

FCC - TEST REPORT

Report Number	:	68.950.18.0523.0	02	Date of Issu	ue:	March 18, 2019
Model	<u>:</u>	Blue Byrd				_
Product Type	<u>:</u>	IN-EAR HEADPH	HONES			_
Applicant	:	Beyerdynamic				_
Address	<u>:</u>	56 Central Ave, F	armingda	ale, New Yor	k United	d States
Manufacturer	<u>:</u>	Beyerdynamic				_
Address	<u>:</u>	56 Central Ave, F	armingda	ale, New Yor	k United	l States
Test Result	:	n Positive	⊃ Negativ	ve		
Total pages including Appendices	:	33				

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	
3	Description of the Equipment Under Test	
4	Summary of Test Standards	
5	Summary of Test Results	
6	General Remarks	
7	Test Setups	
8	Systems test configuration	9
9	Technical Requirement	
9	0.1 Conducted peak output power	10
9	0.2 Power spectral density	13
9	0.3 6 dB Bandwidth and 99% Occupied Bandwidth	16
9	9.4 Spurious RF conducted emissions	20
9	0.5 Band edge	
9	0.6 Spurious radiated emissions for transmitter	28
10	Test Equipment List	32
11	System Measurement Uncertainty	33

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint

Road 2, Nanshan District

Shenzhen 518052

P.R. China

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

FCC Registration

514049

No.:

IC Registration

10320A

No.:

3 Description of the Equipment Under Test

Product: IN-EAR HEADPHONES

Model no.: Blue Byrd

FCC ID: OSDBBYRD

Options and accessories: USB Cable

Rating: 3.7VDC, 53mAh (Supplied by Built Li-ion Polymer battery)

5V 0.5A Charging by USB port

RF Transmission

2402MHz-2480MHz

Frequency:

No. of Operated Channel: 40

Modulation: GFSK

Antenna Type: Integrated antenna

Antenna Gain: 1.6dBi

Description of the EUT: The Equipment Under Test (EUT) is IN-EAR HEADPHONES

operated at 2.4GHz

4 Summary of Test Standards

Test Standards		
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES	
10-1-2017 Edition	Subpart C - Intentional Radiators	

All the test methods were according to KDB558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpart C	•					
Test Condition		Pages	Test	Tes	t Res	ult
Test Condition		rayes	Site	Pass	<u>Fail</u>	N/A
§15.207	Conducted emission AC power port					
§15.247 (b) (1)	Conducted peak output power	10	Site 1			
§15.247(a)(1)	20dB bandwidth					\boxtimes
§15.247(a)(1)	Carrier frequency separation					
§15.247(a)(1)(iii)	Number of hopping frequencies					
§15.247(a)(1)(iii)	Dwell Time					
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	13	Site 1			
§15.247(e)	Power spectral density	16	Site 1			
§15.247(d)	Spurious RF conducted emissions	19	Site 1			
§15.247(d)	Band edge	23	Site 1			
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	25	Site 1			
§15.203	Antenna requirement	See no	te 2			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an Integrated antenna, which gain is 1.6dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This report was based on the product in test report 68.950.18.0523.01 for below changes:

- Two inductance position change to verticle in order to avoid inductive coupling
- Change the crystal position to the same side of RF module in order to ensure the frequency stability.
- A small change volume button position.
- Delete passive NFC function.

So the RF output power and radiate emission have been retested, other test data were referred from original test report 68.950.18.0523.01, and the test data are still effective and they are representative of the compliance of the modification.

Blue Byrd is a IN-EAR HEADPHONES with Bluetooth 5.0, which supports 1Mbps only for Bluetooth Low Energy. The TX and RX range is 2402MHz-2480MHz.

Note: The report is BLE only

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- Not Performed

The Equipment under Test

- n **Fulfills** the general approval requirements.
- o **Does not** fulfill the general approval requirements.

