TEST REPORT For APPLICATION of CERTIFICATION

for

SOUTHERN TECHNOLOGIES CORPORATION

P.O. Box 23807 6145 Preservation Drive Chattanooga, TN 37422 Phone: (423) 892-3029

MODEL: SMARTSCAN
PORTABLE
AUTOMATIC EQUIPMENT IDENTIFICATION (AEI)
READER

FREQUENCY: 916.5 MHz FCC ID: OTR2200-540

Test Date: November 18, 1999

Certifying Engineer: Scot DRogers

Scot D. Rogers
ROGERS LABS, INC.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone: (913)837-3214
FAX: (913)837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

FORWARD:	3
2.1033(C) APPLICATION FOR CERTIFICATION	3
2.1046 RF POWER OUTPUT	4
Measurements Required:	4
Test Arrangement:	4
Results:	4
2.1047 MODULATION CHARACTERISTICS	5
Measurements Required:	5
Test Arrangement:	5
Results:	5
2.1049 OCCUPIED BANDWIDTH	5
Measurements Required:	5
Test Arrangement:	5
Results:	6
2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	6
Measurements Required:	6
Test Arrangement:	7
2.1053 FIELD STRENGTH OF SPURIOUS RADIATION	8
Measurements Required:.	8
Test Arrangement:	8
Results:	9
2.1055 FREQUENCY STABILITY	10
Measurements Required:	10
Test Arrangement:	10
Results:	11
APPENDIX	12

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 2 of 20

FORWARD:

In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 1997, Part 2 Subpart J, Paragraphs 2.905, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, Part 90, Subpart M, Paragraphs 90.201 through 90.217, and 90.350 through 90.363; the following is submitted:

2.1033(c) Application for Certification

1. Manufacturer: SOUTHERN TECHNOLOGIES CORPORATION

6145 Preservation Drive

P.O. Box 23807

Chattanooga, TN 37422

2. Identification: Model: SMARTSCAN

PORTABLE AEI READER

NVLAP Lab Code: 200087-0

FCC I.D.: OTR2200-540

- 3. Refer to exhibit for a copy of the operating instructions.
- 4. Emission Type: 320KNON
- 5. Frequency Range: 916.5 MHz
- 6. Operating Power Level: 0.9 Watt
- 7. Max Power rating: 1 Watt.
- 8. Power into final amp:

4.96 Vdc @ 0.296 amps (1.4 Watts)

- 9. Refer to exhibit for tune-up procedure.
- 10. Refer to exhibit for Circuit Diagrams.
- 11. Refer to exhibit for identification label information.
- 12. Refer to exhibit for photographs.

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 3 of 20

2.1046 RF Power Output

Measurements Required:

Measurements shall be made to establish the radio frequency power delivered by the transmitter into the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted below:

NVLAP Lab Code: 200087-0

If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

Test Arrangement:

The radio frequency power output was measured with a spectrum analyzer and antenna. Since the unit has no removable antenna, access to an antenna port is not available. A HP 8562A Spectrum Analyzer was used to measure the radio frequency power. The data was taken in dB μ V/m and converted to watts as shown in the following Table. Data taken per Paragraph 2.1046 and applicable parts of Part 90.

$$E(V/m) = 10^{(dB\mu V/M - 120/20)}$$

$$E = 10^{(127.0 - 120 /20)}$$

Then E = 2.24

$$P(W) = \frac{(Ed)^2}{49.2}$$

$$P(W) = 0.917$$
 Watts

Results:

FREQUENCY	$\mathbf{P}_{\mathtt{dB}\mu\mathtt{V/m}\ @\ 3\mathtt{m}}$	$\mathbf{P}_{\mathtt{Watts}}$
916.5	127.0	0.917

The specifications of Paragraph 2.1046 and 90.205 are met. There are no deviations to the specifications.

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 4 of 20

2.1047 Modulation Characteristics

Measurements Required:

A curve or equivalent data that shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed shall be submitted.

NVLAP Lab Code: 200087-0

Test Arrangement:

The radio frequency output was monitored with a HP 8562A Spectrum Analyzer. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in a normal mode.

