifier RF Output	50
J232	RJ-45	System RS-485 Serial Input	CAT5
J233	RJ-45	System RS-485 Serial Output	CAT5

8.7 AC Input

8.7.1 Receiver Tray

The AC input to the Receiver Tray is 117 VAC or 230 VAC and is directed thru Jack J2, of the (A1) Power Entry Module (1265-1104), to the step down Toroid (A2). The Power Entry Module contains an On/Off Switch, a 4 Amp Slo-Blo Fuse and three MOVs, which protect the Tray from transients or surges, which may occur on the AC Input Lines.

8.7.2 Exciter Tray

The AC input to the Upconverter Tray is 117 VAC or 230 VAC (factory selectable). The AC input is applied to the tray through Jack J1. MOV's are provided to protect the Tray from transients or surges, which may occur on the AC Input Lines.

8.7.3 Power Amplifier Tray

The AC input to the Power Amplifier Tray is 230 VAC. The AC input is applied to the tray through Jacks J220 and J221. MOV's are provided to protect the Tray from transients or surges, which may occur on the AC Input Lines.

8.8 System Operation

When the transmitter is in operate, as set by the menu screen located on the Control & Monitoring Module in the exciter/driver assembly. The IF Processor will be enabled, the mute indicator on the front panel will be extinguished. The +32 VDC stage of the Power Supply in the Control & Monitoring Module is enabled, the operate indicator on the front panel is lit and the DC OK on the front panel should also be green. The enable and DC OK indicators on the PA Module will also be green.

When the transmitter is in standby. The IF Processor will be disabled, the mute indicator on the front panel will be red. The +32 VDC stage of the Power Supply in the Control & Monitoring Module is disabled, the operate indicator on the front panel will be extinguished and the DC OK on the front panel should remain green. The enable indicator on the PA Module is also extinguished.

If the transmitter does not switch to Operate when the operate menu is switched to Operate, check that all faults are cleared and that the remote control terminal block stand-by signal is not active.

The transmitter can be controlled by the presence of a modulated input signal. If the input signal to the transmitter is lost, the transmitter will automatically cutback and the input fault indicator on the IF Processor module will light. When the video input signal returns, the transmitter will automatically return to full power and the input fault indicator will be extinguished.

8.8.1 Principles of Operation

Operating Modes

This transmitter is either operating or in standby mode. The sections below discuss the characteristics of each of these modes.

Operate Mode

Operate mode is the normal mode for the transmitter when it is providing RF power output. To provide RF power to the output, the transmitter will not be in mute. Mute is a special case of the operate mode where the +32 VDC section of the power supply is enabled but there is no RF output power from the transmitter. This condition is the result of a fault condition that causes the firmware to hold the IF Processor module in a mute state.

Operate Mode with Mute Condition

The transmitter will remain in the operate mode but will be placed in mute when the following fault conditions exists in the transmitter.

- Upconverter is unlocked
- Upconverter module is not present
- IF Processor module is not present
- Modulator (if present) is in Aural/Visual Mute

Entering Operate Mode

Entering the operate mode can be initiated a few different ways by the transmitter control board. A list of the actions that cause the operate mode to be entered is given below:

- A low on the Remote Transmitter Operate line.
- User selects "OPR" using switches and menus of the front panel.
- Receipt of an "Operate CMD" over the serial interface.

There are several fault or interlock conditions that may exist in the transmitter that will prevent the transmitter from entering the operate mode. These conditions are:

- Power Amplifier heat sink temperature greater than 78°C.
- Transmitter is Muted due to conditions listed above.
- Power Amplifier Interlock is high indicating that the amplifier is not installed.

Standby Mode

The standby mode in the transmitter indicates that the output amplifier of the transmitter is disabled.

Entering Standby Mode

Similar to the operate mode, the standby mode is entered using various means. These are:

• A low on the Remote Transmitter Stand-By line.

Depressing the "STB" key on selected front panel menus.

• Receipt of a "Standby CMD" over the serial interface.

Operating Frequency

The LX Series transmitter controller is designed to operate on UHF frequencies. The exact output frequency of the transmitter can be set to one of the standard UHF frequencies, or it can be set to a custom frequency using software set-up menus. Since RF performance of the transmitter requires different hardware for different frequency bands, not all frequency configurations are valid for a specific transmitter. The Power detectors in the transmitter have frequency dependency, therefore detectors of power amplifiers are calibrated at their frequency of use. The detectors for System RF monitoring are also calibrated at the desired frequency of use.