Sample Received Date: January 1, 2019

Testing Start Date: January 1, 2019

Testing End Date: February 27, 2019

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

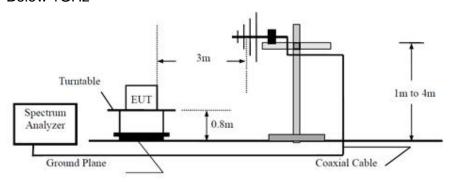
Reviewed by: Prepared by: Tested by:

Laurent Yuan EMC Section Manager

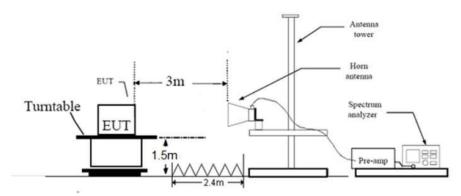
Vincent Zheng EMC Project Engineer

Imcare zhenj

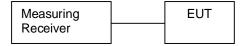
Tree Zhan EMC Test Engineer


Tree Them

MOJERNAMICALIC



7 Test Setups


Below 1GHz

Above 1GHz

Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	X220	

Test software: CSR tool, which used to control the EUT in continues transmitting mode.

The system was configured to channel 0, 19, and 39 for the test.

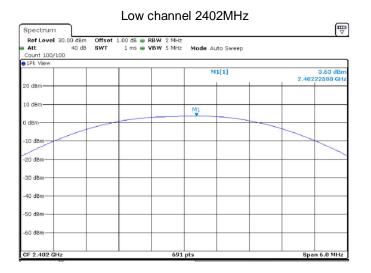
9 Technical Requirement

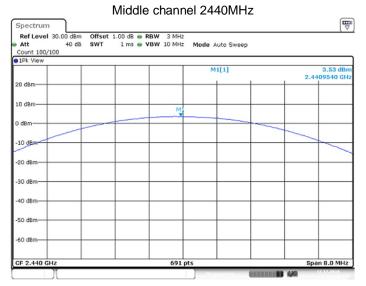
9.1 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 RBW > the 6dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

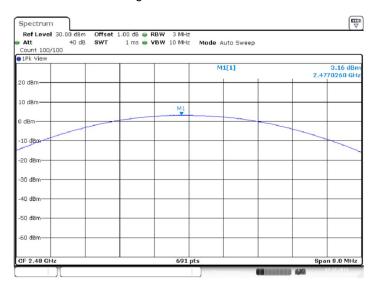
Limits


According to §15.247 (b) (1), conducted peak output power limit as below:


Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel 2402MHz	3.63	Pass
Middle channel 2440MHz	3.53	Pass
Top channel 2480MHz	3.16	Pass



High channel 2480MHz

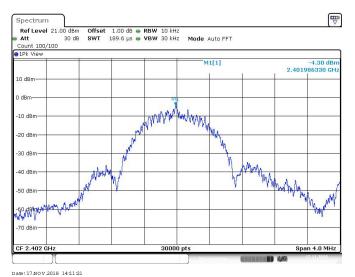
9.2 Power spectral density

Test Method

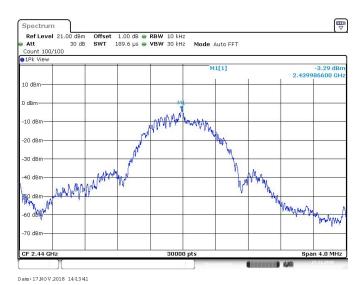
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

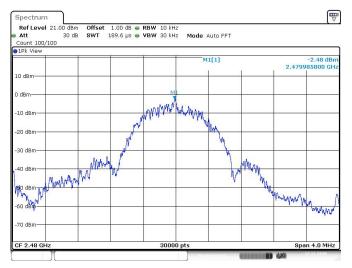
Limit


Limit [dBm]	
≤8	

Test result


	Power spectral	
Frequency	density	Result
MHz	dBm	
Top channel 2402MHz	-4.3	Pass
Middle channel 2440MHz	-3.29	Pass
Bottom channel 2480MHz	-2.48	Pass

Low channel 2402MHz



Middle channel 2440MHz

High channel 2480MHz

Date: 17 NOV 2018 14:15:24

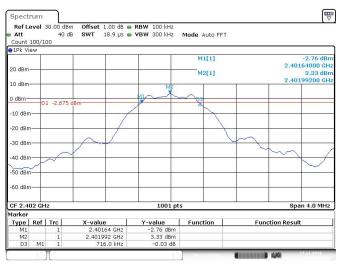
9.3 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