Results:

Refer to Appendix for details about modulation. Specifications of Paragraphs 2.1047 and 90.211 are met. There are no deviations to the specifications.

2.1049 Occupied Bandwidth

Measurements Required:

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are equal to 0.5 percent of the total mean power radiated by a given emission. Refer to Figure 1 showing the 99.5% power measurement.

Test Arrangement:

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 5 of 20

Results:

MARKER A ACTV DET: PEAK

313 kHz MEAS DET: PEAK QP AVG .33 dB MKR 313 kHz

.33 dB

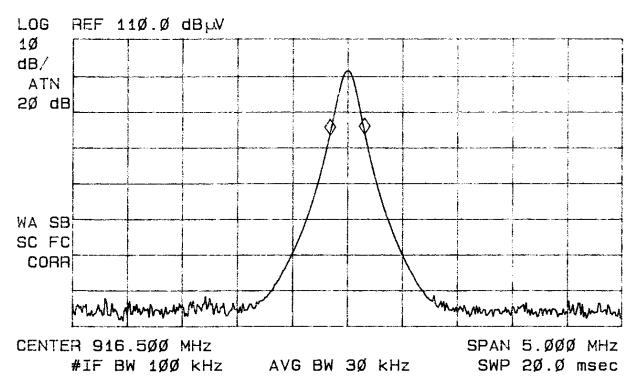


Figure 1 99.5% Power Occupied Bandwidth

fc	O.B. MHz
916.5	0.313

Requirements of 2.1049 and applicable parts of Paragraph 90 are met . There are no deviations to the specifications.

2.1051 Spurious Emissions at Antenna Terminals

Measurements Required:

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna.

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 6 of 20

Test Arrangement:

The integral antenna can not be removed or replaced with a spectrum analyzer with 50 Ω impedance.

NVLAP Lab Code: 200087-0

The radio frequency output was measured using a HP 8562A Spectrum Analyzer and appropriate antennas and attenuation. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in a normal mode. The frequency spectrum from 0 to 10 GHz was observed. Spurious emissions testing was done at the 3 meters OATS. Data taken per 2.1051 and applicable parts of Part 90.

The emission mask for transmitters that are not equipped with audio low-pass filters, emissions on any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth shall be attenuated by at least $55 + 10 \text{ Log } (P_{\circ}) \text{ dB}$. The limit for the SMARTSCAN Portable AEI Reader:

Limit = 55 + 10 Log(1) Limit = 55 + 10(0) Limit = 55 dB

FREQUENCY	SPURIOUS	LEVEL BELOW
	FREQ. (GHz)	CARRIER (dB)
916.5	1833.4	63.8
	2749.5	63.4
	3666.0	58.4

Data taken per 2.1051 and applicable parts of Part 90. Specifications of Paragraphs 2.1051 and 90.210(K)(3) are met. There are no deviations to the specifications.

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 7 of 20

2.1053 Field Strength of Spurious Radiation

Measurements Required:.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. The integral antenna was installed on the reader for all spurious radiation measurements.

NVLAP Lab Code: 200087-0

Test Arrangement: NOTCH FILTER TRANSMITTER ANTENNA SPECTRUM ANALYZER

The transmitter was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The transmitter was activated and the frequency spectrum of the fundamental was observed. The turntable was rotated though 360 degrees to locate the position registering the highest amplitude emission. The amplitude of the fundamental frequency was measured and recorded. The frequency spectrum was then searched for spurious emissions generated from the transmitter. The amplitude of each spurious emission was maximized by raising and lowering the FSM antenna and rotating the turntable before data was recorded. A log periodic antenna was used for frequencies of 200 MHz to 5 GHz and pyramidal horn antennas were used for frequencies of 5 GHz to 40 GHz. Emission levels were measured and recorded from the spectrum analyzer in dBuV. This level was then added to the antenna factor less the amplifier gain to calculate the field strength at 3 meters. Data was taken at the ROGERS LABS, INC. 3 meters open area test site (OATS). A description of the test facility is on file with the FCC, Reference: 31040/SIT, 1300F2, dated February 6, 1998. The testing procedures used conforms to the procedures stated in the ANSI 63.4-1992 document.