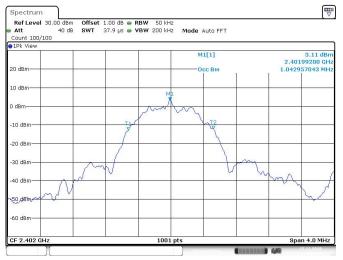
- 1. Use the following spectrum analyzer settings:
- RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

			• •
		m	
_	-1		

Limit [kHz]
≥500

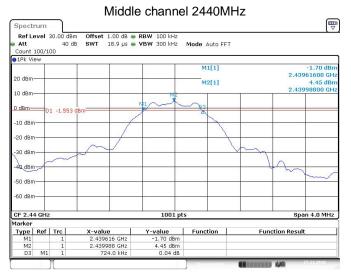

Test result

 ot rooun				
Frequency MHz	6dB bandwidth kHz	99 bandwidth kHz	Result	
Bottom channel 2402MHz	0.716	1.043	Pass	_
Middle channel 2440MHz	0.724	1.035	Pass	
Top channel 2480MHz	0.720	1.047	Pass	

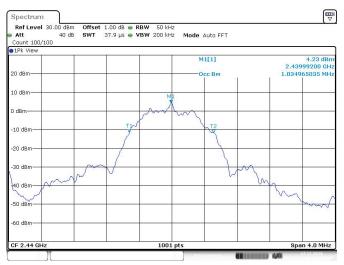


6 dB Bandwidth

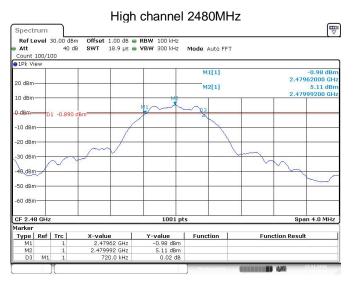
Low channel 2402MHz



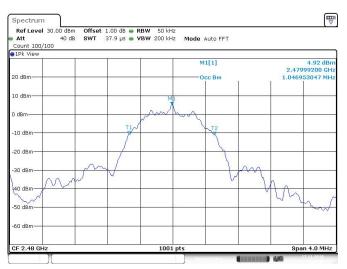
Date: 17 NOV 2018 14:10:57



Date: 17 NOV 2018 14:11:08



Date: 17 NOV 2018 14:13:17



Date: 17 NOV 2018 14:13:28

Date: 17 NOV 2018 14:15:00

Date: 17 NOV 2018 14:15:11

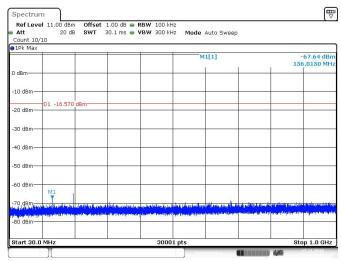
9.4 Spurious RF conducted emissions

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

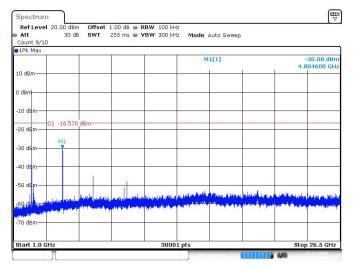
Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20