Calculations made are as follows:

CFS = Calculated Field Strength
FSM = Field Strength Measurement

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 8 of 20

CFS = FSM + Antenna Factor - Amplifier Gain

CFS = 101.1 + 25.9

CFS = 127.0

The limit for emissions are defined by the following equations:

NVLAP Lab Code: 200087-0

Limit = Amplitude of spurious emission must be attenuated by this amount below the level of the fundamental.

Attenuation = $55 + 10 \text{ Log}_{10}(P_w)$ = $55 + 10 \text{ Log}_{10}(1.0)$

= 55 dB

Limit = 127.0 - 55

= 72.0

Results:

General Radiated Emissions (6 Highest Emissions)

			<u> </u>				
Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	Antenna Factor (dB/m)	Amp. Gain (dB)	CFS Horz. @ 3m (dBµV/m)	CFS Vert. @ 3m (dBµV/m)	FCC CLASS b Limit @ 3m (dBµV/m)
55.3	60.4	63.4	7.3	35	32.7	35.7	40.0
102.0	51.8	67.3	7.9	35	24.7	40.2	43.5
111.8	56.9	67.6	7.6	35	29.5	40.2	43.5
115.5	50.8	67.6	7.6	35	23.4	40.2	43.5
121.7	53.6	67.4	7.9	35	26.5	40.3	43.5
131.5	47.7	65.9	8.9	35	21.6	39.8	43.5

General Radiated Emissions (6 Highest Emissions)

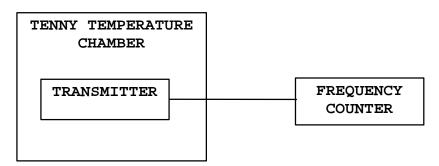
FREQUENCY (MHz)	FSM HOR. (dBµV)	FSM VERT. (dBµV)	ANTENNA FACTOR (dB)	AMPLIFIER GAIN (dB)	CFS. dBµV/m @ 3 M HOR.	CFS. dBµV/m @ 3 M VERT.
916.5	101.1	86.1	25.9	0	127.0	112.0
1833.0	44.1	36.7	29.1	25	48.2	40.8
2749.5	40.8	41.0	32.6	25	48.4	48.6
3660.0	39.3	41.5	37.1	25	51.4	53.6
4582.5	37.3	33.0	40.7	25	53.0	48.7

Specifications of Paragraph 2.1053 and 90.210 are met.

There are no deviations to the specifications.

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 9 of 20


2.1055 Frequency Stability

Measurements Required:

The frequency stability shall be measured with variations of ambient temperature from -30° to +50° centigrade. Measurements shall be made at the extremes of the temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. In addition to temperature stability the frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, batteries powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Test Arrangement:

The measurement procedure outlined below shall be followed:

<u>Step 1:</u> The transmitter shall be installed in an environmental test chamber whose temperature is controllable. Provision shall be made to measure the frequency of the transmitter.

Step 2: With the transmitter inoperative (power
switched "OFF"), the temperature of the test chamber

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 10 of 20

NVLAP Lab Code: 200087-0

NVLAP Lab Code: 200087-0

shall be adjusted to $+25^{\circ}\text{C}$. After a temperature stabilization period of one hour at $+25^{\circ}\text{C}$, the transmitter shall be switched "ON" with standard test voltage applied.

Step 3: The carrier shall be keyed "ON", and the transmitter shall be operated unmodulated at full r.f. power output at the duty cycle for which it is rated, for a duration of at least 5 minutes. The r.f. carrier frequency shall be monitored and measurements shall be recorded.

<u>Step 4:</u> The test procedures outlined in Steps 2 and 3, shall be repeated after stabilizing the transmitter at the environmental temperatures specified, -30° C to 50° C in 10 degree increments.

The frequency stability was measured with variations in the power supply voltage from 85 to 115 percent of the nominal value. A Sorensen DC Power Supply was used to vary the dc voltage for the power input from 9.0 Vdc to 12.2 Vdc. The unit incorporates a battery sense circuit to power down when the battery voltage is reduced below 8.4 volts. The frequency was measured and the variation in parts per million was calculated. Data was taken per Paragraphs 2.1055 and 90.213.