Spurious RF conducted emissions

2402MHz

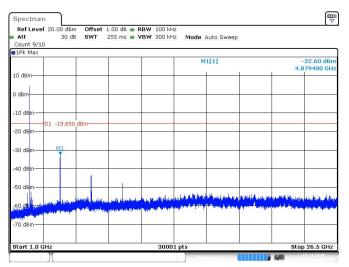


Date: 17 NOV 2018 14:11:38

Date: 17 NOV 2018 14:11:46

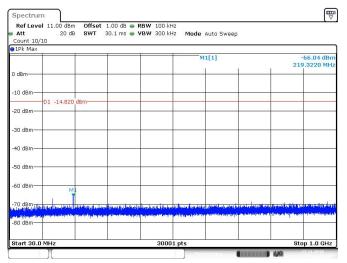


Date:17 NOV 2018 14:11:58

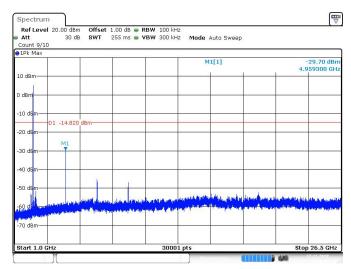


2440MHz

Date: 17 NOV 2018 14:13:56


Date: 17 NOV 2018 14:14:07

2480MHz



Date: 17 NOV 2018 14:15:40

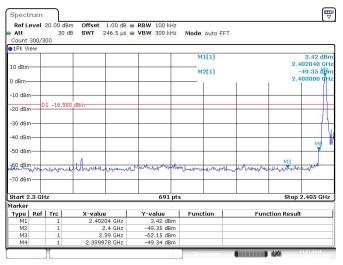
Date: 17 NOV 2018 14:15:49

Date: 17 NOV 2018 14:16:00

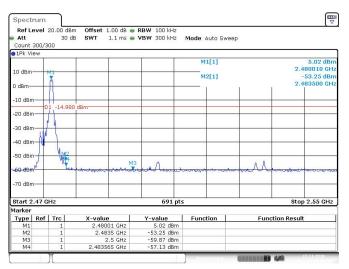
9.5 Band edge

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.


Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20


Band edge testing

2402MHz

Date: 17 NOV 2018 14:11:31

2480MHz

Date: 17 NOV 2018 14:15:34

9.6 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10: For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

- a) RBW = 1 MHz.
- b) VBW \ $[3 \times RBW]$.
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D,where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is $[10 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty

cycle was 50%, then 3 dB shall be added to the measured emission levels.

- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

Transmitting spurious emission test result as below:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Low channel 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-	486.21	32.64	Н	46	QP	13.36	-19.3	Pass
1000MHz	633.15	34.63	V	46	QP	11.37	-18.7	Pass
	4804.42*	44.75	Н	74	PK	29.25	4.3	Pass
1000-	7204.37*	43.86	Н	74	PK	30.14	8.2	Pass
25000MHz	4804.29*	44.85	V	74	PK	29.15	4.3	Pass
	7204.62*	45.94	V	74	PK	28.06	8.2	Pass

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
	4880.15*	48.25	Н	74	PK	25.75	4.8	Pass
1000-	7320.61*	49.25	Н	74	PK	24.75	8.5	Pass
25000MHz	4879.68*	45.92	V	74	PK	28.08	4.5	Pass
	7319.83*	46.75	V	74	PK	27.25	8.4	Pass

High channel 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
	4959.63*	46.82	Н	74	PK	27.18	4.3	Pass
1000-	7439.66*	47.32	Н	74	PK	26.68	8.2	Pass
25000MHz	4960.42*	46.73	V	74	PK	27.27	4.3	Pass
	7440.72*	48.71	V	74	PK	25.29	8.2	Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Level=Reading Level + Correction Factor
 Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

List of Test Instruments

Radiated Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2019-7-6
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2019-7-14
Horn Antenna	Rohde & Schwarz	HF907	102294	2019-7-14
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2019-7-6
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2019-7-6
Attenuator	Agilent	8491A	MY39264334	2019-7-6
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

TS8997 Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Generator	Rohde & Schwarz	SMB100A	108272	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMBV100A	262825	2019-7-6
Communication Synthetical Test Instrument	Rohde & Schwarz	CMW 270	101251	2019-5-31
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2019-7-6
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2019-7-6
Power Splitter	Weinschel	1580	SC319	2019-7-5
10dB Attenuator	Weinschel	4M-10	43152	2019-7-6
10dB Attenuator	R&S	DNF	DNF-001	2019-7-6
10dB Attenuator	R&S	DNF	DNF-002	2019-7-6
10dB Attenuator	R&S	DNF	DNF-003	2019-7-6
10dB Attenuator	R&S	DNF	DNF-004	2019-7-6
Test software	Rohde & Schwarz	EMC32	Version 10.38.00	N/A
Test software	Tonscend	System for BT/WIFI	Version 2.6	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 4.91dB; Vertical: 4.89dB;			
Uncertainty for Radiated Emission in 3m chamber 1000MHz-18000MHz	Horizontal: 4.80dB; Vertical: 4.79dB;			
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 5.05dB; Vertical: 5.04dB;			
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 1.16dB Frequency test involved: 0.6×10 ⁻⁷			