Results:

Temperature Stability $f_o = 916.500 \text{ MHz}$

FREQ.	FREQU	ENCY ST	ABILITY	VS TE	MPERA'	TURE I	N PARTS	PER MII	LLION
(MHz)	-30	-20	-10	Temper			+30	+40	+50
916.5000	-28.5			•		··			

FREQUENCY IN MHz	STABILI	TY VS VOLTAGE	VARIATION 15	% IN PPM
	9.0 V _{dc}	10.6 V_{dc}	12.2 V _{dc}	$8.5 V_{dc}$
916.5000	0	0	0	0

Specifications of Paragraphs 2.995 and 90.213 are met. There are no deviations to the specifications.

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 11 of 20

APPENDIX

Model: SMARTSCAN

- 1. Photos of Radiated Emissions Test Set Up
- 2. Photos Case Front and Back
- 3. Photo Inside of Case
- 4. Photos Transmitter Printed Circuit Board
- 5. Photo FCC I.D. Label Location
- 6. Test Equipment List
- 7. Rogers Qualifications
- 8. FCC Site Approval Letter


ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 12 of 20

NVLAP Lab Code: 200087-0

SOUTHERN TECHNOLOGIES CORPORATION Model: SMARTSCAN Photos Radiated Emissions Test Set-up

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

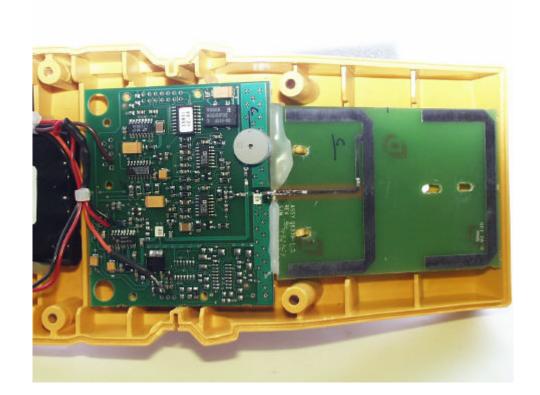
Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 13 of 20

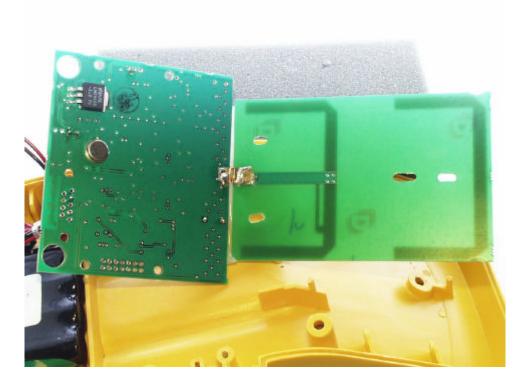
SOUTHERN TECHNOLOGIES CORPORATION Model: SMARTSCAN PHOTOS CASE FRONT AND BACK

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 14 of 20

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540


Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 15 of 20


NVLAP Lab Code: 200087-0

SOUTHERN TECHNOLOGIES CORPORATION MODEL: SMARTSCAN

PHOTOS TRANSMITTER PRINTED CIRCUIT BOARD

NVLAP Lab Code: 200087-0

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 16 of 20

NVLAP Lab Code: 200087-0

SOUTHERN TECHNOLOGIES CORPORATION MODEL: SMARTSCAN PHOTO FCC I.D. LABEL LOCATION

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 17 of 20

TEST EQUIPMENT LIST FOR ROGERS LABS, INC.

The equipment is used daily and kept in good calibration and operating condition. Calibration of critical items are checked for accuracy each time used.

NVLAP Lab Code: 200087-0

List of Test Equipment:	Calibration Date:
Scope: Tektronix 2230	2/99
Wattmeter: Bird 43 with Load Bird 8085	2/99
Power Supplies: Sorensen SRL 20-25, DCR 150, DCR 1	
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/99
R.F. Generator: Boonton 102F	2/99
R.F. Generator: HP 606A	2/99
R.F. Generator: HP 8614A	2/99
R.F. Generator: HP 8640B	2/99
Spectrum Analyzer: HP 8562A,	2/99
Mixers: 11517A, 11980A & 11980K	,
HP Adapters: 11518, 11519, 11520	
Spectrum Analyzer: HP 8591 EM	7/99
Frequency Counter: Weston 1255	2/99
Frequency Counter: Leader LDC 825	2/99
Antenna: EMCO Log Periodic	10/99
Antenna: BCD 235/BNC Antenna Research	10/99
Antenna: EMCO Dipole Set 3121C	2/99
Antenna: C.D. B-100	2/99
Antenna: Solar 9229-1 & 9230-1	2/99
Antenna: EMCO 6509	2/99
Microline Freq. Meter: Model 27B	2/99
Dana Modulation Meter: Model 9008	2/99
Audio Oscillator: H.P. 200CD	2/99
R.F. Power Amp 65W Model: 470-A-1000	9/97
R.F. Power Amp 50W M185- 10-500	9/97
R.F. PreAmp CPPA-102	9/97
Shielded Room 5 M x 3 M x 3.0 M (100 dB Integrity)	
LISN 50 μ Hy/50 ohm/0.1 μ f	10/99
LISN Compliance Eng. 240/20	2/99
SCS Power Amp Model: 2350A	2/99
Power Amp A.R. Model: 10W 1000M7	2/99
Power Amp EIN Model: A300	1/99
Linear Amp Mini Circuits: ZHL-1A (2 Units)	2/99
Combiner Unit Mini Circuits: ZSC-2-1 (2 Units)	2/99
ELGAR Model: 1751	2/99
ELGAR Model: TG 704A-3D	2/99
ELGAR Model: 400SD (PB)	2/99
ESD Test Set 2000i	10/95
Fast Transient Burst Generator Model: EFT/B-100	10/95
Current Probe: Singer CP-105	8/97
Current Probe: Solar 9108-1N	8/97
Field Intensity Meter: EFM-018	10/95
KETEK Ecat Surge Generator	10/99

11/01/99

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 18 of 20

QUALIFICATIONS

NVLAP Lab Code: 200087-0

of

SCOT D. ROGERS, ENGINEER

ROGERS LABS, INC.

Mr. Rogers has approximately 12 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

POSITIONS HELD:

Systems Engineer: A/C Controls Mfg. Co., Inc.

6 Years

Electrical Engineer: Rogers Consulting Labs, Inc.

5 Years

Electrical Engineer: Rogers Labs, Inc.

Current

EDUCATIONAL BACKGROUND:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

November 29, 1999

Date

1/11/99

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 19 of 20

FEDERAL COMMUNICATIONS COMMISSION

7435 Oakland Mills Road Columbia, MD 21046 Telephone: 301-725-1585 (ext-218) Facsimile: 301-344-2050

February 6, 1998

1040/SIT 1300F2

NVLAP Lab Code: 200087-0

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Attention: Scot D. Rogers

Re: Measurement facility located at above address

(3 and 10 meter site)

Gentlemen:

Your submission of the description of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC Rules. The description has, therefore, been placed on file and the name of your organization added to the Commission's list of facilities whose measurement data will be accepted in conjunction with applications for certification or notification under Parts 15 or 18 of the Commission's Rules. Our list will also indicate that the facility complies with the radiated and AC line conducted test site criteria in ANSI C63.4-1992. Please note that this filing must be updated for any changes made to the facility, and at least every three years the data on file must be certifled as current.

Per your request, the above mentioned facility has been also added to our list of those who perform these measurement services for the public on a fee basis. This list is updated monthly and is available on the Laboratory's Public Access Link (PAL) at 301-725-1072, and also on the Internet at the FCC Website www.fcc.gov/oet/info/database/testsite/.

Sincerely,

Thomas W. Phillips
Electronics Engineer
Customer Service Po

Ilm Whilly

Customer Service Branch

ROGERS LABS, INC. SOUTHERN TECHNOLOGIES CORPORATION
4405 W. 259th Terrace MODEL: SMARTSCAN PORTABLE AEI READER
Louisburg, KS 66053 Test #: 991109 FCC ID#: OTR2200-540

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 90 Page 20 of 20